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A B S T R A C T   

Climate change significantly impacts local, regional, and global vegetation changes. These changes have 
continued to threaten ecosystems, especially in dryland areas where moisture is scarce, and the livelihoods of 
rural communities are at risk because of such changes, as well as their capacity to provide outputs and sustain the 
livelihoods of rural communities. This study aims to derive a simulation model of vegetation conditions con
cerning daily temperature and extreme precipitation indices in Katsina State, Nigeria. This study uses remote 
sensing and Geographic Information System (GIS)-based analysis, time series analysis of precipitation, maximum 
and minimum temperature, and twenty-four indices defined by the Expert Team on Climate Change Detection to 
evaluate the influence of Temp and precipitation extreme indices on vegetation dynamics/NDVI. The results 
indicate that the statistical downscaling model (SDSM) is performing satisfactorily in predicting maximum and 
minimum temperatures, along with precipitation, for the time horizon of the simulation. Mean precipitation of 
1.98 mm (RCP2.6), 2.03 mm (RCP4.5), and 2.07 mm (RCP8.5) was revealed in the study area. Tmax and Tmin 
were projected under low emissions at 20.1 0C and 14.25 0C (RCP2.6), 20.13 ◦C and 14.26 0C (RCP4.5), and 
20.15 0C and 14.27 0C (RCP8.5) respectively. All the scenarios present increasing minimum and maximum 
temperatures and decreasing precipitation, except for RCP8.5, which predicted a more adverse trend. However, 
in Katsina State, the Normalized Difference Vegetation Index (NDVI), precipitation, Tmax, and Tmin, extreme 
temperature and precipitation indices, and drought indices successfully demonstrated spatial and temporal 
variability.   

1. Introduction 

The influence of climatic variability on tropical vegetation holds 
great importance at the global, regional, and local levels due to its 
abundant biodiversity and its ability to impact the cycles of carbon, 
water, and nutrients (Jansson and Hofmockel, 2020). Understanding the 
effects of climate change and vegetation restoration on ecosystem ser
vices is crucial for implementing sustainable ecosystem management 
practices. The preservation of vegetation has a key role in attaining 
sustainable development at a global level (Ma et al., 2021). The presence 
of vegetation is crucial in shaping the carbon and climate systems on 

terrestrial surfaces, impacting ecosystem service delivery (Quijas et al., 
2010; Buytaert et al., 2011). The development and dispersion of plant 
life are significantly affected by a combination of human activities and 
natural phenomena (Cao et al., 2014). Consequently, the system ele
ments demonstrate seasonal and successional fluctuations, leading to a 
wide range of reactions and feedback mechanisms among different 
species and ecosystems (Weiskopf et al., 2020). Cao et al. (2014) propose 
that the climate of a specific region can be classified as either macro
climatic or microclimatic, depending on the perspective adopted. Prior 
studies have demonstrated a significant association between climate 
variability, which refers to fluctuations in climate conditions over a 
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specific timeframe, and the dynamics of vegetation growth and devel
opment (Cao et al., 2014; Thornton et al., 2014). The issue of climate 
change has become a prominent aspect of the present-day difficulties 
faced in terms of global food security and human health (Hanjra and 
Qureshi, 2010). 

Local communities and resource managers require an awareness of 
variability and climate change to adjust plans for greater fluctuation 
brought on by global climate change (Twomlow et al., 2008; O’Connell, 
2017). Plant biochemical and biophysical processes influence climate 
change (Perugini et al., 2017). Several examples of biophysical factors 
include vegetation characteristics that impact latent heat distribution, 
emissivity, and albedo (Cao et al., 2015). 

According to climate change forecasts, Africa will see severe climate 
and vegetation changes (Scheiter and Higgins, 2009; Scheiter and Hig
gins, 2009; Scheiter and Higgins, 2009; Anav and Mariotti, 2011; Sarr, 
2012). Drought is expected to continue to impact the vegetation along 
the Guinea Coast and the Sahel in West Africa, causing significant 
changes (Mehboob et al., 2020). In West Africa and Nigeria, rainfall and 
temperature are the most influencing elements of vegetation change 
(Abiodun et al., 2012; Sinare and Gordon, 2015). Climate variability has 
negatively affected vegetation through recurrences of drought (Bour
iaud et al., 2005). There have been recent reports of tree dieback caused 
by drought in numerous forests around the world (Galiano et al., 2010). 
This affects the structure and function of the ecosystem (Galiano et al., 
2010). Due to a prolonged desiccation period that started in the late 
1960 s and continued into the 1990 s, the West African Sahel, particu
larly the drylands of Nigeria, has been the subject of much drought 
research (Hulme, 2001; Brooks, 2004; Adejuwon and Dada, 2021). 
However, the bulk of drought studies (Giannini and Kaplan, 2019; Carré 
et al., 2019; Biasutti, 2019; Carré et al., 2019; Ibrahim et al., 2020) have 
focused on drought occurrence, causes, effects, and farmers’ adaptation. 
Other studies in Katsina focused on temperature and rainfall variability 
(Adejuwon and Dada, 2021; Dogonyaro et al., 2022; Ibrahim and 

Abdullahi, 2022; Ogunsola et al., 2022; Saleh, 2020). 
Vegetation indices and ecological interactions between woody and 

herbaceous plant species in Nigeria show that the vegetation’s structure, 
distribution, and variety have changed due to climate change and pop
ulation fluctuations (Obioha, 2008; Obioha, 2009). Nigeria, as a coun
try, loses more than 350,000–400,000 ha of vegetation annually due to 
human activities (Akpu et al., 2017). Furthermore, logging is one of 
Nigeria’s most common forest disturbances (Okon, 2018). For instance, 
wood is a significant energy source in Nigeria (Adamu et al., 2020). In 
addition, grazing is a principal cause of tropical vegetation degradation 
(Alaanuloluwa Ikhuoso et al., 2020). In general, increasing population, 
expansion of agriculture, unsustainable forest use, and urbanization are 
the causes of vegetation change in tropical regions (Duveiller et al., 
2008). 

To plan for the future, we must comprehend how the climate 
changes, especially in vulnerable regions like Katsina State. Threats like 
declining vegetation and climate change represent complex challenges, 
as does fluctuation in the climate. Policymakers must know climate 
change’s present and future implications and variability to lessen its 
effects in the studied region. By examining concerns relating to climate 
change and variability in Katsina State, Nigeria, this study adds to the 
body of literature. Geospatial technologies are an effective tool for 
researching the changes in the world’s vegetation (Langat et al., 2019). 
Using a statistical downscaling model, the present study’s goal is to 
evaluate the impact of daily temperature and extreme precipitation 
indices on the vegetation dynamics in Katsina state. 

One major challenge in understanding climate change’s impact on 
vegetation dynamics is the need for accurate and high-resolution climate 
data at the local level. This study aims to address this challenge by using 
a statistical downscaling model (SDM) to model the influence of daily 
temperature and extreme precipitation indices on vegetation dynamics 
in Katsina State, Nigeria. Katsina State is one of the most populous states 
in Nigeria and is known for its agricultural activities. The state’s 

Fig. 1. Map of the study area.  
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vegetation, which is mainly made up of grasslands, savannas, and 
woodlands, is crucial to the livelihoods of the people living in the state 
(Ibrahim et al., 2022). However, the state has experienced changes in its 
temperature and precipitation patterns in recent years, which have 
affected its vegetation. 

The study will use the SDM to downscale the global climate data to 
the local level, allowing for modeling the impact of daily temperature 
and precipitation extreme indices on vegetation dynamics. The results of 
this study will be crucial in informing policymakers and stakeholders in 
Katsina State on the impact of climate change on vegetation and the 
need for appropriate measures to mitigate its effects. Furthermore, the 
study’s findings will contribute to the body of knowledge on the impact 
of climate change on vegetation dynamics and the use of SDM in 
modeling such effects. 

2. Materials and methods 

2.1. The study area 

Katsina State is located in Northwestern Nigeria, between latitudes 
110 07′ 49″ and 130 22′ 57″ north of the equator and longitudes 60 52′ 03″ 
and 90 09′ 02″ east of the Greenwich meridian” (see Fig. 1). As stated by 
the National Population Commission (2006), Katsina state has an esti
mated population of 5,792,578 people and a total area of around 23,938 
square kilometers (Ahmadu et al., 2022). The Sahel, Sudan, and 
Northern Guinea Savanna are three of the state’s agroecological zones. 
The semi-arid steppe types are classified as AW and BS and have a 
tropical wet and dry climate (Umar et al., 2021). Katsina state experi
ences temperatures between 29 0C and 31 0C and 350–1000 mm of 
annual rainfall (Idris et al., 2019; Alemaka et al., 2021). High inter- 

annual variability in spatial and temporal characteristics of the zone’s 
rainfall pattern regularly results in severe and extensive droughts 
(Oladipo, 1993; Okorie, 2003). 

The region has four distinct seasons, with February through May 
being the hottest. The rainy season lasts from April to October, char
acterized by a southwesterly predominating wind (Ohunakin et al., 
2011). The dry season lasts from November to March, when the 
Harmattan, a Saharan breeze, dominates the wind (Umar, 2016). 
Although the dry northern air does not bring rain between November 
and February, the harmattan dust it delivers is deposited and replenishes 
soil nutrients. There isn’t much cold air at night, but dust flows 
throughout the day (Ahmad and Daura, 2019). The harvesting season, or 
Cool Dry Season (Kaka), lasts from October to November and sees less 
than 8 % of the yearly rainfall, while the rainy or Damina season, lasting 
from June to October, sees over 90 % of the annual rainfall (Ahmad and 
Daura, 2019). Fig. 1 displays a map outlining the geographical extent of 
the study area. 

2.2. Type and sources of data 

Multiple data types and sources were used to accomplish this study’s 
goal. The data type and sources for this investigation are shown in 
Table 1. 

2.3. Data processing 

GIMMS NDVI data are utilized in this study. Aerosols, the solar 
zenith angle, and orbital drift were all considered during the pre
processing of this data. All satellite-based data utilized in this work are 
adjusted to assess the impact of noise before data analysis. The global 

Table 1 
Data Types and Sources.  

S/ 
N 

Data Type Source 

1 Meteorological data: Rainfall, Maximum and Minimum Temperature ERA5, Historical CMIP5, and NiMet 1982 to 2021 (40 years) 
2 Population Data National Bureau of Statistics, Nigeria, website (https://www. 

nigerianstat.gov.ng/download) 
3 Digital Elevation Model (DEM) The SRTM DEM website https://www.diva-gis.org/gdata 
4 Photographs Field Survey 
5 Works of literature Journals, textbooks, internet materials, conference papers, newspapers, 

unpublished dissertations, and thesis 
6 Administrative map of Nigeria DIVA GIS 
7 NOAA Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR Normalized Difference 

Vegetation Index (NDVI) product (1982–1999) 
(https://www.glcf.umd.edu/data/gimms/) to examine a long-time series 
of vegetation condition  

8 Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13 NDVI (2000–2021) Land Processes Distributed Active Archive Centre (LP DAAC), NASA 

Source: Author’s Compilation, 2022. 

Table 2 
Description of the selected predictors for modeling the influence of extreme indices on vegetation.  

S/ 
NO 

Predictor Reasons for Selection 

1 ncepmslpgl.dat Mean Sea Level Pressure data can influence rainfall patterns, as areas of high and low pressure often correlate with weather systems affecting precipitation. 
This can also affect temperature by influencing air pressure, which in turn impacts temperature patterns. 

2 ncepp1_vgl.dat This variable, likely representing wind patterns in the upper atmosphere, can impact the movement and distribution of moisture, which is crucial for 
rainfall and temperature modeling. 

3 ncepp1_ugl.dat Wind patterns in the lower atmosphere can also significantly influence rainfall, making this variable relevant for modeling precipitation. 
4 ncepp500gl. 

dat 
Data related to atmospheric conditions at the 500mb level can provide insights into the dynamics that influence rainfall patterns at different altitudes in the 
atmosphere. 

5 ncepp850gl. 
dat 

Atmospheric conditions at the 850mb level can affect temperature, humidity, and air stability, all of which play roles in determining rainfall and 
temperature patterns. 

6 ncepshumgl. 
dat 

Humidity levels in the atmosphere can influence maximum and minimum temperature as high humidity tends to moderate temperature extremes. 

7 ncepp5_zgl.dat This variable, likely representing geopotential height, can help understand temperature patterns in the upper atmosphere and their impact on surface 
temperatures. 

8 nceps500gl.dat Conditions at the 500mb level are indicative of atmospheric dynamics that affect temperature, making this variable relevant for temperature modeling. 
9 nceptempgl. 

dat 
Surface temperature data is essential for modeling maximum and minimum temperatures, as it directly represents the variable of interest.  
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GIMMS NDVI dataset was initially loaded into remote sensing software 
to stack the 696 bi-monthly NDVI composites before image pre- 
processing. Following a reliability analysis of the data, a similar pro
cedure was carried out for the MODIS NDVI datasets utilized in this 
work. The GIMMS-NDVI dataset is offered in global projection. Hence, it 
is necessary to re-project it to Universal Transverse Mercator (UTM). 
Additionally, subset images of the research area were trimmed from the 
datasets depending on the Katsina state administrative boundary. The 
monthly datasets were all re-projected. The two primary pre-processing 
phases were completed in IDRISI and R programming, followed by the 
evaluation of the intra-annual and seasonal trend analysis. The IDRISI 
pre-processing procedures apply to the entire study region or the sat
ellite imagery that covers the study area. Datasets for Katsina state were 
cut from the GIMMS and MODIS NDVI images (Dagnachew et al., 2020). 
The purpose of doing this is to lessen noise or any other disturbance 
brought on by atmospheric effects. 

2.4. Data analysis 

Time series data of daily rainfall, maximum and minimum temper
ature spanning from 1982 to 2021 were acquired from the Nigerian 
Meteorological Agency (NiMet). NiMet, a government organization 
responsible for nationwide weather stations, provided the data and 
metadata for the study area. Outlier and homogeneity tests were con
ducted on the maximum and minimum temperature and rainfall data to 
ensure data quality. These tests helped identify and address any anom
alies or inconsistencies in the dataset. 

In addition to the NiMet data, the ERA5 dataset was obtained from 
the Copernicus Climate Change Service website (https://cds.climate. 
copernicus.eu). ERA5 is a fifth-generation ECMWF reanalysis dataset 
that provides comprehensive global climate and weather information for 
the past 4 to 7 decades. The dataset offers daily updates and has a spatial 
resolution of 0.250 grid. 

Furthermore, Global Climate Model-derived predictors were sourced 
from a Canadian website (https://climate-scenarios.canada.ca/? 
page=sdi-cmip5intro). These predictors (see Table 2), derived from 
climate models, provide additional variables that can be used to enhance 
the analysis and better understand the influences on vegetation 
dynamics. 

The selection of these predictors was based on their significance in 
the modeling of extreme indices, such as rainfall, maximum tempera
ture, and lowest temperature, as well as their potential impact on 
vegetation dynamics. The selected variables comprise a diverse set of 
atmospheric and climatic circumstances that have the potential to 
greatly influence the variables of interest. This makes them well-suited 
for examination within the framework of vegetation modeling. 

By utilizing the collected data from NiMet, the ERA5 dataset, and 
Global Climate Model-derived predictors, the data analysis aims to 
examine and model the impact of climatic variability within the study 
area between the years 1982 and 2021. The analysis will help uncover 
relationships between daily temperature and precipitation extreme 
indices and vegetation dynamics in the study area. 

Normality Test. 
The Anderson-Darling (A-D) statistic was then used to assess the data 

for normality, defined as: 

A2
n =

∫ ∞

− ∞
|Fn(x) − F(x)|2ψ(x)f (x)d(x)

Where: 

ψ(x) = n/F(x){1 − F(x)}

n = Total number of data points; 
F(x) = distribution function of the fitted distribution; 
ƒ(x) = density function of the fitted distribution; 

Fn =
i
n 

i = the cumulative rank of the data point. 
As a result, the A-D statistic is often a more relevant measure of fit 

than other statistics, such as the K-S statistic, especially when giving 
equal weight to fitting a distribution at the tails and the main body is 
crucial. The following theories are developed using the Anderson- 
Darling test for normality: 

H0 Data is from a normally distributed population; 
H1: Data are not from a normally distributed population; 
The Anderson-Darling test’s p-value determines the probability that 

the data are from a regularly distributed population. If the distribution 
fits the data, the related p-value was higher than the selected alpha level, 
and the A-D statistic was modest (0.05 and 0.10). Missing values are 
checked to see if the data is complete before deciding whether more 
analysis is required. WMO guidelines state that it is not advised to fill in 
more than 10 % of the missing data (WMO, 2017). As a result, we apply 
ordinary least squares (OLS) techniques to complete the climatic vari
able’s missing data (Helsel and Hirsch, 1992). They are, therefore, uti
lized to ascertain the degree of climatic variability in the research area. 

However, to ensure data consistency and comparability, the com
bined station data and ERA5 data were subjected to homogenization 
using the adapted Caussinus-Mestre algorithm for homogenizing net
works of temperature series (ACMANT) method. This method, as 
described by Adeyeri et al. (2022) and Mamara et al. (2013), automat
ically detects breakpoints in the climatic data series by considering 
variables such as variable type and temporal resolution specific to the 
study region. The application of ACMANT enhances the accuracy of 
trend analysis, spatial coherence, and climatic pattern consistency 
(Adeyeri et al., 2022; Mamara et al., 2013). Notably, ACMANT has 
proven effective in homogenizing climate series by utilizing bivariate 
techniques to identify shifts in series mean. 

SDM. 
This model used multilinear regression to establish relationships 

between the 26 predictors of the National Centre of Environmental 
Prediction (NCEP) reanalysis data (Table 3), covering the period of 
1961–2000. These predictors were employed in the Statistical Down 
Scaling Model (SDSM) to analyze and calibrate the connections between 

Table 3 
List of the 26 predictor filenames and their corresponding variable names.  

S/N Predictor Filenames Variable names 

1 ncepmslpgl.dat Mean sea level pressure 
2 ncepp1_fgl.dat 1000 hPa Wind speed 
3 ncepp1_ugl.dat 1000 hPa Zonal wind component 
4 ncepp1_vgl.dat 1000 hPa Meridional wind component 
5 ncepp1_zgl.dat 1000 hPa Relative vorticity of true wind 
6 ncepp1thgl.dat 1000 hPa Wind direction 
7 ncepp1zhgl.dat 1000 hPa Divergence of true wind 
8 ncepp500gl.dat 500 hPa Geopotential 
9 ncepp5_fgl.dat 500 hPa Wind speed 
10 ncepp5_ugl.dat 500 hPa Zonal wind component 
11 ncepp5_vgl.dat 500 hPa Meridional wind component 
12 ncepp5_zgl.dat 500 hPa Relative vorticity of true wind 
13 ncepp5thgl.dat 500 hPa Wind direction 
14 ncepp5zhgl.dat 500 hPa Divergence of true wind 
15 ncepp850gl.dat 850 hPa Geopotential 
16 ncepp8_fgl.dat 850 hPa Wind speed 
17 ncepp8_ugl.dat 850 hPa Zonal wind component 
18 ncepp8_vgl.dat 850 hPa Meridional wind component 
19 ncepp8_zgl.dat 850 hPa Relative vorticity of true wind 
20 ncepp8thgl.dat 850 hPa Wind direction 
21 ncepp8zhgl.dat 850 hPa Divergence of true wind 
22 ncepprcpgl.dat Total precipitation 
23 nceps500gl.dat 500 hPa Specific humidity 
24 nceps850gl.dat 850 hPa Specific humidity 
25 ncepshumgl.dat 1000 hPa Specific humidity 
26 nceptempgl.dat Air temperature at 2 m  
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Table 4 
List of ETCCDI/Expert Team on Sector-Specific Climate Indices (ET-SCI) investigated in this study.  

Element Short 
name 

Long name Definition Plain language description Units Time 
scale 

Sector 
(s) 

Precipitation 
Indices 

CDD Consecutive Dry Days Maximum number of consecutive dry days (when 
PR < 1.0 mm) 

Longest dry spell days Mon/ 
Ann 

H, AFS, 
WRH  

CWD Consecutive Wet Days The maximum annual number of consecutive wet 
days (when PR >= 1.0 mm) 

The longest wet spell days Ann   

PRCPTOT Annual total wet-day PR Sum of daily PR >= 1.0 mm Total wet-day rainfall mm Mon/ 
Ann 

AFS, 
WRH  

R10mm Number of heavy rain 
days 

Number of days when PR >= 10 mm Days when rainfall is at least 
10 mm 

days Mon/ 
Ann   

R20mm Number of very heavy 
rain days 

Number of days when PR >= 20 mm Days when rainfall is at least 
20 mm 

days Mon/ 
Ann 

AFS, 
WRH  

R95p Total annual PR from 
heavy rain days 

The annual sum of daily PR > 95th percentile Amount of rainfall from very 
wet days 

mm Ann   

R99p Total annual PR from 
very heavy rain days 

The annual sum of daily PR > 99th percentile Amount of rainfall from 
extremely wet days 

mm Ann   

Rx1day Max 1-day PR Maximum 1-day PR total The maximum amount of 
rain that falls in one day 

mm Mon/ 
Ann   

Rx5day Max 5-day PR Maximum 5-day PR total The maximum amount of 
rain that falls in five 
consecutive days 

mm Mon/ 
Ann   

SDII Daily PR intensity Annual total PR divided by the number of wet 
days (when total PR >= 1.0 mm) 

Average daily wet-day 
rainfall intensity 

mm/ 
day 

Ann   

Temperature 
Indices 

DTR Daily Temperature Range Mean difference between daily TX and daily TN The average range of 
maximum and minimum 
temperature 

0C Mon/ 
Ann   

GSL Growing Season Length The annual number of days between the first 
occurrence of 6 consecutive days with TM > 5 0C 
and the first occurrence of 6 consecutive days with 
TM < 5 0C 

Length of time in which 
plants can grow 

days Ann AFS  

CSDI Cold spell duration 
indicator 

The annual number of days contributing to events 
where 6 or more consecutive days experience TN 
< 10th percentile 

Number of days contributing 
to a cold period (where the 
period has to be at least 6 
days long) 

days Ann H, AFS  

SU Summer days Number of days when TX > 25 0C Days when the maximum 
temperature exceeds 25 ◦C 

days Mon/ 
Ann 

H  

TN10p Amount of cold nights Percentage of days when TN < 10th percentile Fraction of days with cold 
nighttime temperatures 

% Ann   

TN90p Amount of warm nights Percentage of days when TN > 90th percentile Fraction of days with warm 
nighttime temperatures 

% Ann   

TNn Min TN Coldest daily TN Coldest night 0C Mon/ 
Ann 

AFS  

TNx Max TN Warmest daily TN Hottest night 0C Mon/ 
Ann   

TR Tropical nights Number of days when TN > 20 0C Days when the minimum 
temperature exceeds 20 ◦C 

days Mon/ 
Ann 

H, AFS  

TX10p Amount of cool days Percentage of days when TX < 10th percentile Fraction of days with cool 
daytime temperatures 

% Ann   

TX90p Amount of hot days Percentage of days when TX > 90th percentile Fraction of days with hot 
daytime temperatures 

% Ann   

TXn Min TX Coldest daily TX Coldest day 0C Mon/ 
Ann   

TXx Max TX Warmest daily TX Hottest day 0C Mon/ 
Ann 

AFS  

WSDI Warm spell duration 
indicator 

The annual number of days contributing to events 
where 6 or more consecutive days experience TX 
> 90th percentile 

Number of days contributing 
to a warm period (where the 
period has to be at least 6 
days long) 

days Ann H, AFS, 
WRH  

Drought 
Indices 

SPEI Standardized 
Precipitation 
Evapotranspiration Index 

The measure of “drought” using the Standardised 
Precipitation Evapotranspiration Index on time 
scales of 3, 6, and 12 months. See Vicente-Serrano 
et al. (2010) for details. Calculated using the SPEI 
R package 

A drought measure specified 
using precipitation and 
evaporation 

unitless Custom H, AFS, 
WRH  

SPI Standardized 
Precipitation Index 

The measure of “drought” using the Standardised 
Precipitation Index on time scales of 3, 6, and 12 
months. See McKee et al., (1993) and the WMO 
SPI User guide WMO (2012) for details. 
Calculated using the SPEI R package. 

A drought measure specified 
as a precipitation deficit 

unitless Custom H, AFS, 
WRH 

Source: Adapted and Modified from Zang and Yang (2006). 
NOTE: “Daily Minimum Temperature (TN), Daily Maximum Temperature (TX), and Daily Precipitation (PR), Daily Mean Temperature (TM) are calculated from TM =
(TX + TN)/2. Diurnal Temperature Range (DTR) is calculated from DTR = TX – TN” (Zang and Yang, 2006). Indices are computed at both yearly (Ann) and monthly 
(Mon) temporal resolutions. The ET-SCI, in collaboration with sector representatives, has identified the relevant sectors for each indicator. These sectors include Health 
(H), Agriculture and Food Security (AFS), and Water Resources and Hydrology (WRH). Certain indexes have not undergone assessment in relation to particular sectors. 
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predictors and predictands. The daily predictors from the Canadian 
Earth System Model (CanESM2) of the CMIP5 project were utilized, 
considering the emissions from the RCP26, RCP45, and RCP28.5 sce
narios. These datasets were processed for the SDSM to evaluate future 
climate variability. 

The selection of these 26 GCM predictors was based on their rele
vance to several meteorological and climatic elements that have a sub
stantial influence on extreme indices such as rainfall, temperature, and 
subsequently, vegetation dynamics. Together, these variables offer a 
broad range of factors that can be utilized to describe the intricate 
connections between climatic patterns and vegetation. 

In order to understand the fluctuations in extreme climatic indices 
within the study area, the relationship between climate change, bias 
correction, and vegetation can be explored through the Statistical 
Downscaling Model (SDSM). Climatic variables serve as independent 
variables in the vegetation model to determine their correlation. The 
SDSM, originally developed by Wilby et al. (2002), integrates the Sto
chastic Weather Generator (SWG) and Multiple Linear Regression (MLR) 
techniques. Correlation analysis was employed to select GCM variables 
for downscaling rainfall, maximum temperature, and minimum tem
perature. A correlation value equal to or greater than 0.5 at a signifi
cance level of 0.05 was used as the criterion for variable retention. 

The following GCM variables were selected for modeling rainfall: 
ncepmslpgl.dat, ncepp1_vgl.dat, ncepp1_ugl.dat, ncepp500gl, and 
ncepp850gl.dat. For maximum temperature, the chosen variables were 
ncepmslpgl.dat, ncepshumgl.dat, ncepp5_zgl.dat, nceps500gl.dat, and 
nceptempgl.dat. Similarly, for modeling minimum temperature, the 
selected variables were ncepp5_zgl.dat, ncepp1_vgl.dat, nceps850gl.dat, 
ncep-shumgl.dat, and nceptempgl,dat. MLR establishes statistical and 
empirical links between NCEP predictors and predictions during the 

predictor screening phase. The calibration process of SDSM generates 
regression parameters based on these links (Al-Mukhtar and Qasim, 
2019). 

To ensure validation, time series were used as a standard, following 
the approach of previous studies. These time series and NCEP and GCM 
predictors were employed to construct a maximum of 100 daily time 
series, closely corresponding to observed data (Wilby et al., 2002). 

The Statistical Downscaling Model (SDSM) utilized in this study 
combines a stochastic weather generator and a regression algorithm, as 
introduced by Wilby et al. (2002). It assists users in selecting the most 
suitable large-scale climatic variables, known as predictors, by evalu
ating the variability in climate at a specific site or catchment scale. These 
predictors are then used to establish statistical relationships with daily 
observed data. Furthermore, these relationships are applied to generate 
daily weather data for future periods, using the Global Climate Models 
(GCMs) predictors, as shown by Tao et al. (2015). 

For this analysis, the baseline period from 1961 to 1990 was selected, 
as it is widely employed as the climatic normal period in various climate 
studies globally (Huang, et al., 2011; Rashid, and Mukand, 2014). 
Following successful validation using graphical and skill score (R2) 
techniques and subsequent bias correction using MBCn, daily time series 
data of climate variables were generated for three future periods: 
RCP26, RCP45, and RCP28.5, derived from the CanESM2 model. 

Bias correction. 
To conduct impact studies on climate change, it is necessary to adjust 

climate simulation outputs from the control period to match the statis
tical characteristics of observed data at gauging stations (Soriano et al., 
2019). Biases between climate simulation output and observed data can 
arise due to poor conceptualization, discretization, and spatial aver
aging within grid cells (Christensen et al., 2008). The ERA5 dataset 

Fig. 2. Summary of the Methodology Flow Chart.  
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covering 1980–2022 was adjusted using a multivariate bias correction 
based on the N-dimension probability (MBCn) method to address this. 
This adjustment aimed to provide a geographically comprehensive and 
optimal representation of climate research at the spatial level rather 
than relying solely on discrete observed data with high temporal accu
racy. Each climate station within the dataset underwent downscaling 
and bias-correcting using MBCn, which accounted for temporal, spatial, 
and variable biases in the dataset. 

The MBCn method, developed by Cannon (2018), employs a multi
variate quantile delta mapping (QDM) approach combined with random 
orthogonal function applied to both model and observation data. The N- 
dimensional probability density function is rotated to correct it using 
QDM and then rotated back. This sequence of iterations involving 
multivariate and univariate transformations continues until the best 
match between the corrected and observed multivariate distributions is 
achieved. In this study, a hundred iterations were conducted. The MBCn 
method, being a multivariate quantile delta mapping (QDM), reassigns 
all characteristics of the observed distribution to the simulations. The 
MBCn package in the R software was utilized for this purpose. For a 
more detailed theoretical description, please refer to Adeyeri et al. 
(2020b), Cannon (2018), and Meyer et al. (2019). 

Computation of Extreme Indices. 
The 27 core indices proposed by the Expert Team on Climate Change 

Detection and Indices (ETCCDI) were used to choose the indices for this 
study, shown in Table 4. Folland et al. (2001) and Yosef et al. (2021) 
recommended the 27 core indices. The indices were calculated using 
Climpact2-master, an R-based software program created by ETCCDI. 
These data were used to compute extreme indices of temperature and 
precipitation as well as drought indices (Standard Precipitation Index 
and Standardized Precipitation Evapotranspiration Index). SPEI and SPI 
are commonly utilized in more than 70 nations because they are 
normalized or standardized to location and time (Tefera et al., 2019). 
SPEI and SPI measure how wet or dry a region is over time in various 
periods (Liu et al., 2021). Precipitation levels are anticipated to deviate 
from the normal distribution because daily data may contain a large 
number of zero values (Livada and Assimakopoulos, 2007). Variations in 
rainfall, and maximum and minimum temperature on seasonal, decadal, 
and inter-annual trends were identified. A subset of the quarterly values 
for the typical three-month seasons, i.e., March–April–May (MAM), 
June–July–August (JJA), September–October–November (SON), and 
December–January–February (DJF), for the annual values of climate 
variables and associated extreme indices, using meteorological data 
collected from NiMet. (See Fig. 2 for the methodology flow chart). 

Daily maximum and minimum temperatures were averaged to 
determine the monthly and annual variables. To determine the total 
yearly precipitation, the monthly precipitation was added together. We 
utilized Mann Kendall trend analysis to evaluate trends in NDVI, pre
cipitation, and maximum and minimum temperature. We used correla
tion and linear regression on layers of annual NDVI extreme temperature 
and precipitation indices to investigate how climate variability affects 
vegetation change in the study area. 

Mann Kendall Test. 
The time series data analysis can be conducted using parametric and 

non-parametric tests, focusing exclusively on consistent data. Para
metric trend tests have higher statistical power but require independent 
and normally distributed data. In contrast, nonparametric tests are ad
vantageous for analyzing hydro-meteorological time series as they do 
not rely on assumptions about data distribution (Hossein et al., 2019). 
The nonparametric time series analysis, i.e. Mann Kendall, is used in this 
study. However, to use Mann Kendall rank method, it is essential to 
consider autocorrelation to check for randomness and periodicity in the 
series. A positive autocorrelation may result in an overestimation, and a 
negative autocorrelation may result in an underestimation of a trend. 
The presence of autocorrelation in the residuals of the studied variable 
will be assessed by examining the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) at a significance level of α =

0.05. 
Next, the Mann-Kendall (M− K) rank correlation test was employed 

to ascertain the trend’s direction and significance. The significance of 
the trend will be tested at 5 % levels. To perform the M− K test, the 
difference between the earlier and the latter is measured values (yj – yi) 
where j ˃ i are computed. Values of +1, 0 and − 1 are assigned H0 the 
positive and negative differences, respectively, as ranks. The test sta
tistics are then computed as integer values. 

The non-parametric Mann-Kendall test was employed to identify 
monotonic trends in daily rainfall, minimum and maximum tempera
ture, and extreme indices of temperature and precipitation time series 
(Mann, 1945; Kendall, 1975). Due to its robustness against outliers and 
its ability to handle non-normally distributed data, the Mann-Kendall 
statistical test has become widely used in evaluating the significance 
of trends in hydro-meteorological time series (Scherrer et al., 2016; 
Zobel et al., 2018; Salihu, 2021). The following are the statistics (S) of 
the Mann-Kendall test: 

S =
∑n− 1

i=1

∑n

j=i+1
sign

(
Xj − Xi

)
(1)  

where ’n’ represents the number of data points,’X’jand’X’i represent 
annual values in years ’j’ and ’i’ respectively (where ’j’ is greater than 
1), and ’Sign (XjandXi)’ is calculated using a specific equationbelow 

Sign
(
Xj − Xi

)
=

⎧
⎨

⎩

− 1for
(
Xj − Xi

)
< 0

0for
(
Xj − Xi

)
= 0

+1for
(
Xj − Xi

)
> 0

(2) 

The term “Sign (Xj – Xi)” refers to the individual sign capability, 
which can take on values of 1, 0, or − 1. A positive value (S) indicates an 
upward or ever-increasing trend, while a negative value suggests a 
downward trend. However, a statistical analysis is still necessary to 
determine the validity or significance of the observed phenomenon. 
Kendall (1975) describes the test procedure using the normal approxi
mation test. The test assumes that the dataset does not include a sig
nificant number of tied or closely related values. The variance (S) is 
calculated using the following equation: 

Var(S) =
1
18

[

n(n − 1)(2n + 5) −
∑g

p=1
tp
(
tp − 1

)(
2tp + 5

)
]

(3) 

Where:  

• n is the number of data points,  
• g represents the count of zero differences between compared values,  
• tp denotes the number of data points in the pth group. 

A standardized measure of test statistics (Zs) is computed using the 
given equation: 

Zs =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , ifS < 0

0 ifS = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , ifS > 0

(4) 

A positive value of the test statistics indicates increasing trends, 
while a negative value reflects decreasing trends. A value of 0 suggests 
no discernible trend. The testing of trends was conducted at a specific 
significance level. When the absolute value of the test statistic is greater 
than the critical value obtained from the standard normal distribution 
table, the null hypothesis is rejected, indicating the presence of a sig
nificant trend in the time series. This study employed a significance level 
of α = 0.05. Oguntunde et al. (2012) and Daramola et al. (2017) have 
confirmed that at the 5 % significance level, the null hypothesis of no 
trend is rejected when the absolute value of the test statistic is greater 
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than 1.96. Consequently, they conclude that there is a significant trend 
present in the time series. 

Simple linear regression is a commonly utilized model for identifying 
linear trends and is widely employed as one of the primary approaches 
in trend analysis. However, the assumption of residual normality is 
necessary for this method (McBean and Motiee, 2008). The Sen (2014) 
slope estimator is a powerful tool for developing linear relationships 
unaffected by data errors and outliers. It is determined as the mean of all 
pair-wise slopes in the dataset. The individual slope (mij) is estimated 
using the following equation: 

mij =
Yj − Yi

j − i
(5) 

The Sen’s slope is calculated as the mean of the slopes estimated 
using the Sen Estimator. These slopes are computed for a time series 
with n values, where i ranges from 1 to n − 1 and j ranges from 2 to n. 
The data values at time j and time i are represented by Yj and Yi, 
respectively. In total, N = n(n-2) such slopes are used to determine the 
Sen’s slope. 

Fig. 3. Interannual trend and pattern of climatic variables and vegetation of Katsina from 1982 to 2021 (a. Rainfall trend, b. Tmax trend, c. Tmin trend, d. NDVI 
trend and e. spatial distribution of NDVI. 
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m[

N+1
2

]ifnisodd (6)  

m =
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

mN
2+m[

N+2
2

]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ifniseven 

A positive Sen’s slope indicates an upward trend, whereas a negative 
Sen’s slope suggests a downward trend. 

Correlation. 
Correlation coefficients measure the strength of association between 

two continuous variables. The strength or degree of association between 
two sets of time series is a measure of the impact of one upon the other, 
in this case, the impact of climate variability on the water resources 
variables. The higher correlation coefficient values mean a higher de
gree or level of impact. The potential effects of climate change on the 
vegetation, relationship coefficients between NDVI and precipitation, 
Tmax, and Tmin in the Katsina state were calculated according to the 
following formula: 

Rxy =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√

Linear Regression. 
The following equation is commonly used to represent the linear 

regression model: 

Y = M × X + C (7) 

In the linear regression model, the dependent variable (NDVI) is 
represented by Y. The independent variable (Climatic variables) is 
denoted by X. The line slope (mm/year) is represented by m, and the 
intercept constant coefficient is represented by C. The model’s co
efficients (m and C) are estimated using the commonly employed Least- 
Squares method, which is widely used in practice. The sign of the slope 
determines the direction of the trend variable: it indicates an increase if 
the sign is positive and a decrease if the sign is negative. The seasonal, 
annual, and decadal data trend analysis in Katsina state was conducted 
using Sen’s slope estimator and the Mann-Kendall test with XLSTAT 
software. Additionally, regression analysis was employed to establish a 
linear relationship over time based on the observed rainfall data. 

To assess the significance of the trend, it is essential to calculate the 
slope’s standard error (SE) and determine the degree of freedom (n − 2) 
using the series for analysis. The SE is calculated using: 

SE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑
(yi − ŷ i)

(n− 2)

]√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑
(xi − x)2]

√

In the context of regression analysis, the observed dependent vari
able is represented by yi, the observed independent variable is repre
sented by xi, the mean of the independent variable is denoted by ×, and 
the estimated value of the dependent variable is represented by y. To 
evaluate the presence of a significant trend, the ratios of the slope (ß) 
and SE are computed using the following formula: 

t =
β
SE 

To assess its significance, the computed ratio (t) is compared to the 
values on a t-table at a significance level corresponding to the degrees of 
freedom (n − 2) (Anandhi et al. 2013). Herein, a trend is considered 
statistically significant if it demonstrates significance at the 5 % level. 

Test for step changes. 
The climatic data underwent a homogeneity test to assess the pres

ence of sudden or abrupt changes. The Pettitt test (Pettitt, 1980) was 
utilized to determine the homogeneity of the time series datasets. The 
Pettitt test is a statistical method that relies on ranks to detect significant 
changes in the mean of time series data when the specific timing of the 
change is uncertain. The Pettitt test demonstrates resilience to changes 
in the distributional form of time series data. It is known for its superior 
statistical power compared to alternative tests such as the Wilcoxon- 
Mann-Whitney test, CUSUM, and cumulative deviations (Kundzewicz 
and Robson, 2004). The test statistic is represented by the equation 
below: 

Ut,N = Ut,− 1,N +
∑N

j=1
sgn

(
xt − xj

)
fort = 2,⋯,N 

The test statistic is computed by counting the occurrences where a 
member of the first sample surpasses a member of the second sample. In 
the Pettitt test, the null hypothesis assumes the absence of a change 
point. The test statistic Kt and the associated probabilities are used for 
assessing the significance of the test, and they are given as follows: 

kt = Max1≤t≥N
⃒
⃒Ut,N

⃒
⃒

p ≅ 2exp
{
− 6(kt)

2/( N3 + N2)}

Here, p represents the chosen level of significance. If the change 
point is deemed significant, the time series is divided into two sections at 
the identified change point, t. 

A gamma distribution is fitted to rainfall data, and the SPI is calcu
lated. A negative SPI value indicates a drought situation, while a positive 
value indicates a period of wet conditions. The WMO recommends the 

Table 5 
Characteristic and Non-Parametric Trend of Extreme Temperature and Precipi
tation Indices, Rainfall, Maximum, and Minimum Temperature Distribution.  

Variable Mean CV Z S p-value 

Rainfall  1.56 0.36  0.22 129  0.07 
TMax  33.79 0.01  0.16 97  0.17 
Tmin  19.92 0.05  0.17 99  0.16 
CSDI  2.65 1.9    
CDD  203.79 0.17  − 0.06 –32  0.64 
CWD  3.68 0.32  0.26 122  0.05 
DTR  14.09 0.09  0.02 11  0.87 
GSL  365.24 0  0.02 8  0.87 
PRCPTOT  560.27 0.37  0.18 101  0.13 
R10mm  18.85 0.34  0.08 43  0.52 
R20mm  9.59 0.57  0.2 109  0.1 
R95p  119.34 1.09  0.11 59  0.38 
R99p  34.88 2.04  0.13 49  0.35 
Rx1day  53.73 0.45  0.11 61  0.37 
Rx5day  85.19 0.36  0.26 144  0.03 
SDII  13.06 0.3  0.01 7  0.92 
SU  357.09 0.02  0.26 143  0.03 
TN10p  8.55 0.82  − 0.09 − 52  0.44 
TN90p  8.65 0.69  0.15 84  0.21 
TNn  8.75 0.18  0.12 62  0.35 
TNx  29.49 0.07  − 0.18 − 97  0.14 
TR  193.71 0.15  0.29 160  0.02 
TX10p  8.98 0.27  − 0.03 − 16  0.81 
TX90p  8.42 0.52  0.27 153  0.02 
TXn  23.04 0.08  0.1 51  0.44 
TXx  100.29 3.33  − 0.02 − 9  0.89 
WSDI  2.91 1.59  0.32 131  0.02 
SPEI_3 Month  − 0.023 − 25.084  0.049 26  0.701 
SPEI_6 Month  − 0.027 − 27.339  0.121 64  0.332 
SPEI_12 Month  − 0.031 − 28.516  0.205 108  0.098 
SPEI_24 Month  − 0.024 − 38.841  0.22 116  0.075 
SPI_3 Month  − 0.22 − 13.427  0.205 108  0.098 
SPI_6 Month  0.097 7.152  0.22 116  0.075 
SPI_12 Month  − 0.004 − 221.811  0.269 142  0.028 
SPI_24 Month  − 0.013 − 65.536  0.299 158  0.014 

Note: STD: – Standard Deviation and CV: – Coefficient of Variation CV: – Coef
ficient of Variation, Z: – Kendall’s tau, S: – Slope. 
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SPI. Also, SPEI is based on the same assumptions as SPI, where climatic 
water balance was considered. 

3. Results 

3.1. Inter-annual variability of extreme indices and climatic variables 

Fig. 3e shows the spatial distribution of vegetation across Katsina 
state from 1982 to 2021 with NDVI values ranging from 0.193 to 0.711. 
Jibia, Kankia, and Mashi Local Government Areas have lower NDVI 
values of 0.193–0.426. A range of 0.193 to 0.426 suggests moderate 
vegetation density from Fig. 3. It could indicate areas with sparse 
vegetation, possibly due to limited water availability, soil quality, or 
land use practices. 0.484–0.542 NDVI value was found around Musawa, 
Malumfashi, and some parts of Bindawa LGAs. These areas show 
moderately higher NDVI values compared to the previous range. NDVI 
values ranging from 0.484 to 0.542 indicate denser vegetation cover 
with better water availability, soil conditions, or land management. 
Bakori, Danja, and Funtua LGAs have the highest NDVI values of 
0.61–0.711, suggesting dense and vigorous vegetation due to favorable 
environmental factors. Fig. 3e provides insights into vegetation health, 
with higher NDVI values indicating denser vegetation. 

Fig. 3a to 3d illustrate the long-term interannual trends of rainfall, 
maximum temperature (Tmax), minimum temperature (Tmin), and 
MODIS (NDVI) in Katsina state from 1982 to 2021. The data presented in 
these Figures indicate inconsistency in the interannual variability of 
these variables over time. Fig. 3a showcases the interannual trend of 
rainfall distribution across Katsina state. 

Specifically, Fig. 3a shows higher rainfall in 2004 and lower levels in 
1990 and 1993. Similarly, Fig. 3b reveals that Tmax was higher in 1984 
and lower in 1986 and 2020. Additionally, Fig. 3c portrays that Tmin 
was higher in 2006 and lower in 1993. Lastly, Fig. 3d demonstrates that 

NDVI was higher in 2013 and lower in 1987. These findings suggest 
temporal fluctuations in the interannual variability of these variables. 
Furthermore, the Figures indicate positive trends in rainfall, Tmin, and 
NDVI, while Tmax displayed a negative trend between 1982 and 2021. 

Characteristics and non-parametric trends of Rainfall, maximum and 
minimum temperature, and the twenty-four (24) selected extreme 
indices of temperatures and rainfall based on ETCCDI/ET-SCI Indices are 
presented in Table 5. The result revealed that PRCPTOT and GSL indices 
had the highest and the second-highest mean values. Moreover, CSDI 
and rainfall had the first and the second lowest mean values. TMax, SU, 
Tmin, TNx, TXn, and DTR had low variability, while TX10p, SDII, CWD, 
R10mm, Rainfall, Rx5day, and PRCPTOT had moderate variability in 
the state. Rx1day, TX90p, R20mm, TN90p, TN10p, R95p, WSDI, CSDI, 
R99p, and TXx showed high variability in the study. 

SDII, DTR, GSL, R10mm, TXn, SPEI, R95p, Rx1day, TNn, R99p, 
TN90p, Tmax, Tmin, PRCPTOT, R20mm, Rainfall, CWD, Rx5day, SU, 
TX90p, TR, WSDI, SPEI (3 month, 6 month, 12 month, and 24 months), 
SPI (3 month, 6 month, 12 month, and 24 month) had a positive trend 
with the positive Sen’s slope while TNx, TN10p, CDD, TX10p, and TXx 
had a negative trend with negative Sen’s slope. In addition, only SU, TR, 
TX90p, CWD, Rx5day, WSDI SPI_12month, and SPI_24months indices 
show a significant trend at 0.05 level. The result revealed an overall 
increasing trend in NDVI in Katsina from 1982 to 2021, with a large 
interannual variation, which increases and decreases in vegetation, 
sometimes lasting several years (Fig. 3d). 

3.2. Impact of climate variability on vegetation 

Fig. 4 investigates the relationship between precipitation, 
maximum temperature (Tmax), and minimum temperature (Tmin) in 
Katsina state using observed data from NiMet between 1982 and 2021. 
The results indicate that the correlation coefficient (r) between 

Fig. 4. Correlation analysis of the Precipitation, Tmax, and Tmin Using Observed data from NiMet (1982–2021).  
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precipitation and Tmax is 0.059, with a p-value of 0.718, suggesting a 
weak and non-significant correlation between these variables. Simi
larly, the correlation between precipitation and Tmin is 0.110, with a 
p-value of 0.500, indicating a weak and non-significant correlation. 
The correlation between Tmax and Tmin is 0.181 with a p-value of 
0.265, suggesting a weak positive correlation between these variables, 
which is also not statistically significant. Interestingly, the correlation 
between Tmax and rainfall is 0.500 with a p-value of 0.001, indicating 
a moderate positive correlation between these variables. This finding 
suggests that when Tmax increases, rainfall tends to increase as well, 
and vice versa. The correlation between Tmax and NDVI is 0.181 with a 
p-value of 0.265, indicating a weak positive correlation between these 
variables, which is not statistically significant. These findings suggest 
that while there is a moderate positive correlation between Tmax and 
rainfall, there is no significant relationship between Tmax, Tmin, and 
NDVI in Katsina state. 

However, the correlation coefficient (r) of 0.059 and p-value of 0.718 
between precipitation and Tmax suggests no significant correlation be
tween the two variables. This means that changes in Tmax do not 
necessarily cause corresponding changes in precipitation levels and vice 
versa. The correlation coefficients of 0.125 and 0.443 and p-values of 
Tmin and rainfall suggest a weak to moderate positive correlation be
tween Tmin and rainfall. This implies that an increase in Tmin could 
lead to an increase in rainfall and vice versa. The correlation coefficient 
of 0.449 and p-value of 0.004 between Tmin and NDVI suggest a strong 
positive correlation between the two variables. This implies that an in
crease in Tmin is associated with an increase in NDVI, which could 
indicate improved vegetation growth in the region. This means that 
correlation analysis results suggest that Tmin has a stronger association 
with rainfall and NDVI than Tmax does with these variables. 

More so, the correlation between NDVI and Tmax is weak, with an r- 
value of 0.181 and a non-significant p-value of 0.265. This indicates no 
strong relationship exists between vegetation growth and maximum 
temperature in Katsina state. The correlation between NDVI and Tmin is 
moderately strong, with an r-value of 0.449 and a very low p-value of 

0.004. This suggests a positive correlation between vegetation growth 
and minimum temperature. This could be because higher temperatures 
during the nighttime lead to increased evapotranspiration, which can 
promote vegetation growth. The correlation between NDVI and rainfall 
is moderate, with an r-value of 0.301 and a p-value of 0.059, which is 
marginally significant. This suggests a positive correlation between 
vegetation growth and precipitation, although this relationship is not 
particularly strong. In summary, the correlation analysis indicates a 
weak relationship between NDVI and Tmax, a moderately strong posi
tive relationship between NDVI and Tmin, and a moderate positive 
relationship between NDVI and rainfall in Katsina state. These findings 
provide insights into the complex relationships between climate vari
ables and vegetation growth in the region. 

This study employed a comprehensive linear regression analysis 
model to investigate the influence of climate variability on vegetation. 
The model incorporated multiple independent variables, such as pre
cipitation, maximum temperature (Tmax), minimum temperature 
(Tmin), extreme temperature, and precipitation indices. The dependent 
variable utilized in this analysis was the Normalized Difference Vege
tation Index (NDVI), obtained from MODIS (Table 6). The results show a 
negative regression coefficient of Rainfall, DTR, PRCPTOT, SDII, SU, 
TNn, TR, TX10p, and TXx variables, meaning an inverse relationship 
exists between the dependent and the explanatory/independent vari
ables. This implies that an increase in these variables had decreased the 
vegetation density change. However, the variables were statistically not 
significant in this study at <0.01 level. Fig. 4 depicts the correlation 
analysis of precipitation, maximum temperature (Tmax), and minimum 
temperature (Tmin). 

Furthermore, there is a strong negative correlation between precip
itation and extreme precipitation indices, indicating that as precipita
tion increases, the likelihood of extreme cold events increases. Finally, 
there is a weak negative correlation between precipitation and extreme 
temperature indices, which suggests that higher precipitation is associ
ated with a lower likelihood of extreme temperature events. 

The Equation of the model is as follows; 

Table 6 
Impact of climate variability on vegetation changes.  

Variables Coefficient Standard error t Pr > |t| Lower bound (95 %) Upper bound (95 %) 

Constant  − 6.592  17.340  − 0.380  0.710  − 44.372  31.187 
TMax  0.064  0.035  1.859  0.088  − 0.011  0.140 
Tmin  0.014  0.019  0.753  0.466  − 0.026  0.054 
Rainfall  − 0.015  0.027  − 0.578  0.574  − 0.074  0.043 
CSDI  0.006  0.004  1.519  0.155  − 0.002  0.014 
CDD  0.000  0.000  0.720  0.485  − 0.001  0.001 
CWD  0.011  0.014  0.785  0.448  − 0.019  0.040 
DTR  − 0.113  0.100  − 1.128  0.281  − 0.331  0.105 
GSL  0.023  0.047  0.490  0.633  − 0.080  0.126 
PRCPTOT  − 0.001  0.001  − 1.514  0.156  − 0.002  0.000 
R10mm  0.015  0.007  2.029  0.065  − 0.001  0.031 
R20mm  0.011  0.009  1.217  0.247  − 0.009  0.032 
R95p  0.000  0.000  0.643  0.532  − 0.001  0.001 
R99p  0.000  0.000  0.279  0.785  − 0.001  0.001 
Rx1day  0.001  0.001  0.560  0.585  − 0.002  0.004 
Rx5day  0.000  0.001  0.262  0.798  − 0.002  0.003 
SDII  − 0.006  0.010  − 0.569  0.580  − 0.029  0.017 
SU  − 0.001  0.004  − 0.287  0.779  − 0.011  0.008 
TN10p  0.014  0.009  1.591  0.138  − 0.005  0.033 
TN90p  0.000  0.006  0.022  0.983  − 0.012  0.013 
TNn  − 0.019  0.012  − 1.599  0.136  − 0.045  0.007 
TNx  0.016  0.010  1.646  0.126  − 0.005  0.037 
TR  − 0.001  0.001  − 0.414  0.686  − 0.004  0.003 
TX10p  − 0.018  0.009  − 2.086  0.059  − 0.037  0.001 
TX90p  0.010  0.008  1.275  0.227  − 0.007  0.027 
TXn  0.012  0.012  0.981  0.346  − 0.015  0.039 
TXx  − 0.059  0.024  − 2.447  0.031  − 0.112  − 0.006 
WSDI  0.005  0.003  1.601  0.135  − 0.002  0.011  
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. 
More frequent extreme events that affect vegetation cover result 

from climate change. Tmax and Tmin had a detrimental effect on the 
vegetation, leading to temperature indices having a beneficial impact. 
The positive regression coefficient indicates a direct correlation between 
the variables, whereas the negative value reveals an inverse correlation 
between the research area’s indexes and NDVI. DTR, PRCPTOT, and SDII 
had negative regression coefficients, which shows an inverse relation
ship between the variables. Tmax and Tmin had positive regression 
coefficients, meaning a direct relationship exists between independent 
variables and the vegetation (NDVI). Although, none of the explanatory 
variables was statistically significant at a 0.05 level of confidence. NDVI, 
rainfall, maximum and minimum temperature, and extreme indices 
were strongly correlated in the study area. 

However, a strong negative correlation exists between precipitation 
and Tmin, indicating that higher precipitation is associated with lower 
Tmin. This can be attributed to the cooling effect of rain. Additionally, 
there is a weak negative correlation between Tmax and extreme tem
perature indices, which suggests that higher Tmax is associated with a 
lower likelihood of extreme temperature events. 

3.3. Predictions of temperature, rainfall, and extreme indices 

3.3.1. Inter-annual variability of the predicted rainfall, maximum/ 
minimum temperature 

The Inter-annual variability of the predicted rainfall, Tmax, and 
Tmin in Katsina state was assessed from 2022 – 2050. Fig. 5 reveals the 
study area’s predicted rainfall, minimum and maximum temperature. 

Trend analysis results presented in Fig. 5(a – i) provide information 
about the projected changes in rainfall, maximum and minimum tem
perature under different Representative Concentration Pathways 
(RCPs). Fig. 5g shows the rainfall under RCP8.5 with a positive trend 
and the highest precipitation in 2050. It suggests that, according to the 
model projections, precipitation levels are expected to increase over 
time. Additionally, it shows that the highest precipitation values are 
projected to occur in the year 2050. Fig. 5h presents the Tmax under 
RCP8.5 with a positive trend and highest in 2032. This Figure represents 
the maximum temperature (Tmax) trends under the RCP8.5 scenario. It 
indicates a positive trend; this implies that temperatures are projected to 
increase over time. The highest Tmax values are expected to occur in the 
year 2032. Fig. 5i indicates the RCP8.5 positive trend and highest in 

Fig. 5. Interannual Variability of the predicted climatic variables (a, b, and c are Rainfall, Tmax, and Tmin under RCP26; d, e, and f are Rainfall, Tmax, and Tmin 
under RCP45 while g,h, and I are Rainfall, Tmax and Tmin under RCP28.5 respectively). 
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Table 7 
Characteristics of Interannual Predicted Extreme Temperature and Precipitation Indices Distribution.  

Emission Indices Mean STD CV Z S P-value 

RCP2.5 CDD 2.1 4.36 2.08 − 0.55 − 152 0  
CSDI 0 0  − 0.09 − 34 0.53  
CWD 242.25 588.05 2.43 0.06 29 0.64  
DTR 13.44 9.49 0.71 − 0.05 − 16 0.73  
GSL 365.26 0.44 0 0.29 135 0.02  
PRCPTOT 4333.85 1808.04 0.42 0.25 116 0.05  
R10mm 284.65 139.09 0.49 0.34 156 0.01  
R20mm 39.65 21.58 0.54 0.24 111 0.06  
R95p 502.22 322.57 0.64 0.16 74 0.21  
R99p 114.7 104.1 0.91 0.28 129 0.03  
Rx1day 34 12.37 0.36 0.33 155 0.01  
RX5day 150.56 60.6 0.4 0.27 127 0.03  
SDII 12.1 4.5 0.37 0.03 15 0.81  
SU 28.77 6.89 0.24     
Tn10p 7.08 3.53 0.5 − 0.57 − 267 < 0.0001  
Tn90p 10.67 4.08 0.38 − 0.02 − 7 0.92  
TNn 2.33 4.75 2.04 − 0.57 − 157 0  
Tnx 13.57 6.56 0.48 − 0.33 − 152 0.01  
TR 44.97 91.84 2.04 − 0.56 − 154 0  
Tx10p 9.83 4.37 0.44 − 0.02 − 11 0.87  
Tx90p 9.77 5.56 0.57 − 0.02 − 7 0.92  
Txn 11.47 0.99 0.09 0.23 103 0.08  
TXx 29.56 7.06 0.24 − 0.34 − 156 0.01  
WSDI 5.16 10.05 1.95 − 0.14 − 49 0.32  

RCP4.5 CDD 11.68 5.24 0.45 − 0.14 − 61 0.3  
CSDI 5.35 10.1 1.89 0.12 42 0.41  
CWD 31.42 10.59 0.34 0.04 17 0.78  
DTR − 5.88 0.5 − 0.08 − 0.08 − 35 0.57  
GSL 365.26 0.44 0 − 0.05 − 16 0.73  
PRCPTOT 696.72 64.96 0.09 0.19 87 0.15  
R10mm 0.74 0.76 1.03 − 0.16 − 60 0.28  
R20mm 0 0  0.06 29 0.64  
R95p 86.97 30.51 0.35 − 0.1 − 44 0.46  
R99p 20.82 13.69 0.66 − 0.08 − 35 0.56  
Rx1day 10.2 1.59 0.16 0.13 62 0.3  
RX5day 29.87 4 0.13 0.21 97 0.1  
SDII 2.95 0.14 0.05 − 0.11 − 49 0.41  
SU 30.06 9.19 0.31     
Tn10p 9.97 4.52 0.45 − 0.14 − 65 0.28  
Tn90p 9.97 3.36 0.34 − 0.25 − 115 0.05  
TNn 11.85 0.46 0.04 − 0.29 − 130 0.03  
Tnx 26.53 0.36 0.01 0.01 6 0.93  
TR 235.06 5.52 0.02 0.07 31 0.61  
Tx10p 8.55 5.01 0.59 − 0.09 − 44 0.46  
Tx90p 8.36 5.46 0.65 − 0.17 − 81 0.18  
Txn 9.59 0.44 0.05 − 0.02 − 7 0.91  
TXx 40.34 5.15 0.13 − 0.06 − 29 0.63  
WSDI 6.48 12.92 1.99 0.06 21 0.68  

RCP2.6 CDD 13.19 4.28 0.32 − 0.25 − 114 0.05  
CSDI 3.42 5.96 1.74 0.02 8 0.88  
CWD 30.29 13.51 0.45 0.25 115 0.05  
DTR − 5.85 0.5 − 0.09 − 0.12 − 57 0.34  
GSL 365.26 0.44 0 − 0.05 − 16 0.73  
PRCPTOT 665.03 84.81 0.13 0.26 119 0.04  
R10mm 0.65 1.03 1.6 0.12 43 0.42  
R20mm 0 0  0.02 7 0.92  
R95p 82.35 34.32 0.42 0 1 1  
R99p 21.41 22.55 1.05 − 0.08 − 37 0.54  
Rx1day 9.95 1.56 0.16 0 2 0.99  
RX5day 30.23 3.91 0.13 0.15 71 0.24  
SDII 2.91 0.16 0.06 − 0.16 − 72 0.23  
SU 30.68 9.87 0.32     
Tn10p 9.95 3.39 0.34 − 0.14 − 65 0.28  
Tn90p 9.97 4.38 0.44 − 0.18 − 83 0.17  
TNn 11.95 0.46 0.04 − 0.23 − 104 0.08  
Tnx 26.48 0.34 0.01 − 0.07 –33 0.58  
TR 235.77 6.24 0.03 0.16 74 0.21  
Tx10p 8.79 5.61 0.64 − 0.11 − 50 0.4  
Tx90p 8.63 6.24 0.72 − 0.18 − 83 0.17  
Txn 9.64 0.39 0.04 0.13 50 0.37  
TXx 40.67 4.92 0.12 − 0.11 − 52 0.39  
WSDI 6.03 14.59 2.42 − 0.13 − 42 0.38 

Note: STD: – Standard Deviation and CV: – Coefficient of Variation, Z: – Kendall’s tau, S: – Slope. 
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2045. The Figure shows a positive trend under the RCP8.5 scenario. It 
could refer to either precipitation or temperature, depending on the 
details provided in the source. The highest values are projected to occur 
in the year 2045. 

Fig. 5d reveals the rainfall RCP4.5 positive trend and the highest 
precipitation in 2048. It suggests increasing precipitation levels over 
time, with the highest values projected to occur in 2048. Fig. 5e shows 
the RCP4.5 Tmax negative trend and highest in 2032. In this Figure, the 
negative trend in Tmax under the RCP4.5 scenario indicates that tem
peratures are projected to decrease over time. The highest Tmax values 
are expected to occur in the year 2032. Fig. 5f RCP4.5 Tmin negative 
trend and highest in 2045 represents the minimum temperature (Tmin) 
trends under the RCP4.5 scenario. The negative trend indicates a pro
jected decrease in Tmin over time. The highest Tmin values are expected 
to occur in the year 2045. 

Fig. 5a shows the rainfall RCP2.6 positive trend and highest pre
cipitation in 2049. It suggests increasing precipitation levels over time, 
with the highest values projected to occur in 2049. Fig. 5b shows the 
RCP2.6 Tmax positive trend and highest in 2037. This Figure indicates a 
positive trend in Tmax under the RCP2.6 scenario, suggesting increasing 
temperatures over time. The highest Tmax values are projected to occur 
in the year 2037. Fig. 5c shows the RCP2.6 negative trend and highest in 
2036. The negative trend in this Figure, under the RCP2.6 scenario, 
could refer to precipitation or temperature, depending on the context of 
the source. The highest values are projected to occur in the year 2036. 

These trend analysis results provide insights into the projected 
changes in precipitation and temperature under different climate sce
narios. They help understand future climate conditions and can be 
valuable for climate impact assessments, adaptation planning, and pol
icy-making. 

3.3.2. Inter-annual variability of the predicted extreme indices 
Table 7 shows the time series of the predicted extreme temperature 

and precipitation indices averaged over the study area from 2020 to 
2050. The predicted temperature and precipitation indices under 
RCP2.6 revealed that DTR, GSL, Tnx, TR, TNn, Txn, and SDII indices had 
low variability. Moderate variability was observed in TXx, PRCPTOT, 
RX5day, Rx1day, CDD, SU, and Tn10p, while high variability was in 

R95p, Tn90p, CWD, Tx10p, Tx90p, R99p, R10mm, CSDI, WSDI, and 
R20mm between the indices under study in Katsina state. The results 
also show that the Mann-Kendall Z for the predicted temperature and 
precipitation indices in Katsina station under RCP 2.6 (low Emission) 
based on CMIP5 models revealed that CDD, TNn, Tn90p, Tx90p, SDII, 
Tn10p, WSDI, DTR, Tx10p, TXx, R99p, Tnx, and GSL indices had a 
negative trend with negative Sen’s slope. In contrast to R95p, Rx1day, 
CSDI, R20mm, R10mm, Txn, RX5day, TR, CWD, and PRCPTOT indices 
with a positive trend and the positive Sen’s slope (S). However, only 
CDD, CWD, and PRCPTOT among the 24 indices show a significant trend 
at 0.05 level. 

The characteristics of the predicted extreme temperature and pre
cipitation indices averaged over the study area during 2020 – 2050 
under the influence of medium emission (RCP4.5) are presented in 
Table 7. The analysis also revealed that TNn, Tn90p, Tx90p, R10mm, 
CDD, Tn10p, SDII, and R95p had negative Z values, with high variability 
among the indices. DTR, GSL, Tnx, TR, TNn, SDII, Txn, and PRCPTOT 
indices have low variability with positive trends throughout the study 
period, respectively. Moderate variability was observed in RX5day, TXx, 
Rx1day, SU, CWD, Tn90p, and R95p indices. The Mann-Kendall Z for 
Tx10p, DTR, R99p, TXx, GSL, and Txn indices show a negative trend 
with a negative Sen’s slope. In contrast, Tnx, CWD, R20mm, WSDI, TR, 
CSDI, Rx1day, PRCPTOT, and RX5day indices had a positive trend with 
the positive Sen’s slope (S). In addition, Tn90p and TNn indices reveal a 
significant trend at a 0.05 level. 

Results for the extreme indices under high emission (RCP8.5) are 
presented in Table 7. The predicted temperature and precipitation 
indices under RCP8.5 generally reveal high variability among the 
studied indices. GSL and Txn indices had low variability. Moderate 
variability was observed in SU, TXx, Rx1day, SDII, and Tn90p. In 
contrast, high variability was in RX5day, PRCPTOT, Tx10p, Tnx, 
R10mm, Tn10p, R20mm, Tx90p, R95p, DTR, R99p, WSDI, TNn, TR, 
CDD, CWD, and CSDI between the indices from the coefficient of vari
ability result. Decomposing time series analysis of the precipitation 
(PRCT), maximum and minimum temperature (Tmax and Tmin) cli
matic variables under RCP2.6, RCP4.5, and RCP8.5 were presented in 
the app. endix. Table 7 presents the characteristics of the interannual 
predicted distribution of extreme temperature and precipitation indices. 

Mann-Kendall (Z) for the predicted temperature and precipitation 
extreme indices under RCP 8.5 (high emission) based on CMIP5 models 
shows that Tn10p, TNn, TR, CDD, TXx, Tnx, WSDI, CSDI, DTR, Tn90p, 
Tx10p, and Tx90p indices had a negative trend with negative Sen’s 
slope, while SDII, CWD, R95p, Txn, R20mm, PRCPTOT, RX5day, R99p, 
GSL, Rx1day, R10mm indices had a positive trend with the positive 
Sen’s slope (S) (Table 7). In addition, TXx, TR, Tnx, TNn, Tn10p, 
Rx5day, Rx1day, R99p, R10mm, PRCPTOT, GSL, and CDD indices show 
a significant trend at 0.05 level (Table 7). Table 8 outlines the charac
teristics of the interannual predicted distribution of drought indices. 

Table 8 revealed the characteristics of the predicted drought indices 
(SPI) and (SPEI) under RCP2.6 (Low emission), RCP4.5 (medium emis
sion), and RCP8.5 (high emission) for the 3 month, 6 month, 12 month, 
and 24 month. The results show that the study area might experience a 
mild drought based on the prediction under RCP4.5 and RCP8.5 ac
cording to the SPI/SPEI drought category classification scale adapted 
from Mohammed et al. (2022). The SPI indices of 3,6, 12, and 24 months 
under RCP2.6 had a negative trend with a negative Sen’s slope, while 
SPI under RCP4.5 and RCP8.5 had a positive trend with a positive Sen’s 
slope (S) (Table 8). In addition, only 24-month SPI under RCP8.5 shows 
a significant trend at 0.05 level. The mean value shows that 24-month 
SPI under medium emission together with 3-, 6-, and 12-months SPI 
under high emission indicate drought conditions while SPI (3, 6, 12, and 
24 months) under low emission and SPI (3, 6, and 12 month) under 
medium emission reveals wet condition across the study area (Table 8). 
Although, there is a significant trend in the predicted 24-month SPI 
under high emissions. 

There were no significant drought indices (SPEI) trends for any of the 

Table 8 
Characteristics of Interannual Predicted Drought Indices Distribution.  

Indices Emission Time Mean STD Z S P-value 

SPI RCP2.6 3 Months 0.01  0.67 0.09 43 0.48   
6 Months 0.02  0.81 0.05 21 0.74   
12 Months 0.03  0.88 0.03 15 0.81   
24 Months 0.05  0.9 − 0.04 − 17 0.79  

RCP4.5 3 Months 0.01  0.61 0.1 45 0.46   
6 Months 0.01  0.72 0.09 41 0.5   
12 Months 0.02  0.8 0.1 46 0.44   
24 Months − 0.01  0.87 0.16 73 0.22  

RCP28.5 3 Months − 0.01  0.41 0.06 29 0.64   
6 Months − 0.02  0.58 0.05 23 0.71   
12 Months − 0.06  0.92 − 0.03 − 13 0.84   
24 Months 0.11  0.92 − 0.26 − 119 0.04  

SPEI RCP2.6 3 Months 0.01  0.63 0.1 45 0.46   
6 Months 0.03  0.77 0.05 23 0.71   
12 Months 0.05  0.88 0.06 27 0.66   
24 Months 0.03  0.89 0.09 40 0.51  

RCP4.5 3 Months 0  0.54 0.16 75 0.21   
6 Months 0.01  0.69 0.13 61 0.31   
12 Months 0.03  0.89 0.15 69 0.25   
24 Months 0.04  0.92 0.19 89 0.14  

RCP8.5 3 Months − 0.07  0.47 0.06 28 0.65   
6 Months − 0.05  0.6 0.07 33 0.59   
12 Months − 0.08  0.95 0 − 1 1   
24 Months 0.02  0.95 − 0.2 − 93 0.12 

Note: STD: – Standard Deviation and CV: – Coefficient of Variation CV: – Coef
ficient of Variation, Z: – Kendall’s tau, S: – Slope. 
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three scenarios for the 2020–2050 period at a 0.05 confidence level. 
However, the trend of the drought indices (SPEI) based on CMIP5 
models for the RCP2.6 (low emission), RCP4.5 (medium emission), and 
RCP8.5 (high emission) scenarios in the future period (2020–2050) 
revealed that all the predicted SPEI of 3, 6, 12 and 24 months under low, 
moderate, and high emission shows a positive tendency with positive 
Sen’s slope. The mean value indicates that SPEI under high emission in 
3, 6, and 12 months indicated a drought condition with a negative mean. 
In contrast, Low, medium, and high emissions (24 months) indicated 
wet conditions across the study area within the study periods. 

4. Discussion 

Table 5 reveals the characteristics and non-parametric trend of 
extreme temperature and precipitation indices and the climatic elements 
(rainfall, maximum and minimum temperatures) over an interannual 
period. SU, TR, TX90p, CWD, Rx5day, WSDI SPI_12month, and 
SPI_24month indices increased significantly. Vegetation has also 
increased in the study area. In the same way, vegetation maintains its 
natural regeneration. Although at the regional and global level, the 
study’s results confirm those of previous studies on greening and 
regreening vegetation (de Jong et al., 2011; Anyamba et al., 2014; 
Dubovyk et al., 2015). 

Using the changes in indices of daily temperature and precipitation 

Fig. 6. Predicted trend and spatial distribution of NDVI under the Influences of Extreme Temperature and Precipitation Indices (RCP2.6, 4.5 and 8.5).  
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extremes, Abdussalam (2015) pointed out that “Katsina state is vulner
able to climate extremes due to its physical and socioeconomic charac
teristics, like poverty, desertification, environmental disturbances, high 
population growth rates, and extreme climates” with significant, 
increasing trends found in the annual minimum of daily maximum and 
minimum temperature, the annual maximum of daily maximum and 
minimum temperature, the number of summer nights, and the number 
of days where daily temperature has exceeded its 90th percentile. In this 
study area, disease burden and extreme weather events are projected to 
disproportionately affect the region, which has been identified as a 
climate change hotspot (Abdussalam, 2015). 

To better understand the impact of climate variability over the long 
term, it is crucial to monitor vegetation change in relation to climatic 
parameters (rainfall, Tmax, and Tmin) and extreme temperature and 
precipitation indices. Table 6 shows the influence of extreme indices, 
temperature, and rainfall on vegetation distribution in the study area. 
The results reveal that none of the explanatory variables was statistically 
significant. NDVI, precipitation, and maximum and minimum temper
ature extreme indices were strongly correlated in the study area. The 
findings of this study align with previous global studies on extreme 
temperature and precipitation, such as Donat et al. (2013) and Yin et al. 
(2015). Donat et al. (2013) demonstrated a direct relationship between 
the Diurnal Temperature Range (DTR) and vegetation (NDVI). Similarly, 
this study reveals a strong correlation between NDVI and climatic 
indices. 

This correlation has also been observed in previous studies con
ducted by Fensholt et al. (2012), Dardel et al. (2014), and Anyamba 
et al. (2014). The NDVI is negatively correlated with temperature in 
savannas, as Adepoju et al. (2019) demonstrate that the pattern of 
vegetation cover will continue to change (increase/decrease) under 
rising temperatures and rainfall, with increasing trends related to rain
fall and other factors and decreasing trends due to rising in temperature 
and other related factors, particularly in drier regions. The results also 
align with a previous study that found a negative relationship between 
temperature and vegetation (Zahraddeen et al., 2019). According to the 
study conducted in Nigeria by Ekundayo et al. (2021), rainfall plays a 
significant role in determining vegetation patterns, accounting for 60 % 
of the observed variation in vegetation. 

The annual rainfall variability in all emission predictions (RCP28.5, 
RCP4.5, and RCP2.6) showed increasing trends from 2022 to 2050 
(Fig. 5a, d and g), respectively. There is an increasing trend in the high 
and low emission forecasts but a decreasing trend in the medium 
emission (RCP4.5) forecasts based on the maximum temperature 
(Fig. 5b, 5e and h). On the other hand, low and medium emission 
forecasts showed a decrease in minimum temperatures, while high 
emission shows increasing trends (Fig. 5c, f and i). Mouhamed et al. 
(2013) revealed a comparable finding that throughout the West African 
Sahel, all temperature indices point to a general warming trend since 
1960. As for rainfall-related indices, although there was a general ten
dency of decreased annual total rainfall, the observed trends are less 
uniform than the ones in temperatures. Some indices indicate that 
extreme rainfall events have become more frequent during the last 
decade. However, the observed warming trend means a higher demand 
for domestic energy consumption for cooling, a higher evaporation rate 
from water bodies and irrigated crops, and a lower performance of crops 
and livestock. On the other hand, an increased frequency of extreme 
rainfall events, such as heavy downpours and long dry or wet spells, 
means more fragile infrastructure and production systems. 

However, the study’s findings support previous research by Buba 
et al. (2017), Ifabiyi and Ojoye (2013), and Odekunle et al. (2008) on 
rainfall trends in the Sudano-Sahelian ecological region of Nigeria. 
These studies collectively found that the rise in annual rainfall in the 
Sudano-Sahelian environmental region of Nigeria can be attributed 
primarily to a significant increase in rainfall during the wet season. This 
observation serves as an indicator of climate change occurring within 
the region. 

A significant trend is observed for CDD, CWD, and PRCPTOT among 
the 24 indices under low emission (Table 7), and Tn90p and TNn indices 
at a 0.05 level of significance under medium emission (Table 7), and 
TXx, TR, Tnx, TNn, Tn10p, Rx5day, Rx1day, R99p, R10mm, PRCPTOT, 
GSL, and CDD indices (Table 7). Previous studies have shown similar 
trends in extreme temperatures and precipitation indices (Zhou et al., 
2016; Yin and Sun, 2018; Li et al., 2021). 

Over the study period, there was no significant trend in SPI_3, SPI_6, 
and SPI_12 months and SPEI_3, SPEI_6, SPEI_12, and SPEI_24 months of 
the drought indices. Only SPI_24 months under high emissions had a 
significant trend. However, the descriptive analysis for the predicted 
drought indices shows a tendency. This is because 24-month SPI under 
medium emission and 3, 6, or monthly SPI under high emission indicate 
drought conditions as they have negative mean values. At the same time, 
there was a tendency for SPI (3, 6, 12, and 24 months) under low 
emission and SPI (3, 6, and 12 months) under medium emission for wet 
conditions across the study area (Table 8). As it had negative averages, 
the SPEI under RCP28.5 in 3, 6, and 12 months revealed a tendency for 
drought conditions. The study period was marked by moist conditions 
over the area, as indicated by low, medium, and high emissions (24 
months). These findings concur with those of Mohammed et al. (2022). 

Trend analysis results from the Minitab statistical software of NDVI 
under three RCPs are presented in Fig. 6a, Fig. 5b, and Fig. 6c) while 
Fig. 6d, e and f) reveal the spatial variability of vegetation (NDVI) 
predictions based on precipitation, Tmax, Tmin and extreme indices of 
temperature and precipitation indices for low, medium, and high 
emissions levels. This study predicts a mixed trend in future vegetation 
changes in the area, with increasing and decreasing patterns. Some areas 
show an upward trend, indicating an expected increase in vegetation, 
while others exhibit a downward trend, suggesting a decrease (Fig. 6a – 
c). This aligns with the findings of Usman et al. (2013), which reveal that 
Katsina state has the highest coefficient of variation in temperature for 
the entire time series; thus, based on the threshold value of the coeffi
cient of variation of rainfall reported by Shepherd et al. (1987). By 
implication, this suggests that areas around Katsina experienced more 
changes in vegetation NDVI and possibly their ecosystems. 

Climate models were used to estimate the changes in climate vari
ables and extreme temperature and precipitation indices from 2022 to 
2050. Rainfall, Tmin, and Tmax have increased in all three RCP sce
narios compared to the baseline period. In the scenarios of RCP2.6, 
RCP4.5, and RCP8.5, the annual climate variables and indices are pro
jected to increase throughout the future period. Relationships between 
predictors and predictands are often non-stationary. To avoid non- 
stationarity, it is imperative to choose the appropriate predictor from 
several large-scale geographical predictors (Salvati et al., 2019). This is 
a crucial issue in SDSM modeling. This was accomplished using different 
correlation tests and trial-and-error methods to screen the variables in 
the SDSM and select the appropriate predictors. As a result of environ
mental issues, desertification is likely to continue encroaching on state 
borders. 

The rise in Katsina state’s annual total rainfall aligns with Lebel and 
Ali’s (2009) research and may be attributed to the recovery of the 
Sahelian rainfall (Adeyeri et al., 2019; Jajere et al., 2022). Additionally, 
the study area displays a significant upward trend in very wet and 
extremely wet days, consistent with Touré Halimatou et al. (2017) and 
Sarr’s (2012) discoveries of amplified extreme rainfall incidents in the 
Sahel. It’s important to note that, despite the growing frequency of 
extreme rainfall events, there is a surge in consecutive dry days and a 
decrease in consecutive wet days. 

The increasing trend of greenhouse gas emissions, such as carbon 
dioxide and methane, in the atmosphere can contribute to climate 
warming and lead to the growing trend for climate indices in Katsina 
State. More so, changes in land use patterns, such as deforestation and 
urbanization, can affect the region’s surface temperature and precipi
tation patterns. These changes can also alter the surface albedo, further 
amplifying the warming effect. Understanding the mechanisms behind 
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the increasing trend of climate indices in Katsina State can provide in
sights into the underlying causes and help develop appropriate adap
tation and mitigation strategies. It is important to note that the 
mechanisms contributing to the trend may vary depending on the spe
cific climate indices being analyzed. 

According to James et al. (2018), Katsina state is experiencing an 
increasing trend in maximum temperature and precipitation and a 
decreasing trend in minimum temperature. This trend has made the area 
highly sensitive to aridity, which poses a direct negative impact on both 
the livelihood and ecosystem of the state. The rise in maximum tem
perature, coupled with climate variability, has heightened the degree of 
sensitivity to aridity in Katsina, and human activities such as logging, 
bush burning, and conversion of forested areas to agricultural land are 
contributing factors to this environmental problem. As aridity continues 
to increase throughout the state, it will significantly negatively impact 
vegetation cover, water availability, rainfall distribution patterns, 
ecosystem health, and biodiversity. 

The study area exhibited a more prominent trend in the temperature 
indices analyzed, which contrasts with previous studies conducted in 
other parts of Africa. Saley et al. (2019) noted a warming trend in the 
Sahel from 1960 to 2010. Similarly, Abatan et al. (2016) reported 
warming trends in Nigeria from 1971 to 2012, with the greatest 
warming occurring in southern Nigeria. These findings align with our 
results, although Ferrelli et al. (2019) and Henchiri et al. (2021) iden
tified the most substantial warming trends in stations along the coast. 

A novel approach for assessing the vegetation ecosystem of drylands 
with remote sensing data and statistical analysis in relation to extreme 
indices is presented in this study. However, the accuracy of the esti
mated NDVI values may be impacted by uncertainties in the vegetation 
index, insufficient qualitative and quantitative data, and the influence of 
extreme precipitation and temperature events. Verifying the simulated 
NDVI values using more precise remote sensing data and human ob
servations is crucial to ensure reliable results. This verification process 
can be achieved through high-precision remote sensing mapping and 
ground-level verification of vegetation in the study area. 

5. Limitations and uncertainties 

This study presents a comprehensive evaluation of the impact of 
daily temperature and extreme precipitation indices on vegetation dy
namics in Katsina State using SDM. However, it is important to 
acknowledge certain limitations and uncertainties within our analysis. 
Firstly, the NDVI data utilized in this study may be influenced by factors 
such as cloud cover, solar altitude angle, and atmospheric conditions. 
The relatively low spatial resolution of the vegetation index data could 
potentially limit its ability to accurately reflect the actual vegetation 
status within the 250 m resolution, introducing uncertainties into our 
results. Moreover, the uneven distribution of meteorological stations 
poses another limitation. The scarcity of climatic stations in certain 
areas may result in less precise temperature and precipitation data. This 
imbalance in data availability could be a possible reason for the lower 
correlations observed between NDVI and precipitation/temperature. 
Therefore, it is crucial to incorporate more accurate climate and NDVI 
data to validate the findings of this study. 

Additionally, the uncertainty associated with remote sensing data 
can impact the accuracy of vegetation distribution information, leading 
to uncertainties in vegetation mapping (Wang et al., 2021; Shen et al., 
2022). To further analyze vegetation distribution changes, it is recom
mended to incorporate additional vegetation indices such as EVI, TVDI, 
RWSI, and SAVI, among others. For a more accurate understanding of 
the influence of climate change on vegetation dynamics, future research 
should explore the effects of other environmental factors on vegetation 
in Katsina State. While this study solely focuses on the influence of daily 
temperature and precipitation extreme indices, other climatic factors, 
including wind, solar radiation, and relative humidity, can also impact 
vegetation cover. Hence, future studies need to investigate the effects of 

these factors on NDVI and vegetation dynamics. 
The validation of the prediction model for vegetation dynamics in 

Katsina State, Nigeria, under extreme temperature and precipitation 
indices, utilized a time series validation method. This approach assessed 
the model’s performance by comparing its predictions to observed data. 
The lagged cross-validation technique was employed to address the 
presence of temporal dependencies. The model’s usefulness in moni
toring and controlling vegetation in response to climate extremes was 
determined based on the validation results and expert feedback. It was 
concluded that the model’s accuracy and usefulness were significant. 

In summary, while this study provides valuable insights into the 
influence of daily temperature and extreme precipitation indices on 
vegetation dynamics in Katsina State, several limitations and areas for 
further research should be considered. By addressing these limitations 
and expanding the scope of analysis, we can better understand the 
relationship between climate factors and vegetation dynamics in the 
region. 

6. Conclusion 

This study uses NDVI data from the Advanced Very High-Resolution 
Radiometer (AVHRR) sensor and Moderate Resolution Imaging Spec
troradiometer (MODIS) over 40 years (1982–2021) to track vegetation 
change dynamics in Nigeria’s savannah for 40 years (1982–2021). 
Landsat imagery, climate data (precipitation, Tmax, Tmin), and socio
economic data were also used. A significant trend pattern change was 
observed in climate variables, extreme weather indices, and NDVI. 
Separate analyses were conducted on NDVI, extreme indices of tem
perature and precipitation, and climatic variables. NDVI, climate vari
ables, and indices were then analyzed using regression analysis to 
determine the degree of impact. Climate variability within the study 
area strongly correlates with vegetation changes. However, between 
2020 and 2050, rainfall indices are projected to increase and have a 
positive impact on vegetation under the three emission scenarios 
RCP2.6, RCP4.5, and RCP28.5, while TXx and TXn show negative im
pacts on vegetation under low, medium, and high emission scenarios 
across the study periods. However, the drought indices (SPEI and SPI) 
predicted under RCP4.5 and RCP8.5 indicate a mild drought may occur, 
which would negatively affect vegetation in the study area. Because 
vegetation degradation is believed to be spreading in the extreme 
northern regions of the study area, an early warning system for the 
dangers associated with desertification and other environmental prob
lems is recommended. To predict the condition of vegetation regarding 
its driving forces across the study area, further research should use 
geospatial simulation models like the Analytical Hierarchy Process 
(AHP) and Technique for Order Preference by Similarity to Ideal Solu
tion (TOPSIS). The study uses a statistical downscaling model to esti
mate the daily temperature and precipitation extremes. This model 
assumes that the relationships between the large-scale climate variables 
and the local weather variables are linear and stationary, which may not 
always be the case. Although, the study does not consider other 
important factors such as soil quality, land use, and human activities. 
This may limit the accuracy and reliability of the study’s conclusions. 
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