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Abstract— Photo response non-uniformity (PRNU) noise is a 
sensor pattern noise characterizing imperfections in the imaging 
device. The PRNU is a unique noise for each sensor device, and it 
has been generally utilized in the literature for source camera 
identification and image authentication. In video forensics, the 
traditional approach estimates the PRNU by averaging a set of 
residual signals obtained from multiple video frames. However, 
due to lossy compression and other non-unique content-dependent 
noise components that interfere with the video data, constant 
averaging does not take into account the intensity of these 
undesirable noise components which are content-dependent. 
Different from the traditional approach, we propose a video PRNU 
estimation method based on weighted averaging. The noise 
residual is first extracted for each single video. Then, the estimated 
noise residuals are fed into a weighted averaging method to 
optimize PRNU estimation. Experimental results on two video 
datasets captured by various smartphone devices have shown a 
significant gain obtained with the proposed approach over the 
conventional state-of-the-art one. 
 

Keywords: PRNU, Source Smartphone Identification, Video 
Forensics, weighted averaging. 

I. INTRODUCTION 
Nowadays, it's become widely common to use portable 
devices in everyday life because of their unquestionable 
benefits. A good example of such device is smartphone, 
which includes a camera for taking high quality images and 
recording high-definition videos. As a result, millions of 
videos are regularly shared daily through social media 
platforms under the assumption that the data and users are 
genuine. This may however raise major concerns especially 
in cases of copyright infringements or where multimedia 
contents are sensitive and incriminating individuals. 
Identifying the source of digital smartphone videos could 
therefore be an effective way to address such concerns in the 
field of video forensics. This paper is concerned with efficient 
estimation of the Photo Response Non-Uniformity (PRNU) 
noise for videos recorded by a smartphone. The PRNU noise 
can be considered as a sensor pattern noise that can 
characterises the imaging device and it has been generally 
used in the literature for image authentication and source 
camera identification[1]. The PRNU noise is caused by the 
sensitivity of pixels to light which is produced due to the 
imperfections and non-homogeneity of silicon wafers during 
the manufacture of camera sensor. The sufficient data that 
PRNU carries in terms of frequency content makes it unique 
and consequently suitable for identifying the source 
smartphone video and detecting video forgeries. 
Nevertheless, the PRNU estimation method may be faced 

with the presence of video/image-dependent information as 
well as other non-unique noise components. A basic model of 
the sensor output could be expressed as shown in (1), where ܬ଴ denotes to the original video frame, ܬ଴ܭ is the PRNU term 
and Θ a random noise factor. PRNU is a multiplicative noise 
and is a weak signal of the same dimensions as the output of 
the video frame, denoted in this work by ܭ ∈  ℛࣱ×ࣰ, where  ࣱ ×  ࣰ  represent the dimension of the sensor [2],[3]. ܬ = ଴ܬ + ܭ଴ܬ +  (1)                                                   ߆

Image forensics is concerned with image integrity 
verification, authentication, and Source Camera Identification 
(SCI) via image processing and analysis [1]. The first 
technique to identify the source of digital images using the 
PRNU was suggested by [2]. In this technique, the residual 
signal ܴ௜   is calculated by denoising an image ௜ܬ   using 
wavelet-based de-noising filter[4]. Next the residual signal is 
obtained from an image ܬ௜  as ܴ௜ = ௜ܬ −  (௜ܬ)ܨ where the (௜ܬ)ܨ
is the de-denoised image. Finally, the ܭ  , is computed as 
shown in (2) by averaging ܰ residual signals, where ܰ refers 
to the number of images used to estimate the PRNU. Once ܭ 
is estimated, the normal correlation is used as a similarity 
measure as shown in (3) where ܭഥ, തܴ represents the means of 
K, R respectively. ܭ = ∑ ܴ௜ே௜ୀଵܰ ,ܭ)ܲ (2)                                                      ܴ) = ∑ ∑ ௠௡ܭ) − .(ഥܭ (ܴ௠௡ − തܴ)௡௠ඥ(∑ ∑ ௠௡ܭ) − ∑) (ഥ)ଶܭ ∑ (ܴ௠௡ − തܴ)ଶ)௡௠௡௠  (3) 
 

In [3], PRNU was estimated based on the Maximum 
Likelihood Estimator (MLE). Then, the peak-to-correlation 
energy (PCE) is used to measure similarity. In [5], an 
improved locally adaptive DCT Filter(LADCT) was 
developed in [6] to estimate PRNU efficiently by taking into 
account the varying strength of PRNU in local image regions. 
Although several methods based on PRNU estimation were 
developed for digital images such as [2, 3, 5-12], less research 
has been devoted to the forensic analysis of digital videos. In 
[13] the authors extended their PRNU estimation method [2] 
from digital images to videos and demonstrated that the 
PRNU can still be used to link a video to its source camcorder 
efficiently. In this technique, the PRNU was estimated from 
both (training and query) videos using MLE. In [14]  several 
texture measures obtained from the Grey Level Cooccurrence 
Matrix (GLCM) was used, in order to select suitable training 
video frames (i.e., non-textured frames) for SCI. Chuang et al. 
[15] and Goljan et al. [16] evaluated the video compression 
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impact on PRUN estimation in the compressed domain. Also, 
[17] is another work that also considers the effect of video 
compression, but it also attempts to attenuate the high-
frequency details that may be contained in video frames to 
improve PRNU estimation. In [18] confidence weight PRNU 
method based on image gradient magnitudes is proposed to 
reduce the impact of video content and improve the PRNU 
estimation. The authors in [15] showed that PRNU estimation 
from I-frames is more reliable than B-frames and P-frames in 
the compressed domain. In [19], a PRNU-based source 
camera identification technique using out-of-camera 
stabilised videos were proposed in the compressed domain. 
The technique uses 50 I-frames from each video to estimate 
the PRNU. The authors In [20] studied the effect of camera 
rolling with various degrees on PRNU estimation. In [21], the 
video frames were resized to 512×512 prior to PRNU 
estimation from the green channel which is said to be the 
noisiest channel among in RGB videos. In [22] and in an 
attempt to boost the performance of PRNU estimation, a 
hybrid approach that uses both videos and still images was 
proposed. In this method, the PRNUs are estimated from still 
images obtained by the source device, while the query PRNU 
is estimated from the video and subsequently linked with the 
reference to verify the possible match.  In [23] , the minimum 
average correlation energy (MACE) filter [24] was applied to 
reduce the impact of heavily compressed in low-resolution 
videos. In this technique, the reference PRNU was extracted 
from a number of videos, and then the MACE filter was 
applied for the reference PRNU to reduce the impact of noises 
on normalized cross-correlation (NCC). In [25] ,the authors 
analysed some factors such as resolution, length of the video, 
and compression, which could influence a decrease of the 
PRNU's correlation value in videos. While there were several 
research works attempting to enhance the PRNU estimation 
for source smartphone video identification, an effective 
approach that takes into consideration the frame content is 
still lacking. In this paper, noise residuals estimated from the 
available videos are fed into a weighted averaging method in 
order to take into account the various intensities of the 
undesirable and content-based patterns that are present in each 
video. This paper is structured as follows; section 2 describes 
the proposed technique. Experimental results are provided in 
section 3. A conclusion is drawn in section 4.   

II. PROPOSED PRNU ESTIMATION APPROACH 
The logic behind the proposed method is that the PRNU noise 
can be significantly affected in smartphone videos due to the 
lossy compression nature in which digital videos are stored, 
distortions that mainly occur in the textured and edged 
regions. Fig. 1 gives a high-level representation of the 
proposed approach for source smartphone video 
identification. In phase 1, the noise residual of the video (݊ݒݎ) 
is estimated by using frames in a single video. In this phase, 
frames are extracted from a video and converted to grey level, 
after that the residual signal is obtained for each frame, next 
the noise residual of the video is estimated by averaging all 
residual signals in that video. Because compression artifacts 
are highly dependent on video contents, a simple averaging 
cannot remove efficiently such effect from the PRNU. 

Therefore, the variance of the undesirable noise that interferes 
with the estimated noise residual could well differ from a 
video to another. In this paper, we borrow the Weighted 
Averaging (WA) method from [26] to address this problem 
with the aim to enhance PRNU estimation from a theoretical 
perspective since WA is optimal in terms of the mean squared 
error. In phase 2, the PRNU is obtained via WA. Finally, each 
smartphone PRNU is stored in a database to be used later for 
identification. It is worth mentioning that WA is used only at 
the estimation stage. At the matching stage, the noise residual 
of the query video is compared with the estimated and stored 
PRNUs in the database using the correlation measure. After 
that the closest PRNU is said to correspond to the smartphone 
which has been used to record the video. The traditional 
approach for PRNU estimation uses the concept of constant 
averaging as in [2],[8],[9], [20] and [21]. In the rest of the 
paper, such traditional approaches are referred to as “Basic 
Video PRNU”. With the aim to reduce the effect of 
undesirable noise components and lossy compression on 
PRNU estimation, this work adopts a new weighted averaging 
method to enhance source smartphone identification with 
more accurate PRNU estimation. The proposed approach is 
named the “Video WA PRNU”. Let ݔ௜ (i=1,2,…,N) be N noisy 
observations of a signal s. The noise ݊௜ is assumed with a zero 
mean and a variance denoted by ߪ௜ଶ. 

(࢐)࢏࢞  = (࢐)࢙ + , (࢐)࢏࢔ ࢏ = ૚, … , ;ࡺ ࢐ = ૚, … ,  (૝)          ࡸ

The traditional approach to estimate ݏ consists of averaging 
the observations. As described in Eq. (5), this approach 
averages the observations. This is called constant averaging 
in the sense that every single observation is equally multiplied 
by a constant 1/N. In theory, the constant averaging method is 
optimal only if the noise variance is constant in all 
observations [26]. The WA method relies on the theory of 
unknown signal estimation from a number of noisy 
observations [27]. If the noise variance varies from one 
observation to another, the WA method can offer the best 
estimation to the real signal in terms of the mean squared error 
(݆)ݏ̂ .[27] [26] = 1ܰ ෍ ௜(݆)ேݔ

௜ୀଵ                                                                             (5) 
 

The WA can be calculated as: ̂ݏ(݆) = ෍ ௜(݆)                                                              (6)ேݔ௜ݓ
௜ୀଵ  ௜ refers to a weight for the ݅௧௛ observation which can beݓ 

calculated by Eq. (7). The estimated noise variance can be 
obtained as in (8). ݓ௜ = ௜ଶߪ1 ( ෍ ௠ଶߪ1

ே
௠ୀଵ )ିଵ, ݅ = 1, . . , ܰ                                    (7) 

ො௜ଶߪ = ∑ ( ො݊௜(݆) −  ത݊௜)ଶ௅௝ୀଵ ܮ   ,   ݆ = 1, … ,  (8)                      ܮ
 

It is worth mentioning that the weights depend on the variance 
of undesirable noise in each observation. As this is usually not 
available in practical scenarios, an estimated version of the 
noise variance is used instead. This is given by Eq. (9),  
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Fig 1.   High-level of proposed for source smartphone video identification system. 

 

where ̅ݔ refers to the average signal of the observations [26]. ො݊௜(݆) = (݆)௜ݔ −  (9)                                                      (݆)ݔ̅

 Fig 2 shows the PRNU estimation for source smartphone 
video identification. First the frames are extract from a single 
video and de-noised using wavelet denoising filter [4]. Next, 
the residual signal is gained from each frame as ܴ௜ = ௜ܬ  As shown in Eq. (10), the noise residual of a single  .(௜ܬ)ܨ−
video ( (௧ݒݎ݊  is obtained by averaging residual signals 
estimated from individual frames, where M and N represents 
to the number of available frames in each video and number 
of available videos respectively. After that, each ݒݎ݊   is 
converted to 1D signal, and the optimal weights for each 
observation are obtained as shown in (7). Finally, the 
smartphone PRNU is obtained via WA as in (11). ݊ݒݎ௧ = ∑ ܴ௜ெ௜ୀଵܯ                  , ݐ = 1. . ܰ                             (10) ܴܷܲܰ = ෍ ௜ .ேݓ

௜ୀଵ ௜ݒݎ݊                                                (11) 

III. EXPERIMENTAL RESULTS 
In this section, the evaluation is conducted using two different 
datasets: our smartphone dataset and the Video-ACID dataset 
[28]. Tables 1 and 2 show a list of 26 smartphones used in this 
paper (8 smartphones from our dataset and 18 smartphones 
are downloaded from Video-ACID [28]). It is worth 
mentioning that this work contains videos from 11 different 
brands, 23 different phone models and some of these videos 
are recorded by the same make and brand device, for instance 
iPhone 8 Plus, Motorola E4, and Sony Xperia L1, letter A and 
B are used to differentiate between them (see Table 1 and 2). 
The PRNU is estimated from 50 videos recorded by the same 
smartphone, while the remaining videos are used in the testing 
stage. The PRNU estimation and testing stages have been 

performed by considering cropped blocks from the frame with 
size of 512 × 512. The blocks are cropped from the center of 
the full-size frame without affecting their content. In this 
work, the proposed WA PRNU estimation method is 
compared to the traditional estimation approach on 
smartphone videos. Here, it is meant by the traditional 
approach the techniques that use the concept of constant 
averaging of the noise residuals in order to estimate the PRNU 
as in[2],[8],[9], [20] and [21]. For fair comparison, the well-
known wavelet-based Wiener filter [4] has been used to de-
noise each video frame in both approaches (the traditional and 
the proposed). In the first set of experiments, the changes in 
the correlation coefficient values that describe the similarity 
between two PRNUs of the same smartphones for each 
approach (the proposed video WA PRNU vs Basic Video 
PRNU) were examined. The correlation coefficient for each 
approach is calculated as shown in (3) among the PRNU 
estimated from query videos and the actual PRNU estimated 
from reference videos. Next, for each approach, the average 
correlation coefficient values for all testing videos were 
calculated for each smartphone. Fig 3 shows the mean of 
correlation values between every video and its PRNU. The 
results show that the proposed video WA PRNU estimation 
method has higher values of correlation coefficients 
compared to the traditional approach for most of the 
smartphones. The main goal of source smartphone video 
identification is to identify the smartphone used to record the 
video. Here, it is supposed that the video is recorded by one 
of the existing smartphones. Consequently, a query video is 
assigned to a specific smartphone if the corresponding PRNU 
provides the highest correlation values. The results of the false 
negative rate (FNR) and false positive rate (FPR) on Video-
ACID [28] are depicted in Table3 and Table 4. Clear 
enhancements are shown on the majority of tested 
smartphones, for instance the FNR has been decreased from 
40.6% to 31.9%, 4.6% to 1.3. %, and from 95.2% to 13.4 %. 
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Fig 2.   proposed PRNU estimation for source smartphone video identification. 

 

Table 1: Digital Smartphones in (Video-ACID) [28]. 
Smartphone name Symbol No of videos 

Apple iPhone 8 plus  M1 223 
Asus Zenfone3 Laser M2 234 

Google Pixel 2 M3 187 
Huawei Honor M4 238 

Huawei Mate SE M5 257 
Kodak Ektra M6 239 

LG Q6 M7 260 
LG X Charge M8 234 

Motorola E4(A) M9 251 
Motorola E4(B) M10 227 

Motorola G5 Plus M11 439 
Nokia 6.1 M12 234 

Samsung Galaxy S3 M13 230 
Samsung Galaxy S5 M14 257 
Samsung GalaxyS7 M15 206 

Samsung_J5 6 M16 203 
Sony Xperia L1 (A) M17 233 
Sony Xperia L1 (B) M18 237 

Table 2: Digital Smartphones in Our Dataset. 
Smartphone name Symbol No of videos 

Huawei Y7 Prime 2019 M19 300 
iPhone 8 Plus M20 216 

iPhone XS Max M21 300 
Nokia 5.4 M22 300 
Nokia 7.1 M23 300 

Samsung A50 M24 300 
Xiaomi Remi Node 8 M25 300 

Xiaomi Remi Node 9 Pro M26 300 

Furthermore, another example of a clear enhancement can be 
seen in Table 3 especially in smartphone M02, M07 and 
M08. Table 4 illustrates the FPR for each smartphone using 
both approaches. As can be seen, a significant enhancement 
is obtained using the proposed approach in twelve 
smartphones out of eighteen. Additionally, using the 
proposed video WA PRNU the FPR for M01 and M10 has 
been reduced from 5.1% to 1.6% and from 13% to 0.8%, 
respectively.  

 
Fig 3. Mean correlation values for each smartphone suing the basic video 

PRNU and the proposed approach. 

The results of FNR and FPR on our dataset are shown in 
Table 5 and Table 6. As shown, a smaller improvement has 
been achieved on our dataset by using the proposed approach. 
For instance, the FPR has been reduced slightly in M19, 
M21, M23, and M26, while a better enhancement is shown 
in M25 where the FPR is decreased from 48% to 26.8%. 
Also, another small improvement in FPR can be seen in 
Table 6. Although the proposed approach does not always 
give an improvement for each smartphone in both datasets, 
the overall FNR and FPR of the proposed Video WA PRNU 
approach exceeds that with the traditional Basic Video 
PRNU. Considerable enhancements are achieved on Video-
ACID dataset, where the decrease in overall FNR and overall 
FPR reaches 19% and 1% less respectively (see Table 3 and 
4). Less significant but noticeable improvements have been 
achieved on our dataset where the overall FNR and overall 
FPR have been decrease from 43.4% to 40.9% and from 
6.4% to 6% respectively (see Table 5 and 6). 
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Table 3. FNR (%) for each smartphone (Video-ACID) using the traditional Basic Video PRNU and proposed Video WA PRNU.

Table 4. FPR (%) for each smartphone (Video-ACID) using the traditional Basic Video PRNU and proposed Video WA PRNU.

Table5. FNR (%) for each smartphone (Our dataset) using the traditional Basic Video PRNU and proposed Video WA PRNU. 

Methods M19 M20 M21 M22 M23 M24 M25 M26 
overall 
FNR 

Basic Video 
PRNU 

17.6 22.3 2.8 87.6 77.6 3.6 48.0 87.6 43.4 

Video WA 
PRNU 

17.2 30.1 2.4 87.6 76.8 2.4 26.8 84.0 40.9 

Table 6. FPR (%) for each smartphone (Our dataset) using the traditional Basic Video PRNU and proposed Video WA PRNU. 

Method M19 M20 M21 M22 M23 M24 M25 M26 
overall 
FPR 

Basic Video 
PRNU 

0.5 0.5 1.0 0.3 3.9 20.2 23.0 1.5 6.4 

Video WA PRNU 0.5 0.4 0.8 0.4 3.0 17.4 23.7 1.6 6.0 
 
 

 

IV. CONCLUSION  
In this paper, an effective video PRNU estimation approach 
for source smartphone video identification has been 
proposed. The traditional approach uses the concept of 
constant averaging of the noise residuals to estimate the 
PRNU. The residual signals are viewed as noisy observations 
of the PRUN, which can contain some of non-unique noise 
components. Also, because compression artifacts are highly 
dependent on video contents; a simple averaging cannot 
remove efficiently such effect from the PRNU. In this work, 
the noise residual is first obtained for each single video. 
Next, the estimated noise residuals are fed into a weighted 
averaging method to enhance the smartphone PRNU 
estimation. An experimental evaluation using two different 
smartphone video datasets has shown the superiority of the 
proposed Video WA PRNU over the traditional PRNU 
estimation approach.  
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