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Recent advances in graph theory, linear algebra, and commutative algebra render us to tackle problems in one bough of
mathematics with assistance and guidance from others. We will elaborate foremost and conceptually fathomless homological
invariants inextricably linked with circulant matrices and cycles through various path lengths in this article, as well as a class of
Koszul algebra, which portrays combinatorial correlation, in the end.

1. Introduction and Definitions

Over the last few years, scholars have become increasingly
reliant on computers for the majority of their research work,
and the second fashion is graph theory, an extremely popular
bough of mathematics. By interacting with several graphs,
people can grasp numerous practical applications. In essence,
the problem of Konigsberg bridge, happened in 1735, was the
genesis of graph theory, and the researchers later worked
significantly and intensively on the complete graph, bipartite
graph, and Eulerian graph. Cauchy and L’Huilier were in-
fluential in introducing a strong area of mathematics, to-
pology, succeeding Leonhard Euler’s work. In the field of
theoretical chemistry, Arthur Cayley was the very first sci-
entist to analyze trees to predict chemical composition.
Sylvester initially introduced the word graph, a mathematical
structure that can be used to model the relationship between
objects, in his work, and Frank Harary published a heroic
book on graph theory in 1969 to unify mathematicians,
chemists, engineers, biologists, social scientists, and computer

scientists. Under the shadow of basic graphs, now, we can
understand yeast two-hybrid problem [1], microarrays and
RNA-seq [2–4], major problems of discrete mathematics, and
protein-protein interaction problem [5–9]. When dealing
with chemical reaction networks (CRNs) [10], graph theory is
a valuable, prolific, versatile, and companionable tool. It has
unquestionably become an essential academic discipline in a
variety of domains, including computation flow, GPS (route,
track, and waypoint), communication networks, computer
science, Google Maps, computational devices, Simulink [11,
12], and so on. It appears hard in today’s reality to describe
characteristics of classical random graphs in relevance to
representations of meaningful complex networks so bipartite
graphs can be leveraged to solve this complicated problem
[13] and assisting in the advance coding theory, database
management, document/word problem, optimal assignment
problem, communication network addressing, radar system,
query log analysis, missile guidance, astronomy, personnel
assignment problem, circuit design, crystallography, projec-
tive geometry [14], and x-ray [15, 16] (see Figure 1).
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,e relationship in the form of turbo codes and low-
density parity-check probabilistic decoding between a factor
graph, a particular graph, and belief network are extremely
close (see [17]). ,e captivating part of mathematics,
chemical graph theory, by interrelating chemistry, is a new
direction of modern research. In the form of a molecular
graph, the molecules from chemistry are modelled mathe-
matically. Vertices represent atoms in a molecular graph,
whereas edges represent chemical bonds. ,ese molecular
structures are subjected to a variety of graph theory ap-
proaches in order to determine their topological and
structural properties. ,e boiling point of a chemical
compound, which is a physical entity, can be approximated
using the degree and distance between the chemical com-
pound’s vertices, for example. ,us, topology of the mo-
lecular structure plays a crucial role in predicting the
compelling advantages of the accompanying chemical
compound through mathematics [18]. In 1988, it was re-
ported that a few hundred specialist analysts worked on
delivering roughly 500 research publications each year,
looking at various aspects of chemical structures, including
Gutman’s two-volume fastidious material [19]. In [20–29],
you can find more applications of this intriguing field of
research, including discussions of topological indices. ,e
study of chemical compounds in terms of mathematical
modelling is one of the most recent research directions
among scientists [27, 28].

Chemical compounds with distinctive mathematical
structures and a diverse variety of uses in industrial, me-
dicinal, research, and commercial chemistry occur in large
numbers. A chemical compound’s atom arrangements fol-
low specific structural laws that have beneficial anomalous
behavior. ,us, in applied research, adopting mathematical
methods such as combinatorics and topology to investigate
these attributes play a key role. It is fair to say that the
discipline of chemical graph theory makes valuable strides to
mathematical chemistry [20, 21]. Many chemical graph
theory invariants, such as indices or descriptors, are applied
in other sciences, particularly in the pharmaceutical and
chemical industries [24, 25]. ,e research of distance-based
and degree-based indices, in particular, plays an important
role in the development of related subjects [30]. It aids in the
collection of large amounts of data in the form of numerical
values associated with chemical structures and the com-
parison of those values utilizing modern computer systems
[31]. Many topological descriptors were introduced in the
latter decade of the nineteenth century to meet the needs of
chemists [32, 33].

Mathematicians have made substantial progress in the
study of Koszul algebras and their representations in the
recent few decades. In commutative algebra, topology, al-
gebraic geometry, and representation theory, they exploited
it extensively. In the form of linear minimal graded free
resolution, Jean-Louis Koszul, a French mathematician,
introduced Koszul algebra. ,is resolution yields graded
Betti numbers, which can be used to really need homological
invariants of a module. Stewart explored Koszul resolutions
for enormous classes of algebras, Steenrod algebra, and
universal enveloping algebra in depth in 1970 (see [34]).
Conca introduced Koszul filtrations in [35] as a result of
enthusiastic work on strongly Koszul algebras in [36]. ,e
Koszulness of the ring [37] is determined by the quadratic
Gröbner basis of an ideal of the residue class ring; however,
there are some Koszul algebras whose defining ideals are not
generated quadratically under some monomial ordering. A
toric ideal, a particular form of binomial ideal, combines
combinatorics, geometry, and algebra and has a variety of
applications, including contingency tables, integer pro-
gramming, triangulations of convex polytopes, and algebraic
geometry. ,e quadratic binomials generate a toric ideal
with a finite graph combinatorially, and this leads us to
believe that a Koszul algebra is normal if squarefree qua-
dratic monomials generate the toric ideal but not the other
way around [38]. Numerous classical algebra questions can
be answered by connecting the three well-known boughs of
mathematics, commutative algebra, graph theory, and linear
algebra. ,e cyclotomic polynomial is connected to the
circulant matrix, which is a specific type of Toeplitz matrix
named after Otto Toeplitz. ,ese special matrices have
applications in linear algebra and graph theory. With the
help of circulant matrices, the system of linear equations can
be converted into circular convolution, and by using the
circular convolution theorem, we can use the discrete
Fourier transform to transform the cyclic convolution into
componentwise multiplication. Researchers can call a graph
is a circulant if the adjacency matrix of a simple finite graph
is circulant. In other words, we can state that a graph is a
circulant if its group of automorphisms comprises a full-
length cycle. Möbius ladders, for example, are circulant
graphs.

A graph Γ � (Σ,Υ) is made up of two sets, edge set Υ and
vertex set Σ. If both these sets have a finite number of items,
then Γ is the finite graph. Otherwise, Γ is a graph that is
infinite. A simple graph is one that has no loops andmultiple
edges and is undirected if the edges do not reflect directions.
If there is an edge between two vertices x1 and x2 in the set Σ
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Figure 1: A computer network with diagnostic links.
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of the graph Γ, they are considered neighbours, and the edge
is said to be an incident in this situation. A simple graph is
connected if there is a path between any two vertices. A cycle
is a simple graph with n≥ 3 vertices in which the sequence of
edges is built by connecting the end vertex of one edge to the
starting vertex of the next edge, denoted by Cn.

An infinite ring containing members of the type a0 +

a1x + a2x
2 + · · · + anxn in one variable x is referred to as a

polynomial ring, denoted as K[x], in which all the coeffi-
cients ai are drawn from the field K of characteristic 0 and
powers are nonnegative integers. Similarly, R � K[x1, . . . ,

xn] can be used to define and indicate a polynomial ring in n

variables over the field K. K ⊂ Z(R). A graded ring R is a
ring that can be written as a direct sum K under the
condition R, where the additive subgroups
R(0)⊕R(1)⊕R(2) · · · and elements of R(χ1+χ2)⊇R(χ1)R(χ2)

∀χ1, χ2 > 0 are known as homogeneous components of R(χ)

of degree R(χ) and homogeneous of degree R, respectively.
If an ideal χ, then χ is called a graded ideal.

A graded rings homomorphism is a ring homomorphism
ϕ: R1→R2 of two graded rings R1 and R2 with
ϕ(R

(χ)

1 )⊆R(χ)

2 for χ � 0, 1, 2, . . ., for R2. It can be shown
easily thatR,R(0)-module, andR(0)-algebra have the subring
R(0). is calledR-algebra, if bothR andK ⊂ Z(R) (inclusion)
have the same identity. ,e residue class ring
K[x1, . . . , xn]/IR is isomorphic to any standard graded
K-algebra where IR is graded ideal. For example, With R �

K[x1, . . . , xn] and deg(xi) � 1 forK, we say the prototype of
a standard graded K-algebra is the polynomial ring of n

variables. (1) Let the set S(R) contains all the chains i �

1, . . . , n of prime ideals in R, mathematically, in set builder
form, this set is equal to {pseq � (p0 ⊂ · · · ⊂ pm ⊂ R)|pi

prime ideal}. (2) If i � 1, 2, . . . , n, then length (pseq) � m. (3)
,e numerical value dim
(R) � sup length(pseq)|pseq ∈ S(R)􏽮 􏽯 is Krull dimension of
R.

,e chain (0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, x2, . . . , xn)

convinces us to say that the Krull dimension of
R � K[x1, . . . , xn] is n. Let / be any ideal of R then this
notion, Krull dimension, based on prime ideals is the same
R/I and I. R/I; its ideal is the same. ,e largest number ℷ
associated with the chain p0 ⊂ p1 ⊂ p2 ⊂ · · · ⊂ pℷ � p of
prime ideals is taken as the height of p, and this number can
be denoted by ht (p) � ℷ. Let us supposeK, a base field;R, a
standard graded K-algebra; and N, a nonzero finitely
generated gradedR-module of dimension d with the graded
components Ni (finite dimensional K-vector spaces of N ).
Any member of Ni is said to be homogeneous of degree i,
and any member of N is the unique finite sum of homo-
geneous members.

A function of numerical values h: Z→Z, defined by
i↦dimK Ni, is known as the Hilbert function of N. From
this function, we can derive the series
(Tex translation failed) dimK Ni ti known as Hilbert series
of N, there is a polynomial, Laurent-polynomial QN(t) in
Z[t, t− 1] with QN(1)> 0 and hN(t) � QN(t)/(1 − t)d and
d − 1 degree polynomial PN(x), Hilbert polynomial, inQ[x]

with dimK Ni � PN(i) for all i> deg(QN) − d. ,e pole
order of hN(t) at t � 1 is said to be Krull dimension d ofN at
t � 1. ,e multiplicity e(N) of N is the positive number
QN(1), and e(N)/(d − 1)! is the leading coefficient of PN(x)

of N. ,e number deg(QN(t)) − d, degree of the Hilbert
series hN(t), is called a-invariant. Let QN(t) � 􏽐

r2
i�r1

hit
i.

,e coefficient vector (hr1
, hr1+1, . . . , hr2

) ofQN(t) is said
to be the h-vector ofN. Let us consider an ideal I of the ring
R. ,e maximal length n of anN-sequence b1, . . . , bn ∈ I is
said to be the I-depth of N with the condition N≠ IN and
can be written as depth(I,N). If N � IN then I-depth of N
is by convention∞. A pair (m,R) of unique maximal ideal
and commutative ring is taken to be the local ring. In the case
of the local ring R, we can say depth of N,
depth(N) � depth((m,N)), is simply m-depth of N. ,e
following Auslander–Buchsbaum theorem shows the rela-
tion between depth and projective dimension. In the
presence of R, Noetherian local ring, and N, finitely gen-
erated R-module of finite projective dimension, the state-
ment of Auslander–Buchsbaum theorem is
depth(N) + pdR(N) � depth(R) where the projective di-
mension ofN inR is pdR(N).N is Cohen–Macaulay ifN is
trivial and in case of nontrivial it must have depth(N) � dim
(N).

An exact sequence 0←N←F0←F1←F2← · · ·, defined by
φi: Fi→Fi− 1 and ϵ: F0→N, is called graded R-resolution
of N where all Fi are graded free R-modules generated by
finite sets, and if R � K[x1, . . . , xn], this sequence Gmin
(say) is known as minimal graded free R-resolution if
φi(Fi) ⊂ mFi− 1 ∀ i, where m is the graded maximal ideal
(x1, . . . , xn) inR. ,e dimension of the final free module in
Gmin is known as the type of Cohen–MacaulayR-moduleN.
A Cohen–Macaulay R-module N with type 1 is called
Gorenstein. Let us consider above-mentioned Gmin with
Fa � ⊕bR(− b)βa,b(N). ,e uniquely determined numbers
βa,b(N) or βa,b by N are said to be graded Betti numbers of
N.,e graded Betti numbers play a vital role to deduce other
important homological invariants of N. ,e projective di-
mension of N is the number
pdR(N) � max a: βa,b ≠ 0, for some b􏽮 􏽯, and reg
(N) � max b: βa,a+b ≠ 0, for some a􏽮 􏽯 is said to be the regu-
larity ofN, and depth(N) � min a: βn− a,b ≠ 0, for some b􏽮 􏽯 is
known as the depth of N. We say Gmin is linear if
reg(N) � α(N), where α(N) indicates least degree of a
generator of N. N is said to be Koszul algebra if Gmin is
linear.

A nonvacuous set A � v1, . . . , vm􏼈 􏼉 of the monomials in
R � K[t1, . . . , tn] is called monomial configuration of R.
,en the toric ring K[v1, . . . , vm] is the subring of R

denoted byK[A]. ,e toric ideal, defining ideal ofK[A], IA
ofA is the kernel of epimorphism ϕ: R′ →K[A] defined by
ϕ(xi) � vi for i � 1, . . . , m, where R′ is the polynomial ring
K[x1, . . . , xm]. Every toric ideal IA is a prime ideal. A
polynomial v1 − v2 inR is called a binomial where v1 and v2
are monomials ofR and binomially generated ideal is called
binomial ideal. IA is the binomial ideal generated by v1 − v2
with ϕ(v1) � ϕ(v2). A primitive binomial is the binomial
f � v1 − v2 ∈ IA if there ∄g � u1 − u2 ∈ IA with the in-
equality g≠f such that u1|v1 and u2|v2. If A1 and A2 are the

Journal of Mathematics 3



sets of primitive binomials and irreducible binomials, re-
spectively, in R, then A1 ⊂ A2. If we have initial ideal
in< (I), generated by the monomials
in< (v1), in< (v2), . . . , in< (vs), of I, nonzero ideal of
K[x1, . . . , xn], then a finite subset of nonzero polynomials
v1, v2, . . . , vs􏼈 􏼉 ⊂ I is called the Gröbner basis or standard
basis of I under any ordering < . With respect to monomial
ordering < , Gröbner basis of I always exist, and every finite
supersetG′ ofG, Gröbner basis of I, is also Gröbner basis of
I under < . Nonzero polynomials u1, . . . , us form Gröbner
basis if in< (ui) � in< (vi), where G � v1, v2, . . . , vs􏼈 􏼉 is a
Gröbner basis of I. A standard basis u1u2, . . . , us is con-
sidered to be reduced if leading coefficients of in< (ui) �

in< (vi) for G � v1,􏼈 v2, . . . , vs} are unity I I, and in case of
∀1≤ i≤ s, v1, v2, . . . , vs􏼈 􏼉 does not divide any supp in< (vi).

Uniquely determined reduced (standard) Gröbner basis
always exists. A reduced standard basis of toric ideal IA
consists of primitive binomials. Let us consider a finite
connected graph, Γ � (Σ,Υ) without loops and multiple
edges, on the vertex set Σ � t1, t2, . . . , tq􏽮 􏽯, the edge set Υ �

e1, e2, . . . , en􏼈 􏼉 and K[t] is the polynomial ring
K[t1, t2, . . . , tq]. Now we can attach the squarefree quadratic
monomial titj ∈ K[t] with an edge e � ti, tj􏽮 􏽯 ∈ Υ where
ti, tj are the members of Σ. ,e K[Γ], edge ring of Γ, is
considered to be the toric subring of K[t], which is gen-
erated by te1, te2, . . . , ten. ,e toric ideal, defining ideal of
K[Γ], IΓ is the kernel of epimorphism ϕ: R→K[Γ] defined
by ϕ(xi) � tei for i � 1, . . . , n, where R is the polynomial
ring K[x1, . . . , xn].

2. Main Results

LetA � a1, . . . , an􏼈 􏼉 ⊂ Zn
2 be the set of vectors such that each

ai has at least one nonzero entry. Let K[x1, . . . , xn] be the
polynomial ring in n variables over the field K of charac-
teristic 0. Consider the semigroup homomorphism
φ: Zn

2→Zn
2 defined by u � (u1, u2, . . . , un)↦u1a1+

u2a2 + · · · + unan. ,e image of φ is the semigroup
Z2A � α1a1 + α2a2 + · · · + αnan: α1, α2, . . . , αn ∈ Z2􏼈 􏼉. ,e
map φ lifts to a surjective homomorphism
ϕ: K[x1, . . . , xn]→K[t1, . . . , tn]. ,e toric ideal IA asso-
ciated with A is the kernel of the epimorphism
ϕ: K[x1, . . . , xn]→K[t1, . . . , tn], given by ϕ(xi) � tai �

t
a1,i

1 t
a2,i

2 , . . . , t
an,i
n , where ai � (a1,i, . . . , an,i). ,e image of ϕ is

called toric ring denoted by K[A]. Here is a well-known
classic result.

Lemma 1. If Cn be the cycle of length n> 2, then for ai ∈ Zn
2,

we have dimKK[A] � rankA, where dimKK[A] denotes
the vector space dimension.

Proof. If w1 and w2 are two nodes of Cn, a path of length
m from w1 to w2 is a sequence of nodes w1 � ti1

, . . . , tim+1
�

w2 of Cn such that tij
, tij+1

􏼚 􏼛 is any link in Cn for all

j � 1, 2, . . . , m. We define the path ideal of Cn, denoted by
Im(Cn) to be the ideal of K[t1, . . . , tn] generated by the

monomials of the form ti1
ti2

, . . . , tim+1
where ti1

, ti2
, . . . , tim+1

is
a path in Cn.

To each path pi(Cn, m) � ti1
, ti2

, . . . , tim+1
of length m in

Cn, we associate a vector ai(Cn, m) ∈ Zn
2 such that

ai,j Cn, m( 􏼁 �
1, if tij

∈ pi Cn, m( 􏼁,

0, otherwise.

⎧⎨

⎩ (1)

Since there are pi(Cn, m) � ti1
, ti2

, . . . , tim+1
paths of

length m in Cn, we set ai(Cn, m) ∈ Zn
2, and thus, we obtain

required result.

Theorem 1. Let Cn be a cycle of length n and IA(Cn,m) be the
toric ideal associated to the path ideal Im(Cn). 3en we have
the following:

(a) If gcd (n, m + 1) � 1, then IA(Cn,m) � 0.
(b) If gcd (n, m + 1) � d with d≠ 1, then IA(Cn,m) � (fi)

where
fi � xdx2 d · · · xk d − xixi+d · · · xi+(k− 1)d �

􏽑
k
θ�1(xθ d − xi+(θ− 1)d) for i � 1, . . . , d − 1. So, here,

we have d − 1 generators, and each of the generator
has degree k � n/d.

Proof. Obviously, there are n paths of length m in Cn. ,us,
the matrix [a1(Cn, m), a2(Cn, m), . . . , an(Cn, m)] is a cir-
culant matrix of order n given by

A �

κ0 κn− 1 . . . κ2 κ1
κ1 κ0 . . . κ3 κ2
. . . . .

. . . . .

. . . . .

κn− 2 κn− 3 . . . κ0 κn− 1

κn− 1 κn− 2 . . . κ1 κ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where

κi �
1, if 0≤ i≤m;

0, otherwise.
􏼨 (3)

,e rank of circulant matrix A is equal to n − d (see
[39]), where d is the degree of gcd (f(t), tn − 1), where
f(t) � 1 + t + t2 + · · · + tm is the associated polynomial to
the matrix A. Since tm+1 − 1 � (t − 1)f(t), it is enough to
consider gcd (tm+1 − 1, tn − 1).

Now, tn − 1 � 􏽑d1/nΦd1
(t), where Φd1

(t) is the minimal
polynomial of a primitive dth

1 root of unity called cyclotomic
polynomial. It is an irreducible polynomial inZ[t] with root
a ∈ C with ad1 � 1 but ai ≠ 1 for i � 1, . . . , d1 − 1.

(a) If m + 1 and n are relatively prime, then tm+1 − 1 and
tn − 1 have only a � 1 as a common root. Hence,
rank of A is n, thus by previous result, IA(Cn,m) � 0.

(b) If gcd (n, m + 1) � d with d≠ 1, then gcd (tm+1 −

1, tn − 1) � d so by the previous lemma
dimKK[A] � n − d. Let A � fi􏼈 􏼉 and monomial
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ordering < is lex with x1 >x2 > · · · >xn. ,e image
of every element of A is zero under ϕ so (A)⊆IA(Cn,m)

is obvious. It therefore suffices to show that each
polynomial in IA(Cn,m) is a K-linear combination of
these binomials fi. Suppose g ∈ IA(Cn,m) cannot be
written as a K-linear combination of binomials. We
choose a polynomial g with this property such that
the initial term in< (g) � 􏽑

k
θ�1 xi+(θ− 1)d for

i � 1, . . . , d − 1, is minimal with respect to the term
order < among all the elements of IA(Cn,m).

When expanding ϕ(g(x1, . . . , xn)) � g(ta1 , ta2 , . . . ,

tan ) � g(t1t2, . . . , tm+1, t2t3, . . . , tm+2, . . . , tnt1, . . . , tm), we
get zero because g ∈ IA(Cn,m). In particular, the term
ϕ(􏽑

k
θ�1 xi+(θ− 1)d) � tφ(uθ) must cancel during this expansion.

Hence, there is some other monomial 􏽑
k
θ�1 xθ d appearing in

g such that φ(uθ) � φ(v). Also, the polynomial g′ � g +

􏽑
k
θ�1 xi+(θ− 1)d − 􏽑

k
θ�1 xθ d cannot be written as a K-linear

combination of binomials in IA(Cn,m) because g cannot be
written as a K-linear combination of binomials. Hence,
in< (g′)< in< (g). ,is is the contradiction to the fact that
in< (g) � 􏽑

k
θ�1 xi+(θ− 1)d is minimal with respect to the term

order < among all the elements of IA(Cn,m). □

Now our next notion is the primary decomposition of
the leading ideal of the toric ideal. First, we see an example in
this case and then give a proposition.

Example 1. Consider the polynomial ring K[x1, . . . , x15]

and m + 1 � 6. ,en the primary decomposition of
L(IA(C15 ,5)) is given by

L IA C15 ,5( )􏼒 􏼓 � x1x4x7x10x13, x2x5x8x11x14( 􏼁,

L IA C15 ,5( )􏼒 􏼓 � x1, x2( 􏼁∩ x2, x4( 􏼁∩ x1, x5( 􏼁∩ x10, x14( 􏼁∩ x13, x14( 􏼁∩ x4, x5( 􏼁∩ x2, x7( 􏼁∩ x5, x7( 􏼁

∩ x1, x8( 􏼁∩ x4, x8( 􏼁∩ x7, x8( 􏼁∩ x2, x10( 􏼁∩ x5, x10( 􏼁∩ x8, x10( 􏼁∩ x1, x11( 􏼁∩ x4, x11( 􏼁∩ x7, x11( 􏼁

∩ x10, x11( 􏼁∩ x2, x13( 􏼁∩ x5, x13( 􏼁∩ x8, x13( 􏼁∩ x11, x13( 􏼁∩ x1, x14( 􏼁∩ x4, x14( 􏼁∩ x7, x14( 􏼁.

(4)

where L(I) is the leading ideal of ideal I under the lex
monomial ordering < with x1 > x2 . . . xn.

Proposition 1. By the same notations, the primary de-
composition of the leading ideal L(IA(Cn,m)) � ∩ kd− 1

λ�1 pλ con-
sists of the following characteristics:

(1) Total number of primary components is kd− 1

(2) Number of variables (generators) in each component
is d − 1

(3) xd, x2d, . . . , xkd are the missing variables in this
presentation

(4) 3is presentation is irredundant so it is unique
(5) Total number of existing variables n − k

(6) Total number of generators in the primary decom-
position is (d − 1)kd− 1

(7) Each variable is appearing (d − 1)kd− 1/n − k times in
the primary decomposition

In the remaining portion of this chapter, we shall use N
for the residue ring K[x1, . . . , xn]/IA(Cn,m).

Lemma 2. By the same notations, dim N � n − d + 1.

Proof. Let monomial ordering < is lex with
x1 >x2 > · · · >xn. By primary decomposition L(IA(Cn,m)) �

∩ kd− 1

λ�1 pλ, we can easily verify that the cardinality of A � fi􏼈 􏼉

for i � 1, . . . , d − 1 is equal to the height of L(IA(Cn,m)). ,at
is, htL(IA(Cn,m)) � d − 1. So Krull dimension of

K[x1, . . . , xn]/ L(IA(Cn,m)) is n − (d − 1) � n − d + 1. ,us,
by Corollary 5.3.14. of [40], we have the result. □

Lemma 3. With the previous notations, the generators
􏽑

k
θ�1(xθ d − xi+(θ− 1)d) for i � 1, . . . , d − 1 of IA(Cn,m) are the

primitive binomials with lex monomial ordering and
x1 > x2 > · · · >xn.

Proof. By Buchberger algorithm, it is easy to find S-poly-
nomial S(fp, fq) of any two generators
fp � 􏽑

k
θ�1(xθ d − xp+(θ− 1)d) and fq � 􏽑

k
θ�1(xθ d − xq+(θ− 1)d)

for p≠q, 1≤p,q≤d − 1, can be written as upfp + uqfq, where
up � − 􏽑

k
θ�1 xθ d � − uq. In other words, this S-polynomial

reduces to zero through the set of generators A � fi􏼈 􏼉 for
i � 1, . . . ,d − 1. ,us, A is the Gröbner basis of the toric ideal
IA(Cn,m) with lex monomial ordering and x1>x2> · · · >xn. It
is obvious to say that elements of A are the reduced Gröbner
basis, so by proposition 10.1.2 of [41], we can say IA(Cn,m) is
generated by primitive binomials. □

Proposition 2. With the same notations, the minimal graded
free resolution of R � K[x1, . . . , xn]-module N is

N←NCd− 1
0 (0)←NCd− 1

1 (1 − k)←NCd− 1
2 (2 − 2k)← · · ·←NCd− 1

d− 1

((d − 1)(1 − k)),

(5)

with the graded Betti numbers

Journal of Mathematics 5



βi,j �
βi,ki � C

d− 1
i , if i � 0, . . . , d − 1;

0, otherwise.

⎧⎨

⎩ (6)

3. Numerical Data Obtained from Graded
Betti Numbers

In this section, we shall deduce the most important ho-
mological invariants of the finitely generated module from
the graded Betti numbers.

Let N be a finitely generated graded
R � K[x1, . . . , xn]-module with Betti numbers
βa,b � βa,b(N) where

βa,b �
C

d− 1
a , if a � 0, . . . , d − 1;

0, otherwise.

⎧⎨

⎩ (7)

,e numbers

pdR(N) � max a: βa,b ≠ 0 for some b􏽮 􏽯 � d − 1, (8)

reg(N) � max b: βa,a+b ≠ 0 for some a􏽮 􏽯 � (d − 1)(k − 1),

(9)

are projective dimension and regularity ofN, respectively. It
is obvious from (8) that pdR(N)< n, so by the Aus-
lander–Buchsbaum theorem

depth(N) + pdR(N) � n, (10)

we can write

depth(N) � min a: βn− a,b ≠ 0 for some b􏽮 􏽯 � n − d + 1.

(11)

Due to Lemma 2 and equation (11), the
R � K[x1, . . . , xn]-module N is Cohen–Macaulay. By
Auslander–Buchsbaum theorem, we can say this module as
Cohen–Macaulay because its projective dimension and
codimension are equal as
dim(K[x1, . . . , xn]) − dim(N) � n − (n − d + 1) � d − 1.
Since N is Cohen–Macaulay, and its type is 1 so it is
Gorenstein.

Proposition 3. Let R � K[x1, . . . , xn] be the standard
graded K-algebra and N be a R-module with graded Betti
numbers βa,b. 3en hN(t) � (1 − tk)d− 1/(1 − t)n with
(1 − tk)d− 1 � 􏽐a(− 1)a(􏽐bβa,btb). After dividing (1 − tk)d− 1

by the maximum possible power of 1 − t, then this series will
be hN(t) � (􏽐

k− 1
α�0t

α)d− 1/(1 − t)n− d+1.

A positive integer n − d + 1 in this proposition is the
Krull dimension of N as discussed in Lemma 2, and the
number (􏽐

k− 1
α�0(1)α)d− 1 � kd− 1 is multiplicity of N denoted

by e(N). Let QN(t) � 􏽐
(k− 1)(d− 1)
i�0 hit

i � (􏽐
k− 1
α�0t

α)d− 1. ,e
h-vector h � (h0, h1, h2, . . . , h(k− 1)(d− 1)) contains, respec-
tively, ones, counting numbers, triangular numbers, . . .

when d � 2, 3, 4, . . . of the Pascal triangle. Note that
0 � 0(N). ,e 0-invariant 0(N) of N is degree of hN(t).
Mathematically, 0(N) � (k − 1)(d − 1) − (n − d +1) � − k �

deg((1 − tk)d− 1) − n is the upper bound of max b: βa,b≠􏽮

0forsome i} − n � k(d − 1) − n.
We can display the graded Betti numbers of

R � K[x1, . . . , xn]-module N by the diagram called Betti
diagram. In Betti diagram 2, graded Betti number βa,a+b is at
the position (a, b); any nonzero graded Betti number lies
inside the bounded region; and corner points represent the
extremal Betti numbers see (Figure 2).

4. A Class of Koszul Algebras

Koszul algebras, Artin–Schelter regular algebras of lower
global dimension three [42], play a vital role in the study of
combinatorics, algebra, topology, and mathematical physics
initially defined by Priddy [34]. Generally, it is very difficult
to detect whether a given algebra is Koszul or not. One
approach is to compute the first few matrices in the reso-
lution and to find if they are linear. If the matrices are not
linear, then this algebra is not Koszul. A more efficient way
to prove that an algebra is Koszul is given by various kinds of
filtration arguments. A family F of ideals called a Koszul
filtration of N has the properties listed below:

(1) F contains only ideals I generated by linear forms
(2) F also contains (0), zero ideal, andm, maximal ideal
(3) I/J is a cyclic module whose annihilator belongs to F

with 0≠ I, J ∈ F, and J ⊂ I

Koszul filtration and strongly Koszul algebra were dis-
cussed, in a good manner, in [35, 36], respectively. Any ideal
of Koszul filtration has linear resolution [35] leads to Koszul
algebra, but this is the one-way statement [43] and a residue
class ring is this algebra if its ideal accepts the standard basis
of degree 2 by [37]. However, the defining ideal of a Koszul
algebra may not have a quadratic Gröbner basis with respect
to any monomial order. Also, in [44], the writers give an
example of a binomial link ideal whose residue class ring has
a Koszul filtration, while the ideal has no quadratic Gröbner
basis related with graphs. In [45], authors worked associated
with four cycles for the Koszul filtration of edge ring. We
denote a vector (n, d, k) to represent R � K[x1, . . . , xn]

-module N � K[x1, . . . , xn]/IA(Cn,m) where gcd(n, m + 1) �

d and k � n/d. ,en the vector (2d,d,2) shows a class of
Kosul algebras due to the fact that IA(Cn,m) is generated by
the standard basis of degree 2.

Now, we conclude this article by giving a concrete ex-
ample. Let us consider R � K[x1, . . . , x15]-module N � K

[x1, . . . , x15]/IA(C15 ,5). ,e rank of a circulant matrix
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A �

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

is dimKK[A] � rankA � n − d � 15 − 3 � 12 Toric ide-
alIA(C15 ,5) is generated by the reduced Gröbner basis f1 �

x3x6x9x12x15 − x1x4x7x10x13 and f2 � x3x6x9x12x15−

x2x5x8x11x14 so the Krull dimension ofN � K[x1, . . . , x15]/
IA(C15 ,5) is n − d + 1 � 13. Minimal graded free resolution of
N � K[x1, . . . , x15]/IA(C15 ,5) is

N←NC2
0(0)←NC2

1(− 4)←NC2
2(− 8), (13)

with the graded Betti numbers β0,0 � 1, β1,5 � 2 and β2,10 � 1,
f2 � x3x6x9x12x15 − x2x5x8x11x14, and N � K[x1, . . . ,

x15]/IA(C15 ,5) that can be represented by Table 1.
,e projective dimension, regularity, and depth ofN are

d − 1 � 2, (d − 1)(k − 1) � 8, and n − d + 1 � 13, respec-
tively. Auslander–Buchsbaum theorem is verified for these
numbers; N � K[x1, . . . , x15]/IA(C15 ,5) is Cohen–Macaulay
and Gorenstein. ,e coefficients of h-vector
h � (1, 2, 3, 4, 5, 4, 3, 2, 1) are the counting numbers can be
obtained from the Hilbert series hN(t) � (1 − t5)2/
(1 − t)15 � (1 + 2t + 3t2 + 4t3 + 5t4 + 4t5 + 3t6 + 2t7+ t8)/
(1 − t)13 of degree − k � − 5, and k(d− 1) � 25 is the multi-
plicity of N � K[x1, . . . , x15]/IA(C15 ,5).

5. Conclusion

,is paper comprises the appositeness among linear algebra,
commutative algebra, and graph theory in the form of some
homological invariants, Hilbert series, Krull dimension,
graded Betti numbers, depth, and so on, and a class of Koszul
algebra by taking different path lengths of a cycle. We can
explore this class of Koszul algebra more broadly in the
future by correlating any suitable type of simple graphs.
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