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Abstract
A control chart is one of the statistical process techniques that is used to monitor
different processes. Some processes are characterized by functions or profiles,
and a profile is a functional relationship between the dependent and indepen-
dent variable(s) used to monitor the quality of the process. Several research
studies were conducted on linear profiling where only fixed effects are consid-
ered. However, in this research, we focus on random effects as they represent
the differences between profiles and thus are more proper for interpretation.
Two approaches are proposed in this study for Phase II profile monitoring; the
first approach is the nonparametric via residuals and the second is the semipara-
metric approach, where this technique combines the parametric estimates with
a portion of the nonparametric estimates to the residuals. Usually, parametric
estimations lead to biased estimates when the model is misspecified, whereas
nonparametric estimates may give high variances, and thus semiparametric
estimates are preferred. New nonparametric and semiparametric multivariate
exponential weighted moving average (MEWMA) control charts are introduced
and their performances compared to the parametric approach for different
samples and shift sizes, and the correlation between and within profiles was
considered. The average run length (ARL) and average time to signal (ATS) crite-
ria are used for choosing the best approach. Simulation studies and real datasets
were utilized for comparing the performance of the proposed MEWMA charts.

KEYWORDS
ARL, ATS, linear mixedmodels, MEWMA,misspecification, model robust regression 2, profile
monitoring

1 INTRODUCTION

Profile monitoring is when the quality characteristic of the process is represented by a relationship between the response
variable and the independent variables, where this relationship is known as profile, and their profiles are being moni-
tored by control charts. Several research studies have been conducted on profile monitoring, for example, Mahmoud and
Woodall1 used profile monitoring in linear calibration, where different concentrations were collected by analytical chem-
istry procedures. The curves were fitted by linear models to guarantee that the measurement equipment is calibrated.
Nonlinear profiles were considered by Williams et al,2 where particleboard density was measured at equally spaced loca-
tions, and the result was higher density at the edges compared to the density in the middle. Zou et al3 used wavelet
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transforms (which are more complicated compared to linear or nonlinear models) to approximate the profile of the forg-
ing cycle of a stamping process. The wavelet coefficients were monitored to determine whether the forging cycles differ
from each other or not. Profiles can be represented as simple, multiple, mixed, linear, or nonlinear, depending on the
shape of our profile of interest. So far, most of the researchers considered simple linear profiles where only fixed effects
were monitored, for example, Kang and Albin,4 Kim et al,5 Saghaei et al,6 Noorossana et al7 and Mahmood et al.8 In fact,
monitoring fixed effects do not show the variations between profiles, it only considers the similarities between profiles
assuming all profiles are similar, which is an unrealistic assumption. Thus, in this research, we are monitoring linear
mixed models (LMM), where these models consider fixed and random effects, as well as they are very flexible models
where the correlation within and between profiles are taken into account (more information about LMM is found in Ver-
beke and Molenberghs9). Monitoring LMM was conducted in many studies; for example, Jensen et al,10 Abdel-Salam,11
Qiu et al,12 Narvand et al,13 and Siddiqui and Abdel-Salam.14
Most state-of-the-art in the profile monitoring assume that LMMs are correctly fitted with no misspecification (para-

metric approaches), but in fact in real-life situations this assumption is not realistic and may lead to poor results. Thus
researchers chose nonparametric (NP) and semiparametric (SP) approaches as alternative approaches for avoiding this
assumption, aswas conducted byAbdel-Salam,11 Abdel-Salam et al,15 and Siddiqui andAbdel-Salam,14 where they showed
that the NP and SP approaches performed better than the parametric approach when there is model misspecification for
Phase I profilemonitoring. Hence, NP and SP (Model Robust Regression 2 [MRR2] introduced byMays et al16) approaches
will be introduced in this research for monitoring LMM in Phase II in this study. The multivariate exponential weighted
moving average (MEWMA) control charts will bemodified based on the three regression approaches, which are: paramet-
ric, NP, and SP. We considered uncorrelated and correlated profiles for different profile sizes and different sample sizes to
check whether they have effects on monitoring profiles or not by comparing the performances of the three MEWMA for
detecting model misspecification and slope shifts using two evaluation measures, which are: average run length (ARL)
and average time to signal (ATS), where the ARL is the average samples required until the first out-of-control signals and
ATS represents the number of time-periods that occur until the first out-of-control signals. The chart with the smallest
values of ARL and ATS means it is the best chart and has high sensitivity in detecting shifts. These two measures were
calculated through Monte Carlo simulations. Also, this study is motivated by a real data application, which is about the
vertical density of practical boards, where the density is measured by a profilometer that uses a laser device to take a series
of measurements across the thickness of the board. A profilometer takes multiple measurements on a sample, usually
a 2 × 2-inch piece. Where, the relationship between the response variable, board density, and the explanatory variable,
depth, is being monitored (Abdel-Salam11).
The rest of this paper is organized as follows: LMMs and the three approaches used for estimating the profiles (paramet-

ric, NP, and SP) are given in Section 2, the proposed NP and SP MEWMA control charts are illustrated in Section 3, and
the Monte Carlo simulation and the real data application are given in Sections 4 and 5, respectively. Finally, we conclude
in Section 6.

2 LINEARMIXEDMODELS

LMMs are popular and flexible models as they contain both fixed and random effects, and it takes into account the auto-
correlation within and between profiles. We can differentiate between these two effects (or coefficients) as follows:

1. Fixed effects: When the effects are identical constants for all profiles.
2. Random effects: Account for different effects from profile to profile.

LMMs are like general linear models where the response variable is obtained by adding fixed effects, random effects,
and an error term together. The form of LMM is given by

𝑦𝑖𝑗 = 𝛽0 + 𝛽1 𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 … 𝛽𝑛𝑥𝑛𝑖𝑗 + 𝑏𝑖1𝑧1𝑖𝑗 + 𝑏𝑖2𝑧2𝑖𝑗 … 𝑏𝑖𝑛𝑧𝑛𝑖𝑗 + 𝜀𝑖𝑗, (1)

where 𝑦𝑖𝑗 represents the response variable (profile of interest) for a particular case (ith profile and jth sample). The 𝑥1𝑖𝑗 ,
𝑥2𝑖𝑗 … 𝑥𝑛𝑖𝑗 are the fixed-effect predictors, and the fixed-effect coefficients are 𝛽1, 𝛽2 . . . 𝛽𝑛, while 𝑧1𝑖𝑗 , 𝑧2𝑖𝑗 … 𝑧𝑛𝑖𝑗 are the
random-effect predictors and 𝑏𝑖1, 𝑏𝑖2 . . . 𝑏𝑖𝑛 refer to the random-effect coefficients. 𝜀𝑖𝑗 represents the error term of sample
j in profile i, and it is assumed to have a multivariate normal distribution.
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1834 NASSAR and ABDEL-SALAM

In profile monitoring, the LMM of the ith profile is represented in matrix notation as follows:

𝑦𝑖 = 𝑋𝑖 𝛽 + 𝑍𝑖𝑏𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, … ,𝑚, (2)

where 𝑦𝑖(ni × 1) is the ith profile of interest vector, 𝑋𝑖(ni × p) is the matrix of fixed regressors, while 𝑍𝑖(ni × q) represents
the matrix of the random regressors. 𝛽(p × 1) is the fixed-effects vector and 𝑏𝑖 is the random-effects vector of the ith
profile where 𝑏𝑖 ∼MN(0,D), whereD(q × q) is a positive definite matrix. Moreover, the 𝜖𝑖(𝑛𝑖 × 1) is the error terms vector
where 𝜖𝑖 ∼ MN(0, 𝑅𝑖), where Ri is often assumed to be autoregressive (AR) or compound symmetry (CS) if the errors
are correlated, while Ri = 𝜎2 𝐼 if errors are uncorrelated. When we are assuming that the errors follow this multivariate
normal distribution, then consequently 𝑦𝑖 ∼ MN(𝑋𝑖𝛽, Vi), where Vi = 𝑍𝑖 𝐷𝑖𝑍

′
𝑖
+ Ri is the estimated variance-covariance

matrix. More details about LMM are found in Schabenberger and Pierce.17
The estimations of 𝛽 and 𝑏𝑖 are 𝛽 and 𝑏̂𝑖 , respectively. In 1950s, Charles Henderson provided the best linear unbiased

estimate of fixed effects and best linear unbiased predictions of random effects, BLUE and BLUP, respectively. In our
study, we are using three approaches for fitting the model to obtain BLUE and BLUP. These approaches are: parametric
approach (generalized least square method), NP approach for the residuals using the penalized spline method and SP
approach based on the MRR2. Then, we calculated the multivariate exponential weighted average (MEWMA) control
chart based on the parametric, NP and SP approaches.

2.1 Parametric estimation approach (P)

The generalized least square method is one of the parametric methods that is used to estimate the fixed and random
effects. As mentioned previously, 𝛽 and 𝑏̂𝑖 are the fixed and random-effects estimates, respectively, the estimated profile
average is 𝑦̂PA

𝑖,𝑃
= 𝑋𝑖 𝛽𝑝 and the estimated specific profile prediction is 𝑦̂SP𝑖,𝑃 = 𝑋𝑖 𝛽𝑝 + 𝑍𝑖𝑏̂𝑖,𝑝, for more details see.23,24 If the

variance-covariance matrices Vi, D, and Ri are known, it can be shown that BLUE is given as follows:

𝛽𝑝 =

(
𝑚∑
𝑖=1

𝑋′
𝑖𝑉

−1
𝑖
𝑋𝑖

)
−1

(
𝑚∑

𝑖 = 1

𝑋′
𝑖𝑉

−1
𝑖
𝑦𝑖

)
(3)

and the BLUP is given as follows:

𝑏̂𝑖,𝑝 = 𝐷𝑍
′

𝑖
𝑉𝑖

−1
(
𝑦𝑖 − 𝑋𝑖𝛽𝑝

)
. (4)

Since we are only interested in the BLUPs for constructing our MEWMA control charts, thus, the mean and variance
are given as follows:

b̂𝑃 =

∑𝑚

𝑖=1 𝑏̂𝑖,𝑃

𝑚
, (5)

Σ̂𝑃 =

∑𝑚−1

𝑖=1

(
𝑏̂𝑖+1,𝑃 − 𝑏̂𝑖,𝑃

) (
𝑏̂𝑖,+1,𝑃 − 𝑏̂𝑖,𝑃

)′
2 (𝑚 − 1)

. (6)

Furthermore, in this study we will be using MRR2 approach where it is a combination between the parametric and NP
fits. MRR2 is explained in Section 2.3, but first we need to calculate the residuals from the parametric estimation and fitted
nonparametrically in order to obtain MRR2 estimation, as it will be explained later.

2.2 Nonparametric residuals estimation approach (NPR)

The parametric methods usually relying on several assumptions, such as the model is correctly specified, errors are nor-
mally distributed, and a linear relationship. However, practically, these assumptions are not realistic, as the user is fre-
quently unsure about the actual model, the underlying distribution of the data may not always be known or may not be
assumed correctly, which may result in biased estimations. Thus, they may be misleading as they are based on unrealistic

 10991638, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.2829 by Q

atar U
niversitaet, W

iley O
nline L

ibrary on [29/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NASSAR and ABDEL-SALAM 1835

assumptions. The NP approach is an alternative technique used due to its flexibility, as it eliminates the assumptions of
the parametric approach. There are different methods available in the NP approach used to fit the model between the
dependent variable and the independent variables. In this study, we will focus on the penalized spline (P-spline) method
for fitting the residuals obtained from the parametric approach, as it is a well-knownmethod due to its flexibility. A spline
is a continuous function that is used to generate a smooth curve to pass through a set of points; usually, the n-degree poly-
nomials are generated. Thus p-degree spline functions are required to join these polynomials, and the polynomials are
tied together by knots to produce a smooth curve joining them. The number of knots and their locations must be chosen
accurately in order to avoid over- or underfitting the data, but as no optimal solution exists to the number of knots or their
locations; penalization is used to put weights on the splines to avoid overfitting and at the same time to allow the accurate
fit to the data.
The general LMM formula for this approach is given as

𝑦𝑖𝑗 = 𝑓
(
𝑥𝑖𝑗

)
+, 𝜉𝑖

(
𝑥𝑖𝑗

)
+ 𝜀𝑖𝑗, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛, (7)

where 𝑦𝑖𝑗 is our response variable, 𝑓(𝑥𝑖𝑗) is the overall profile average and 𝜉𝑖(𝑥𝑖𝑗) is a smoother function where it rep-
resents the random difference between ith specific prediction and the profile average. In our study, we are interested in
fitting the residuals (r). Thus we replaced 𝑓(𝑥𝑖𝑗) and 𝜉𝑖(𝑥𝑖𝑗) by 𝑓(𝑟𝑖𝑗) and 𝜉𝑖(𝑟𝑖𝑗), where r = 𝑦 − 𝑦̂𝑝 and it represents the
residuals from the estimated parametric LMM. 𝑓(𝑟𝑖𝑗) and 𝜉𝑖(𝑟𝑖𝑗) are defined, respectively, as

𝑓
(
𝑟𝑖𝑗

)
≈ 𝛽0 +

𝑝∑
𝑙 = 1

𝛽𝑖𝑟
𝑙
𝑖𝑗
+

𝑘1∑
𝑘 = 1

𝑢𝑘
|||𝑟𝑖𝑗 − 𝐾𝑘

|||𝑝, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛𝑖, (8)

𝜉𝑖
(
𝑟𝑖𝑗

)
≈ 𝑏𝑖0 +

𝑝∑
𝑙 = 1

𝑏𝑖𝑗𝑟
𝑙
𝑖𝑗
+

𝑘2∑
𝑘 = 1

𝑡𝑖𝑝𝑘
|||𝑟𝑖𝑗 − 𝐾𝑘

|||𝑝, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛𝑖. (9)

For 𝑓(𝑟𝑖𝑗), p is the order of polynomial basis, k1 is the number of knots used and K1, . . . , Kk1 are the locations of

the knots. The
𝑝∑

𝑙 = 1
𝛽𝑖𝑟

𝑙
𝑖𝑗
represents the parametric component, while

𝑘1∑
𝑘 = 1

𝑢𝑘|𝑟𝑖𝑗 − 𝑟𝑘|𝑝 refers to the B-spline component.
Moreover, 𝜉𝑖(𝑟𝑖𝑗) represents the B-spline basis for a specific prediction curve, and here p is the order of polynomial basis

with the intercept and the parameters of random effects. 𝑏𝑖0 +
𝑝∑

𝑙 = 1
𝑏𝑖𝑗𝑟

𝑙
𝑖𝑗
is the parametric random-effects component,

while
𝑘2∑

𝑘 = 1
𝑡𝑖𝑝𝑘|𝑟𝑖𝑗 − 𝐾𝑘|𝑝 refers to the B-spline component, where k2 is the number of knots used. The estimated pro-

file average is 𝑦̂PA
𝑖,NPR

= 𝑋𝑖 𝛽 + 𝑍𝑖𝑢̂ and the estimated specific-profile prediction is 𝑦̂SP𝑖,NPR = 𝑋𝑖 𝛽 + 𝑍𝑖𝑢̂ + 𝑋𝑖𝑏̂𝑖 + 𝐸𝑖𝑡𝑖 . For
obtaining the estimated random-effects 𝛾̂𝑖,𝑁𝑃𝑅, we are going to combine the penalized spline estimates 𝑏̂𝑖 and 𝑡𝑖 , where
they are estimated random effects for the spline component vector and the knot location for the ith profile vector, respec-
tively, such that they followmultivariate normal distributions, that is (𝑏𝑖0, 𝑏𝑖1, … 𝑏𝑖𝑝)

′ ∼ MN(0, Σ𝑏) and 𝑡𝑖𝑝𝑘2 ∼ MN(0, 𝜎2𝑡 ).
Thus, the estimated random-effects vector using residuals P-spline regression alongwith itsmean and variance-covariance
matrices are given as, respectively,

𝛾̂𝑖,NPR =
[
𝑏̂𝑖 𝑡𝑖

]′
, (10)

γ̄NPR =

∑𝑚

𝑖=1
𝛾̂𝑖,NPR

𝑚
, (11)

Σ̂NPR =

∑𝑚−1

𝑖=1

(
𝛾̂𝑖+1,NPR − 𝛾̂𝑖,NPR

) (
𝛾̂𝑖,+1,NPR − 𝛾̂𝑖,NPR

)′
2 (𝑚 − 1)

. (12)
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1836 NASSAR and ABDEL-SALAM

More details about this approach are found given by Abdel-Salam11 and Siddiqui and Abdel-Salam.14

2.3 Semiparametric estimation approach (SPR)

In this section, we are using MRR2 approach that was proposed by Mays et al,16 and extended to Phase II profile moni-
toring. MRR2 combines the advantages of the parametric and the NP techniques and reduces their disadvantages. This
technique combines the random effects obtained using the parametric technique (Equation 4) with a portion of the ran-
dom effects obtained using the NPR technique (Equation 10), where this portion is the mixing parameter: λ ∈ [0, 1]. The
estimated random-effects vector by MRR2, along with its mean and variance-covariance matrices are obtained as well,
respectively,

𝜓̂𝑖,SPR =

[
𝑏̂𝑖,p

𝜆̂𝛾̂𝑖,NPR

]′
, (13)

𝜓̄SPR =

∑𝑚

𝑖=1
𝜓̂𝑖,SPR

𝑚
, (14)

Σ̂SPR =

∑𝑚−1

𝑖=1

(
𝜓̂𝑖+1,SPR − 𝜓̂𝑖,SPR

) (
𝜓̂𝑖+1,SPR − 𝜓̂𝑖,SPR

)′
2 (𝑚 − 1)

, (15)

where 𝑏̂𝑖,p is the estimated parametric random-effects vector and 𝛾̂𝑖,NPR is the estimated NP random-effects vector. 𝜓̄SPR
and Σ̂SPR represent the average vector and the successive-differences variance-covariance matrix for the estimated SP
random effects, respectively.
Furthermore, the mixing parameter 𝜆 is unknown and can be estimated based on the data to obtain 𝜆̂. Our estimated

𝜆̂ is a modified version of Waterman et al18 for 𝜆 based on population average (PA) and cluster specific (CS), and these
estimators are given by, respectively,

𝜆̂PA,SPR =
(𝑟)

′ (
𝑦 − 𝑦̂PAPar

)
(𝑟)

′
(𝑟)

, (16)

𝜆̂SP,SPR =
(𝑟)

′ (
𝑦 − 𝑦̂SPPar

)
(𝑟)

′
(𝑟)

, (17)

where 𝑟 represents the NP fitted residuals vector, y represents the true values vector, 𝑦̂PAPar represents the fitted PA vector
using parametric technique, and 𝑦̂CSPar represents the fitted CS vector by the parametric technique. The SP estimated PA is
𝑦̂PA
𝑖,SPR

= 𝑦̂PA
𝑖,Par

+ 𝜆̂PA,SPR𝑟 and the estimated CS is 𝑦̂CS𝑖,SPR = 𝑦̂CS
𝑖,Par

+ 𝜆̂CS,SPR𝑟. This technique is called mixed model robust
residuals profile monitoring (MMRRPM) (details are given by Siddiqui and Abdel-Salam,14 Abdel-Salam28 and Wan and
Birch19).

3 PROPOSEDMEWMA CONTROL CHARTS

In 1992, Lowry et al developed a multivariate EWMA (MEWMA) control chart (Montgomery25), where MEWMAs are
vectors given by

MEWMA𝑖 = 𝑊𝑋𝑖 + (𝐼 −𝑊)MEWMA𝑖−1, (18)
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NASSAR and ABDEL-SALAM 1837

where MEWMA0 = 0, 𝑋𝑖 is a vector of observations and 𝑊 = diag(𝑤1, 𝑤2, … , 𝑤𝑝), 0 < 𝑤𝑖 ≤ 1, 𝑖 = 1, 2, … , 𝑝, where
w is a parameter that regulates the magnitude of smoothing; usually they are chosen to be small for quicker detection
of small shifts (Runger and Prabhu,20 Noorossana26 and Niaki27). The MEWMA signals when any of the 𝑇2

𝑖
exceeds the

desired control limits.

𝑇2
𝑖
= (MEWMA𝑖 )

′Σ−1MEWMA𝑖
(MEWMA𝑖) , (19)

where Σ−1MEWMA𝑖
is the inverse of the covariance matrix of MEWMA𝑖; if 𝑤1 = 𝑤2 = … = 𝑤𝑝, then

ΣMEWMA𝑖
=

𝑤

2−𝑤
[1 − (1 − 𝑤)

2𝑖
]Σ𝑥, as 𝑖 → ∞ ∶ ΣMEWMA𝑖

=
𝑤

2−𝑤
Σ𝑥. If 𝑤1 ≠ 𝑤2 … ≠ 𝑤𝑝, then ΣMEWMA𝑖

(𝑘, 𝐿) =

𝑤𝑘 𝑤𝐿
[1−(1−𝑤𝑘)

𝑖(1−𝑤𝐿)
𝑖]

(𝑤𝑘+𝑤𝐿−𝑤𝑘𝑤𝐿)
𝜎𝑘𝐿. More details regarding how to design the MEWMA chart are found in Runger and Prabhu.20

The MEWMA formulas are modified to get the proposed MEWMA for the parametric, NPR, and SPR MMRRPM tech-
niques, as shown below.

3.1 Parametric estimated random effects (PMEWMA)

MEWMA𝑖,P = 𝑊𝑏̂𝑖,𝑃 + (𝐼 −𝑊)MEWMA𝑖−1,P, (20)

𝑇2
𝑖,P

= (MEWMA𝑖,P)
′Σ−1MEWMA𝑖,P

(
MEWMA𝑖,P

)
, (21)

whereMEWMA0,P = 0, 𝑏̂𝑖,P is the estimated parametric random-effects vector for the ith profile.

3.2 Nonparametric estimated residuals random effects (NPRMEWMA)

MEWMA𝑖,NPR = 𝑊𝛾̂𝑖,NPR + (𝐼 −𝑊)MEWMA𝑖−1,NPR, (22)

𝑇2
𝑖,NPR

= (MEWMA𝑖,NPR)
′Σ

−1
MEWMA𝑖,NPR

(
MEWMA𝑖,NPR

)
, (23)

whereMEWMA0,NPR = 0, 𝛾̂𝑖,NPR is the estimated NPRs random effects vector for the ith profile.

3.3 Semiparametric estimated random-effects MMRRPM (SPRMEWMA)

MEWMA𝑖,SPR = 𝑊𝜓̂𝑖,SPR + (𝐼 −𝑊)MEWMA𝑖−1,SPR, (24)

𝑇2
𝑖,SPR

= (MEWMA𝑖,SPR)
′Σ−1MEWMA𝑖,SPR

(MEWMA𝑖.SPR) , (25)

whereMEWMA0,SP = 0, 𝜓̂𝑖,MMRPM is the estimated SP MRR1 random-effects vector for the ith profile.
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1838 NASSAR and ABDEL-SALAM

TABLE 1 Mixing parameter averages, SIMSEs, and (standard errors) form = 300 at different n and 𝛾 for uncorrelated (𝜌 = 0) profile
datasets

m n 𝜸 𝝀̄𝐌𝐌𝐑𝐑𝐏𝐌 P NPR MMRRPM
300 10 0.00 0.000 2.45 (0.44) 3.95 (0.59) 2.45 (0.44)

0.25 0.214 5.40 (0.45) 6.52 (0.60) 5.33 (0.45)
0.50 0.460 14.36 (0.51) 14.26 (0.65) 13.70 (0.48)
0.75 0.774 29.67 (0.73) 28.49 (0.74) 27.68 (0.59)
1.00 0.973 51.70 (0.85) 48.31 (0.85) 48.64 (0.73)

300 20 0.00 0.000 0.83 (0.24) 2.16 (0.40) 0.83 (0.24)
0.25 0.496 3.83 (0.26) 4.98 (0.43) 3.80 (0.26)
0.50 0.592 12.85 (0.31) 13.49 (0.53) 12.64 (0.34)
0.75 0.818 28.01 (0.43) 28.22 (0.67) 27.58 (0.48)
1.00 0.955 49.45 (0.61) 45.58 (0.81) 45.33 (0.66)

TABLE 2 Mixing parameter averages, SIMSEs, and (standard errors) form = 300 at different n and 𝛾 for moderately correlated
(𝜌 = 0.5) profile datasets

m n 𝜸 𝝀̄𝐌𝐌𝐑𝐑𝐏𝐌 P NPR MMRRPM
300 10 0.00 0.000 4.82 (0.95) 7.94 (1.27) 4.82 (0.95)

0.25 0.317 7.64 (0.93) 10.51 (1.26) 7.63 (0.93)
0.50 0.537 16.25 (0.76) 18.24 (1.28) 16.06 (0.90)
0.75 0.730 30.99 (0.88) 31.16 (1.32) 29.84 (0.93)
1.00 0.903 52.27 (1.15) 49.25 (1.38) 48.74 (1.05)

300 20 0.00 0.000 2.18 (0.63) 5.24 (1.00) 2.18 (0.63)
0.25 0.429 5.13 (0.64) 8.05 (1.03) 5.12 (0.64)
0.50 0.615 14.03 (0.65) 16.54 (1.12) 13.96 (0.67)
0.75 0.853 28.99 (0.71) 30.71 (1.25) 28.62 (0.76)
1.00 0.923 50.13 (0.84) 50.58 (1.41) 48.99 (0.93)

4 MONTE CARLO SIMULATION

In this section, we are showing the simulation steps carried out for comparing the performances of the parametric, NPRs,
and SP MEWMA charts. All the simulation steps were performed using SAS program, where GLIMMIX procedures were
used for estimating the parametric random effects and the fitted NPRs using the P-spline technique based on a quadratic
model adapted from the literature given in Equation (26) (Abdel-Salam,11 Siddiqui and Abdel-Salam,14 and Waterman21).
Then, after estimating the parametric and the NP random effects, the estimated mixing parameter 𝜆̂ for the SPMMRRPM
is estimated to be used in combining parametric and a portion of the NP random effects for obtaining the estimated
MMRRPM random effects.

𝑦𝑖𝑗 = (5 + 𝑏𝑖1) 𝑥𝑖𝑗 + (2 + 𝑏𝑖2) (𝑥𝑖𝑗 − 5.5)2 + 𝛾

[
10 sin

(
𝜋(𝑥𝑖𝑗−1)

2.25

)
+ 𝑏𝑖3

]
+ ∈𝑖𝑗,

𝑖 = 1, 2, … ,𝑚 𝑎𝑛𝑑𝑗 = 1, 2, … , 𝑛𝑖,
(26)

where j and i represent the observations and profiles, respectively, the selected profile sizes to bem= 300 and 600, and the
sample sizes to be n= 10 and 20. The 𝑦𝑖𝑗 is the profile of interest and 𝑥𝑖𝑗 represents the independent variables where they
were chosen to take 1-10 integer values. The 𝛾 in the model represents the misspecification amount inserted to the model,
and we chose it to be between low and high (𝛾 = 0.0, 0.25, 0.50, 0.75, 1.00) consistent with Abdel-Salam11 and Siddiqui
and Abdel-Salam.14 𝑏𝑖1, 𝑏𝑖2 and 𝑏𝑖3 ∼ N(0, 0.5) represent the random effects and 𝜖𝑖𝑗 are the random errors such that
𝜖𝑖𝑗 ∼ (0, 𝑅𝑖), where 𝑅𝑖 is the variance-covariance matrix and it is equal to 𝑅𝑖 = 𝜎2 𝐼 for uncorrelated data 𝜌 = 0.0, where
the error variances are assumed to be 𝜎2 = 16, while for correlated data, 𝑅𝑖 takes the form of autoregressive model AR(1),
where the correlation levels were chosen to be low, moderate, and high with values 𝜌 = 0.2, 0.5, and 0.8, respectively. The
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NASSAR and ABDEL-SALAM 1839

TABLE 3 Out-of-control ARL for uncorrelated (ρ = 0.0) profile datasets for different model misspecification levels (γ) and shift sizes (δ)
(m = 300, n = 10, l = 40)

𝜸 𝜹 𝑻𝟐
𝐏

𝑻𝟐
𝐍𝐏𝐑

𝑻𝟐
𝐒𝐏𝐑

0.00 0.00 200.00 200.00 200.00
0.10 150.48 158.60 125.40
0.20 113.42 120.38 90.90
0.30 72.94 89.84 64.29
0.50 37.20 48.25 31.25

0.25 0.00 199.38 175.30 149.07
0.10 147.49 142.64 119.62
0.20 112.67 103.64 89.95
0.30 70.98 58.98 45.28
0.50 38.71 31.53 24.72

0.50 0.00 196.49 147.89 135.63
0.10 141.09 115.73 104.59
0.20 112.16 89.52 68.46
0.30 78.35 52.75 35.31
0.50 40.37 23.98 19.49

0.75 0.00 196.63 134.99 123.47
0.10 158.73 100.79 90.03
0.20 123.28 70.31 52.31
0.30 78.09 37.34 24.73
0.50 42.69 19.56 11.01

1.00 0.00 198.69 126.10 104.42
0.10 142.61 90.15 78.33
0.20 110.20 60.06 37.00
0.30 70.60 28.11 11.79
0.50 35.59 15.18 6.71

UCL 32.77 46.60 32.77

sin in the model is the deviation from an assumed quadratic model. Furthermore, we computed the simulated integrated
mean square error (SIMSE) along with their standard errors. The SIMSE is a goodness of fit measure, and it is given in
Equation (27):

SIMSE =
1

𝑚

𝑚∑
𝑖 = 1

(𝑦𝑖 − 𝑦̂𝑖)
′ (𝑦𝑖 − 𝑦̂𝑖) , (27)

where it computes the average of the squared differences between the actual and the estimated profiles. The smaller the
SIMSE value, the better the estimation is; because it means that there is no big difference between the true and estimated
values. The SIMSE and standard error results are shown in Tables 1 and 2 for uncorrelated 𝜌 = 0.0 and moderately corre-
lated 𝜌 = 0.5 data, respectively; only these two cases are shown form= 300 and n= 10, 20 because the results are almost
the same for m = 600 and also due to the space limitation. All the other results are available and can be requested from
the authors.
From Tables 1 and 2, the smallest SIMSEs are given in bold, we can notice that for 𝛾 = 0.0 both parametric and

MMRRPM techniques gave the same SIMSE value, this is because the mixing parameter is estimated to be zero (𝜆̂ = 0).
Furthermore, as the misspecification level increases, one can see that the SIMSE values of SP get closer to the NP values,
and the estimated mixing parameter getting larger and closer to one, and thus a bigger portion of the NP estimation will
be counted. Also, for both 𝜌 = 0.0 and 𝜌 = 0.5, as sample size n gets larger, the SIMSE values get smaller for all the three
approaches, as well as the standard error values. We have noticed that as the correlation increases, the SIMSE values also
increase for different m and n. Moreover, in all the cases, MMRRPM approaches had the least SIMSEs and this means
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1840 NASSAR and ABDEL-SALAM

TABLE 4 Out-of-control ARL for uncorrelated (ρ = 0.0) profile datasets for different model misspecification levels (γ) and shift sizes (δ)
(m = 300, n = 20, l = 40)

𝜸 𝜹 𝑻𝟐
𝐏

𝑻𝟐
𝐍𝐏𝐑

𝑻𝟐
𝐒𝐏𝐑

0.00 0.00 200.00 200.00 200.00
0.10 150.85 153.53 139.60
0.20 117.48 126.98 106.97
0.30 75.14 83.53 66.29
0.50 43.8 49.10 34.85

0.25 0.00 199.89 178.37 153.49
0.10 152.06 140.75 114.21
0.20 112.63 105.36 84.21
0.30 76.89 64.54 42.66
0.50 40.13 32.59 21.78

0.50 0.00 199.4 163.54 142.53
0.10 154.70 117.98 106.53
0.20 115.69 87.92 69.21
0.30 79.16 60.44 38.67
0.50 44.77 31.09 16.68

0.75 0.00 199.46 146.84 133.49
0.10 150.13 105.49 100.44
0.20 110.52 75.25 70.78
0.30 77.06 47.04 36.45
0.50 46.07 25.34 21.72

1.00 0.00 196.79 135.01 110.09
0.10 149.47 93.48 79.53
0.20 118.17 67.51 45.17
0.30 80.59 35.98 19.59
0.50 47.37 20.84 11.63

UCL 33.09 46.02 33.09

its estimation is the closest to the actual values with the smallest errors. Therefore, MMRRPM gives more precise results
compared to the other two approaches.
Now, the MEWMA charts in Equations (21), (23), and (25) for the parametric, NP, and MMRRPM, respectively, are

constructed by substituting the random effects obtained for 𝛾 = 0.0 with no shift 𝛿 = 0.0; to obtain the desired upper
control limits (UCL) by setting the in-control ARL, ARL0 = 200. For simplicity, the smoothing parameters within each
MEWMA control chart were selected to be equal (𝑤1 = 𝑤2 = … = 𝑤𝑝), and in our numerical study, they were chosen to
be 0.2 as was chosen by Kim et al5 and Narvand et al.13 The control limits for the parametric and MMRRPM approaches
are the same because, as mentioned previously, the mixing parameter is 0 when 𝛾 = 0.0. Then, after obtaining the UCLs
for all charts, different amounts of shifts (𝛿 = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.50) are introduced in the slope parameter to
the last L profiles and the out-of-control ARL1, and ATS values are computed for comparing the sensitivities of these three
control charts among all misspecification levels for the uncorrelated and correlated data with a different combination of
profiles and sample sizes. Again, due to space limitation, the uncorrelated and moderately correlated ARL results will be
shownonly for specific shift sizes (𝛿 =0.10, 0.20, 0.30, 0.50) ofMEWMAcharts form= 300withn= 10, 20; these results are
given in Tables 3-6. We can see that MMRRPM performance is better than both the parametric and the NP performances
when there is no model misspecification, as its ARL1 values are the least, except when m = 300 and n = 10 for 𝜌 = 0.5,
where it had exactly the same performance as the parametric MEWMA chart. Furthermore, when the misspecification
level increases, the sensitivity of the NP MEWMA chart increases compared to the parametric MEWMA, as it is able to
detect all amounts of shift quickly. Thus the NP chart is superior compared to the parametric chart when there is model
misspecification, but in fact, it is not better thanMMRRPM chart as its ARL1 values are larger. We have found that neither
the correlation level nor the profile size and the sample size have any effects on the results. We can conclude that the SP
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NASSAR and ABDEL-SALAM 1841

TABLE 5 Out-of-control ARL for moderate autocorrelated (ρ = 0.5) profile datasets for different model misspecification levels (γ) and
shift sizes (δ) (m = 300, n = 10, l = 40)

𝜸 𝜹 𝑻𝟐
𝐏

𝑻𝟐
𝐍𝐏𝐑

𝑻𝟐
𝐒𝐏𝐑

0.00 0.00 200.00 200.00 200.00
0.10 150.85 154.78 150.85
0.20 117.23 120.24 117.23
0.30 90.65 95.96 90.65
0.50 53.27 57.05 53.27

0.25 0.00 198.66 168.85 148.14
0.10 147.98 130.89 111.13
0.20 112.52 97.57 94.20
0.30 85.41 70.11 68.24
0.50 51.14 39.09 33.23

0.50 0.00 195.74 142.29 133.47
0.10 142.70 99.74 100.94
0.20 109.32 76.92 75.52
0.30 78.65 61.16 51.10
0.50 49.75 33.91 26.00

0.75 0.00 198.27 130.62 111.26
0.10 144.33 94.22 82.02
0.20 105.49 58.84 56.42
0.30 76.91 37.10 32.52
0.50 49.66 16.61 14.63

1.00 0.00 196.64 104.62 90.11
0.10 143.46 75.84 69.46
0.20 104.53 45.54 41.24
0.30 77.59 20.76 14.68
0.50 50.46 10.63 6.54

UCL 33.02 47.51 33.02

(MEWMA) control chart is the best in detecting model misspecification among all shifts. Thus, it is recommended to be
used for monitoring profiles in Phase II.

5 REAL DATA APPLICATION

The vertical density profile (VDP) data were used by Walker and Wright22 as shown in Figure 1, where the density of 24
wood boards was measured as it is important for maintaining good quality. Each VDP contains 314 measurements taken
0.002 inches apart.
The response variable (Y) is the board density and the explanatory variable (X) is the depth measured at an interval of

0.002 inches between every two consecutive measures. The profile between the density and the depth was fitted using the
LMM shown in Equation (28), which is used for obtaining control limits by using the same simulation scenariomentioned
previously. Also, the normality assumptionwas checked for all the approaches and the plotting histograms for the residuals
obtained from each method. From Figure 2, one can see that the parametric histogram is highly skewed to the left, this is
an indication of a lack-of-fit using this technique, on the other hand, the histograms of the NP and SP approaches showed
almost normal distributions.

𝑦𝑖𝑗 = 53.70 + 𝑏0𝑗 +
(
−67.55 + 𝑏1𝑗

)
𝑥𝑖𝑗 +

(
109.15 + 𝑏2𝑗

)
𝑥𝑖𝑗

2 + 𝜀𝑖𝑗, (28)

where 𝑏0𝑗 ∼ 𝑁(0, 1.62), 𝑏1𝑗 ∼ 𝑁(0, 46.80), and 𝑏2𝑗 ∼ 𝑁(0, 121.19).
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1842 NASSAR and ABDEL-SALAM

TABLE 6 Out-of-control ARL for moderate autocorrelated (ρ = 0.5) profile datasets for different model misspecification levels (γ) and
shift sizes (δ) (m = 300, n = 20, l = 40)

𝜸 𝜹 𝑻𝟐
𝐏

𝑻𝟐
𝐍𝐏𝐑

𝑻𝟐
𝐒𝐏𝐑

0.00 0.00 200.00 200.00 200.00
0.10 143.57 144.79 143.57
0.20 110.51 109.79 110.51
0.30 75.58 80.67 75.58
0.50 46.38 50.06 44.38

0.25 0.00 197.10 171.20 163.26
0.10 140.58 139.77 124.77
0.20 104.01 94.56 86.11
0.30 72.87 54.97 52.51
0.50 44.43 35.49 29.81

0.50 0.00 197.09 159.68 146.83
0.10 142.67 113.57 110.73
0.20 100.81 72.88 72.09
0.30 73.79 42.34 40.25
0.50 44.50 24.60 21.85

0.75 0.00 198.71 145.30 130.95
0.10 140.74 106.77 102.21
0.20 100.40 69.43 65.06
0.30 69.21 40.76 39.67
0.50 40.54 21.71 21.07

1.00 0.00 197.19 137.09 114.31
0.10 140.87 96.25 78.55
0.20 100.58 64.71 47.41
0.30 70.16 23.36 17.82
0.50 41.67 12.61 6.73

UCL 32.74 46.59 32.74

Moreover, we fitted the profiles using the three approaches. In Figure 3, we can see that the parametric approach
provides a smooth fit for the data. While in fact, the data have some fluctuations, and therefore, this approach is not
capable of modeling this profile data. The MMRRPM technique presents the fluctuations and considers peaks and dips,
thus it fits the data better. Furthermore, the mean square error (MSE) for each technique was computed: the parametric
approach gives MSE 0.181, the MSE for NPRs is 0.0305, and the SP (MMRRPM) MSE equals 0.0305. The parametric fit
has the highest MSE compared to other techniques, while both the NPRs and SP (MMRRPM) techniques have the least
MSE.
As was done in simulation, the UCLs for the proposed MEWMA charts in Equations (21), (23), and (25) for the

parametric, NPRs, and MMRRPM, respectively, were found to achieve the desired ARL0 = 200. The performances
of these charts are examined by considering the first 16 profiles as in-control, and the last eight profiles were used
to show an out-of-control condition for a slope shift coefficient of 0.5. The sensitivities of the proposed NP and SP
MEWMA charts are represented in Figure 4. The in-control profiles are represented in blue, while the out-of-control
profiles are represented in red. It can be seen that the PMEWMA chart required five profiles to detect an out-of-
control process, while the NPRMEWMA required almost three profiles. This leads to better performance of the NP
chart compared to the parametric chart. Furthermore, the SPRMEWMA chart needed two profiles only to detect
an out-of-control process, and there exists one false alarm (profile 11). We can conclude that the sensitivity of the
SP technique is more, and its shift detection is faster compared to the parametric and NP techniques for the real
dataset.
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NASSAR and ABDEL-SALAM 1843

F IGURE 1 Raw dataset for vertical density boards

F IGURE 2 Vertical density profile residuals. (A) Parametric fit. (B) Nonparametric fit on residuals. (C) Semiparametric fit MMRRPM

6 CONCLUSION

In this study, we have proposed the NP and SP approaches for monitoring LMMs for correlated and uncorrelated profiles
in Phase II analysis. Our proposed NP and SP MEWMA control charts were constructed based on the estimated random
effects for monitoring profiles. The performances of the NP and SP MEWMA charts were compared to the parametric
approach using ARL criterion, where model misspecification was taken into consideration. Also, we considered different
amounts of shifts inserted in the slope, to check the charts abilities in detecting out-of-control profiles. Comprehensive
Monte Carlo simulation studies were done and a real data application was conducted. We found that the proposed SP
MEWMA control chart had the best performance compared to the other two approaches. Moreover, the NP MEWMA
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1844 NASSAR and ABDEL-SALAM

F IGURE 3 Vertical density profiles. (A) Parametric fit. (B) Nonparametric fit on residuals. (C) Semiparametric fit MMRRPM

F IGURE 4 Vertical density MEWMA. (A) Parametric MEWMA. (B) Nonparametric residuals MEWMA. (C) Semiparametric MEWMA

control chart had a better performance than the parametric one, when there was model misspecification. Also, we com-
puted SIMSE for the three charts, and again the SP approach had the least SIMSE results and thus it was the best. We
recommend using the SP technique for faster detection of an out-of-control profile and for future recommendations; we
suggest that the shiftmay be inserted in the intercept or variance-covariancematrix instead of introducing it into the slope.
Moreover, theMEWMAchartsmay be based on the fitted values instead of the randomeffects only and their performances
may be compared.

DATA AVAILAB IL ITY STATEMENT
Data source: Data are available upon request from the authors.
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