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Abstract: We consider third-order likelihood inferences for the parameters, quantiles and reliability
function of the logistic distribution. This theory involves the conditioning and marginalization of
the likelihood function. The logistic distribution is a symmetric distribution which is closely related
to normal distributions, and which has several applications because of its mathematical tractability
and the availability of a closed-form cumulative distribution function. The performance of the third-
order techniques is investigated and compared with the first-order techniques using simulations.
The results show that the third-order techniques are far more accurate than the usual first-order
inference procedures. This results in more accurate inferences about the functions of the parameters
of the distribution, which leads to more precise conclusions about the phenomenon modeled by the
logistic distribution.
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1. Introduction

The logistic distribution is a continuous distribution with many important applica-
tions in various fields, including logistic regression, logit models, neural networks, and
finance. The logistic distribution is symmetrical, and it is very close in shape to the normal
distribution, but it has heavier tails. The symmetry of the logistic distribution allows it
to provide a better model than the normal distribution for applications such as extreme
events. The logistic model has been applied earlier as a growth model in human popula-
tions and in some biological organisms. See [1] for more details and relevant references.
Balakrishnan [2] provided a detailed account of this distribution as well.

Inference procedures for the parameters of the logistic distribution and the related
quantities have received considerable attention in the literature. For example, the construc-
tion of confidence intervals for the parameters of this distribution was discussed by [3], who
determined the necessary percentage points of the pivotal quantities through Monte Carlo
simulations. Several other authors have worked on various aspects of this distribution and
the related log-logistic distribution, including [4,5] among others.

Inferences about the functions of the parameters of the logistic distribution are the
key focus of several scientific investigations. The functions could be a distribution quantile
or a reliability function, which are needed in industrial testing to determine the reliability
of products and warranty periods (see [6] for detailed examples on the importance of
these and other functions in reliability studies). The inferences are usually based on the
maximum likelihood estimator and the related likelihood quantities. These inferences
are justified by the asymptotic properties of likelihood inference procedures, and require
large samples for their validity and accuracy. Recent relevant research on the maximum
likelihood estimation in various models of interest includes [4,5,7]. In this paper, we shall
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derive higher-order likelihood inference procedures for the parameters, quantiles, and
reliability function of this distribution. The methods are based on the third-order inference
procedures developed by [8]. The third-order inference procedures usually need smaller
sample sizes to achieve the desired accuracy and validity, which leads to a reduction in the
cost and time of the scientific investigation. The methods are developed in Section 2. A
simulation study is conducted in Section 3 to investigate the performance of the third-order
inference procedures and to make sure that they achieve the desired objectives. The results
and conclusions are given in the final section.

2. Likelihood Inference

Likelihood theory and higher-order refinements have received considerable attention
in the literature. Barndorff-Nielsen and Cox [9] and Severini [10] have discussed this topic
in detail. One of the most important lines of research is the likelihood ratio statistic and its
refinements and modifications. Fraser and Reid [11] anf Fraser et al. [8] have developed
third-order refinements to the likelihood ratio statistic. These modifications were further
investigated for several statistical models, including the Weibull distribution [12] and
lognormal regression [13], among others. It appears that little attention has been paid so far
to developing third-order likelihood inferences for the logistic distribution and the related
functions of parameters. Since this model has important applications in various fields, this
work is an attempt to fill this gap.

Let y be a vector of length n observations from a continuous statistical model with
joint density f (y, θ). Let θ be a parameter vector of length p. Consider the inference for a
scalar parameter of interest ψ = ψ(θ). Third-order inference procedures use modifications
of the first-order statistic given by:

qm =
ψ̂− ψ

σ̂ψ
(1)

where ψ̂ is the MLE of ψ.
Let ĵθθ be the observed information matrix and let ĵθθ be its inverse. Let ĵψψ be the

element in the inverse of the information matrix corresponding to the scalar parameter ψ,
and let ψθ

(
θ̂
)

be the gradient of the interest parameter ψ evaluated at the MLE θ̂, and then
σ̂ψ is obtained from:

σ̂2
ψ = ĵψψ = ψθ′

(
θ̂
)

ĵθθψθ

(
θ̂
)

(2)

The signed square root of the likelihood ratio statistic r is defined as:

r = sgn
(
ψ̂− ψ

){
2
(
l
(
θ̂
)
− l
(
θ̂ψ

))}1/2
(3)

where θ̂ψ is the restricted MLE of θ for a given ψ. Both qm and r have p-values that

are accurate to the first order O
(

n−1/2
)

. Fraser et al. [8] proposed simple and widely
applicable formulas to find a quantity Q, such that the resulting approximations to the
p-value have third-order accuracy O

(
n−3/2

)
. The approach used by [8] for the construction

of Q involves dimension reduction from n to p by conditioning it on an approximate
ancillary statistic. The resulting model is then approximated by a member of the exponential
family, called the tangent exponential model (see [9]). The canonical parameter of the
tangent exponential model is obtained by the differentiation of the log-likelihood function
with respect to the data (the sample space derivative). The nuisance parameter is then
eliminated by marginalization.

Skovgaard [14] and Fraser an Reid [11] showed that only the second-order ancillary is
required to achieve third-order accuracy. Let y0 be the observed data point and let θ̂0 be the
corresponding maximum likelihood estimate. Consider a vector z = (z1, .., zn)’ of pivotal
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quantities denoted by zi = zi(yi, θ), and the array V of “ancillary directions” is obtained
from the pivotal z(y, θ) by:

V =
∂y
∂θ′

∣∣∣∣
(y0,θ̂0)

= −
(

∂z
∂y′

)−1 ∂z
∂θ′

∣∣∣∣∣
(y0,θ̂0)

(4)

where the expression is calculated for a fixed z. The second-order ancillary generated at the
data point y0 is free of the data point of the second order. The local canonical parameter of
the tangent exponential model is given by:

ϕ(θ) =
∂l(θ)

∂x
V (5)

The quantity Q given by:

Q = sgn
(

ψ̂0 − ψ
) ∣∣∣χ(θ̂0)− χ

(
θ̂0

ψ

)∣∣∣
σ̂χ(ϕ)

(6)

which is a standardized maximum likelihood departure in the parameterization χ(θ), where:

χ(θ) =
ψϕ′

(
θ̂0

ψ

)
∣∣∣ψϕ′

(
θ̂0

ψ

)∣∣∣ ϕ(θ) (7)

where θ̂0
ψ is the constrained maximum likelihood value based on the data point y0, and the

gradient ψϕ′(θ) of ψ(θ) with respect to ϕ(θ) is calculated as:

ψϕ′(θ) =

{
∂ ψ(θ)

∂θ′

}{
∂ ϕ(θ)

∂θ′

}−1
= ψϕ′(θ)ϕ−1

θ′ (θ) (8)

In the next section, we will apply this methodology to the logistic distribution, where
we will consider inferences about the parameters, quantiles, and reliability function.

3. Third-Order Likelihood Inference in the Logistic Distribution

The probability density function of the logistic distribution with location parameter u
and scale parameter σ is given by:

f (x, u, σ) =
e−(

x−u
σ )

σ
(

1 + e−(
x−u

σ )
)2 ,−∞ < x < ∞,−∞ < u < ∞, σ > 0. (9)

The corresponding cumulative distribution function is given by:

F(x, u, σ) =
1

1 + e−(
x−u

σ )
,−∞ < x < ∞,−∞ < u < ∞, σ > 0. (10)

Let x1, . . . , xn be a random sample of size n from this distribution. The likelihood
function of θ = (u, σ) is given by:

L(θ) = L(u, σ) =
n

∏
i=1

e−(
xi−u

σ )

σ
(

1 + e−(
xi−u

σ )
)2 = σ−ne−∑n

i=1 (
xi−u

σ )
n

∏
i=1

(
1 + e−(

xi−u
σ )
)−2

, (11)
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The corresponding log-likelihood function is given by:

l(θ) = l(u, σ) = −nln(σ)−
n

∑
i=1

(
xi − u

σ

)
− 2

n

∑
i=1

ln
(

1 + e−(
xi−u

σ )
)

. (12)

To obtain the maximum likelihood estimator and the associated quantities, and to
develop the third-order inference techniques, we need the following first- and second-order
partial derivatives:

lu(θ) =
n
σ
− 2

n

∑
i=1

1
σ e−(

xi−u
σ )(

1 + e−(
xi−u

σ )
) ,

lσ(θ) = −
n
σ
+

n

∑
i=1

(
xi − u

σ2

)
− 2

n

∑
i=1

(
xi−u

σ2

)
e−(

xi−u
σ )

1 + e−(
xi−u

σ )
,

luu(θ) = −2
n

∑
i=1

1
σ2 e−(

xi−u
σ )
(

1 + e−(
xi−u

σ )
)
− 1

σ2 e−2( xi−u
σ )(

1 + e−(
xi−u

σ )
)2 = −2

n

∑
i=1

1
σ2 e−(

xi−u
σ )(

1 + e−(
xi−u

σ )
)2 ,

luσ(θ) =
−n
σ2 − 2

n

∑
i=1

1
σ2 e−(

xi−u
σ )
{
−1− e−(

xi−u
σ ) +

(
xi−u

σ

)}
(

1 + e−(
xi−u

σ )
)2 ,

lσσ(θ) =
n
σ2 +

n

∑
i=1
−2
(

xi − u
σ3

)
− 2

n

∑
i=1

[
−2
(

xi−u
σ3

)
e−(

xi−u
σ ) +

(
xi−u

σ2

)2
e−(

xi−u
σ )

](
1 + e−(

xi−u
σ )
)
−
(

xi−u
σ2

)2
e−(

xi−u
σ )

(
1 + e−(

xi−u
σ )
)2 .

The array of ancillary directions V, obtained from (4), is given by:

V = (V1, V2) =


1 x1−û

σ̂

1 x2−û
σ̂

. . .
1 xn−û

σ̂

. (13)

Define the Lagrangian function as follows (see [12]):

H(θ) = l(θ) + λ(ψ(θ)− ψ0) (14)

The first-order conditions are:

Hu(θ) = lu(θ) + λψu(θ),Hσ(θ) = lσ(θ) + λψσ(θ),Hλ(θ) = ψ(θ)− ψ0 (15)

The tilted log-likelihood function is defined as:

l̃(θ) = l(θ) + λ̃(ψ(θ)− ψ0) (16)

where λ̃ is the value of the Lagrange multiplier. Now we will consider some specific cases.

3.1. Inference about the Scale Parameter

We have ψ0 = σ0; therefore, the Lagrangian and its derivatives become:

H(θ) = l(θ) + λ(σ− σ0), Hu(θ) = lu(θ), Hσ(θ) = lσ(θ) + λ, Hλ(θ) = σ− σ0. (17)
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It follows that λ̃ = −lσ
(

θ̃
)

, where θ̃ = θ̂ψ0 , and the tilted likelihood becomes:

l̃(θ) = l(θ) + λ̃(σ− σ0) (18)

We have:

l̃u(θ) = lu(θ), l̃uu(θ) = luu(θ), l̃uσ(θ) = luσ(θ), l̃σ(θ) = lσ(u, σ) + λ̃, l̃σσ(θ) = lσσ(u, σ) (19)

This implies that:
j̃θθ

(
θ̃
)
= jθθ

(
θ̃
)

(20)

Recall from (5) that the local canonical parameter is given by:

ϕ(θ) =
∂l(θ)

∂x
V

For the logistic distribution, consider:

l(θ) = −nln(σ)−
n

∑
i=1

(
xi − u

σ

)
− 2

n

∑
i=1

ln
(

1 + e−(
xi−u

σ )
)

∂l(θ)
∂x

=

(
∂l(θ)
∂x1

, . . . ,
∂l(θ)
∂xn

)
Therefore:

∂l(θ)
∂x

=

(
∂l(θ)
∂x1

, . . . ,
∂l(θ)
∂xn

)
It follows that:

∂l(θ)
∂x

V1 = −n
σ
+ 2

n

∑
i=1

1
σ e−(

xi−u
σ )

1 + e−(
xi−u

σ )
= −lu(θ)

Using (5), the components of the local canonical parameter ϕ(θ) are given by:

ϕ1(θ) = −
n
σ
+ 2

n

∑
i=1

1
σ e−(

xi−u
σ )

1 + e−(
xi−u

σ )
(21)

ϕ2(θ) = −
n

∑
i=1

1
σ

(
xi − û

σ̂

)
+ 2

n

∑
i=1

1
σ e−(

xi−u
σ )

1 + e−(
xi−u

σ )

(
xi − û

σ̂

)
(22)

We also need to find:

ϕθ(θ) =

(
ϕ1u(θ) ϕ1σ(θ)
ϕ2u(θ) ϕ2σ(θ)

)
(23)

where:

ϕ1u(θ) = 2
n

∑
i=1

1
σ2 e−(

xi−u
σ )(

1 + e−(
xi−u

σ )
)2 = −luu(θ) = juu(θ)

ϕ1σ(θ) =
n
σ2 + 2

n

∑
i=1

1
σ2 e−(

xi−u
σ )
(
−1− e−(

xi−u
σ ) +

(
xi−u

σ

))
(

1 + e−(
xi−u

σ )
)2 = −luσ(θ) = juσ(θ),

ϕ2(θ) is given by Equation (22) ϕ2u(θ) = 2
n

∑
i=1

1
σ2 e−(

xi−u
σ )(

1 + e−(
xi−u

σ )
)2

(
xi − û

σ̂

)
,
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ϕ2σ(θ) =
n

∑
i=1

1
σ2

(
xi − û

σ̂

)
+ 2

n

∑
i=1

1
σ2 e−(

xi−u
σ )
(
−1− e−(

xi−u
σ ) +

(
xi−u

σ

))
(

1 + e−(
xi−u

σ )
)2

(
xi − û

σ̂

)
.

Now let ψθ(θ) = (ψu(θ), ψσ(θ)), and in the present case we have ψθ(θ) = (0, 1).
We obtain:

χ(θ) = ψθ

(
θ̂ψ0

)
ϕ−1

θ

(
θ̂ψ0

)
ϕ(θ) (24)

An estimate of the variance of χ(θ) is given by:

σ̂2
χ = ψθ

(
θ̃
)

j̃θθ
(

θ̃
)

ψθ

(
θ̃
)

(25)

The signed likelihood departure is given by:

R = sgn
(
ψ̂− ψ0

){
2
(

l
(
θ̂
)
− l
(

θ̃
))}1/2

(26)

The maximum likelihood departure is given by:

Q = sgn
(
ψ̂− ψ0

)∣∣∣χ(θ̂)− χ
(

θ̃
)∣∣∣


∣∣ ĵθθ

(
θ̂
)∣∣∣∣ϕθ

(
θ̂
)∣∣−2

σ̂2
χ

∣∣∣ j̃θθ

(
θ̃
)∣∣∣∣∣∣ϕθ

(
θ̃
)∣∣∣−2


1/2

(27)

The Lugannani and Rice [15] approximation of the tail probability is given by:

Φ(R) + φ(R)
(

1
R
− 1

Q

)
, (28)

where the functions φ and Φ denote the probability density function and the cumulative
distribution function of the standard normal distribution. The Barndorff-Nielsen [16]
formula for the tail probability is given by:

Φ
(

R− R−1ln
(

R
Q

))
, (29)

3.2. Inference about the Location Parameter

We have ψ0 = u0, and therefore:

H(θ) = l(θ) + λ(u− u0) (30)

with Hu(θ) = lu(θ) + λ, Hσ(θ) = lσ(θ), and Hλ(θ) = u− u0.
Equating these equations to zero and solving simultaneously, it follows that λ̃ = −lu(u0, σ̃),

and the tilted likelihood becomes:

l̃(θ) = l(θ) + λ̃(u− u0) (31)

We have:

l̃u(θ) = lu(θ) + λ̃, l̃uu(θ) = luu(θ), l̃uσ(θ) = luσ(θ), l̃σ(θ) = lσ(θ), l̃σσ(θ) = lσσ(θ). (32)

This implies that:
j̃θθ

(
θ̃
)
= jθθ

(
θ̃
)

(33)

We also have ψθ(θ) = (1, 0).
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3.3. Inference about the Quantiles

The αth quantile of the logistic distribution, xp, is given by the solution of the equation:

xp = u− σln
(

p−1 − 1
)

(34)

Therefore, the interest parameter is of the form ψ = u + Aσ, where A = σln
(

p−1 − 1
)
.

H(θ) = l(θ) + λ(u + Aσ− ψ0)

We have:

Hu(θ) = lu(θ) + λ, Hσ(θ) = lσ(θ) + λA, Hλ(θ) = u + Aσ− ψ0 (35)

It follows that:

λ̃ = −lu
(

θ̃
)

, lσ
(

θ̃
)
= Alu

(
θ̃
)

, ũ = ψ0 − Aσ̃. (36)

The tilted likelihood becomes:

l̃(θ) = l(θ) + λ̃(u + Aσ− ψ0). (37)

With:

l̃u(θ) = lu(θ) + λ̃, l̃uu(θ) = luu(θ), l̃uσ(θ) = luσ(θ), l̃σ(θ) = lσ(θ) + λ̃A, l̃σσ(θ) = lσσ(θ). (38)

This implies that:
j̃θθ

(
θ̃
)
= jθθ

(
θ̃
)

. (39)

The remaining quantities are the same as case 1 with ψθ(θ) = (1, A).

3.4. Inference about the Reliability Function

The reliability function of the logistic distribution at time t is given by:

Rt = 1− F(t) =
e−(

t−u
σ )

1 + e−(
t−u

σ )
,−∞ < t < ∞ (40)

Note that Rt
1−Rt

= e−(
t−u

σ ) →
( t−u

σ

)
= −ln

(
Rt

1−Rt

)
= B . Therefore, the interest param-

eter is reduced to ψ = t−u
σ . The Lagrangian and its derivatives for this situation are

given by:

H(θ) = l(θ) + λ

(
t− u

σ
− ψ0

)
, Hu(θ) = lu(θ)−

λ

σ
, Hσ(θ) = lσ(θ)− λ

(
t− u

σ2

)
, Hλ(θ) =

t− u
σ
− ψ0. (41)

By equating the derivatives to zero and solving, we obtain:

lu
(

θ̃
)
=

λ̃

σ̃
, lσ
(

θ̃
)
= λ̃

(
t− ũ

σ̃2

)
=

λ̃

σ̃

(
t− ũ

σ̃

)
= lu

(
θ̃
)( t− ũ

σ̃

)
,
(

t− ũ
σ̃

)
= ψ0. (42)

It follows that the tilted likelihood becomes:

l̃(θ) = l(θ) + λ̃

(
t− u

σ
− ψ0

)
. (43)

We have:

l̃u(θ) = lu(θ)− λ̃
σ , l̃uu(θ) = luu(θ), l̃uσ(θ) = luσ(θ) +

λ̃
σ2 , l̃σ(θ) = lσ(θ)− λ̃

(
t−u
σ2

)
,l̃σσ(θ) = lσσ(θ) + 2λ̃

(
t−u
σ3

)
, (44)

The remaining quantities are the same as case 1 with ψθ(θ) =
(
− 1

σ ,−
(

t−u
σ2

))
.



Symmetry 2022, 14, 1767 8 of 10

4. Simulation Study

A simulation study was conducted to investigate the performance of the intervals described
above. We used sample sizes of n = 10, 20, 30, 40, 50, 70, and 100. For the quantile case, we
used p = 0.25, 0.5, 0.75. For the reliability function, we used t = F−1(q), q = 0.25, 0.5, 0.75,
where F−1 is the inverse cumulative distribution function of the standard logistic distribution.
We used u = 0, σ = 1 for the sample generation. For each combination of the simulation
indices, we generated 10,000 samples. For each sample, we computed the Wald interval and the
LRT interval, in addition to the intervals based on the Barndorff-Nielsen and Lugannani and
Rice modifications of the LRT that are based on the likelihood departure Q derived by [8]. The
confidence coefficient or probability content (1− α) is taken as 0.90, 0.95, and 0.99. The results
of our simulations are given in Tables 1–4.

Table 1. Coverage Probabilities for the Confidence Intervals for u.

n α=0.01 α=0.05 α=0.10

Wald LR BN LGR Wald LR BN LGR Wald LR BN LGR

10 0.031 0.016 0.011 0.012 0.090 0.066 0.050 0.051 0.147 0.125 0.104 0.104
20 0.018 0.012 0.010 0.011 0.069 0.057 0.049 0.049 0.118 0.107 0.096 0.096
30 0.016 0.012 0.010 0.010 0.061 0.055 0.051 0.051 0.113 0.106 0.100 0.100
40 0.014 0.011 0.010 0.011 0.061 0.056 0.053 0.053 0.112 0.107 0.102 0.102
50 0.013 0.010 0.010 0.010 0.058 0.055 0.052 0.052 0.110 0.105 0.100 0.100
70 0.010 0.009 0.009 0.009 0.053 0.049 0.048 0.048 0.102 0.099 0.096 0.096
100 0.011 0.011 0.011 0.012 0.053 0.051 0.051 0.051 0.111 0.109 0.107 0.107

Table 2. Coverage Probabilities for the Confidence Intervals for σ.

n α=0.01 α=0.05 α=0.10

Wald LR BN LGR Wald LR BN LGR Wald LR BN LGR

10 0.079 0.017 0.011 0.011 0.138 0.071 0.054 0.054 0.183 0.129 0.105 0.105
20 0.042 0.014 0.013 0.013 0.086 0.058 0.051 0.051 0.134 0.108 0.101 0.101
30 0.030 0.012 0.013 0.013 0.078 0.056 0.054 0.053 0.129 0.108 0.101 0.102
40 0.026 0.012 0.011 0.011 0.065 0.052 0.049 0.050 0.113 0.102 0.097 0.097
50 0.026 0.012 0.011 0.011 0.072 0.057 0.053 0.053 0.115 0.107 0.104 0.104
70 0.020 0.010 0.010 0.010 0.064 0.054 0.055 0.056 0.119 0.107 0.107 0.108
100 0.017 0.011 0.011 0.011 0.060 0.053 0.052 0.053 0.112 0.106 0.103 0.103

Table 3. Coverage Probabilities for the Confidence Intervals for Quantiles xp.

p n α=0.01 α=0.05 α=0.10

Wald LR BN LGR Wald LR BN LGR Wald LR BN LGR

0.25 10 0.042 0.015 0.011 0.011 0.095 0.065 0.049 0.049 0.144 0.119 0.098 0.098
0.25 20 0.027 0.014 0.010 0.010 0.072 0.058 0.052 0.052 0.123 0.109 0.100 0.100
0.25 30 0.020 0.013 0.011 0.012 0.066 0.056 0.051 0.051 0.117 0.106 0.099 0.099
0.25 40 0.018 0.011 0.011 0.012 0.060 0.054 0.051 0.051 0.111 0.104 0.101 0.101
0.25 50 0.015 0.010 0.010 0.010 0.059 0.054 0.051 0.052 0.108 0.103 0.100 0.100
0.25 70 0.014 0.010 0.010 0.011 0.057 0.052 0.050 0.050 0.109 0.105 0.101 0.102
0.25 100 0.013 0.010 0.011 0.011 0.051 0.048 0.048 0.048 0.099 0.098 0.098 0.099
0.5 10 0.029 0.014 0.009 0.009 0.082 0.062 0.048 0.048 0.139 0.117 0.095 0.095
0.5 20 0.019 0.011 0.009 0.009 0.066 0.056 0.049 0.049 0.122 0.111 0.099 0.100
0.5 30 0.017 0.012 0.011 0.011 0.064 0.058 0.053 0.053 0.116 0.108 0.102 0.102
0.5 40 0.014 0.012 0.011 0.011 0.059 0.052 0.050 0.050 0.116 0.109 0.104 0.104
0.5 50 0.013 0.011 0.012 0.012 0.057 0.053 0.052 0.052 0.103 0.099 0.097 0.097
0.5 70 0.013 0.011 0.010 0.011 0.055 0.052 0.050 0.051 0.108 0.105 0.104 0.104
0.5 100 0.010 0.009 0.010 0.011 0.050 0.049 0.049 0.050 0.099 0.097 0.096 0.097
0.75 10 0.041 0.015 0.011 0.012 0.090 0.062 0.048 0.048 0.139 0.116 0.097 0.097
0.75 20 0.023 0.011 0.010 0.010 0.075 0.057 0.051 0.051 0.129 0.111 0.102 0.103
0.75 30 0.021 0.012 0.011 0.011 0.070 0.058 0.054 0.055 0.124 0.113 0.104 0.104
0.75 40 0.019 0.013 0.012 0.012 0.064 0.057 0.054 0.054 0.112 0.104 0.101 0.101
0.75 50 0.018 0.012 0.011 0.012 0.058 0.052 0.051 0.052 0.110 0.103 0.100 0.101
0.75 70 0.016 0.012 0.013 0.013 0.058 0.053 0.052 0.052 0.106 0.100 0.099 0.099
0.75 100 0.012 0.010 0.012 0.012 0.053 0.051 0.051 0.051 0.101 0.101 0.101 0.101
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Table 4. Coverage Probabilities for the Confidence Intervals for the Reliability Function Rt.

t n α=0.01 α=0.05 α=0.10

Wald LR BN LGR Wald LR BN LGR Wald LR BN LGR

−1.1 10 0.007 0.015 0.010 0.010 0.051 0.068 0.051 0.052 0.106 0.126 0.102 0.103
−1.1 20 0.009 0.012 0.011 0.011 0.048 0.055 0.048 0.049 0.100 0.107 0.098 0.098
−1.1 30 0.008 0.010 0.009 0.009 0.049 0.052 0.049 0.049 0.099 0.104 0.097 0.097
−1.1 40 0.010 0.012 0.011 0.011 0.051 0.055 0.051 0.051 0.104 0.107 0.104 0.105
−1.1 50 0.012 0.013 0.013 0.014 0.055 0.057 0.056 0.056 0.105 0.108 0.105 0.105
−1.1 70 0.010 0.011 0.010 0.011 0.048 0.051 0.049 0.049 0.097 0.099 0.097 0.098
−1.1 100 0.009 0.010 0.010 0.011 0.052 0.053 0.053 0.053 0.102 0.104 0.103 0.103

0 10 0.006 0.014 0.010 0.010 0.052 0.067 0.051 0.051 0.110 0.127 0.103 0.104
0 20 0.010 0.013 0.012 0.012 0.051 0.058 0.051 0.051 0.104 0.110 0.099 0.099
0 30 0.009 0.011 0.010 0.010 0.052 0.055 0.052 0.052 0.103 0.108 0.102 0.102
0 40 0.011 0.012 0.011 0.012 0.049 0.052 0.049 0.049 0.098 0.101 0.097 0.098
0 50 0.010 0.012 0.011 0.011 0.053 0.055 0.053 0.053 0.103 0.106 0.102 0.102
0 70 0.009 0.010 0.010 0.010 0.049 0.051 0.050 0.050 0.099 0.101 0.098 0.098
0 100 0.010 0.010 0.011 0.011 0.048 0.049 0.049 0.049 0.098 0.099 0.098 0.098

1.1 10 0.006 0.013 0.009 0.009 0.049 0.067 0.051 0.051 0.108 0.127 0.104 0.104
1.1 20 0.008 0.012 0.010 0.010 0.049 0.056 0.050 0.051 0.104 0.113 0.103 0.103
1.1 30 0.008 0.010 0.009 0.010 0.047 0.052 0.048 0.049 0.096 0.101 0.096 0.097
1.1 40 0.011 0.012 0.012 0.013 0.051 0.054 0.053 0.053 0.102 0.105 0.102 0.103
1.1 50 0.008 0.009 0.009 0.010 0.051 0.055 0.052 0.052 0.100 0.104 0.101 0.101
1.1 70 0.010 0.012 0.011 0.012 0.048 0.050 0.048 0.049 0.099 0.102 0.098 0.099
1.1 100 0.011 0.010 0.011 0.012 0.049 0.050 0.050 0.050 0.102 0.105 0.101 0.101

5. Results and Conclusions

The results for the confidence intervals for the location parameter u are given in
Table 1. It appears that the LR intervals need at least a sample size of 20 for the confi-
dence coefficients of 90% and 95%, and sample sizes of at least 30 for intervals with a
confidence coefficient of 99%, to achieve reasonable accuracy in terms of the observed
coverage probability. The Wald intervals need even larger sample sizes to have a reasonable
performance. Wald intervals tend to be generally conservative for small sample sizes, while
the LR interval tends to be anti-conservative. On the other hand, the third-order confidence
intervals BN and LGR have a satisfactory performance, even for sample sizes as small as
10. The performances of the BN interval and the LGR interval are quite similar.

A similar pattern is observed for intervals for the scale parameter σ. When the sample
size is small, such as 10 or 20, the Wald intervals tend to be highly anti-conservative. The
refined likelihood ratio intervals (BN and LGR) have a quite satisfactory performance,
even for samples of size 10, and for all values of α under study. A similar performance is
observed for quantiles. However, for the reliability function, all intervals have a satisfactory
performance, while the BN and LGR intervals have the closest coverage probability to the
nominal one.

It appears that the third-order procedures are very effective in improving the coverage
probability of the LR intervals, and they give very accurate results, even for samples as
small as 10 observations only. This is very desirable in situations where it is difficult or
costly to obtain large samples.

The work in this paper achieved its goal of developing more accurate likelihood
inference procedures that need smaller sample sizes for its validity, resulting in more
precise inferences about the quantities of practical importance in applications, such as the
distribution quantiles and the reliability function. Other functions of importance can be
treated using the same general formulation followed in this paper. The consequences of
applying third-order methods are a reduction in the cost and the time needed for obtaining
the samples, while still obtaining precise and accurate conclusions about the phenomenon
under study.
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