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A B S T R A C T

In this manuscript, the optical solitons of nonlinear Schrödinger equation (NLSE) with cubic–quintic law
nonlinearity, in the presence of self-frequency shift and self-steepening, has been studied. The ultrahigh
capacity propagation and transit of laser light pulses in optical fibres were described using this form of
equation. To extract new results, two strong methodologies has been used. To extract the exact solution
unified method has been employed. The solutions obtained by this analytical method, are in form of
polynomial and rational function solution. Moreover, the validity of non-singular solutions has guaranteed
by a limitation condition that is graphically illustrated in 3D. The 2D graphical representation are also used to
demonstrate the influence of parameters on the predicted non-singular solutions. The other technique, used for
qualitative analysis, is bifurcation. The system has been transformed into a planer dynamical system, which
has been transformed into a hamiltonian system. All the possible phase portrait has been plotted by complete
discrimination method. The acquired results are novel and have not been recorded before and they indicate
that the proposed methodologies may be used to investigate innovative soliton solutions and phase portraits
for any NLSE.
Introduction

Fiber optics is a popular discipline in the modern field of nonlinear
optical communication study. It is crucial to upgrade optical fibre
transmission systems in order to meet the demands of information
transfer based technologies [1–3]. Soliton dynamics is a prominent
topic of investigation in mathematics and physics that has wide range
of applications, especially in fibre optics [4–8]. In 1834, John Scott
Russell saw a solitary wave in the Union Canal in Scotland that was the
first to report the soliton phenomenon. He reproduced the event in a
wave tank and named it the‘‘Wave of Translation" [9]. Soliton describes
a pulse that looks like a nonlinear wave and develops after colliding
with another pulse of comparable form and speed.

In nonlinear optics, NLSE was developed to enhance optical com-
munication quality. Communication over fibre optics takes only a
few femtoseconds. By concentrating on the most vital elements of
NLSE, the soliton solution can be discovered. NLSE is essential in
a variety of physical phenomena and scientific disciplines, including
plasma physics, optical fibres, thermodynamics, fluid mechanics, wave
propagation, chemical physics, biology, and so on [10–25]. There are
variety of integration strategies for solving NLSE that can provide
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understanding of the real behavior of various systems. Famous ana-
lytical methodologies have been used to determine analytical answers
to NLSE in recent years. These include the sine cosine method [26],
the homogeneous balance method [27,28], the Riccati–Bernoulli sub-
ODE method [29,30], the tanh method [31], the inverse scatter-
ing method [32], (G’/G)-expansion method [33,34], simple equation
method [35,36], and the extended trial equation method [37,38].

The presented article deals with the NLSE with cubic–quintic law
nonlinearity, in the presence of self-frequency shift and self-steepening,
has been studied. The ultrahigh capacity propagation and transit of
laser light pulses in optical fibres were described using this form of
equation. This equation is of great interest for many mathematicians
and physicists. Chirped chiral solitons for this equation has been ex-
tracted and the obtained solutions are periodic and localized solutions
of dark–bright solitons [39]. The dark and bright solitary wave solu-
tions has been achieved by applying solitary wave ansatz method [40].
This model has also been investigated to find the chirped femtosecond
solitons and double-kink solitons in which the amplitude of the chirping
can be controlled by self frequency shift and self-steepening [41]. In
this paper new traveling wave solutions has been exhibit in form of
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polynomial and rational form also qualitative analysis of this model has
never been investigated by any author yet. Hence our acquired results
are novel and will be a good addition in literature.

The aim of this article is using the unified method [42,43] to
determine the exact solution related to governing model. The proposed
technique is preferable on other techniques because the solutions can
be extracted in form of polynomial and rational solutions. The solutions
are recorded and shown graphically. The dynamical system of the noted
equation’s bifurcation is also discussed. All conceivable possibilities for
parameter dependency are studied, using the bifurcation theory of plan-
ner dynamical systems [44–46], in order to show phase illustrations of
the behavior of the governing differential equation.

The article is divided into 7 sections. The overview of the proposed
techniques is given in Section ‘Governing Model’. Section ‘A concise
overview of the unified approach’ discussed the governing equation.
The extraction of the exact solution of governing differential equation
has been provided in Section ‘Analytical soliton solutions’. Polynomial
and rational function solutions are provided in Section ‘Analytical soli-
ton solutions’. Section ‘Applications’ discusses the graphical illustration
of solutions of the governing equation. Bifurcation analysis with the
dynamical planner system has been presented in Section ‘Qualitative
Analysis of governing equation’. The conclusion of the presented article
has been recorded in Section ‘Conclusion’.

Governing model

The wave dynamics in fiber optics are represented by the NLSE. The
dimension-less form of NLSE is given by

𝑖𝑝𝑡 + 𝑏1𝑝𝑥𝑥 + 𝑏2𝑄(|𝑝|
2)𝑝 = 𝑖𝑏4(|𝑝|

2𝑝)𝑥 + 𝑖𝑏5(|𝑝|
2)𝑝, (1)

in aforementioned equation 𝑝(𝑥, 𝑡) represents the non-real valued ripple
profile and 𝑡 and 𝑥 represents the time and space variable accordingly.
Here the term 𝑄(𝑝) = 𝑝+ 𝑏3𝑝2 is used for cubic–quintic nonlinearity, by
substituting the value of 𝑄(𝑝) in Eq. (1), the equation becomes

𝑖𝑝𝑡 + 𝑏1𝑝𝑥𝑥 + 𝑏2𝑄(|𝑝|
2)𝑝 + 𝑏3(|𝑝|

4)𝑝 = 𝑖𝑏4(|𝑝|
2𝑝)𝑥 + 𝑖𝑏5(|𝑝|

2)𝑝, (2)

where 𝑏1, 𝑏4 and 𝑏5 are the coefficient of dispersion, self-steepening
and self-frequency shift. 𝑏2 and 𝑏3 are the cubic and quintic nonlinear
coefficients. The coefficients 𝑏2 and 𝑏3 could be positive or negative,
depending on whether the connection is attractive or not. The following
transformation is utilized to deal with Eq. (2)

𝑝(𝑥, 𝑡) = 𝑣(𝜁 )𝑒𝚤𝜃 , (3)

where 𝜁 = 𝐴(𝑥 − 𝜈𝑡). The 𝑣(𝜁 ) denotes the amplitude of the wave, also
𝜃 = −𝑘𝑥 + 𝑤𝑡 + 𝜙 defines the phase element, while 𝑘 is frequency, 𝑤
represents the wave number of soliton and phase constant is shown by
𝜙. The relations can be formed by substituting Eq. (3) into Eq. (2) and
splitting the real and imaginary components. The essential condition
for the presence of soliton are derived from the imaginary part that is

𝜈 = −2𝑏1𝑘. (4)

The real part of the equation is used to find the solution of Eq. (2). The
real part is as follow

− (𝑤 + 𝑏1𝑙𝑘2)𝑣 + 𝑏1𝐴2𝑣′′ + (𝑏2 − 𝑘𝑏4)𝑣3 + 𝑏3𝑣5 = 0, (5)

here 𝑤, and 𝑘 are unknown parameters. Now, we find 𝑛 = 1∕2
by analyzing the homogeneous balance principle between the highest
order derivative and non linear terms in Eq. (5). To acquire a closed
form solution, we used another transformation as follows

𝑣(𝜁 ) = 𝑊 1∕2(𝜁 ), (6)

and Eq. (5) reduced as following manner

−(𝑤+𝑏1𝑘2)𝑊 2+𝑏1𝐴2
(

−1
4
(𝑊 ′)2 + 1

2
𝑊𝑊 ′′

)

+(𝑏2−𝑘𝑏4)𝑊 3+𝑏3𝑊 4 = 0.

(7)
2

A concise overview of the unified approach

In the presented article, we will extract the solution with the help
of one of the best techniques that is unified method. The advantage
of this method on other methods, is the form of solutions obtained by
this analytical technique. By applying this technique the solution can
be retrieved in form of polynomial and rational functions.

Let the complete structure of generalized NLSE be as in the follow-
ing fashion;

𝑈 (𝑥, 𝑡, 𝜈𝑥, 𝜈𝑡, 𝜈𝑥𝑡, 𝜈𝑥𝑥, 𝜈𝑡𝑡..., 𝜈𝑚𝑥𝑡) = 0, 𝑚 ≥ 0, (8)

where 𝑈 representing the polynomial involving the function 𝑣 = 𝑣(𝑥, 𝑡)
which is unknown. The essential formulation of the unified method is
illustrated below:

Through employing the traveling wave transformation of the fol-
lowing pattern

𝜈(𝑥, 𝑡) = 𝑝(𝜁 ), 𝜁 = 𝑘𝑥 + 𝑙𝑡, (9)

here 𝑘 and 𝑙 are arbitrary constants, Eq. (8) transformed to an ODE as
follow

𝑃 (𝜁, 𝜁 ′, 𝜁 ′′,… , 𝜁𝑚) = 0, (10)

here 𝑃 ′ shows the differentiation of 𝑃 involving the new variable 𝜁 .
he unified method is used to explore the exact solution of Eq. (10),
hich allows to reveal the solution in form of polynomial and rational

unction solution. It has been discussed in more detail below.

Polynomial function solution
Consider that Eq. (10) has the polynomial solution as

(𝜁 ) =
𝑛
∑

𝑖=0
𝑝𝑖𝜓

𝑖(𝜁 ). 𝑝𝑖 ≠ 0. (11)

n aforementioned equation, 𝑝𝑖’s are constants and function 𝜓(𝜁 ) is
cquired by solving the auxiliary equation:

𝜓 ′(𝜁 ))𝛾 =
𝜌𝑘
∑

𝑖=0
𝑟𝑖𝜓

𝑖(𝜁 ), 𝜁 = 𝜇𝑧 − 𝜈𝑡, 𝛾 = 1, 2, (12)

ere 𝑟′𝑖𝑠 are arbitrary parameters and the numeric value of 𝑛 is defined
n terms of 𝑘 by inserting the homogeneous balance condition between
ighest derivative and the highest non-linear term in (2), while 𝑘 can
e determined using the consistency criteria.

Presently to solve Eq. (11), the unified method tackles Eq. (11) for
lementary and elliptic solutions when 𝛾 = 1 or 𝛾 = 2 individually.

Rational function
Principle idea of stated part is to consider that (2) has the solution

s

(𝜁 ) =
∑𝑛
𝑚=0 𝑎𝑚𝜓

𝑚(𝜁 )
∑𝑟
𝑚=0 𝑏𝑚𝜓𝑚(𝜇)

, 𝑛 ≥ 𝑟, (13)

with satisfying auxiliary equation,

(𝜓 ′(𝜁 ))𝛾 =
𝑛𝑠
∑

𝑖=0
𝛽𝑖𝜓

𝑖(𝜁 ), 𝜁 = 𝑘𝑥 + 𝑙𝑡, 𝛾 = 1, 2. (14)

𝑎𝑖, 𝑏𝑖, and 𝛽𝑖 are the constants to be found in Eqs. (13) and (14), in such
way that the solution obtained by Eq. (13) fulfills Eq. (2).

The values of 𝑛 and 𝑠 could be found by using balancing principle
etween the highest order of linear and nonlinear terms included
n Eq. (2). Likewise, we may determine the unknown coefficients in
q. (13) by using condition of consistency. The unified method will
pply to solve the Eq. (13). Then we get solutions for 𝛾 = 1 or 𝛾 = 2,
accordingly.
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𝑊 (𝜁 ) =

−𝐴
√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝑏3

tanh

(

𝜁
2

√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝐴2𝑏3𝑝21

)
√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝐴2𝑏3𝑝21

𝑏3𝑝1 + 3𝐴2𝑤𝑐22 − 4𝑘2𝑎3𝑝21
√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝑏3

𝐴𝑏3𝑐2

. (19)

Box I.
𝑃 (𝑥, 𝑡) =
(

−𝐴
√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝑏3

tanh

(

𝜁
2

√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝐴2𝑏3𝑝21

)
√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝐴2𝑏3𝑝21

𝑏3𝑝1 + 3𝐴2𝑤𝑐22 − 4𝑘2𝑎3𝑝21
√

−
3𝐴2𝑤𝑐22−4𝑘

2𝑏3𝑝21
𝑏3

𝐴𝑏3𝑐2

)1∕2
×

𝑒𝚤(−𝑘𝑥𝑤𝑡+𝜃), (20)

Box II.
S

𝑊

𝜓

B

Analytical soliton solutions

Using the proposed methodology, this section retrieves soliton so-
lutions for the proposed model Eq. (10). Here, Eq. (7) has been solved
implementing the unified approach to obtain soliton solutions.

In Eq. (7), balancing 𝑛′2 and 𝑛3 produces 𝑁 = 1. The suggested
solution has the form mentioned below:

𝑊 (𝜁 ) =
1
∑

𝑖=0
𝑝𝑖𝜓

𝑖(𝜁 ), 𝑟1 ≠ 0, (15)

with the auxiliary equation

(𝜓 ′(𝜁 ))𝜖 =
2𝜖
∑

𝑖=0
𝑐𝑖𝜓

𝑖(𝜁 ), 𝜖 = 1, 2. (16)

Polynomial function solution

Solitary Wave Solution
For this purpose, put 𝛾 = 1 in the auxiliary Eq. (16), and so we

btain

(𝜁 ) = 𝑝0 + 𝑝1𝜓 (𝜁 ) (17)
𝜓 ′(𝜁 ) = 𝑐0 + 𝑐1𝜓 (𝜁 ) + 𝑐2𝜓2 (𝜁 ) .

By substituting Eq. (17) into Eq. (7), a system of non-linear equations is
generated. This system will be handled further with the help of software
such as Maple or Mathematica. The following outcomes are retrieved

𝑏2 =
−12𝐴2𝑤𝑐22 − 𝐴𝑘𝑏4𝑐2

√

− 27𝐴2𝑤𝑐22−36 𝑘2𝑏3𝑝12
𝑏3

− 16 𝑘2𝑏3𝑝12

𝐴𝑐2

√

− 27𝐴2𝑤𝑐22−36 𝑘2𝑏3𝑝12
𝑏3

,

𝑝0 =
−3(3𝐴2𝑤𝑐22 − 4 𝑘2𝑏3𝑝12)

𝐴𝑏3𝑐2

√

− 27𝐴2𝑤,𝑐22−36 𝑘2𝑏3𝑝12
𝑏3

,

1 = −
4𝑏3𝑝12

3𝐴2𝑐22
, 𝑐0 = −2

3𝐴2𝑤𝑐22 − 4 𝑘2𝑏3𝑝12

𝑐2𝐴2𝑏3𝑝12
,

𝑏1 =
1
𝑝1𝐴

√

−
27𝐴2𝑤𝑏22 − 36 𝑘2𝑏3𝑝12

𝑏3
. (18)

y solving the auxiliary equation 𝜓 ′(𝜁 ) = 𝑐0 + 𝑐1𝜓 (𝜁 ) + 𝑐2𝜓2 (𝜁 ) and
ubstituting together with (18), we find that in this case, Eq. (7) has
3

the following solution which is given in Box I. Then we get the solution
which is given in Box II. where 𝜁 = 𝑥 − 𝜈𝑡.

oliton Wave Solution
Here for 𝛾 = 2, we obtain

(𝜁 ) = 𝑝0 + 𝑝1𝜓 (𝜁 ) , (21)
′(𝜁 ) = 𝜓(𝜁 )

√

𝑐0 + 𝑐1𝜓 (𝜁 ) + 𝑐2𝜓2 (𝜁 ). (22)

By putting Eq. (21) into Eq. (7), a non-linear equations system is
formed. This system will be solved even more with the help of software
such as Maple or Mathematica. The following parameters are identified:

𝑎2 = −
𝐴2𝑏1𝑐1 − 2 𝑘𝑏4𝑝1

2𝑝1
, 𝑏3 = −3∕4

𝐴2𝑏1𝑐2
𝑝12

, 𝑐0 =
4(𝑘𝑏1 +𝑤)
𝐴2𝑏1

, 𝑝0 = 0

(23)

y solving the auxiliary equation 𝜓 ′(𝜁 ) = 𝜓(𝜁 )
√

𝑐0 + 𝑐1𝜓 (𝜁 ) + 𝑐2𝜓2 (𝜁 )
and substituting together with (18), Eq. (4) has the solution as;

𝑊 (𝜁 ) =

(

48 𝑝1
(

𝑘2𝑎1 + 𝜔
)

𝐵2𝑎1e
2 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1

)

/ (

64 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘2𝑎1𝑎3𝑝1

2

+ 64 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝜔𝑎3𝑝1

2+

12 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘2𝑎4

2𝑝1
2 − 24 e

4 𝜁
√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘𝑎2𝑎4𝑝1

2

+ 12 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑎2

2𝑝1
2−

12𝐵2e
2 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘𝑎1𝑎4𝑝1 + 12𝐵2e

2 𝜁
√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑎1𝑎2𝑝1 + 3𝐵4𝑎1

2
)

,

(24)

then the obtained solution is

𝑃 (𝑥, 𝑡) =

( (

48 𝑝1

(

𝑘2𝑎1 + 𝜔
)

𝐵2𝑎1e
2 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1

)/ (

64 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘2𝑎1𝑎3𝑝1

2

+ 64 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝜔𝑎3𝑝1

2+ (25)

12 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘2𝑎4

2𝑝1
2 − 24 e

4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘𝑎2𝑎4𝑝1

2

+ 12 e
4 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑎 2𝑝 2−
2 1
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12𝐵2e
2 𝜁

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑘𝑎1𝑎4𝑝1

+ 12𝐵2e
2 𝜁,

√

𝑘2𝑎1+𝜔
𝐵2𝑎1 𝑎1𝑎2𝑝1 + 3𝐵4𝑎1

2
))

1∕2𝑒𝚤(−𝑘𝑥𝑤𝑡+𝜃), (26)

where 𝜁 = 𝑥 − 𝜈𝑡.

Rational function solution

To evaluate the rational solutions of the governing equation with
the unified method, we assume that

𝑊 (𝜁 ) =
∑𝑛
𝑚=0 𝑟𝑚𝜓

𝑚(𝜁 )
∑𝑗
𝑚=0 𝑠𝑚𝜓

𝑚(𝜁 )
, 𝑛 ≥ 𝑗, (27)

atisfying auxiliary equation,

𝜓 ′(𝜁 ))𝛾 =
𝜖𝑣
∑

𝑖=0
𝑐𝑖𝜓

𝑖(𝜁 ), 𝜁 = 𝑥 − 𝜈𝑡, 𝛾 = 1, 2. (28)

here 𝑟𝑚, 𝑠𝑚, and 𝑐𝑖 are constants to be found. Utilizing Eq. (27) into
quation into Eq. (7), system of algebraic equations in 𝜓 is obtained.
ow by utilizing some symbolic computing softwares like Maple or
athematica, constants are obtained as follows

0 =
2(6 𝑘2𝑏1𝑠02 + 3 𝑘𝑏4𝑟0𝑠0 + 6𝑤𝑠02 − 3 𝑏2𝑟0𝑠0 − 2 𝑏3𝑟02)

3(𝐴2𝑏1𝑠12)
,

𝑐1 =
2(4 𝑘2𝑏1𝑠0 + 𝑘𝑏4𝑟0 + 4𝑤𝑠0 − 𝑏2𝑟0)

𝐴2𝑏1𝑠1
,

𝑐2 = 4
𝑘2𝑏1 +𝑤
𝐴2𝑏1

, 𝑟1 = 0. (29)

olving the auxiliary equation 𝜓 ′(𝜁 ) =
√

𝑞0 + 𝑞1𝜓(𝜁 ) + 𝑞2𝜓2(𝜁 ), and
ubstituting together the values in Eq. (29). The Eq. (4) has the follow-
ng solution.

(𝜁 ) = 48
(

𝑘2𝑏1 +𝑤
)

𝑠1𝑏1𝐴
2𝑟0

√

𝑘2𝑏1 +𝑤
𝐴2𝑏1

e
2 𝜁

√

𝑘2𝑏1+𝑤
𝐴2𝑏1

×
(

−12𝐴2𝑠1

√

𝑘2𝑏1 +𝑤
𝐴2𝑏1

𝑟0𝑏1
(

𝑘𝑏4 − 𝑏2
)

e
2 𝜁

√

𝑘2𝑏1+𝑤
𝐴2𝑏1 +

12𝐴2𝑠1
2𝑏1

(

𝑘2𝑏1 +𝑤
)

e
4 𝜁

√

𝑘2𝑏1+𝑤
𝐴2𝑏1

+16 𝑟02
(

𝑘2𝑏1𝑏3 + 3∕16 𝑘2𝑏42 − 3∕8 𝑘𝑏2𝑏4 +𝑤𝑏3 +
3 𝑏22

16

)

)−1
, (30)

where by substituting Eq. (30) into equation Eq. (3), we get the solution
of the governing equation

𝑃 (𝑥, 𝑡) =
(

48
(

𝑘2𝑏1 +𝑤
)

𝑠1𝑏1𝐴
2𝑟0

√

𝑘2𝑏1 +𝑤
𝐴2𝑏1

e
2 𝜁

√

𝑘2𝑏1+𝑤
𝐴2𝑏1

×
(

−12𝐴2𝑠1

√

𝑘2𝑏1 +𝑤
𝐴2𝑏1

𝑟0𝑏1
(

𝑘𝑏4 − 𝑏2
)

e
2 𝜁

√

𝑘2𝑏1+𝑤
𝐴2𝑏1

+12𝐴2𝑠1
2𝑏1

(

𝑘2𝑏1 +𝑤
)

e
4 𝜁

√

𝑘2𝑏1+𝑤
𝐴2𝑏1

+16 𝑟02
(

𝑘2𝑏1𝑏3 + 3∕16 𝑘2𝑏42 − 3∕8 𝑘𝑏2𝑏4 +

𝑤𝑏3 +
3 𝑏22

16

) )

−1
)

1∕2𝑒𝚤(−𝑘𝑥𝑤𝑡+𝜃), (31)

where 𝜁 = 𝑥 − 𝜈𝑡.

Applications

In this part, we provide graphical illustrations of few of the de-
4

termined results. It is important to mention here that explicit and 𝐽
consistent wave solutions are extracted by applying unified method.
The Figs. 1–3 shows pictorial illustration of the obtained solutions in 3D
and 2D depiction at some appropriate parameters. Fig. 1. dark soliton
solution is the solitary solution in 3D and 2D. The graphical depiction
of soliton polynomial solution is illustrated in Fig. 2 which is a bright
soliton, whereas rational solutions are depicted in Fig. 3 which shows
bright soliton.

In the next section, we will discuss our model via 𝐛𝐢𝐟𝐮𝐫𝐜𝐚𝐭𝐢𝐨𝐧.

Qualitative analysis of governing equation

The bifurcation of nonlinear of governing equation is investigated
in the following section. To achieve our goal, we used the previously
mentioned traveling wave solution to convert the model to an ordinary
differential equation, Eq. (7).

By utilizing Eq. (7), the following planer dynamical system has been
obtained

𝑊 ′ = 𝑧

𝑧′ =
4(𝑤 + 𝑏1𝑘2)𝑊 2 + 𝑏1𝐴2𝑧2 + 4(𝑘𝑏4 − 𝑏2)𝑊 3 − 4𝑏3

2𝑏1𝐴2𝑊
. (32)

However, the system in consideration is indeed not hamiltonian. Using
Eq. (32), we retrieve

𝑑𝑧2

𝑑𝑊
=

4(𝑤 + 𝑏1𝑘2)𝑊 2 + 𝑏1𝐴2𝑧2 + 4(𝑘𝑏4 − 𝑏2)𝑊 3 − 4𝑏3
𝑏1𝐴2𝑊

, (33)

Since 𝑊 = 0 is the singular point of the Eq. (33), 𝑊 can only have zero
in exceptional conditions. Eq. (33) has solution

𝑧2 = 𝑐1𝑊 + 2
3𝑏1𝐴2

(

6𝑏1𝑘2𝑊 2 − 2𝑏3𝑊 4 + 3𝑏4𝑘𝑊 3 − 3𝑏2𝑊 2 + 12𝑊 2) ,

(34)

e get

2 − [𝑐1𝑊 +
4𝑏3𝑊 4

3𝑏1𝐴2
+ 1

3
6𝑏4𝑘 − 6𝑏3
𝑏1𝐴2

𝑊 3 +
(12𝑏1𝑘2 + 12𝑤)𝑊 2

𝑏1𝐴2
] = 0, (35)

where 𝑐1 is the constant of integration. Consequently it is possible to
obtain the equivalent conserved quantity.

𝐻(𝑊 , 𝑧)

= 𝑧2 −
[

𝑐1𝑊 +
4𝑏3𝑊 4

3𝑏1𝐴2
+ 1

3
6𝑏4𝑘 − 6𝑏3
𝑏1𝐴2

𝑊 3 +
(12𝑏1𝑘2 + 12𝑤)𝑊 2

𝑏1𝐴2

]

,

(36)

that is conserved quantity. Since Eq. (36) is autonomous, the global
phase portrait consists entirely of the system’s contour lines. Now, using
the entire discrimination system, we undertake a qualitative analysis
based on the discussed model. Since we have Eq. (36) including its
potential energy as

𝑊 = −
[

𝑐1𝑊 +
4𝑏3𝑊 4

3𝑏1𝐴2
+ 1

3
6𝑏4𝑘 − 6𝑏3
𝑏1𝐴2

𝑊 3 +
(12𝑏1𝑘2 + 12𝑤)𝑊 2

𝑏1𝐴2

]

, (37)

moreover

𝑊 ′ = −
[

𝑐1 +
16𝑏3𝑊 3

3𝑏1𝐴2
+

6𝑏3 − 6𝑏4𝑘
𝑏1𝐴2

𝑊 2 − 2
−(12𝑏1𝑘2 + 12𝑤)𝑊

𝑏1𝐴2

]

,

𝑊 ′ = 𝑐1 − 𝑎0𝑊 3 + 𝑎1𝑊 2 + 𝑎2𝑊 . (38)

Let 𝐽 (𝑊 , 𝑧) be the linearized coefficient matrix at the equilibrium point
(𝑊 , 𝑧). This matrix is termed as the system’s Jacobian matrix. The
eterminant of the Jacobi matrix could be described as follows:

(𝑊 , 𝑧) =
|

|

|

|

|

0 1
−3𝑎0𝑊 2 + 2𝑎1𝑊 + 𝑎2 0

|

|

|

|

|

, (39)

ence obtained Jacobian is
2
(𝑊 , 𝑧) = 3𝑎0𝑊 − 2𝑎1𝑊 − 𝑎2. (40)
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Fig. 1. Dark soliton solution for the parametric values of 𝐴 = 0.75, 𝑤 = −0.05, 𝑏3 = 1, 𝑝1 = 15, 𝑐2 = −0.5, 𝑘 = 0.4, 𝜃 = 0.04, 𝑏1 = 0.05.
Fig. 2. Bright soliton solution for the parametric values chosen as 𝐴 = 4, 𝑤 = 2, 𝑏3 = 2, 𝑝1 = 0.5, 𝑐2 = 1, 𝑘 = −2, 𝜃 = 0.05, 𝑏4 = 0.5, 𝑏1 = −0.25.
Fig. 3. Bright soliton solution for the parametric values chosen as 𝐴 = 8, 𝑤 = 0.05, 𝑏3 = 2, 𝑏2 = 4, 𝑐2 = 1, 𝑘 = −2, 𝜃 = 0.02, 𝑏4 = 0.5, 𝑏1 = −0.015, 𝑟0 = 0.2, 𝑠1 = 0.2.
The eigenvalues at a singular point (𝑓, 0) are simple to depict as follow

𝜆±(𝑊 , 0) = ±
√

−(3𝑎0𝑊 2 − 2𝑎1𝑊 − 𝑎2). (41)

Here (𝑊 , 0) is saddle if 𝐽 (𝑊 , 0) < 0, if 𝐽 (𝑊 , 0) > 0, then its a center
point, while cusp if 𝐽 (𝑊 , 0) = 0.

Through presenting the discriminant for polynomial

𝛥 = −27𝑎20𝑐
2
1 − 18𝑎0𝑎1𝑎2𝑐1 + 4𝑎0𝑎32 − 4𝑎31𝑐1 + 𝑏

2
1𝑏

2
2, (42)

we get the following possibilities.

Case I: 𝛥 = 0 and 𝑐1 > 0, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)2(𝑊 − 𝑠). (43)

In this case, two equilibrium points (𝑙, 0) and (𝑠, 0) exist. Then by
investigating the jacobian, the result is, (𝑙, 0) a cusp and (𝑠, 0) will be
5

center. The phase portrait has been shown for 𝑐1 = 0.025, 𝑎0 = 9.6225
and 𝑎1 = 5, 𝑎2 = 0.75, we get 𝑙 = −0.0634 and 𝑠 = 0.6464.

Case II: 𝛥 = 0 and 𝑐1 < 0, 𝑎0 < 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)2(𝑊 − 𝑠). (44)

Two equilibrium points (𝑙, 0) and (𝑠, 0) exist in this specific case. By
examining jacobian the result shows that (𝑙, 0) a cusp and (𝑠, 0) will be
saddle. The phase portrait has been shown for 𝑐1 = −1.025, 𝑎0 = 0.375
and 𝑎1 = 1.25, 𝑎2 = 0.5, we get 𝑙 = −2 and 𝑠 = 0.6667.

Case III: 𝛥 = 0 and 𝑐1 < 0, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)2(𝑊 − 𝑠). (45)

There seem to be two equilibrium points in this particular circum-
stance: (𝑙, 0) and (𝑠, 0). The result of studying the jacobian shows that
(𝑙, 0) is a cusp and (𝑠, 0) is the center. For 𝑐 = −0.25, 𝑎 = 3, and 𝑎 = 2,
1 0 1
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𝑎2 = 0.25, for these parametric values the equilibrium points are 𝑙 = 0.5,
and 𝑠 = −0.3333, the phase portrait has been depicted.

Case IV: 𝛥 = 0 and 𝑐1 = 0, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 = 0. Then

𝑊 ′ = (𝑊 − 𝑙)2(𝑊 − 𝑠). (46)

Two equilibrium points are there in this particular circumstance: (𝑙, 0)
and (𝑠, 0). The result of studying the jacobian shows that (𝑙, 0) is a cusp
and (𝑠, 0) is the center. For 𝑐1 = 0, 𝑎0 = 0.035, and 𝑎1 = 0.2, 𝑎2 = 0, the
equilibrium points are 𝑙 = 0.5, and 𝑠 = −0.3333, the phase portrait for
this case has been depicted.

Case V: 𝛥 = 0 and 𝑐1 = 0, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 = 0. Then

𝑊 ′ = (𝑊 − 𝑙)2(𝑊 − 𝑠). (47)

Two equilibrium points are there in this particular circumstance: (𝑙, 0)
and (𝑠, 0). The result of studying the jacobian shows that (𝑙, 0) is a cusp
and (𝑠, 0) is the center. For 𝑐1 = 0, 𝑎0 = 0.035, and 𝑎1 = 0.2, 𝑎2 = 0, the
equilibrium points are 𝑙 = 0.5, and 𝑠 = −0.3333, the phase portrait for
this case has been depicted.

Case VI: 𝛥 > 0 and 𝑐1 > 0, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)(𝑊 − 𝑚)(𝑊 − 𝑛), (48)

aforementioned equation has three equilibrium points (𝑙, 0), (𝑚, 0) and
(𝑛, 0). In this region (𝑙, 0) and (𝑛, 0) are center, (𝑚, 0) is saddle. The phase
portrait has been plotted for 𝑐1 = 0.5, 𝑎0 = 2, and 𝑎1 = 2, 𝑎2 = 4 where
the equilibrium points are 𝑙 = −0.9049, 𝑚 = −0.1354, 𝑛 = 2.0403

Case VII: 𝛥 > 0 and 𝑐1 = 0, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)(𝑊 − 𝑚)(𝑊 − 𝑛), (49)

in the above equation we get three equilibrium points (𝑙, 0), (𝑚, 0) and
(𝑛, 0). In this case (𝑙, 0) is center, (𝑚, 0) is saddle and (𝑛, 0) is also center.
The phase portrait has been plotted for 𝑐1 = 0, 𝑎0 = 1, and 𝑎1 = 5, 𝑎2 = 2
where we get 𝑙 = −0.3723, 𝑚 = 0, and 𝑛 = 5.3723.

Case VIII: 𝛥 > 0 and 𝑐1 > 0, 𝑎0 = 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)(𝑊 − 𝑠). (50)

Two equilibrium points are there in this particular circumstance: (𝑙, 0)
and (𝑠, 0). By investigating jacobian shows that (𝑙, 0) is a center and (𝑠, 0)
is the saddle. For 𝑐1 = 0.5, 𝑎0 = 0, and 𝑎1 = 1, 𝑎2 = 2, the equilibrium
points are 𝑙 = −0.5, and 𝑠 = −0.25, the phase portrait for this case has
been plotted.

Case IX: 𝛥 > 0 and 𝑐1 = 0, 𝑎0 = 0, 𝑎1 > 0, 𝑎2 > 0. Then

𝑊 ′ = (𝑊 − 𝑙)(𝑊 − 𝑠). (51)

Two equilibrium points are there in this particular circumstance: (𝑙, 0)
and (𝑠, 0). By investigating jacobian shows that (𝑙, 0) is a center and (𝑠, 0)
is the saddle. For 𝑐1 = 0, 𝑎0 = 0, and 𝑎1 = 1, 𝑎2 = 3, the equilibrium
points are 𝑙 = 3, and 𝑠 = 0, the phase portrait for this case has been
plotted.

Case X: 𝛥 < 0. Then

𝑊 ′ = (𝑊 − 𝑠)[(𝑊 − 𝑙)2 + 𝑚2]. (52)

Here (𝑠, 0) is only real equilibrium point and it is a saddle (see Figs. 4–
12).

Conclusion

In this manuscript, the dynamics of optical solitons in the nonlinear
Schrödinger equation (NLSE) with cubic–quintic law nonlinearity was
studied. To extract new results, two strong methodologies was used. To
extract the exact solution of governing equation, unified method was
used. By employing this technique, the solutions were extracted in form
6

Fig. 4. Global phase portrait for CaseI.

Fig. 5. Global phase portrait for CaseII.

Fig. 6. Global phase portrait for CaseIII.

Fig. 7. Global phase portrait for CaseIV.

of polynomial and rational form solutions. This technique provided
us bright and dark solitons. Moreover, the solutions were graphically
depicted showing that the obtained results made bright and dark
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Fig. 8. Global phase portrait for CaseV.

Fig. 9. Global phase portrait for CaseVI.

Fig. 10. Global phase portrait for CaseVII.

Fig. 11. Global phase portrait for CaseVIII.

solitons. The equation was investigated through bifurcation for phase
characterization. The system was transformed into a planer dynamical
7

Fig. 12. Global phase portrait for CaseIX.

system, which was then transformed into a Hamiltonian system. The
cases were then predicted and successfully depicted in phase portrait
using the discriminant. The work contributes in the investigation of
NLSE, showing that the applied techniques are simple, interesting and
direct method to explore different NLSEs. The acquired solutions have
been discovered to be novel and have never been presented before.
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