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A B S T R A C T   

Hemodynamic shear stress is one of the major factors that are involved in the pathogenesis of many cardio-
vascular diseases including atherosclerosis and abdominal aortic aneurysm (AAA), through its modulatory effect 
on the endothelial cell’s redox homeostasis and mechanosensitive gene expression. Among important mecha-
nisms, oxidative stress, endoplasmic reticulum stress activation, and the subsequent endothelial dysfunction are 
attributed to disturbed blood flow and low shear stress in the vascular curvature and bifurcations which are 
considered atheroprone regions and aneurysm occurrence spots. Many pathways were shown to be involved in 
AAA progression. Of particular interest from recent findings is, the (Nrf2)/Keap-1 pathway, where Nrf2 is a 
transcription factor that has antioxidant properties and is strongly associated with several CVDs, yet, the exact 
mechanism by which Nrf2 alleviates CVDs still to be elucidated. Nrf2 expression is closely affected by shear stress 
and was shown to participate in AAA. In the current review paper, we discussed the link between disturbed 
hemodynamics and its effect on Nrf2 as a mechanosensitive gene and its role in the development of endothelial 
dysfunction which is linked to the progression of AAA.   

1. Introduction 

Cardiovascular diseases (CVDs) rank as the leading cause of death 
and morbidity among chronic diseases worldwide [1]. An aortic aneu-
rysm is a major form of CVD with high incidence. Disease is defined as a 
persistent and irreversible focal dilation of the aorta including its 
composing three layers (the intima, the media, and the adventitia) [2]. 
Aortic aneurysm which takes place in the infrarenal aortic region has a 
higher rate of incidence than any other type of aneurysm and it is called 
an abdominal aortic aneurysm (AAA) [3]. It is documented that the AAA 
prevalence rate has declined since the nineties worldwide and this might 
be accredited to smoking control programs, and as recorded recently in 
some screening studies, it is approximately 8% [4,5] [6]. Also during the 
last 30 years, many studies have demonstrated the decline in the inci-
dence of ruptured AAA in the USA and in some European countries 
[7–10]. On the other hand, the AAA prevalence rate is elevated with the 
advance of age, and this pattern is universally conserved as well [11]. 

Several studies have mentioned that AAA prevalence in women is 
threefold to fourfold lower than in men [12,13]. Increasing prevelance 
requires advancing diagnosis and therapies. 

At present, AAA is diagnosed and assessed using ultrasound (US), 
computed tomography angiograms (CTA), and magnetic resonance im-
aging (MRI). To diagnose and stratify patients according to their risk, the 
maximum axial aortic diameter is measured. Expanded aortic diameter 
compared to the initial diameter is a very useful independent predictor 
[14,15]. AAA diagnosis is based on the aortic diameter. Conventionally, 
an infrarenal aorta with a traversal diameter greater than or equal to 30 
mm is defined as AAA [3,16]. This definition has some weaknesses and 
does not apply to women, since it depends on a threshold value of the 
increase in the infrarenal aortic diameter to be greater than or equal to 
30 mm, as this definition is derived based on the median diameter in 
males ≥65 years old, which is approximately 20 mm, though the same 
measured parameter in females ≥65 years old is 17.5 mm. Hence the 
potential for lower AAA thresholds in women may be addressed by 
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lowering the diameter threshold by 3 mm [17,18]. This is supported by a 
community-based cohort study that aimed to state the definition of the 
diameters of the normal aorta in asymptomatic men and women, which 
proved that the average diameter of the abdominal aorta in a normal 
individual is larger in men than women [19]. Moreover, in some Asian 
populations lower measurement threshold is more appropriate for 
defining an AAA [20]. Additionally, dependence on the mentioned 
definition is subject to be affected by various factors which may intro-
duce variability because of the different imaging procedures used, 
including the internal or the external wall diameters in measurement for 
the intervention criteria, and different technical details, particularly in 
the ultrasound measurement affecting the reproducibility for the pro-
cedure [21–23]. Therefore, it was recommended to diagnose AAA when 
the increase of the diameter of the measured infrarenal aorta is not 
<150% of the adjacent normal suprarenal aorta [2]. Additionally, if the 
aorta diameter growth rate is >5 mm/year, the patient is considered at 
high risk [24]. Despite these clinical reccommendations, small aneur-
sysm may rupture hence a better understanding of the disease progres-
sion is needed. 

AAA is caused by many factors. There has been a debate over 
whether atherosclerosis triggers the onset of AAA since the same risk 
factors of atherosclerosis specifically smoking, male gender, and hy-
pertension are involved in the etiology of AAA [25]. Additionally, 
oxidative stress, and endothelial dysfunction, are implicated in the 
development of atherosclerosis and AAA. All of these factors are closely 
related to the hemodynamic stress acting on endothelial cells. More 
specifically, low shear stress from disturbed oscillatory flow was shown 
to trigger and govern these biological events eventually leading to AAA 
[26–30]. There are geometrical irregularities in the vascular tree, as a 
result, different patterns of flow dynamics are developed in specific 
areas. Laminar blood flow with a high magnitude of shear stress occurs 
in straight vessels that are referred to as atheroprotective areas. In vessel 
curvatures and bifurcations, the disturbed or oscillatory pattern of flow 
with a low magnitude of shear stress occurs and these areas are known as 
atheroprone or atherosusceptible areas, where oxidative stress, the 
endoplasmic reticulum stress and unfolded protein response (UPR) are 
triggered. These all together lead to the onset of endothelial dysfunction 
in these locations which is a primary step in the pathogenesis of CVDs 
such as AAAs [31,32]. Here, disturbed hemodynamics is known to in-
fluence atheroprone gene expression. 

Many genes and molecular mediators were shown to be involved in 
AAA progression such as Nitric oxide, which has been thoroughly 
studied [33]. Another mechanism is through Nuclear factor erythroid 2- 
related factor 2 (Nrf2)/Keap-1 pathway, where Nrf2 is a transcription 
factor that has antioxidant properties and is strongly associated with 
several CVDs, yet, the exact mechanism by which Nrf2 alleviates CVDs 
still to be elucidated [34]. Nrf2 expression is closely affected by shear 
stress and was shown to participate in AAA [35–37]. The pathophysi-
ology of AAA onset and progression is still not fully understood, where 
progressive inflammatory response, oxidative stress, activation of pro-
teolytic pathways, and vascular smooth muscle cells(VSMCs) apoptosis 
take place. A stress-responsive transcription factor, Nrf2, regulates most 
of these processes by activating genes associated with cytoprotection, 
antioxidant activity, and detoxification [38]. A variety of Nrf2- 
dependent pathways are also shown to suppress cardiovascular disor-
ders by retaining the contractile state of VSMCs, regulating vascular 
tone, reducing lipid accumulation, and inhibiting the formation of 
vascular calcifications, which are considered AAA major hallmarks [39]. 
Hence Nrf2-dependent pathways may have important contributory or 
preventive roles for CVD progression that requires further investigation. 

In the current paper, we have reviewed the major mechanisms by 
which different hemodynamic shear stress induce endothelial dysfunc-
tion, the critical primary step of the onset of atherosclerosis and AAA. 
Moreover, we discussed the effect of different flow patterns on the 
expression of the antioxidant-dependent gene expression, particularly 
the under-explored Nrf2, and eventually the protective role of Nrf2 on 

endothelial cells. The paper is organized as follows: 
ENDOTHELIAL CELLS (ECs) IN THE PATHOPHYSIOLOGY OF AAA, 

Endothelial dysfunction and AAA, Major Mechanoreceptors and 
mechanosening in AAA. 

ER stress and oxidative stress interaction in AAA,DISTURBED HE-
MODYNAMICS FOR AAA PROGRESSION,AAA treatment available 
drugs and their effect on the Nrf2 signaling pathway,conclusions and 
future directions. 

2. Endothelial cells (ECs) in the pathophysiology of AAA 

2.1. Function of endothelial and vascular smooth muscle cells in normal 
physiology 

Endothelial cells (ECs) compose the inner face of the cellular 
monolayer that lines the vasculature [40], functioning as a barrier be-
tween blood fluid and vascular smooth muscle cells (VSMCs) [41]. ECs 
are directly in contact with dynamic changes of the vascular lumen (e.g., 
shear stress and injuries), and ECs respond to such signals by secreting 
cytokines and growth factors, leading to endothelial dysfunction and 
consequently triggering the progression of cardiovascular complications 
[42]. Additionally, ECs are considered a whole dynamic organ, func-
tioning via both autocrine and paracrine signaling [41]. Furthermore, 
ECs play fundamental roles in the preservation of the fluidity of the 
bloodstream and the regain of the integrity of the vascular wall, leading 
to balancing the thrombotic and the fibrinolytic systems. Moreover, ECs 
are responsible for the production and the secretion of several chemical 
mediators that promote vascular homeostasis and blood vessels vaso-
dilation (Nitic Oxide(NO), prostacyclin (PGI2),Endothelium derived 
hyperpolarizing factor (EDHF)), and vasoconstriction (endothelin 1, 
Thromboxane) [43]. Consequently, ECs are considered to be the key 
player in controlling vascular tone by keeping the balance between 
vasodilation and vasoconstriction [41,44]. Furthermore, at very early 
embryonic stages, ECs which are deno Novo developed are responsible 
for the formation of the initial vascular plexus. Also, ECs are influenced 
by different signaling pathways that make them key elements in 
angiogenesis and further differentiation into arterial and venous ECs 
[45]. 

As ECs and VSMCs are the primary cellular elements of the vascu-
lature, these two cell types have intimate communication via several 
routes which is pivotal to maintaining vascular homeostasis [42,46,47]. 
At the embryonic stage, the interaction between VSMCs and ECs is 
crucial for the maturation of vascular cords during blood vessel 
morphogenesis [48]. Secreted vasoactive molecules like NO, arach-
idonic acid, peptides, and prostacyclin from healthy ECs represent a 
necessity for keeping the efficient contractile phenotype of VSMCs 
[43,49]. Nevertheless, damaged or injured ECs will negatively affect the 
communication between ECs and the VSMCs, eliciting VSMCs’ pheno-
typic switching to the synthetic phenotype which is associated with 
cardiovascular pathological manifestations [46]. An AAA is character-
ized by an altered structural and physiological role of resident cells in 
the arterial vascular intima and media together with the ECs and VSMCs 
[50]. Multiple layers of VSMCs with the associated connective tissue 
compose the vascular media [51]. It is well-reported that VSMCs 
apoptosis plays a key role in the degeneration of the medial layer of an 
artery which is considered a hallmark of AAA [51,52]. VSMCs undergo 
switching into two distinct phenotypes: the contractile and the synthetic 
[53]. The contractile VSMCs have lower migratory potential and have 
less proliferative capacity when compared to the synthetic phenotype 
[53,54] and are involved in the alteration of the diameter of arterial 
lumen and maintaining vascular tone [50,55]. Aorta and other large 
arteries consist of several layers of VSMCs which are interwoven in 
elastin - collagen constructed matrix, this unique structure came to 
endure the pulsatile flow and pressure of blood during circulation [46]. 
VSMCs of synthetic phenotype harbor the ability of vascular extracel-
lular matrix (ECM) degradation through the production of 
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metalloproteases, enhancing their migratory feature [56], it is reported 
that VSMCs switching to synthetic phenotype is a key factor behind the 
degeneration of ECM which leads to the development of thoracic 
abdominal aneurysm in murine animal models [57]. 

The combination between the phenotypic switching to synthetic 
VSMCs and Endothelial dysfunction is among the hallmarks of AAA 
development [57,58]. Communication between ECs and VSMCs is a 
crucial step in the onset and endothelial dysfunction significantly trig-
gers the advancement of disease-associated vascular remodeling [42]. 

2.2. Endothelial dysfunction and AAA 

A ubiquitous characteristic almost in all AAAs is a thick sheet of 
intraluminal thrombus which is accompanied by damage to adjoining 
endothelial lining. The significant role of endothelial dysfunction and 
endothelial phenotypic modifications in the progression of AAA has 
been poorly investigated [59]. Endothelial dysfunction (ED) is known as 
the inadequacy and insufficiency of the response of ECs following 
stimulation by chemical mediators or blood flow disturbances [60]. 

ED is mainly characterized by reduced NO bioavailability, 
augmented production of adhesion molecules and pro-inflammatory 
markers, increased aggregation of platelets, and changed control of 
VSMCs proliferation and growth [44,60]. Moreover, ED is counted as an 
autonomous prognosis for cardiovascular complications such as 
atherosclerosis [44]. Endothelium-generated NO is a pivotal vasodilator 
and its deficiency leads to vasoconstriction and most significantly leads 
to endothelial dysfunction. Additionally, NO reduced bioavailability 
leads to increased inflammatory machinery activation via the stimula-
tion of intracellular adhesion molecule-1 (ICAM-1), macrophage che-
moattractant peptide-1 (MCP-1), E-selectin, and vascular adhesion 
molecule-1 (VCAM-1) [61,62]. 

Biomechanical stress is implicated significantly in CVD progression, 
including atherosclerosis and AAA. Shear stress is the resulting 
tangential force that blood flow and friction exerted on the blood vessel 
[63]. In straight blood vessels, the blood shear stress is high approxi-
mately >10 dynes per cm square with a unidirectional laminar pattern 
of flow till blood reaches the areas of curvature and bifurcation where 
shear stress go to the lowest magnitude as it reaches the 2 dynes per cm 
squared and the laminar flow pattern is deteriorated and oscillatory or 
disturbed flow develops there. The development of aneurysms has the 
chance to occur in any area along the aorta, though, aneurysms usually 
form in the proximal region to the aortic branching point of the 
infrarenal aortic section or the curved arch of the thoracic aorta. The 
bifurcation region in the infrarenal aorta manifests a region of oscilla-
tory blood flow with low shear stress. Persistent growth of localized 
aneurysms can trigger the onset of an aneurysm in adjacent regions 
which are subjected to low shear stress and localized recirculation of 
flow [32,64]. Endothelial dysfunction and its contribution to the 
development of AAA and associated wall thinning and expansion has 
gained much attention, one study reported that localized therapy using 
autologous ECs in a rat model resulted in the reduction of AAA gener-
ation and restrained the already developed AAA concluding that rees-
tablishing ECs is essential for the AAA dynamics regulation. Another 
study investigated the role of endothelial NO synthase (eNOS) which is 
produced by healthy ECs, in the advancement of atherosclerosis and 
associated cardiovascular complications such as AAA. In a study it was 
demonstrated that mice with Apolipoprotein E/Endothelial Nitric Oxide 
Synthase Double-Knockout (apoE/eNOS-DKO) had accelerated 
advancement of atherosclerosis and AAA, when compared to apoE-KO 
mice, highlighting the significance of the ECs dysfunction involvement 
in developing AAA [65]. Recently, a study came in line with previous 
studies where researchers highlighted the significant role of ECs Krüp-
pel-like factor 11 (KLF11) deficiency in triggering VSMCs phenotype 
switching and apoptosis aggravating AAA in elastase- and Pcsk9/AngII- 
induced AAA mice [66]. 

Major Mechanoreceptors and mechanosening in AAA. 

As mentioned before,ECs and VMCs sense the alterations in the flow 
patterns and shear stress, as ECs harbor at their membrane, a wide va-
riety of sophisticated mechanosensing machineries, comprising the 
shear stress sensing ion channels, like the transient receptor potential 
isoform-4 (TRPV4) ion channels by which via Ca2+ influx, it releases 
vasodilators mediators (NO, Prostaglandin I2 (PGI2)) and subsequently 
affecting VSMCs where vascular remodling and aoertic inflammation 
takes place at the oncet of AAA,(TRPV4) occur in ECS and also VSMCs 
[67]. 

Additionally, G protein-coupled receptors (GPCRs), ECs and VSMCs 
contain many GPCRs, such as the b2AR (b2-adrenergic receptor) and 
AT1R (angiotensin II type I receptor), which regulate a variety of 
functions, including vascular tone, angiogenesis, and cell proliferation 
[67]. It was demonstrated that under excess mechanical stretch, AT1R 
activates functioning as a mechanosensor in ECs.Also it was shown that 
VSMCs demonstrated a AAA growth augmentation following the AT1R 
mechanical activation in a hypertensive mouse model lead [68]. Also, 
primary cilia structure that protrude from endothelial cells surfaces, act 
as mechanosensors that detect blood flow, where pulsatile flow stimu-
lates endothelial cilia to oscillate, activating endothelial nitric oxide 
synthase, which produces NO and regulates vascular tone [69]. 

Moreover, it is well documented that tyrosine kinase receptors and 
integrins are involved significantly in ECs mechanosensing to different 
shear stress cues [70]. 

2.3. ER stress and oxidative stress interaction in AAA 

As mentioned earlier, a major manifestation of endothelial 
dysfunction is the decreased NO bioavailability, which leads to alter-
ation in the endothelium-dependent vasodilation of the main arteries, 
representing a profound prognosis of CVDs including AAA [71]. One of 
the key factors that lead to the decline of NO bioavailability in the 
endothelium is accelerated ROS-mediated NO degeneration [72]. 
Several mechanisms contribute to AAA, including metalloproteinase 
over-activation, inflammation, shear stress, and excessive ROS genera-
tion within the vascular walls [73]. 

According to recent studies, oxidative stress is involved in several 
underlying mechanisms of AAA [71,74,75]. Shear stress, NADH/NADPH 
oxidase, and nitric oxide synthase are among the well-known ROS 
sources in the cardiovascular system [76]. In a murine model of AAA 
formation induced by CaCl2, iNOS deficiency, and NADPH oxidase in-
hibition protected the aortic walls against AAA formation indicating the 
pivotal role of ROS and oxidative stress in the development of AAA [77]. 
Also, infrarenal AAA tissue segments of patients going through elective 
aneurysm repair demonstrated elevated amounts of (O2⋅) and increased 
activity of NADPH oxidase [78]. 

Clinically, in a study conducted by Pincemail and coworkers, it was 
confirmed that oxidative stress has a potential role in the pathogenesis of 
AAA and the increase of its size, where AAA patients with higher serum 
antioxidants levels demonstrated a lower size of AAA when compared to 
the AAA patients with lower antioxidant levels in their sera [79]. 
Moreover, many research works investigated the presence and signifi-
cant role of ROS in the surveillance of AAA in human subjects [80,81]. 

The endoplasmic reticulum (ER) is the largest cellular organelle and 
is considered a signaling organelle, it harbors multifunctional roles most 
significantly cell homeostasis, protein proper folding via the resident 
molecular chaperones and foldases, proteins translocation, and protein 
integration to the cellular membrane, ER is the site of posttranslational 
modification of synthesized proteins and calcium homeostasis conser-
vation [44,82,83], the imbalance in the demand for folding newly syn-
thesized proteins and the capacity of the cellular folding machinery 
leads to ER stress status activation followed by the unfolded protein 
response (UPR), where cellular pro-survival pathways are switched on 
[44,84]. Cells ameliorate the ER stress through many mechanisms of 
UPR like the reduction of general proteins translation decreasing the 
entrance of new proteins to ER lumen, increasing the production of 
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molecular chaperones enhancing the correction of the misfolded pro-
teins, stimulation of ER-associated degradation machinery (ERAD) to 
eliminate any atypical proteins [44,85,86]. In the case of prolonged 
chronic ER stress, the activation of UPR will trigger pro-apoptotic and 
pro-inflammatory pathways, leading to apoptotic cell death [87]. 
Several studies confirmed the pivotal role that ER stress plays in the 
pathology of certain diseases including cardiovascular diseases (CVD) 
[88,89], moreover, ER stress and/or inflammatory reactions may 
contribute significantly to the initiation or deterioration of the patho-
logical condition [90]. Prolonged ER stress and UPR activation lead to 
the disturbance of cell redox homeostasis and calcium equilibrium, also, 
the overwhelmed protein folding machinery results in oxidative stress 
[91]. Oxidative stress is the status in which an imbalance between the 
endogenous antioxidant defense machinery and the generation of 
reactive oxygen species (ROS) [92]. Many factors are responsible for the 
excess generation of ROS inside the endothelium including the upre-
gulation of the processes of nitric oxide synthase uncoupling, mito-
chondrial respiration, and the enzymes nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase and xanthine oxidase [93]. 
ROS excessive generation and buildup in the cell, stimulate signaling 
pathways that lead to oxidative damage of DNA, Protein, vital enzymes 
and consequently the endothelium, additionally, these highly reactive 
free radicals may interact with DNA and proteins leading to destructive 
modifications, significantly contributing to the development of disease 
[86,94]. An intimate association between ER stress and oxidative stress, 
in a vicious manner, contributes to the onset and development of (ED) 
[95]. 

The ER lumen is the place where newly translated proteins are 
exposed to post-translational modifications, initially, the majority of the 
proteins are subjected to N-glycosylation, followed by the formation of 
disulfide bonds stabilizing the proteins to acquire their proper tertiary 
structure [44,96]. The redox status homeostasis of the ER lumen is 
crucial in maintaining the oxidative folding of proteins, and catalyzing 
the formation of disulfide bonds in proteins by a family of protein di-
sulfide isomerase (PDI) accompanied by the availability of high con-
centrations of reduced glutathione (GSH) keeping the thiol/disulfide 
machinery redox status in the oxidized form [96–98]. Additionally, ER 
harbors the complete machinery of foldases and molecular chaperones 
including Glucose-regulated protein 94,78 (GRP94 and GRP78) repre-
sents a strict strategy to ensure the proper folding of synthesized proteins 
[99,100]. 

The incorrect pairing of cysteine residues between polypeptide 
chains during the process of protein folding will lead to the formation of 
non-native disulfide bridges, causing the buildup of misfolded proteins. 
Under the typical conditions of the protein folding process, generating a 
native disulfide bond involves the transfer of electrons from the second 
cysteine residue to the electron acceptor, in this case, it is the molecular 
oxygen producing hydrogen peroxide, this reaction is catalyzed by PDI 
and ER oxidoreductase (ERO)-1α [101]. 

On the other hand, as in metabolic diseases, there is an over-
whelming demand for protein folding leading to the increased devel-
opment of erroneous disulfide bridges that needs to be reduced via GSH 
leading to excess consumption of GSH which in turn depletes the GSH 
pool which is responsible for scavenging ROS, putting the cell under 
oxidative stress, moreover, the ratio between the reduced form of 
glutathione GSH and the oxidized one GSSH will be decreased, dis-
turbing the redox homeostasis in ER [44,95,101]. Also, it was found that 
ROS are involved in the inactivation of ER resident isomerases which 
aggravate the formation of misfolded proteins [102]. A subsequent 
event that occurs after the accumulation of misfolded proteins in the ER 
is the leakage of calcium ions in a high gradient inside the mitochondria 
via MAMS, triggering the ROS generation through the mitochondrial 
oxidative phosphorylation system, meanwhile, calcium ions excessively 
diffuse into the mitochondria blocking complex III which induce the 
leakage of electrons and the generation of ROS at the end [103,104]. 

It is well established that persistent ER stress, UPR, and oxidative 

stress are connected to the onset of some diseases including CVD and ED 
[31,105–107]. In a recent study, a higher expression of endoplasmic 
reticulum stress markers was also observed in the aortic walls of humans 
dissecting AAAs [108]. Many in vitro and in vivo studies have also 
demonstrated that ER stress inhibition can prevent the progressive 
growth of abdominal aneurysms [28,109]. 

3. Disturbed hemodynamics for AAA progression 

3.1. Hemodynamics in the aorta 

The aorta is the major artery in the body and is characterized by it is 
ability for dilation and its reduced resistance to the stream. During the 
systolic cycle, a stretching and expansion occur to the aortic wall, 
whereas in the diastolic cycle, the aortic wall recoils pushing blood in 
the entire cardiovasculature. AAA is the most prevalent aortic aneurysm 
type. The majority of AAAs develop in the infrarenal region of the 
abdominal aorta, where this region is located just below the renal ar-
teries and above the bifurcation of the aorta. Throughout the length of 
the aorta, hemodynamic conditions vary prominently, this is thought to 
contribute to making the distal aorta predisposed to aneurysms. The 
major variation that occurs between the suprarenal and infrarenal seg-
ments of the aorta is the difference in the vessel wall shear stress. 

In suprarenal aortic region, the blood flow is anterograde and 
laminar during the whole cardiac cycle, exerting continuous, directed 
shear stress on the vascular wall. As the cardiac contraction (systolic 
cycle) begins, the infrarenal aorta demonstrates an anterograde blood 
flow. While systole is being completed and during diastole, a reverse, 
disturbed recirculating flow associated with low and oscillatory shear 
stress is established on the vascular wall of the infrarenal aorta [110]. 

The disturbance of blood flow demonstrated in AAA, affects directly 
the ECs lining the vascular tube which are in direct contact with flow 
and are very sensitiveto any change in the flow pattern of the blood-
stream. As indicated by many studies mentioned before in this review, 
disturbed flow with low and oscillatory shear stress leads to the acti-
vation of inflammatory pathways in the endothelium and subsequently 
leads to endothelial dysfunction and VSMCs apoptosis, eventually 
reducing the integrity, and the degeneration of the arterial wall, pro-
gressing toward AAA [16,111]. 

3.2. Endothelial pathophysiology and hemodynamic shear forces 

ECs are subject to an unsteady hemodynamic force due to the pul-
satile nature of the heartbeats. As a result, diverse patterns of fluid shear 
stress and cyclic circumferential stretch act on the blood vessels [112]. 
Fluid shear stress is the key determining factor in the physiology and 
pathophysiology of ECs through the specific feature of ECs harboring 
unique mechanotransducers which translate the hemodynamic physical 
cues into biochemical signals maintaining the redox homeostasis 
[36,113]. ECs mechanosensing process is mediated via putative 
mechanotransducers that have been investigated, particularly, mecha-
nosensing ion channels, integrins, glycocalyx, focal adhesion complexes, 
cilia, receptor tyrosine kinases, and heterotrimeric G protein [112,114]. 

The vasculature tree differs geometrically from region to region 
which causes the spatial variation of flow patterns and shear stresses 
that ECs sense, the straight regions demonstrate unidirectional laminar 
flow with relatively high shear stress of >10 dynes per squared cm, on 
the contrary, the areas of bifurcations and inner curvature demonstrate a 
pattern of oscillatory disturbed flow with a low magnitude of shear 
stress <2 dynes per squared cm [32]. ECs sense such variations in shear 
stress and respond via the regulation of the redox signaling pathways, 
triggering the altered gene expression of antioxidant and prooxidant 
pathways, cell inflammatory features, and cell alignment [36]. 
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3.3. Disturbed hemodynamics and endothelial dysfunction interaction 

As mentioned above, disturbed hemodynamics in the vasculature is 
implicated significantly in major alterations in specific gene expressions. 
Here in this section, we will focus on the mechanosensitive genes in the 
endothelium which are involved in triggering endothelial dysfunction. 
The excessive expression of adhesion molecules including I-CAM and V- 
CAM is an important feature of endothelial dysfunction [115]. 

Since the late nineties, substantial research was conducted investi-
gating the dynamic response of endothelial cells to different forms of 
shear stress [116,117]. Moreover, It is believed that increased Nfκb 
activity occurs in regions of disturbed flow in athero-susceptible regions 
and is associated with the expression of Nfκb-dependent genes, such as 
the adhesion molecules ICAM-1, VCAM-1, and E-selectin, contributing 
to the emigration of monocytes to the nascent plaque [116,118]. Also, it 
was reported that the expression of I-CAM and V-CAM, and VEGFR2 is 
altered when endothelial cells are exposed to different magnitudes of 
shear stress, supporting the fact that these molecules are implicative in 
mechanosensing [119]. It was well established that disturbed flow shear 
stress leads to increased nuclear localization of c-jun, Nfκb, and c-fos, 
consequently, the stimulation of these transcriptional factors triggers the 
expression of genes that are implicated in the inflammation and 
atherogenesis, including MCP-1, E-selectin, interleukin (IL)-1a, platelet- 
derived growth factor (PDGF)-BB, bone morphogenic protein-4 (BMP- 
4), (ET-1)and as previously mentioned I-CAM and V-CAM [120]. 

Another important hallmark of endothelial dysfunction is the 
reduced NO bioavailability, NO is a vital molecule involved in both 
vasodilation and anti-inflammatory response [121]. in turn, endothelial 
cells respond to shear stress in several ways, and exposing ECS to 
persistent oscillatory disturbed flow shear stress stimulates the excessive 
generation of ROS mainly O. As well as being highly diffusible, NO is 
highly reactive and contains an unpaired electron, particularly O. easily 
reacts with NO to form peroxynitrite (ONOO− ) consuming NO leading 
to its deficiency in the cell [120]. Furthermore, It was demonstrated that 
oscillatory flow triggered the expression of the NADPH subunit Nox4 
inducing the generation of O2 •-, this increase of O generation leads to 
the disturbance of redox homeostasis in cells augmenting the production 
of (ONOO− ) which is a key player in inducing endothelial dysfunction 
and pathological events associated with atherogenesis [122]. 

3.4. Disturbed hemodynamics with ER stress / oxidative stress interaction 
and Involvement of NRF2 in AAA progression 

ECs lining the arterial inner wall are subject to different patterns of 
blood flow shear stress including laminar shear stress like in large ar-
teries with uniform geometry and turbulent or oscillatory shear stress 
near arterial branching and bifurcations and curvatures [123]. Blood 
shear stress occurs as a result of the tangential frictional force of blood 
flow on ECs [124]. ECs have the feature of sensing the slight variations 
of vascular wall shear stress, hence the mechanism by which ECs sense 
these variations remain elusive [32,125]. Many risk factors for AAA 
mainly include diabetes mellitus, hypertension, and coronary artery 
disease which are linked to metabolic disturbances and activated in-
flammatory status [126]. It is well documented that the endoplasmic 
reticulum (ER) stress response is triggered in cardiovascular diseases 
[26,127]. 

ECs of atheroprone areas with oscillatory patterns of shear stress 
showed an upregulation of genes involved in ER stress and the UPR 
[128]. Many studies supported the fact of the stimulatory effect of 
oscillatory flow shear stress on UPR markers in ECs, it was demonstrated 
that the molecular chaperone GRP87, associated with the ER stress 
sensing element (ERSE1) stimulation, was upregulated substantially in 
ECs exposed to oscillatory flow shear stress compared to laminar flow in 
the studied in vitro model [129]. Also, it was reported that oscillatory 
patterns of shear stress triggered the XBP-1 splicing which is encoding 
the XBP-1 transcription factor leading to its nuclear translocation to 

selectively activate the proapoptotic downstream genes as to the nucleus 
to activate selective pro-apoptotic target genes as part of UPR preceded 
by chronic ER stress [130]. ER homeostasis is closely related to normal 
cardiovascular function, and ER stress is considered a trigger and a 
consequence of a wide range of CVDs, including ischaemic heart disease, 
hypertension, stroke, heart failure, and cardiomyopathies, in a fashion 
of a vicious cycle [131]. 

Particularly speaking, ECs in the regions of oscillatory disturbed flow 
demonstrate altered gene expression of prooxidant and oxidant path-
ways, triggered ER stress accompanied by UPR activation [30]. Nrf2 has 
been extensively studied for its role in regulating the expression of a 
group of genes encoding phase II detoxification enzymes and antioxi-
dants including Sestrin 2(Sesn2), heme oxygenase-1 (HO-1), 
glutathione-S-transferase, peroxiredoxin 1 (Prx-1), quinone 
oxidoreductase-1 (NQO1) and nicotinamide adenine dinucleotide 
phosphate (NADPH) [132,133]. Oxidative stress-related diseases such as 
CVDs are protected by Nrf2 which is ubiquitously expressed in various 
tissues and cells via the transcriptional modulation of the downstream 
antioxidant genes [134,135]. It has been found that Nrf2, is tightly 
linked to the UPR sensor PERK in neonatal mouse cardiomyocytes. 
Maintaining ER homeostasis and cardiac function during ischaemic 
preconditioning might require activation of the Nrf2-antioxidant 
response element cascade [136]. Moreover, Nrf2 is colocalized in the 
cytosol with its repressor Keap-1 during the resting state, where it is 
subjected to proteasomal degradation [137]. 

As demonstrated in both in vitro and in vivo studies, ECs exposed to 
oscillatory disturbed flow shear stress compared to cells exposed to 
unidirectional flow patterns have higher nuclear factor-B (Nfκb) activity 
and deficiency of the Nrf2 antioxidant pathway, which are implicated in 
proinflammatory states due to increased generation and reduced scav-
enging of ROS [138]. The disturbed oscillatory flow shear stress patterns 
are known to modulate ECs’ redox state and inflammatory phenotype in 
atheroprone vasculature regions. Therefore, the laminar flow may pro-
tect EC against atherosclerosis and endothelial dysfunction by 
increasing Nrf2 activity and expression of the antioxidant genes 
[120,139]. There have been relatively few in vitro hemodynamic culture 
models demonstrating Nrf2’s role as a shear-responsive transcription 
factor in EC that have been conducted using primarily HUVEC, which 
are not relevant to studying atherosclerosis, and in vivo models of 
atherosclerosis in mice. 

There is substantial evidence, that indicates the stimulatory effect of 
laminar flow shear stress on the Nrf2 pathway and associated antioxi-
dant genes. It was demonstrated that laminar shear stress has triggered 
the gene expression of HO-1, NQO1, GCLM, ferritin H, and SQSTM/ 
A170 in HUVEC and HAEC cells, which also was significantly attenuated 
by silencing the Nrf2 gene [33,140]. Also, it was demonstrated that 
exposing ECs under laminar flow shear stress to inhibitors of an anti-
oxidant nature, suppressed the Nrf2 laminar flow shear stress-mediated 
activation [33,141]. It was demonstrated, as with Laminar flow shear 
stress, atherogenic oscillatory flow shear stress increased Nrf2 nuclear 
accumulation, but did not lead to the induction of Nrf2 target gene 
expression [140], because of additional epigenetic modulation which 
occurs by histone deacetylases and mechanosensitive microRNAs as 
summarized in Fig. 1 [142]. Moreover, recently crosstalk was revealed 
between the glycocalyx sialic acid (SIA) and Nrf2 signaling in human 
primary ECs exposed to laminar and oscillatory flow shear stresses, and 
it was demonstrated that oscillatory flow shear mediated SIA modifi-
cations reduced atheroprotective Nrf2 signaling affecting the cells redox 
homeostasis. On the other hand, ECs exposed to laminal flow shear stress 
demonstrated heavier glycocalyx and enhanced Nrf2 antioxidant 
signaling and accompanied with thicker glycocalyx [143]. Another 
study indicates the important role of KLF2 which augment Nrf2 and 
antioxidant-dependent gene expression and enhance their role in ROS 
scavenging in ECs model exposed to laminal flow shear stress [144]. In a 
study of combined in vitro and in vivo models, it was demonstrated that 
HUVEC intracellular redox state is regulated by laminar flow-mediated 
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Nrf2 activation, allowing cells to withstand oxidative stress, as elevated 
Nrf2 nuclear translocation was demonstrated in the areas where athe-
roprotective flow shear stress in mice aortae. Additionally, it was shown 
that the laminar flow shear stress modulates the EC’s redox homeostasis 
via activating Nrf2 dependently on the PI3K/Akt pathway and inde-
pendently from NO [145]. Proving that Nrf2 and associated antioxidant 
genes function in scavenging ROS and maintaining the Redox Homeo-
stasis of ECs are significantly stimulated by laminar flow shear stress. 

On the contrary, ECs that are subjected to persistent oscillatory flow 
shear stress manifest augmented generation of ROS including H2O2 and 
O−

2 which are resulting mainly from NAPPH oxidases and eNOS 
uncoupling, Further, elevated levels of ROS lead to a significant reduc-
tion in NO bioavailability, which is a hallmark of ED and it is associated 
with oscillatory flow shear stress. Moreover, ROS/RNS are capable of 
promoting post-translational modifications on regulatory proteins (such 
as S-glutathionylation, S-nitrosylation, and tyrosine nitration), which 
provide chemical signals associated with cardiovascular pathophysi-
ology [121]. 

Furthermore, it is well reported that oscillatory flow shear stress 
aggravates oxidative stress through the elevated production of ROS and 
oxidizing BH4 leading to eNOS uncoupling which in turn decreases NO 
bioavailability deliberately inducing endothelial dysfunction [146,147]. 
Oxidative stress induced by ROS accumulation and lipid peroxidation 

strongly aggravates endothelial dysfunction, which stimulates Nrf2, 
retaining its protective role in ECs [148]. 

Exceeding the number of antioxidant 200 genes, are the downstream 
genes associated with Nrf2 activity, including the genes with vital 
functions for the redox status homeostasis, glutathione homeostasis, and 
phase II detoxifying enzymes [149,150]. Moreover, it was demonstrated 
that stimulating Nrf2 in human aortic endothelial cells triggers the 
expression of intracellular HO-1 which in turn protects ECs from the 
cytotoxic effect of tumor necrosis factor TNF-alpha used to induce 
atherogenesis in the ECs studied model, exhibiting an anti atherogenesis 
function of nrf2 [151]. Laminar flow shear stress modulates endothelial 
Nrf2 signaling, while arterial areas exposed to low oscillatory flow shear 
stress demonstrates declined expression of eNOS and reduced antioxi-
dant and anti-inflammatory functions of Nrf2 [143]. Endothelial 
dysfunction is a critical risk factor for many CVDs and it is considered 
the first step toward CVD pathogenesis, specifically, atherosclerosis 
[152]. 

As mentioned before, numerous studies have indicated the key role 
of oxidative stress and ROS in AAA progression and demonstrated key 
sources of ROS in the aortic tissues of human and in vivo AAA models 
[153]. Several human studies came in agreement with the above, 
research has confirmed the association between AAA development and 
oxidative stress and endothelial dysfunction [35]. As Nrf2 is a master 

Fig. 1. Disturbed hemodynamics and Nrf2/Keap-1 pathway. When disturbed flow occurs, Nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional activity is 
reduced because Keap-1 modulates Nrf2 proteasomal degradation, or via attenuated Nrf2 nuclear translocation or if translocation occurs, Nrf2 will be accumulated 
with no induction of its target gene expression because of additional epigenetic modulation which occurs by histone deacetylases and mechanosensitive micro-
RNAs⋅As a result of attenuated Nrf2 antioxidant activity, the oxidative stress is aggravated through the elevated production of reactive oxygen species (ROS) and 
endothelial nitric oxide synthase (eNOS) uncoupling, reducing nitric oxide (NO) bioavailability, also nuclear factor kappa b (Nfκb) expression is elevated triggering 
the inflammatory response. Together leading to endothelial dysfunction. This figure is created using:biorender.com. 
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transcription factor that harbors a pivotal role in cellular defense ma-
chinery with its antioxidant and anti-inflammatory roles. In a very 
recent study, it was demonstrated in a study where AAA mice models 
were employed, that treating AAA mice with the natural compound 
betanin constrained the enlargement of the aortic diameter in the 
experimental model when compared to the control group, associated 
with the augmentation of the Nrf2 expression and its downstream target 
HO-1 leading to the significant drop in ROS that was measured in 
betanin treated group, indicating that Nrf2/HO-1 pathway had a pivotal 
role in scavenging ROS and alleviating the AAA progression and aortic 
enlargement [154]. Relying on many in vitro and in vivo research works 
and several clinical studies, Nrf2 may be capable of targeting the 
oxidative stress triggering CVDs [155]. 

Based on these findings, involvement of shear responsive Nrf2 
expression in AAA progression can be summarized as demonstrated in 
Fig. 1. 

AAA treatment available drugs and their effect on the Nrf2 signaling 
pathway. 

In AAA, medical therapy is indicated for two purposes: managing 
cardiovascular risk and stabilizing AAA with pharmaceutical drugs. 
Beta-blockers are believed to hamper aortic aneurysm progression, yet, 
further studies and clinical trials are needed to prove this type of drugs 
efficacy in hindering AAA growth. Based on non-randomized studies 
Propranolol which is a Beta-blockers reduces aortic aneurysm growth. 
Beta-blockers had demonstrated antioxidant and anti inflammatory 
features, through the beta blocking action reducing catecholamine 
which triggers the ROS generation in the myocardium and through the 
inhibition of nfkb, respectively [156,157]. Statins also, based on many 
cohort studies of AAA patients who underwent statin therapy after open 
surgery,demonstrated that statins significantly improved the survival of 
those patients [158,159]. these data are of great interest for under-
standing the mechanism of action by which statins can cease AAA pro-
gression. It is well proven by in vitro and in vivo studies that statins (e.g., 
Rosuvastatin and Mevastatin)harbor antioxidant and anti-inflammatory 
properties, acquired through the modulation of Nrf2 and its target-
downstream genes including HO-1 [160,161]. Statins have been shown 
to stimulate the binding of Nrf2 to DNA and increase the expression of its 
target genes, HO-1 and GPX, shielding the cells from oxidative stress 
[162]. Moreover, statins were found to reduce endothelial dysfunction 
primarily through the enhancement of endothelial nitric oxide 
bioavailability, and also activating antioxidant enzymes like catalase 
[163]. 

4. Conclusions and future directions 

A large piece of evidence from in vitro / in vivo and human studies 
indicated the pivotal role of disturbed hemodynamic-induced ROS and 
ER stress in endothelial cell dysfunction which is the first step in the 
onset and pathogenesis of several CVDs including AAA. 

Also, the protective role of Nrf2 in CVDs and particularly AAA is 
spotting the light on it as a therapeutic target, and much more studies 
are needed to investigate more mechanisms and pathways crosstalk that 
involve Nrf2, also, investigating Nrf2-associated upstream regulators as 
well.Moreover, further clinical trials are needed to investigate the po-
tential of drugs that are used in other CVDs and their effect is proved to 
be Nrf2 mediated, as they can be beneficial in hindering the AAA pro-
gression in AAA pateints. 

Additionally, more suitable models must be investigated and 
employed for studying the hemodynamic effect on the suspected 
mechanosensitive genes. 
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