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Abstract 

A laboratory research program was undertaken to study the large-strain shear 

strength characteristics of fine-grained soils under low effective normal stresses 

(~3 to 6 kPa). Soils that cover a wide range of plasticity and composition were 

utilized in the program. The interface shear strength of these soils against a 

number of solid surfaces having different roughness was also investigated at 

similar low effective normal stress levels. The findings contribute to advancing 

the knowledge on the parameters needed for the design of pipelines placed on sea 

beds and the stability analysis of shallow soil slopes. A Bromhead-type torsional 

ring shear apparatus was modified to suit measuring soil-soil and soil-solid 

interface drained residual shear strengths at the low effective normal stresses. In 

consideration of increasing the accuracy of assessment and depicting the full-scale 

field behavior, the interface residual shear strengths measured using the modified 

ring shear apparatus were compared with those measured by research 

collaborators for similar interfaces using a macro-scale interface direct shear 

device with a plan interface shear area of approximately 3.0 m2. Correlations are 

developed to estimate the soil-soil and soil-solid interface residual shear strengths 

at low effective normal stresses. The correlations are compared with soil-soil and 

soil-solid interface drained residual shear strengths and correlations presented in 

the literature.  

Data of torsional ring shear tests at a wide range of effective normal stress 

(10 to 700 kPa) for soils, mudstones and shales of different plasticity and 

gradation were analyzed. The data were made available for this research to study 
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the effects of the change in nonlinearity of shear strength envelope over the 

normal stress ranges relevant to soil slope stability analyses. Using this data set, 

new empirical residual shear strength correlations were developed as a function of 

soil index parameters and wide range of effective normal stresses. In essence, the 

correlations are presented as revised versions of those previously developed for a 

limited number of normal stresses utilizing the same soil index parameters. 

Comparisons were made with a considerable amount of back-calculated shear 

strength data reported in the literature for reactivated landslides as well as results 

predicted from existing shear strength correlations to verify the increased 

suitability of the new correlations for use in slope stability analyses. A numerical 

expression was also introduced to express the residual shear strength correlations 

for direct incorporation in slope stability software. 
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Chapter	1. 0B0B0BIntroduction	

1.1. 5BStatement	of	the	Problem.	

Measurement of the residual shear strength of soils at low to medium effective 

normal stresses has direct application on the stability analysis of shallow soil 

slopes. Advanced knowledge on soil-solid interface shear strength characteristics at 

such stresses is also particularly crucial for the offshore and near shore pipeline 

construction industry in relation to assessing, (i) the stability of pipelines placed on 

sloping sea floors; and (ii) the potential of pipeline walking. However, soil-soil and 

soil-solid interface shear strength studies have been commonly conducted at 

effective normal stress levels greater than 15 kPa and typically ranging between 50 

and 700 kPa.  

The drained residual and large-strain strength of fine-grained soils have been 

often assessed using the direct shear box and the torsional ring shear devices by 

many researchers (e.g., Bishop et al. 1971; Lupini et al. 1981; Skempton 1985; 

Stark and Eid 1994). The same devices have been used extensively to study the 

shear strength at the interface between fine-grained soils and solid material surfaces 

(e.g., Tika-Vassilikos 1991; Lehane and Jardine 1992; Lemos and Vaughan 2000). 

Because of the relatively small area available for shear combined with friction 

associated with the mechanical system, the commonly used design of these devices 

are not able to deliver low shear stresses to the soil specimen at a suitable accuracy. 

In addition, the low soil-soil and soil-solid interface shear strengths expected under 

small confining stress levels would be small and may lead to less reliable estimates 

of strength parameters (Fang et al. 2004). Clearly, the current understanding of the 
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residual shear and interface strength of fine-grained soils at low to medium 

effective normal stress levels is limited, and it is mainly based on data originating 

from purpose-designed devices. As a result, a study of the laboratory measurement 

techniques, magnitude, effect of soil index properties, and solid interface roughness 

on those drained shear strengths was initiated. 

Several empirical correlations of soil shear strengths with index properties 

are available in the literature (e.g., Skempton 1964; Voight 1973; Kanji 1974; 

Mitchel 1976; Cancelli 1977; Lupini et al. 1981; Lambe 1985; Skempton 1985; 

Mesri and Cepeda-Diaz (1986); Collotta et al. 1989; Nelson 1992; Stark and Eid 

1994; Mesri and Shahien 2003; Wesley 2003; Sridharan and Raghuveer Rao 2004; 

Stark et al. 2005; Stark and Hussain 2013). The correlations are particularly useful 

for preliminary designs and when soil samples and funding resources are not 

readily available for advanced soil testing. Such correlations have been developed 

based on tests conducted at a relatively high effective normal stresses (50 to 700 

kPa).  

Several expressions are also presented in the literature for estimating the 

residual friction angles as a function of the soil index properties without 

considering the effective normal stress to yield linear shear strength envelopes 

(e.g., Kanji 1974; Cancelli 1977; Nelson 1992; Sridharan and Raghuveer Rao 

2004) or at specific high normal stresses to develop tri-linear or quad-linear shear 

strength envelopes (e.g., Stark and Hussain 2013). In conducting analyses using 

slope stability software, utilizing smooth nonlinear envelopes leads to an accurate 

determination of the shear strength that corresponds to the effective normal stress 

acting on the base of each slice of the proposed failure wedge. 
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1.2. 6BObjectives	of	the	Study	

This study has two main objectives. The first is to study the residual shear and soil-

solid interface shear strength-deformation characteristics of fine-grained soils at 

effective normal stresses between 3 and 6 kPa. The goal is achieved through an 

extensive experimental program involving measurement of soil-soil and soil-solid 

interface drained residual shear strengths on the element scale, using a modified 

ring shear apparatus (MRSA) to conduct soil-soil and soil-solid interface shear 

tests. The results were compared with those yielded from testing similar interfaces 

using a macro-scale interface direct shear device (MDSD) fabricated at the 

University of British Columbia (UBC), Canada. The MDSD tests were conducted 

at UBC as a part of a research project collaboration with Qatar University funded 

by Qatar Foundation. 

The second objective of this thesis is to: (i) revise and update the drained 

residual shear strength correlations that have been developed by Stark and Eid 

1994; Mesri and Shahien 2003; Stark et al. 2005; and Stark and Hussain 2013 

based on soil residual shear strength data at effective normal stresses of 10, 25, 50, 

100, 200, 300, 400, and 700 kPa made available by Eid (2014); (ii) to verify the 

increased suitability of the new correlations for use in slope stability analyses 

thorough comparison with a considerable amount of back-calculated shear strength 

data reported in the literature for reactivated landslides as well as results predicted 

from existing shear strength correlations; and (iii) to introduce a numerical 

expression of the residual shear strength correlations for direct incorporation in 

slope stability software.  

To accomplish the first objectives, the study involved the following major tasks: 
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(1) Evaluation of the existing literature of the fine-grained soils and interface 

drained residual shear strength at low to medium effective normal stresses. 

(2) Modification of a Bromhead-type torsional ring shear apparatus to suit 

measuring soil-soil and soil-solid interface residual shear strengths at the low 

effective normal stresses (3 to 6 kPa). 

(3) Measurement of soil-soil and soil-solid interface drained residual shear 

strengths using the modified ring shear apparatus (MRSA). 

(4) Comparison of the soil-solid interface shear strength measured using a modified 

ring shear apparatus with those measured for similar interfaces using a macro-

scale interface direct shear device with a plan interface shear area of 

approximately 3.0 m2 specially fabricated for this comparison.  

(5) Development of correlations to estimate the soil-soil and soil-solid interface 

residual shear strengths at low effective normal stresses. 

(6)  Comparison of the developed correlations with soil-soil and soil-solid interface 

drained residual shear strengths and correlations presented in the literature. 

To accomplish the second objectives, the study also involved the following 

major tasks: 

(1) Evaluation of the existing empirical correlations for estimating the soil drained 

residual shear strength. 

(2) Investigating the degrees of nonlinearity of the shear strength envelope over the 

normal stress ranges relevant to soil slope stability analyses.  

(3)    Development of new empirical residual correlations as function of soil index 

parameters and wide range of effective normal stresses based on shear strength 
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data provided by Eid (2014) as a revised versions of those previously developed 

for a limited number of normal stresses.  

(4) Evaluating statistically the performance of the new empirical residual shear 

strength correlations thorough comparison with a considerable amount of back-

calculated shear strength data reported in the literature for different case 

histories of reactivated landslides as well as results predicted from existing 

shear strength correlations. 

(5) Development of a numerical expression that would account for the dependence 

of residual friction angle on the effective normal stress for direct incorporation 

in slope stability software. 

1.3. 7BScope	

This thesis is divided into five chapters. Chapter 1 is the introduction. Chapter 2 

presents a literature review on the drained residual interface strength of fine-

grained soils at low effective normal stress levels based on data originating from 

purpose-designed devices. Review on the existing literature of the soil drained 

residual shear strength at effective normal stresses relevant to soil slope stability as 

well as the existing empirical correlations for estimating such a strength is also 

presented.  

Descriptions of the modified ring shear apparatus (MRSA) and the 

experimental procedure used in this research to measure soil-soil and soil-solid 

interface drained residual shear strengths at low effective normal stresses are 

presented in Chapter 3. Comparison of the soil-solid interface shear strengths 

measured on the element scale using the MRSA with those measured for similar 
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interfaces measured at UBC using a macro-scale interface direct shear device is 

also presented in this chapter. The data of the MRSA was used to develop a 

correlation for estimating the soil-soil and soil-solid interface drained residual shear 

strengths at low effective normal stresses. Comparisons of the developed 

correlations with the similar correlations presented in the literature are also 

introduced.   

Chapter 4 provides torsional ring shear testing data which were made 

available by Eid (2014) at a wide range of effective normal stress (10 to 700 kPa). 

This chapter presents a new empirical correlation for soil drained residual strength 

as a revised version of those previously developed for a limited number of normal 

stress levels. The reliability of using the developed correlations is examined in this 

chapter through comparisons with a considerable amount of back-calculated shear 

strength data reported in the literature for reactivated landslides as well as results 

predicted from existing correlations. Finally, a new numerical expression was 

introduced in this chapter for direct incorporation in slope stability software. 

Chapter 5 presents the summary and the conclusions of the research. 
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Chapter	2. 1B1B1BLiterature	Review	and	Discussion	

2.1. 8BTTThe	 Use	 of	 Interface	 Residual	 Shear	 Strength	 at	 Low	

Effective	Normal	Stresses		

Understanding the interface residual shear strength is crucial for offshore pipeline 

construction industry in relation to assessing, (i) the stability of pipelines placed on 

sloping sea floors; and (ii) the potential of pipeline walking. Seabed pipelines are 

typically subjected to differential movements with large strains at the pipe-soil 

interface. Such movements are due to thermal expansion or contraction under 

successive start up and shut down cycles. The developed large strains can 

significantly mobilize the interface strength to the residual value.  There are 

considerable limitations that arise when testing interfaces under stress conditions 

commonly encountered in offshore environments. Primarily, the limitations arise as 

a result of the need to shear interfaces at very low effective normal stresses to 

relatively large strains. As a result, the typical shear testing devices do not produce 

reliable data. Attempts have been made to develop novel devices that are 

specifically used to experimentally measure residual shear and interface strength of 

fine-grained soils at low effective normal stress. 

2.2. 9BExisting	 Devices	 for	 Measuring	 Interface	 Residual	

Strength	at	Low	Effective	Normal	Stresses.	

The current understanding of the residual shear and interface strength of fine-

grained soils at low effective normal stress levels is mainly based on data 

originating from purpose-designed devices. A description of these devices and their 

use is provided in the following subsections. 
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2.2.1. 20BTilt	Table	Device	

Utilizing a custom tilt table device, large-strain soil and interface shear strengths 

have been measured at effective normal stresses of 2.9 and 4.1 kPa by Najjar et al. 

(2003) and from 1.7 to 5.8 kPa by Najjar et al. (2007). These tilt table tests used 

gravity to apply the normal and shear stresses, and the normal stress was applied on 

a specimen measuring 152 x 152 mm in plan (Fig. 2.1). In order to mobilize the 

residual strength, the table was successively lowered and raised until at least 100 

mm of shear displacement was attained and constant shear strength was developed. 

 

 Figure 2.1. Schematic diagram of tilt-table device (after Najjar et al. 2003) 
 

2.2.2. 21BCam‐Shear	Device	

A custom-made shear box called the “Cam-shear” device, designed to minimize 

mechanical friction of the device and to allow the simulation of axial pipe-soil 

interaction behavior through dragging a 75 mm-diameter soil sample over a flat 

sheet of pipe coating material was utilized by Kuo et al. (2010) to measure 

interface strength at normal stresses between 2 and 6 kPa. Although a total stroke 

length of 190 mm can be achieved in this apparatus, the residual shear strength was 

measured at shear displacement of approximately 50 mm. The shearing rates used 
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were relatively fast providing limited freedom to develop fully drained shearing 

conditions (Colliat et al. 2011, Kuo and Bolton 2014). The Cam-shear device was 

also used by Ganesan et al. (2014) to measure the drained large-displacement 

interface shear strength of a single soil against a smooth and rough pipe coating 

materials at normal stresses ranging from 1 to 4.5 kPa (Fig. 2.2). The shear 

displacements for the interface testing were between 60 and 120 mm. Concurrently, 

soil-soil drained shear tests were also conducted but to a displacement limited to 12 

mm. 

 

Figure 2.2. Main features of the Cam-shear box (after Ganesan et al. 2014). 
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2.2.3. 22BUWA	Small‐Scale	Direct	Shear	Box	

A small-scale direct shear box modified at the University of Western Australia 

(UWA) to operate at the low stress levels relevant to pipeline geotechnics was used 

by White and Cathie (2011) and White et al. (2012) in measuring the partially 

drained interface shear strength at a normal stress of 2.5 kPa for rough steel surface 

against kaolin clay and carbonate soils, respectively. In the UWA low-stress shear 

box, the lower half of the shear box is placed with a coated or uncoated plate (Fig. 

2.3). Reversal of shearing direction is possible with a maximum shear displacement 

of 10 mm in one direction. Interface residual resistances recorded at the end of the 

first shearing cycle in low-stress shear box tests were presented by Hill et al. 

(2012). In such tests, marine clay was sheared against smooth and rough surfaces at 

normal stress ranging from 2 to 8 kPa using different shearing displacement rates.  

 

Figure 2.3. UWA small-scale direct shear box (after White et al. 2012) 
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2.2.4. 23BOther	Devices	

In a more practical approach, axial sliding of a pipe model over soil surface has 

also been used to estimate the drained residual interface shear strength at low 

effective normal stresses. Utilizing such a technique, White and Randolph (2007) 

and Bruton et al. (2009) presented interface shear strengths measured at effective 

normal stresses between 2 and 4 kPa. The tests used full-size rough-coated pipe 

sheared axially in bins containing 3 m3 of reconsolidated clay (Fig. 2.4). 

 

Figure 2.4. Pipe-soil model testing at large scale (after Bruton et al. 2009) 
  

2.3. 10BMeasurement	of	Soil	Drained	Residual	Shear	Strength		

It is recognized that a prudent approach for obtaining reliable shear strength 

parameters would be to use data derived from tests conducted on different soils. 

Direct shear and torsional ring shear apparatus are commonly used to measure the 
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drained residual shear strength of soils (τr). The suitability of each apparatus is 

discussed in the following sections. 

2.3.1. 24BRing	Shear	Apparatus	

There are different types of torsional ring shear devices. One of the widely 

accepted torsional ring shear device is the Bishop-type ring shear apparatus 

suggested by Bishop et al. (1971) in which the specimen is sheared at a mid-depth. 

A more commonly used device is the Bromhead ring shear apparatus suggested by 

Bromhead (1979) in which shearing occurs at the top of specimen. In measuring 

the residual shear strength, the torsional ring-shear apparatus has several 

advantages including: (i) shearing the specimen continuously in one direction for 

any magnitude of displacement; (ii) having a constant cross-sectional area of shear 

surface during shear; and (iii) utilizing a relatively thin test specimen and 

consequently allowing relatively faster displacement rates to be used without 

affecting drainage conditions 

2.3.1.1. 41BBishop‐Type	Ring	Shear	Apparatus	

Bishop et al. (1971) developed a torsional ring shear apparatus to measure the 

residual strength of soils. The apparatus uses an annular specimen with 152 mm 

and 101 mm outer and inner diameters, respectively, and a specimen height of 19 

mm. The specimen is sheared near the mid-height and shearing occurs only in one 

direction. Thus, the specimen can be sheared to an unlimited continuous shear 

displacement without changing the direction of shear. The specimen is confined 

radially by upper and lower confining rings.  
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2.3.1.2. 42BBromhead	Ring	Shear	Apparatus	

Bromhead (1979) presented another type of torsional ring shear device in which 

shearing occurs at the top of soil specimen. This device uses 5 mm-thick with 

inside and outside diameters of 70 and 100 mm, respectively. Stark and Eid (1993 

and 1994) suggested modification to the Bromhead ring shear specimen container 

to allow the raise of the specimen after consolidation to be flush with the top of the 

specimen container. Such raising minimizes the effect of wall friction on the test 

results. Stark and Eid (1994) showed that the Modifed Bromhead ring shear 

apparatus yields values of residual shear strengths that are in agreement with those 

calculated from case histories of reactivated landslides.  

2.3.2. 25BDirect	Shear	Apparatus	

Direct shear box is the most common used apparatus for measuring the shear strength 

of a soils. The Casagrande shear box with bottom and top halves having dimensions of 

60 mm x 60 mm x 25 mm (2.36 in. x 2.36 in. x 1 in.) is frequently used around the 

world. Skempton (1964) suggested a reversal direct shear test procedure to measure the 

drained residual shear strength of soils. The direct shear box can be displaced in one 

direction to a limited shear displacement of only about 6 mm. Larger shear 

displacement in one direction is usually required to orient the clay particles parallel 

to the direction of shear and develop the residual shear strength condition.  

2.4. 11BExisting	Residual	Shear	Strength	Correlations		

This section presents the available empirical correlations for residual shear strength 

of soils. The correlations are listed herein based on their way of presentation 
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(Graphical or Numerical) as well as the parameters used in their development. All 

of the graphical correlations are shown in Appendix A. 

2.4.1. Graphical	Correlations	

2.4.1.1. Correlations	Based	on	Clay‐Size	Fraction	

2.4.1.1.1 49BSkempton	(1964)		

Skempton (1964) considered it appropriate to correlate the drained residual friction 

angle (ør') with clay-size fraction (CF). The clay-size fraction is defined as the 

quantity of particles – by weight - smaller than 0.002 mm. Skempton (1964) used 

direct shear test results of nine natural soils and three clay minerals to establish his 

correlation. Skempton (1964) concluded that drained residual friction angle 

decreases with increasing the CF.  

2.4.1.1.2 51BSkempton	(1985)	

Skempton (1985) also showed a relationship between CF and ør' for different soils 

with limited values of activity between 0.5 and 0.9. The activity (A) is defined as 

the plasticity index divided by the clay-size fraction (PI/CF). Skempton (1985) 

concluded that clay-size fraction (as an indication of particle size)  has little effect 

on residual strength when the CF is less than 20%, and greater than or equal to 

50%. The correlation still shows a considerable scatter in ør'.  

2.4.1.2. 26B	Correlations	Based	on	Liquid	Limit	

2.4.1.2.1 43BMitchell	(1976)	

Mitchell (1976) presented empirical correlation between residual friction angle and 

liquid limit (LL). Mitchell (1976) cited personal communication with Deere (1974) 
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as the source for his correlation. The drained residual friction angle decreases with 

an increase in the liquid limit. However, no test data points were presented in the 

correlation.   

2.4.1.2.2 45BMesri	and	Cepeda‐Diaz	(1986)	

Mesri and Cepeda-Diaz (1986) presented a relationship between ør' and LL based 

on direct shear tests on 24 shale specimens and data from Kenney (1967). The 

residual friction angle decreases with an increase in the liquid limit. However, 

Mesri and Cepeda-Diaz (1986) do not include effective normal stress at which the 

direct shear tests were performed in their correlations. 

2.4.1.2.3 46BStark	and	Eid	(1994)	

Stark and Eid (1994) presented empirical correlation for drained residual angle of 

cohesive soils based on ring shear tests of 32 clays and shales.  Stark and Eid (1994) 

concluded that the shear strength envelope is nonlinear and incorporated the effect of 

liquid limit, clay-size fraction, and effective normal stress (σn') in the empirical 

correlation. Stark and Eid (1994) showed three different values of residual friction 

angle corresponding to LL and CF for three different effective normal stresses, i.e., 

100, 400, and 700 kPa. 

Stark and Eid (1994) used samples processed through the Number 200 sieve 

for highly overconsolidated clays. The soil is ball milled prior to reduce the 

aggregation of the overconsolidated clay particles so they can be processed through 

the Number 200 sieve. ASTM D4318 and D422 test methods were used to estimate 

LL and CF, respectively, for the material processed through the Number 200 sieve. 

If the clay is not highly overconsolidated, i.e., without significant induration 

(aggregation), the samples are only processed through the Number 40 sieve and 
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thus not ball milled. The method for sample preparation using ball milling of highly 

overconsolidated clays was proposed by Mesri and Cepeda-Diaz (1986) and used 

to measure LL and CF because most of the highly overconsolidated clays, 

mudstones, claystones, and shales possess varying degrees of induration. Because 

the empirical correlations presented by Stark and Eid (1994) were developed using 

LL, CF, and σn', the correlation showed good agreement with the back-calculated 

drained residual friction angles calculated from case histories of reactivated 

landslides. 

2.4.1.2.4 47BStark	et	al.	(2005)	

Stark et al. (2005) introduced a revisited residual strength correlation through 

adding test results of an additional 34 soils for Stark and Eid (1994) correlation. 

Stark et al. (2005) miss plotted some of the Stark and Eid (1994) data points, 

utilized index parameters of claystones and shales derived from different sample 

preparation procedures, and used some results collected from commercial sources. 

Kaya (2009) noted that the revised correlation by Stark et al. (2005) shows a larger 

data scatter up to LL of 100%.   

2.4.1.2.5 48BStark	and	Hussain	(2013)	

Stark and Hussain (2013) extended the correlation of Stark et al. (2005) through 

adding data and trend line for an effective normal stresses of 50 kPa. Extending the 

covered level of effective normal stress down to 50 kPa was done to capture the 

curvature and nonlinearity of the residual failure envelope. The ring shear data for an 

effective normal stress of 50 kPa was collected from Eid (1996). 
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2.4.1.3. 28BCorrelations	Based	on	Plasticity	Index	

2.4.1.3.1 52BVoight	(1973)	

Voight (1973) presented a relationship between plasticity index and residual 

strength coefficient (tan(ør')). The relationship was developed using data from other 

researchers. Voight (1973) presented an argument that the scatter in his correlation 

may be caused by the low plasticity measured for some of the soils, such as 

Cucaracha shale. Voight (1973) attributed it to either flocculation or to insufficient 

breakdown of particle aggregates. Voight (1973) concluded that the plasticity index 

appears to be a useful guide to residual strength of natural relationship between ør' 

and PI.  

2.4.1.3.2 Kanji	(1974)	

Kanji (1974) plotted the friction angles versus the plasticity index. Kanji (1974) 

endorsed the Voight (1973) findings that the index property of a soil can be 

correlated to the residual friction angle. 

2.4.1.3.3 Mitchell	(1976)	

Mitchell also presented a relationship between ør' and PI derived from Deere 

(1974). The drained residual friction angle decreases with an increase in the 

plasticity index. However, no test data points were presented in the correlation.   

2.4.1.3.4 50BLupini	et	al.	(1981)	

Lupini et al. (1981) presented ring shear test results for a number of natural soils. 

The test results for 52 different soils were compiled and plotted by Lupini et al. 

(1981) to develop a relationship between ør' and plasticity index. Lupini et al. 

(1981) showed that a number of test results fall outside any reasonable correlation 
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band and conclude that some of the degradable mudstone and shale materials show 

a typically low residual friction angles when they are correlated with plasticity 

index. Thus, Lupini et al. (1981) suggested that simple correlations with index 

properties are inadequate for the prediction of residual strength.  

2.4.1.3.5 54BLambe	(1985)	

Lambe (1985) developed a correlation as a function of the plasticity index based on 

a relatively few number of direct shear tests on Amuay soils only. Lambe (1985) 

considered the stress dependency of the failure envelope, and presented trend lines 

that represent effective normal stresses as low as 19.6 kPa.   

2.4.1.4. 55BMesri	and	Shahien	(2003)	

Mesri and Shahien (2003) used the data of Stark and Eid (1994 and 1997) and Eid 

(1996) to develop a correlation between friction angles and plasticity index. Mesri 

and Shahien (2003) showed three different plots for each effective normal stress , 

i.e., 50, 100, and 400 kPa. Lower and upper bounds with an average curve are 

presented for friction angles versus plasticity index. The scatter in his correlation 

for residual friction angle values especially for the PI < 50% is still greater than 7°.  

2.4.1.5. 29BCorrelations	Based	on	Other	Parameters	

Some other researchers present empirical correlations for drained residual friction 

angle based on different parameters besides LL, CF, PI, A, and/or σn', which are 

discussed below. 

2.4.1.5.1 56BCollotta	et	al.	(1989)	

To include the influence of both the clay-size fraction and soil plasticity,  Collotta 

et al. (1989) used one parameter called as CALIP (Equation 2.1) that combines the 
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CF, LL, and PI to present residual strength correlations that contain less scattering. 

The correlations were developed based on direct shear or ring shear testing at 

effective normal stress ranged between 100 and 700 kPa. However, the effect of the 

normal stress level was not shown in the correlations.   

                                                  2 5= ( 10 )CALIP CF LL PI                                            (2.1) 

2.4.1.5.2 57BWesley	(2003)	

Using results of residual shear strength testing on volcanic ash clays and 

sedimentary soils with LL > 50%, Wesley (2003) introduced a correlation based on 

the position in relation to the A-line (i.e., utilizing the PI and LL) which is given in 

Equation 2.2 . The effect of normal stress was not considered. In spite of showing a 

clear trend, the correlation contains a considerable data scattering.  

                                                   = 0.73( 20)PI PI LL                                                      (2.2) 

2.4.2. Numerical	Correlations	

2.4.2.1. Kanji	(1974)	

Kanji (1974) also presented the following expression for the residual friction angle 

as a function of the plasticity index without considering the effective normal stress: 

                                                         
0.466

46.6'
r

PI
                                                                       (2.3) 

2.4.2.2. 44BCancelli	(1977)	

Cancelli (1977) obtained the following expression for the residual friction angle in 

terms of the liquidity limit (WL) with a coefficient of determination (R2) of 0.76. 

                                                         
0.85

453.1'
r

LW
                                                                         (2.4) 
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However, there was no information on the type of the test device utilized to 

develop his correlation. 

2.4.2.3. Nelson	1992	

Nelson (1992) developed three correlations between the residual strength 

coefficient tan(ør'), and LL, PI, and CF based on direct shear testing of 13 

fabricated specimens . Least square regression was performed and a third order 

equation was developed as shown below. Nelson (1992) indicated an R2 regression 

of 0.9, 0.796, and 0.795 for the correlations based on liquid limit, plasticity index, 

and clay-size fraction, respectively. 

      2 4 82 31.6 3.6 10 ( ) 2.2 10 2.5 10'tan( )r LL LL LL                                 (2.5)      

  

   2 4 62 31.1 4.6 10 ( ) 7.2 10 3.8 10'tan( )r PI PI PI                                (2.6)                

  

   2 4 62 31.1 4.9 10 ( ) 8.8 10 5.6 10'tan( )r CF CF CF                              (2.7)          

2.4.2.4. 5BMesri	and	Shahien	(2003)	

    The nonlinear relationship between the residual shear strength and the effective 

normal stress is presented in Mesri and Shahien (2003) by the following 

expression: 

                                         

r

n s

n

1
100100' '( ) σ tan[ ]

'σ
r

m

s r 
 

  
  

                                             (2.8) 

Where s(r) is the residual shear strength, s
100'[ ]r is the secant residual friction 

angle at σn' = 100 kPa, and mr is a parameter with values in the range of 0.85 to 1.0. 

However, no relationship between the soil index parameters and the power 

parameter (mr) is presented in Mesri and Shahien (2003) expression.  
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2.4.2.5. Sridharan	and	Raghuveer	Rao	(2004)	

In response to the correlation presented by Wesley (2003), Sridharan and 

Raghuveer Rao (2004) utilized Wesley (2003) testing results, and presented a 

relationship between ør' and liquid limit, clay-size fraction, and  PILW    for 

soils other than volcanic ash which are given below. 

                                                         
0.745

257.44'

L

r
W

                                                                        (2.9) 

 

                                                         
0.893

336.97'
r

CF
                                                                     (2.10) 

 

                                                   

  0.782

322.04'

PI
r

LW
 

 
                                                         (2.11) 

 
Sridharan and Raghuveer Rao (2004) indicated an R2 regression of 0.462, 0.58, and 

0.486 for the correlations based on LW , CF, and  PI ,LW    respectively. 

2.4.2.6. Wright	(2005)	

Wright (2005) utilized the correlation of  Stark et al. (2005) to develop an equation 

for the secant residual friction angle in terms of the liquid limit and the  ratio 

between the effective stress and the atmospheric pressure “Pa” (i.e., 100 kPa) 

(Equation 2.12) . The Equation were derived for clay-size fraction greater than or 

equal to 50% and liquid limit of less than 150.  

                              f

a

'σ' 52.5 21.3 log 3log
Pr LW

 
   
 
 

                                               (2.12) 
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2.4.2.7. 58BWhite	and	Randolph	(2007)	

White and Randolph (2007) presented the following equation –developed based on 

a data from ring shear tests at normal stress levels of 50 to 300 kPa- to estimate the 

residual friction angle of soil as a function of the effective normal stress only.  

                                    tan(ør') = 0.25 – 0.3 log (σn' / Pa)                               (2.13) 

2.4.2.8. 48BStark	and	Hussain	(2013)	

Stark and Hussain (2013) developed mathematical equations for each trend line in 

the three CF groups and each effective normal stress. A set of four equations was 

developed for each CF group and each effective normal stress as shown below: 

For CF≤ 20% 

                   4 2
'
nσ 50 kPa

39.71 0.29( ) 6.63 10'
r LL LL 


    

  
                                  (2.14a) 

                   4 2
'
nσ 100 kPa

39.41 0.298( ) 6.81 10'
r LL LL 


    

  
                            (2.14b) 

                   3 2

n
' 400 kPa

40.24 0.375( ) 1.36 10'
r LL LL


 


    

  
                            (2.14c) 

                   3 2

n
' 700 kPa

40.34 0.412 ( ) 1.683 10'
r LL LL


 


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  
                          (2.14d) 

For 25% ≤ CF≤ 45% 

   3 3 52 3

n
' 50 kPa

31.4 6.79 10 ( ) 3.61 10 1.86 10'
r LL LL LL


   


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  
        (2.15a)         

   4 3 52 3

n
' 100 kPa

29.8 3.62 10 ( ) 3.58 10 1.85 10'
r LL LL LL


   


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  
      (2.15b) 

   2 3 52 3

n
' 400 kPa

28.4 5.62 10 ( ) 2.95 10 1.72 10'
r LL LL LL


   


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  
     (2.15c)                     
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   4 62 3

n
' 700 kPa

28.05 ( ) 8.18 10 9.372 10' 0.2083r LL LL LL


  


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  
    (2.15d) 

For CF≥ 50% and 30% ≤ LL< 120%

   4 62 3

n
' 50 kPa

33.5 ( ) 3.9 10 4.4 10' 0.31r LL LL LL


  


      

  
                       (2.16a)   

   4 62 3

n
' 100 kPa

30.7 ( ) 4.2 10 8.04 10' 0.25r LL LL LL


  


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  
                 (2.16b)        

   4 62 3

n
' 400 kPa

29.4 ( ) 4.01 10 8.71 10' 0.262r LL LL LL


  


      

  
              (2.16c)        

   4 62 3

n
' 700 kPa

27.7 ( ) 2.89 10 7.11 10' 0.323r LL LL LL


  


      

  
              (2.16d)        

For CF≥ 50% and 120% ≤ LL≤ 300% 

                                         
n
' 50 kPa
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
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n
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Chapter	3. 2B2B2BResidual	Shear	Strength	of	Soils	and	Soil‐
Solid	Interfaces	at	Low	Effective	Normal	Stresses	

3.1. 12BIntroduction	

It has been recognized that the drained residual shear strength envelope of fine-

grained soils is nonlinear. This stress dependency is more pronounced for plastic 

soils especially at low effective normal stress ranges (Skempton 1985). A similar 

conclusion can be drawn from test results presented for the residual and large-strain 

shear strength of fine-grained soils sheared against solid interfaces (e.g., 

Tsubakihara and Kishida 1993) and polymeric geosynthetics (e.g., Esterhuizen et 

al. 2001). Due to such nonlinearity, soil-soil and soil-solid interface residual 

frictional resistance at low effective normal stresses as applicable to offshore 

pipeline design can be significantly underestimated when data developed from 

shear tests conducted at relatively high effective normal stress ranges are used to 

generate soil friction parameters. 

Testing soil-solid interfaces under very low effective normal stresses stems 

from the need to quantify the shear strength at the pipe-soil interface for offshore 

oil and gas pipeline design applications where the effective normal at the pipe-soil 

interface is within the range of 3 kPa to 6 kPa. The following sections provide 

details of the soil-soil and soil-solid interface shear testing using the modified ring 

shear apparatus (MRSA).  

3.2. 13BTest	Materials	

Nine soils were used in this program of soil-soil and soil-solid interface shear 

testing. The basic physical properties and grain-size distribution of these soils are 
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presented in Table 3.1 and Fig. 3.1, respectively. The grain diameter corresponding 

to 50% passing on gradation curve (D50) of each soil is also listed in Table 3.1. The 

particle-size distributions were determined using the standard test method for 

particle-size analysis, ASTM D422 (1999). This method was appropriate since the 

marine soils utilized in the current testing program do not contain palletized 

material such as that described in Kuo and Bolton (2013). As shown in Table 3.1, 

the chosen soils cover a wide range of plasticity and clay-size fraction. Fraser-

River silt (FS) and Gray silt (GS) are materials that originate from natural soil 

deposits in the Province of British Columbia, Canada. The Kaolinite (K) was 

purchased in the form of a commercially available powder. The Gulf-deposit (GD) 

and Nile-deposit (ND) samples were obtained from different locations along the 

Gulf shore of Doha, Qatar and the Nile Delta of Egypt, respectively. 

Table 3.1 Properties of the soils used 
 

 

 

 

 

 
Soil description  

 LL 
(%) 

PL 
(%)

 PI 
(%)

CF 
(%)   

 D50 

(mm) 

   cv
a
 

(m2/yr) 

Fraser-River silt (FS) 21 18   3   9 0.024 17.19 
Gray silt  (GS) 34 17 17 28 0.0096  2.98 
Nile deposit 1 (ND1) 36 24 12  18 0.017  2.61 
Kaolinite (K) 48 26 22 32 0.0027  1.95 
Gulf deposit 1 (GD1) 53 34 19 19 0.035  1.16 
Gulf deposit 2 (GD2) 54 22 32 51 0.0019  0.84 
Nile deposit 2 (ND2) 69 35 34 50 0.002  0.51 
Nile deposit 3 (ND3) 77 28 49 39 0.005  0.53 
Gulf deposit 3 (GD3) 89 33 56 57 <0.001  0.32 
a Evaluated for remoulded soil from oedometer tests at normal stress of 6 kPa.                 



    

   26 

 

Figure 3.1 Gradation curves of test soils. 

The natural water content of typical marine soils is close to the liquid limit. 

As a result, soil specimens for shear testing were prepared by adding water to air-

dried soil to produce a homogenous mixture or slurry having moisture contents 

slightly above their liquid limits. The coefficient of consolidation (cv) evaluated for 

these remoulded soil samples from oedometer tests at normal stress of 6 kPa are 

also listed in Table 3.1. In the soil-solid interface testing program, the selected test 

soils were sheared against: (i) bare-steel; and (ii) epoxy-coated steel surfaces. In 

this regard, miniature disks cut from 7 mm-thick hot-rolled mild steel sheets were 

utilized in the element-scale ring shear testing. The bare-steel surfaces were 

cleaned with a de-greasing agent, washed with water and then dried well prior to 

each interface shear test. The surfaces for soil/coated-solid interface testing were 

prepared by spraying selected liquid epoxy materials on the test surface of the steel 

disks used in the element-scale ring shear device. Two epoxy materials were used 
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as coatings for this test program: (i) a 100% solids epoxy of green color; and (ii) a 

liquid epoxy three coat system of gray color. Spraying of the epoxy on the surfaces 

of the disks was conducted by professionally qualified personnel of a commercial 

organization specialized in epoxy coating in British Columbia, Canada. This has 

resulted in a uniform coating layer with an average thickness of 1.5 mm. The test 

surfaces used in the interface shear tests along with their average roughness (Ra) 

are listed in Table 3.2.  

 Table 3.2 Interface materials and surface roughness 
Material Surface finish Average roughness, Ra (μm) 
Green epoxy (I1) Sprayed on steel 0.16 
Gray epoxy (I2) Sprayed on steel 0.8 
Mild steel (I3) As supplied 2.3 

 

The average roughness is the most universally used parameter for describing 

the surface asperity height (Dangall 1986). It is defined as the arithmetic mean of 

the departure of the profile from the mean line of a surface profile. The average 

roughness was measured using a Mitutoyo-SJ210 type portable roughness tester in 

accordance with ISO standard 4287 (ISO/TC5 1997). 

3.3. 14BElement‐Scale	Testing		

A torsional ring shear apparatus was modified to examine the shearing behavior of 

the interface between soils and solid surfaces. The apparatus was also used to 

determine the residual shear strengths of the test soils (soil-soil shearing) for 

comparison with those of the associated soil-solid interface tests. The soil-soil and 

soil-solid interface tests were conducted at effective normal stresses of 3 and 6 kPa. 

The low normal stresses used in this study, result in very low shear forces 

measured during the soil-soil, and soil-solid interface shear tests at element scale. 
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Therefore, modifications to specific parts of the original ring-shear apparatus were 

made to minimize potential experimental errors. The original apparatus and the 

modifications made are discussed in the following subsections.  

3.3.1. 30BOrignial	Bromhead	Ring	Shear	Apparatus	

The original apparatus is described by Bromhead (1979). The ring-shear specimen 

is annular with inside and outside diameters of 70 and 100 mm, respectively. 

Double vertical drainage is provided through two annular bronze porous stones; 

one secured to the bottom of the specimen container, and the other to the loading 

platen. The specimen is confined radially by the hollow cylindrical specimen 

container, which is 5 mm deep. The normal stress is applied to the loading platen 

(and then to the specimen) through a vertical steel rod that is connected to a 10:1 

lever loading system. This vertical rod comes in contact with the platen when 

sufficient weight is placed on the lever. The torque transmitted through the 

specimen is developed by a pair of proving rings or load cells bearing on a cross 

arm and located at a constant radial distance from the central axis of the specimen 

to generate a circumferential force-couple. The bearing point of each proving ring 

or load cell has two positions so that the effective length of the torque arm can be 

changed. 

3.3.2. 31BLimitations	of	the	Original	Design	in	Measuring	Soil	and	Interface	

Strengths	at	Low	Normal	Stresses		

Several problems are encountered in conducting soil-soil, and soil-solid interface 

tests at normal stresses equal to or less than 6 kPa using the original design of the 

ring shear apparatus. These problems are related to: (i) the application of normal 

stress; (ii) the sensitivity of measuring low shear forces; and (iii) the effect of side-
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wall friction on measured shear strength. The loading platen alone imposes a 

normal stress of about 2.5 kPa on specimen in the original Bromhead design. As a 

result, placement of very small weights would be needed to apply a normal stress 

of 6 kPa or lower through the lever loading system. This does not secure the 

contact required between the vertical steel rod and the loading platen and leads to 

failure in normal stress application during shear. Proving rings and load cells with 

capacities of 0.5 kN or higher that have been commonly utilized in measuring the 

residual shear strength of soils are not sensitive enough to accurately sense the low 

shear forces mobilized in this testing program. Because of the low magnitude of 

these forces, they can be significantly overestimated due to having side-wall 

friction during shear (Stark and Eid 1993; Meehan et al. 2007). These problems 

were rectified by modifying the original design of the ring shear apparatus.  

3.3.3. 32BModified	Ring	Shear	Apparatus			

The problems described above were overcome by several modifications made to 

the loading assembly, shear measuring devices, and specimen container. A general 

view of the modified apparatus is shown in Fig. 3.2. It can be seen that sensitive 

digital dial gauges (with maximum capacity and resolution of 0.1 kN and 0.01 N, 

respectively) were utilized for measuring the low shear forces. The lever loading 

system was also replaced by a light-weight hanger for direct normal stress 

application.  In addition, a light-weight loading assembly is used to help in 

applying small normal stresses. 
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Figure 3.2 General view of the ring shear apparatus showing the components 
utilized to apply low normal stresses and measure the corresponding shear forces 

The differences between the original loading assembly and the modified 

version are shown in Fig. 3.3a (end elevation) and Fig. 3.3b (perspective view). It 

can be seen that the long steel torque arm and the thick top platen of the original 

design are replaced by a short aluminum torque arm and a thin top platen in the 

modified loading assembly. The use of a short torque arm was advantageous since 

it reduced the weight of the loading assembly and enhanced the readings of the load 

cells measuring the force-couple. A horizontal hole was made in the loading platen 

to release any potential air pressure generated between the platen and the 

centralizing pin around which the specimen container rotates during shear (Fig. 
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3.3a). It should also be noted that for soil-solid interface testing, the porous stone 

that is fixed to the original top platen using fully penetrated screws was replaced by 

a steel disk attached to the top platen using partially penetrated screws (Fig. 3.3b). 

This secures the flatness of the steel disk surface needed for the soil-solid interface 

testing. As shown in Fig. 3.3a, the edges of the steel disks are beveled to avoid 

coating the disk outer perimeter (edges). Coating the edges may result in a 

significant error in shear force reading due to friction between such coated edges 

and the inner walls of the specimen container. To eliminate the effects of side-wall 

friction during shear, the original one-piece specimen container was replaced by a 

three-piece system (Fig. 3.4) and the procedure described in Stark and Eid (1993) 

for eliminating such effects was followed. 

 (a) 

 

(b) 

 

Figure 3.3 Views showing the different loading assemblies of the ring shear 
apparatus: (I) the original assembly; (II) assembly modified for soil/soil testing; 
(III) assembly modified for interface testing; (IV) modified assembly with coated 
disk 
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Figure 3.4 Top view shows the specimen containers of the torsional ring shear 
apparatus: (a) original container; (b) components of the modified container; (c) 
assembled modified container                                                                                                                  

3.3.4. 33BTesting	Procedure		

3.3.4.1. 59BSample	Preparation	

Before each soil-soil and soil-solid interface shearing test, the soil samples 

were air-dried and material passing through the # 40 sieve was selected for testing. 

Except for the Gray silt, gradations of the natural soils used in the current testing 

program were not changed by this sieving process. The natural Gray silt has about 

7% of its particles coarser than # 40 sieve (i.e., 0.425 mm). The Gray silt grain-size 

distribution shown in Fig. 3.1 is for the material processed through # 40 sieve. The 

properties of the processed material that are shown in Table 3.1 were used in all of 

the analyses presented in the subsequent section. As mentioned earlier, water was 

added to the processed soil until a liquidity index of about 1.0 was obtained. The 

sample was then allowed to rehydrate for 24 hours. A spatula was used to place the 

remolded soil paste into the modified annular specimen container. The top of the 

specimen was then planed flush with the top of the specimen container using a 

razor blade.  
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The loading assembly –with a secured porous stone (in the case of soil-soil 

testing), or a bare steel or coated steel disk (in the case of soil-solid interface 

testing) - was placed on top of the specimen. The normal stress was then gradually 

increased to 3 or 6 kPa by loading the specimen through the light-weight hanger. 

After completion of consolidation, the specimen was unloaded and the settlement 

of the loading platen into the specimen container was eliminated using the 

procedure described in Stark and Eid (1993). The specimen was then reloaded to 

the consolidation pressure and sheared until a shear displacement of 400 mm was 

achieved. 

3.3.4.2. 60BSelection	of	the	Appropriate	Rate	of	Shear	

Gibson and Henkel (1954) have presented Eq. 3.1 that relates the time to failure, tf, 

that corresponds to a given degree of pore-water pressure dissipation, Uf, of a 

normally consolidated clay specimen with a drainage distance of H: 

                                                   

2

2(1 )


f
f v

H
t

U c
                                                                   (3.1) 

To calculate the shear displacement rate that provides a drained residual shear 

condition (defined for ring shear tests of the current study by having Uf ≥ 0.99), the 

time to failure is selected to be the time to achieve a shear displacement of 400 

mm. This magnitude of displacement is considered sufficient to mobilize the 

drained residual shear strength in all of the soil-soil and soil-solid interface ring 

shear tests conducted in this study. Shearing interfaces against the most plastic soil 

used in the current investigation (i.e., having H = 5 mm and cv = 0.32 m2/yr) would 

need the slowest rate to mobilized such condition. Utilizing these values, as well as 

a Uf = 0.99 in Eq. 3.1 results in a tf of 2050 min. This suggests a shear displacement 



    

   34 

 

rate of 0.2 mm/min to produce a drained residual shear strength condition. A much 

slower displacement rate of 0.05 mm/min was used in all of the soil-soil and soil-

solid interface ring shear tests to ensure fully drained residual strength 

mobilization. Larger displacement rates could have been used in shearing some of 

the soils utilized in this study. Considering the short displacement needed to 

mobilize the soil and interface peak shear strength, the used shearing rate may 

produce a partially drained condition for such strengths especially in cases of 

testing plastic soil-solid interfaces. Studying peak strengths is outside the scope of 

the current research. 

3.3.5. 61BTest	Results	

Fig. 3.5 shows typical stress ratio-shear displacement relationships yielded from the 

soil-soil and soil-solid interface tests at an effective normal stress of 6 kPa. The 

stress ratio is defined as the shear stress (τ) divided by the effective normal stress. 

In both of the soil-soil and soil-solid interface tests, a peak shear strength was 

reached at a displacement less than 5 mm before experiencing a strength reduction 

that is more pronounced in soil-soil tests. A shear displacement of about 200 mm 

was needed to reach the residual shear strength of the soils. A similar trend was 

also noticed in testing soils and interfaces at an effective normal stress of 3 kPa. 

The displacement to the residual strength decreases with decreasing soil plasticity 

and/or the roughness of the tested surface. Comparatively, less displacement is 

needed to reach the interface residual shear strength. A similar behavior has been 

reported by several researchers (e.g., Lemos and Vaughan 2000). 
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Figure 3.5 Representative stress ratio-shear displacement relationships for soils and 
interfaces tested using the modified ring shear apparatus 
                     

Tables 3.3 and 3.4 present a summary of the soil secant residual friction 

angles, ør', and interface secant residual friction angles, δr', measured in the 

element-scale testing at effective normal stresses of 3 and 6 kPa, respectively. The 

secant residual friction angle is defined as the angle between the effective normal 

stress axis and the line formed from the origin to the residual shear strength at a 

particular effective normal stress. It should be noted that the modified ring shear 

apparatus showed a limitation in accurately measuring shear stresses less than 

approximately 1.1 kPa. This is due to the unbalanced readings of the two load cells, 

especially prominent at large shear displacement. As a result, soil-soil and soil-

solid interface shear tests that mobilized shear stresses less than 1.1 kPa were 

stopped. These tests are designated in Tables 3.3 and 3.4 as not available (NA). 
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Table 3.3 Secant drained residual friction angles measured in soil-soil and soil- 
solid interface testing using MRSA  

  Interface '
r (deg.) 

Soil Soil '
r (deg.) I1 I2 I3 

FS 32.88 21.82  22.71 26.55 
GS 27.05 NA NA 20.63 
ND1 28.12 NA NA 22.98 
K 25.19 NA NA 23.21 
GD1 25.76 NA NA 20.54 
   Note: σn' = 3 kPa. NA, not available 

 

Table 3.4 Secant drained residual friction angles measured in soil-soil and soil- 
solid interface testing using MRSA 

  Interface '
r (deg.) 

Soil Soil '
r (deg.) I1 I2 I3 

FS 32.97   21.65   22.48 26.47
GS 26.71   16.50   17.19 19.76
ND1 28.73   18.10   19.32 23.81
K 25.02   14.64   15.75 22.50
GD1 25.59   14.94   17.98 20.17
GD2 20.75   12.88   14.55 16.72
ND2 18.33   10.47   12.30 13.18
ND3 19.12     NA   12.18 15.18
GD3 15.43     NA     NA 11.94
   Note: σn' = 6 kPa. NA, not available 

3.4. 15BMacro‐Scale	testing	

In order to justify the modifications made in the torsional ring shear apparatus and 

depicting the full-scale field behavior to estimate interface residual shear strengths, 

a macro-scale interface direct-shear test device (MDSD) was custom designed and 

manufactured by research collaborators at the University of British Columbia, 

Canada to assess the drained residual interface shear strength at low effective 

normal stresses. The detailed design of the apparatus is described in Wijewickreme 

et al. (2014). The results of the macro-scale interface shear tests conducted by the 

collaborators on three soils (FS, GS, and K) were utilized for comparison with the 
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element-scale testing of this study. The following subsections provide details of the 

device. 

3.4.1. 34BOverview	of	Macro‐Scale	Interface	Direct‐Shear	Device	

The macro-scale interface direct-shear device is fundamentally similar to the 

conventional small-scale direct shear box device except for its large footprint that 

provides a plan interface shear area of approximately 3.0 m2. Fig. 3.6 shows a 

schematic diagram and photograph of the device. The device was designed to 

impart displacement-controlled interface shearing with the ability to reach a 

maximum interface shear displacement of 1.2 m. The desired normal stress at the 

soil-solid interface is obtained using surcharge loads externally applied by means 

of bulk sand or water masses, or both. The device is instrumented with transducers 

mounted flush with the top surface of the solid surface for the measurement of     

pore water pressure at the shear interface. As a result, the device allows for 

accurate determination of the effective normal stress at the soil-solid interface 

during shear testing.  
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(a) 

 

 

(b) 

 

Figure 3.6 The macro-scale interface direct shear device: (a) schematic diagram; 
(b) perspective photo (after Wijewickreme et al. 2014) 
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3.4.2. 35BMeasurement	of	Pore‐water	Pressure	

The presence of the porous stone that surrounds the pore-water-pressure 

transducers can affect the measured excess pore-water pressure at the interface. 

However, it is important to note the shear-induced excess pore-water pressures are 

not present when the specimen is sheared to large displacements. The purpose of 

the macro-scale interface direct shear apparatus is to determine the effective shear 

strength of an interface under a given low effective normal stress at large interface 

shear displacement conditions, and the device is not suitable to study the small 

strain behaviour of the interface at the early stages of a test. As such, the accuracy 

of the excess pore-water pressure at the soil-solid interface during the initial portion 

of shear displacement, (where excess pore-water pressure is likely to be present) is 

considered of less importance. In essence, the device allows for accurate 

determination of the effective normal stress at the soil-solid interface at large 

displacement. 

The direct experimental pore-water pressure measurements confirm the 

suitability of this assumption where the data indicates that excess pore-water 

pressures are indeed developed at the early stages of shearing, and when sufficient 

time (and displacement) has elapsed, these excess pore-water pressures subside and 

return to their original static values. Once this happens, upon continued shearing, 

the pore-water pressure remains constant throughout the remainder of the test. 

While it is observed that different soils take different amounts of time to dissipate 

the excess pore-water pressure generated as expected, the end-of-the-test static pore 

water pressure measured compares well with initial static pore water pressures. 
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3.4.3. 36BDetermination	of	the	Appropriate	Rate	of	Shear	

Determination of the appropriate rate of shear displacement requires an estimate of 

the time required for pore-water pressure equalization and amount of deformation 

required to reach shear failure. The theoretical equation proposed by Gibson and 

Henkel (1954), as given by Eq 3.1, was also used by the collaborators 

(Amarasinghe 2013) to calculate the time to failure, ݐ௙, that would correspond to a 

given degree of pore-water pressure equalization at failure.  

3.4.4. 37BInterface	Shear	Tests		

Three (FS, GS, and K) of the nine soils utilized in the element-scale ring shear 

testing were sheared by the collaborators (Amarasinghe 2013) against bare steel or 

coated steel plates in the macro-scale interface direct-shear test device. The steel 

plates have dimensions of 1.52 m by 1.93 m in plan. For each test, slurry of the test 

soil with a liquidity index of 1.0 is allowed to flow over the face of the test plate 

under gravity into the mobile frame to fill the 1.72 m by 1.75 m footprint until a 

soil specimen thickness of 10 cm is achieved. The slurry is then allowed to 

consolidate under its own weight. The surface of the consolidated slurry is covered 

with a non-woven geotextile layer in preparation for surcharge loading. The desired 

surcharge load – that results in a normal stress of approximately 3 or 6 kPa - is then 

applied and the soil specimen is allowed to consolidate. The specimen is then 

sheared against the steel plate for displacements ranging between 500 and 800 mm 

to ensure mobilization of the interface residual shear strength. Typical stress ratio-

shear displacement relationships and the corresponding pore-water pressures 

yielded from the macro-scale interface direct-shear testing are shown in Fig. 3.7(a) 

and Fig. 3.7(b), respectively. It can be seen that, except for the Fraser-river silt, the 



    

   41 

 

soil-solid interface tests showed a peak shear strength reached at shearing 

displacement of less than 70 mm followed by a noticeable strength reduction. The 

relationships shown in Fig. 3.7(a) were drawn using the calculated ratios between 

the measured shear stress at a given interface displacement, and the effective 

normal stress at the interface at the same displacement. The effective normal stress 

is computed by taking the difference between the total normal stress at the 

interface, and the pore-water pressure measured at the interface at that shear 

displacement. The relationships of Fig. 3.7(a) have been labeled according to the 

effective normal stress value at a shear displacement of 800 mm (i.e., σn' at 800 mm 

shear displacement), which corresponds to the large-displacement interface shear 

strength. In other words, the labels for a given test represent the σn' that prevailed at 

large-strain conditions for that test.  The interface residual friction angles measured 

at different low effective normal stresses are presented in Table 3.5. 
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Figure 3.7 Representative relationships yielded from MDSD interface testing: (a) stress 
ratio-shear displacement; (b) average pore-water pressure-shear displacement (after 
Amarasinghe 2013) 
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Table 3.5 .  Interface residual friction angles measured in MDSD testing (data from 
Amarasinghe 2013) 

 Interface '
r  (deg.)   

Soil I1 I2 I3 

FS 23.3 '
n( = 3.6 kPa) 21.6 '

n( = 4.3 kPa) 26.6 '
n( = 4.3 kPa) 

FS 23.3 '
n( = 6.7 kPa) 21.3 '

n( = 6.7 kPa) 26.6 '
n( = 5.9 kPa) 

GS 16.7 '
n( = 3.2 kPa) 18.3 '

n( = 4.5 kPa) NA 

GS 16.7 '
n( = 5.1 kPa) 15.6 '

n( = 5.7 kPa) NA 

K 14.6 '
n( = 4.1 kPa) 14.6 '

n( = 4.2 kPa) 27 '
n( = 4.4 kPa) 

K 14.6 '
n( = 6.3 kPa) 14.0 '

n( = 6.7 kPa) NA 

     Note: σn' measured at large shear displacement 
   

3.5. 16BEvaluation	of	Test	Results	

The measured soil residual friction angles shown in Tables 3.3 and 3.4, along with 

the corresponding soil properties presented in Table 3.1 suggest that the secant 

residual friction angle of soil decreases with increasing liquid limit and clay-size 

fraction. These soil parameters have a similar effect on the measured interface 

residual friction angles that are also lower for smoother surfaces (Tables 3.3, and 

3.4). A comparison between the interface residual friction angles yielded from tests 

using the MRSA (This study) and the MDSD is shown in Fig. 3.8. It can be seen 

that the results measured using the different scale testing devices and procedures 

are in reasonable agreement. The same conclusion can be drawn from Fig. 3.9(a) 

that shows a good alignment between the MDSD interface testing results and the 

corresponding interface residual shear strength envelopes developed based on the 

MRSA testing. Such a conclusion supports the validity of the MRSA in measuring 

the interface and soil drained residual shear strength at low effective normal 

stresses. The change in effective normal stresses within the range utilized in this 
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study did not show a considerable effect on the measured residual friction angles of 

soils and soil-solid interfaces. This has led to having approximately linear residual 

shear strength failure envelopes for most of the tested soils and interfaces (Fig. 

3.9).  

 

Figure 3.8 .  Comparison between interface secant residual friction angles 
measured by the MRSA (this study) and MDSD. 
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Figure 3.9 Typical drained residual shear strength envelopes developed from 
testing: (a) interfaces using the MRSA (this study) and MDSD; (b) soils using the 
MRSA (this study). 
  

Secant residual friction angles of soils tested in the MRSA at an effective 

normal stress of 6 kPa are plotted as a function of soil liquid limit and clay-size 

fraction in Fig. 3.10. This plotting format was first introduced by Stark and Eid 

(1994) to develop a correlation for residual friction angles measured at 100, 400, 
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and 700 kPa. It can be seen that the residual shear strength correlation based on the 

value of liquid limit magnitude and clay-size fraction grouping is evident even at 

effective normal stresses as low as 6 kPa. The secant residual friction angles 

measured at this effective normal stress range is considerably higher than those 

reported by Stark and Eid (1994) for soils with similar liquid limits and clay 

fractions tested at effective normal stress of 100 kPa. This seems to be especially 

true for soils with high clay-size fraction. For such soil types, the drained residual 

shear strength envelopes are considerably curved at low effective normal stresses, 

becoming less stress dependent as the effective normal stress increases.  

 

Figure 3.10 Soil secant drained residual friction angle relationships with liquid 
limit and clay-size fraction. 

 

At the low effective normal stress range considered in this study, the clay-size 

fraction, as an indication of particle size and shearing mode (Lupini et al. 1981), 

has less influence on the measured residual friction angle than the influence of the 
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liquid limit that indicates the clay mineralogy and particle shape. This is indicated 

by the nearness of the clay-fraction trend lines shown in Fig. 3.10. Such a 

conclusion agrees with the data presented by Stark and Eid (1994) and shown in 

Fig. 3.11 in terms of the difference in residual friction angles (∆r) predicted for 

soils with liquid limits between 54 and 77% and clay-size fractions that yield 

mobilization of translational shearing mode (25% ≤ CF≤ 45%) and sliding mode 

(CF≥ 50%). This specific liquid-limit range was considered because it represents 

the liquid-limit overlap between the trend lines of these two clay-size-fraction 

groups shown in Fig. 3.10. It should be noted that the distinguished effect of clay-

size fraction on developing different residual shear strength modes and in turn on 

the measured friction angles was presented by Lupini et al (1981), Skempton  

(1985), Stark and Eid (1994) for effective normal stresses of 350, 100 and 50 to 

700 kPa, respectively. 

 

Figure 3.11 Effect of clay-size fraction grouping on the soil secant residual friction 
angle as a function of the applied effective normal stress. 
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Secant residual friction angles of soils measured at low effective normal 

stresses using the MRSA were plotted against the plasticity index. The relationship 

is shown in Fig. 3.12 indicating a good correlation that can be well described by the 

following equation for the ranges of effective normal stress and plasticity index 

considered in this study. 

                                                          0.014' 34 e PI
r

                                                       (3.2) 

This good correlation can be attributed to the possible encapsulation of 

information on both plasticity and clay-size fraction by the plasticity index (Nelson 

1992; Mesri and Shahien 2003) as well as the small influence of the clay-size 

fraction on residual friction angles measured at low effective normal stresses. 

Another factor that also contributes to having little scattering of data in Fig. 3.12 is 

the narrow range of low effective normal stress used. Considerable data scattering 

can be noticed when correlating the plasticity index to soil-soil drained residual 

shear strength (e.g., Voight 1973) and soil-steel interface residual strength (e.g., 

Ramsey et al. 1998; Jardine et al. 2005) using data developed at wide range of high 

effective normal stress for which changing the clay-size fraction as well as the 

effective normal stress considerably affect the measured secant residual friction 

angle. It should be noted that, the correlations presented in Figs. 3.10 and 3.12 are 

for effective normal stresses that are an order of magnitude smaller than those used 

to develop the empirical correlations available in the literature. 
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Figure 3.12 Soil secant drained residual friction angle relationship with plasticity 
index based on the MRSA testing results. 
  

It is of interest to examine the published data that is available in the literature 

for soil residual friction angles measured at low effective normal stress ranges 

similar to that utilized in this study. Bishop et al. (1971) measured a drained secant 

residual friction angle of 13.8 degrees at an effective normal stress of 6.9 kPa for a 

very stiff Brown London clay with liquid limit, plastic limit, and clay-size fraction 

of 66%, 24%, and 53%, respectively, The test was conducted using a ring shear 

apparatus on a 19 mm-thick undisturbed specimen sheared –during the same test- 

under a series of different higher effective normal stresses. This test result is in 

good agreement with the correlation presented in Figs. 3.10 and 3.12 provided that 

the liquid limit of the tested heavily overconsolidated material is adjusted to 

account for sample preparation problems related to particle induration (Eid 2001 
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and 2006). It should be noted that such problems were not faced in the current 

study due to the disaggregated nature of the utilized soil deposits. 

It should be noted also that the correlation provided in Fig. 3.12, and 

consequently Eq. 3.2, would underestimate the secant drained friction angle at low 

effective normal stresses for marine soils that contain robust faecal pellets (Hill and 

Jacob 2008; Colliat et al. 2011; Kuo and Bolton 2013 and 2014) or numerous 

skeletal remains or foraminifera (Mesri et al. 1975; Najjar et al. 2007). This is also 

the case for carbonate soils (White et al. 2012) and soils composed chiefly of 

allophane or halloysite that are unlikely to have particle rearrangement towards 

some preferred orientation (Wesley 1977, 1992). To differentiate them from those 

tested in the current study, these fine-grained soils are called herein as soils of 

distinct contents. Even when normally consolidated and plastic, most of these soils 

exhibit high friction angle and small or no difference between the drained peak 

shear strength and the drained residual shear strength. Using two different types of 

ring shear devices, Saldivar and Jardine (2005) measured equal drained peak and 

residual friction angles of about 36 degrees for Mexico City clay with skeletal 

fragments of diatoms and a plasticity index of 160%.  

The drained residual friction angles at low effective normal stress reported 

for some soils of distinct contents were plotted against the plasticity index as 

shown in Fig. 3.13. It can be seen that these angles fall far from the trend line 

presented in Fig. 3.12 and represented by Eq. 3.2 for soil types similar to those 

utilized in this study. This can be interpreted in terms of the contents of these soils 

that yield an exceptionally high drained residual strength that is not significantly 

affected by the plasticity index (Najjar el al. 2007, White et al. 2012). It should be 
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noted that, in spite of the increased number of studies conducted in the last decade 

on evaluating soil-solid interface shear strength at low effective normal stresses, the 

number of data points in Fig. 3.13 is limited due to the lack of reporting the 

plasticity indices and the fully drained residual shear strength of the tested soils. 

It has been long recognized that the residual shear strength envelopes of plastic 

soils are nonlinear, especially at low effective normal stress range (Terzaghi and 

Peck 1948). With this consideration in mind, the use of the correlation presented in 

this study (Figs 3.10 and 3.12) can help in avoiding a significant underestimation of 

drained residual shear strength angles predicted for low normal stress ranges when 

utilizing correlations developed for high effective normal stress ranges. It also 

avoids overestimating the drained residual friction angles of soils similar to those 

utilized in the current study when using residual strength expressions, the 

development of which is influenced by testing soils of distinct contents at low 

effective normal stresses and consequently do not consider the effect of soil 

plasticity (e.g., expression suggested by White and Randolph 2007) as shown in 

Fig. 3.13. 
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Figure 3.13 Variation of drained residual friction angle with plasticity index for 
soils having different contents. 

  

As expected based on existing literature, shearing soils against the solid 

surfaces utilized in this study has led to measuring interface residual friction angles 

that are less than the residual friction angles of the corresponding soils (Tables 3.3 

and 3.4). This is clear from the data shown in Fig. 3.14 that includes the soil-soil 

residual shear strength trend line developed in Fig. 3.12 along with the soil-solid 

interface drained residual shear strength results measured using the MRSA at 

effective normal stresses of 3 and 6 kPa. 
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Figure 3.14 Relationship between the plasticity index and soil-soil and soil-solid 
interface drained residual friction angles measured in the MRSA 

 It is evident that trend lines can be developed for soil-solid interface 

strength based on the roughness of each interface solid material. Similar to the soil-

soil trend line, the soil-solid interface trend lines show a reduction in drained 

residual shear strength with increasing soil plasticity. Such reduction in residual 

shear strength is evaluated as the ratio between the tangents of these soil-soil and 

soil-solid interface friction angles using the term residual interface efficiency. The 

average and range of the residual interface efficiency calculated for the three 

surfaces sheared against soils in the study are plotted against Ra in Fig. 3.15. A 

single empirical relationship fits the data with a correlation coefficient of 0.8 

considering a total of thirty one ring shear interface tests. As shown in Fig. 3.15, 

the empirical equation obtained is: 
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Figure 3.15 Relationship between surface roughness and residual interface 
efficiency measured for fine-grained soils tested in the MRSA at effective normal 
stress of 3 and 6 kPa. 
 

For comparison, Eq. 3.3 that is developed based on the results of ring shear 

testing at 3 and 6 kPa is plotted in Fig. 3.16 along with residual interface efficiency 

data from the Macro-scale interface direct shear tests conducted by Amarasinghe 

(2013) at a similar effective stress range. The secant residual friction angles needed 

to calculate the interface efficiency using the MDSD test results at certain effective 

normal stresses were taken from the MRSA soil tests conducted at the closest 

effective normal stress (i.e., either at 3 or 6 kPa). It can be seen that Eq. 3.3 

compares well with most of the data developed based on the MDSD test results. 

Data reported in the literature based on interface testing at higher effective stress 

ranges were also included in Fig. 3.16 showing an interesting agreement with the 

relationship developed based on shear strengths measured at low effective normal 

stresses. Data presented in Fig. 3.16 indicate that the residual interface efficiency 



    

   55 

 

changes from about 0.9 to 0.4 when Ra decreases from 8 to 0.005 μm regardless of 

the effective normal stress range. Further experimental investigation is required to 

substantiate this conclusion. 

 

Figure 3.16 Residual interface efficiency for fine-grained soils as a function of 
surface roughness. 

 

The drained residual strength results of fine-grained interface testing other 

than those shown in Fig. 3.16 were not considered for the comparison because of 

one or more of four main reasons: (i) the lack of reporting of Ra for the utilized 

rigid surfaces (e.g., Najjar et al. 2007) or geomembranes (e.g., Fishman and Pal 

1994; Fleming et al. 2006); (ii) not achieving the large shearing displacement 

needed to mobilize the drained residual soil-soil and soil-solid interface shear 

strength (e.g., Tsubakihara et al. 1993); (iii) the lack of reporting of the drained 

residual shear strength of soils at the effective normal stress range used in interface 

testing (e.g., Lehane and Jardine 1992; Ganesan et al. 2014; Kuo and Bolton 2014); 
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and (iv) the use of testing techniques that - based on many researchers (e.g., Stark 

and Eid 1993; Meehan et al. 2007) - may lead to considerable errors in measuring 

residual shear strength (e.g., Hammoud and Boumekik 2006). Both the first and 

third points above were also the reasons for not considering results of several soil-

solid interface shear strength tests (e.g., Ramsey 1998; Colliat et al. 2011; White 

and Cathie 2011) in Fig. 3.16. 

The relationship shown in Figs. 3.15 and 3.16 and represented by Eq. 3.3 is 

developed based on values of interface shear strengths measured for soils with 

different plasticity and clay-size fractions sheared against surfaces with a wide 

range of average roughness. This range covers roughness of several materials used 

in geotechnical engineering practice such as pipeline smooth coatings, Ra of 0.04 to 

5 μm (Farshad et al. 2001; White et al. 2011; Ganesan et al. 2014; Kuo and Bolton 

2014), smooth geomembranes, Ra of less than 2 μm (Dove and Harpring 1999), and 

stainless and mild steel, Ra of 0.06 to 2.5 μm (Subba Rao et al. 1998; Lemos and 

Vaughan 2000). Concrete surfaces (Hammoud and Boumekik 2006) and rough 

pipeline coatings (Najjar et al. 2007; Ganesan et al. 2014; Kuo and Bolton 2014) 

possess higher Ra values. Based on the data presented in Fig. 3.16 as well as Eq. 

3.3, shearing fine-grained soil against concrete surfaces and rough pipeline coatings 

should lead to a residual interface efficiency that is slightly less than or equal to 

1.0. In this case, the shear zone will likely move away from the interface to occur 

essentially within the soil matrix and the measured interface shear strength will be 

predominantly governed by the soil properties. The value of Ra above which 

shearing would occur mostly within the soil (i.e., the critical average roughness for 
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surface sheared against fine-grained soils) can be estimated using data of Fig. 3.16 

or Eq. 3.3 to be about 20 μm. 

The present data supports the use of Eq. 3.3 in estimating the interface 

residual shear strength as a function of the surface roughness that is within the 

studied range (i.e., Ra between 0.005 and 10 μm) and the soil residual shear 

strength provided that the soil-soil and soil-solid interface residual strengths are 

estimated at the same effective normal stress range.  While noting the above, It is 

advocated that the surface roughness alone may not adequately characterize a given 

surface. The hardness, yield strength, the solid material stress-strain behavior are 

likely to impact the overall interface frictional response observed at the solid 

surface.  For example, a given material tested at the same normal stress against two 

solid surfaces having the same roughness but made of two different materials may 

not produce the same interface friction angle. Having compatibility between the 

soil particle size and the interface surface roughness can also affect the measured 

interface residual shear strength (Kuo et al. 2012). Further studies are warranted to 

explore these aspects. 

In an effort to obtain good correlations with the interface yield shear strength, 

D50 and the average diameter (Dav) of soils have been used by several researchers 

(e.g., Uesugi and Kishida 1986; Paikowsky et al. 1995; Subba Rao et al. 1998 and 

2000) to normalize measurements of the maximum and average of surface 

roughness (i.e., calculate the relative roughness Rmax/D50 or Ra/Dav). Oliphant and 

Maconochie (2007) also suggested that D50 can be used in place of Dav to 

normalize Ra. This idea was attempted in the current study for fine-grained soil 

interface residual shear strength using the normalized average roughness (Ra/D50). 



    

   58 

 

This normalized roughness is plotted against the corresponding residual interface 

efficiency determined based on data yielded from the testing program presented 

herein and those reported in the literature (Fig. 3.17). A clear trend of reducing the 

residual interface efficiency with the decrease of the normalized roughness can be 

noticed. However, using the normalized roughness did not reduce the level of data 

scattering below that shown in Fig.  3.16. 

 

Figure 3.17 Residual interface efficiency for fine-grained soils as a function of the 
surface normalized average roughness. 
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Chapter	4. 3B3B3BDrained	Residual	Shear	Strength	Relevant	
to	Slope	Stability	Analyses	

4.1. 17BIntroduction	

Shear strength is a key input in any stability analysis of soil slopes. The drained 

residual shear strength, τr, is a crucial parameter in evaluating the stability of slopes 

that contain a pre-existing shear surface (Skempton 1964 and 1985). It can be also 

used along with the fully softened shear strength in determining the factor of safety 

against first-time sliding in stiff plastic clay slopes (James 1970; Bishop 1971; 

Potts et al. 1997; Stark and Eid 1997; Mesri and Shahien 2003). Significant efforts 

have been reported in the literature for assessing the residual shear strength through 

laboratory testing and back analysis of failed case histories. As shown in section 

2.4, several empirical correlations have been also presented to estimate such 

strength as a function of soil index parameters. The performance of most of these 

correlations have been statistically evaluated in a subsequent section of this 

chapter. 

 It is well known that the shear strength envelopes of plastic soils are 

nonlinear, especially at a low effective normal stress (σ'n < 50 kPa) range (Terzaghi 

and Peck 1948; Penman 1953; Bishop et al. 1965 and 1971; Ponce and Bell 1971; 

Charles and Soares 1984; Atkinson and Farrar 1985; Skempton 1985; Day and 

Axten 1989; Maksimovic 1989). Such low normal stresses are usually relevant in 

slope stability analyses at locations where the critical slip surface intersects the face 

of the slope or passes through shallow depths or zones with high enough pore-

water pressures to reduce effective stresses. In spite of this, parameters derived 

from laboratory shear tests that have been carried out at higher effective normal 
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stresses are commonly used to represent all zones in slope stability analyses. Even 

most of the existing residual shear strength correlations that incorporate the effect 

of the normal stress level (e.g., Stark and Eid 1994; Mesri and Shahien 2003; Stark 

and Hussain 2013) have also been developed based on testing at a limited number 

of relatively high effective normal stresses. For example, the currently available 

correlations do not efficiently cover  certain low and moderate ranges of the 

average effective normal stress ranges (i.e., σ'n < 50 kPa and 100 kPa < σ'n < 400 

kPa) that have been mobilized in several reported reactivated and long-term first-

time landslides in stiff plastic clays. Fig. 4.1 illustrates this limitation for well-

documented landslides through English clays (namely; Upper Lias clay, London 

clay, Oxford clay, Kimmeridge clay, Chalky Boulder clay, Gault clay, Atherfield 

clay, Etruvia marl, Walton’s wood and Jackfield carboniferous mudstone, and 

Edale shale). 

 

Figure 4.1 Average normal stresses reported for landslides in English soil formations 
and the normal stress ranges not covered by testing utilized to develop the commonly-
used residual strength correlations that incorporate the effect of normal stress (data 
points from Skempton 1964, 1972, 1977, 1985, James 1970; Chandler 1974, 1976, 
1977, 1982, 1984; Chandler and Skempton 1974; Bromhead 1978). 
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To fill the knowledge gap described above, this chapter mainly presents 

analysis of residual shear strength tests results which were made available by Eid 

(2014) at effective normal stresses of 10, 25, 50, 100, 200, 300, 400, and 700 kPa 

on clays, silts, mudstones, and shales with plasticity and gradation varying over a 

wide range. The test methods used to get such given data is described in the 

following section. The data analysis intended to: (i) complement the data set 

developed through conducting a series of torsional ring shear tests by Eid (1996); 

and (ii) to consequently revise and update the drained shear strength correlations 

that have been developed entirely (e.g., Stark and Eid 1994; Mesri and Shahien 

2003) or chiefly (e.g., Stark et al. 2005; Stark and Hussain 2013) based on such a 

data set.     

4.2. Testing	Method	of	the	Provided	Data		

The analysis presented in this chapter to develop the revised residual strength 

correlations utilizes a result of testing a total of 50 clay, silt, mudstone, and shale 

samples as shown in Table 4.1. The utilized test samples shown in Table 4.1 cover 

a wide range of liquid limit, plastic limit, plasticity index, clay-size fraction, and 

activity. Except for the heavily overconsolidated clay, mudstone, and shale 

samples, Atterberg limits and clay-size fractions were determined in accordance 

with the particle disaggregation procedure described in ASTM D4318 (1999) and 

ASTM D422 (1999) or BS 1377 (1990) standards. Most heavily overconsolidated 

clays, mudstones, and shales possess diagenetic bonding that results in particle 

aggregation (induration). This aggregation usually survives the standard sample 

preparation procedure and consequently influences the measured index properties 

and the accuracy of their correlations to the results of shear strength testing in 
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which aggregation particles would be battered (La Gatta 1970; Townsend and 

Banks 1974; AiroFarulla and Rosa 1977; Eid 2001 and 2006). As a result, these 

materials were disaggregated by ball-milling of representative air-dried samples 

until all particles passed the standard sieve No. 200. The hydrated ball-milled 

materials were used in determining the index properties as well as the shear 

strengths. This sample preparation procedure was adopted from that used by Mesri 

and Cepeda-Diaz (1986) to determine liquid limit and clay-size fraction that better 

infer the clay mineralogy and gradation of shales. Updated relationships between 

index properties of indurated materials disaggregated using the standard and ball-

milling sample procedures are given in a subsequent section of this chapter. 
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       Table 4.1 Clay, silt, mudstone, and shale samples used in ring shear tests, the   
        results  of which are utilized in the analysis of this study 

 
No. 

 
    Soil Name 

 
         location 

LL 
(%) 

PL 
(%) 

CF a 
(%) 

A 
(PI/CF) 

  1 Fraser-river silt b, e Vancouver, BC, Canada 21 18 9 0.33 
  2 Glacial till b,d Urbana, IL, USA 24 16 18 0.44 
  3 Loess b,d Vicksburg, MS, USA 28 18 10 1.00 
  4 Gray silt b, e Vancouver, BC, Canada 34 17 26 0.65 
  5 Bootlegger Cove clay b,d Anchorage, AK, USA 35 18 44 0.39 
  6 Duck Creek shale c,d Fulton, IL, USA 37 25 19 0.63 
  7 Slide debris b, e San Francisco, CA, USA 37 26 28 0.39 
  8 Chinle (red) shale c,d Holbrook, AZ, USA 39 20 43 0.44 
  9 Slopewash material b, e San Luis Dam, CA, USA 42 24 34 0.53 
10 Colorado shale c,d Montana, MT, USA 46 25 73 0.29 
11 Panoche mudstone d San Francisco, CA, USA 47 27 41 0.40 
12 Kaolinite clay b,e, f Hephzibah, GA, USA 48 26 32 0.69 
13 Four Fathom shale c,d Durham, England 50 24 33 0.79 
14 Mancos shale d Price, UT, USA 52 20 63 0.51 
15 Panoche shale d San Francisco, CA, USA 53 29 50 0.48 
16 Gulf-bed deposits b, e Doha, Qatar 53 34 18 1.06 
17 Red Sea white shale e Alsokhna, Egypt 55 22 50 0.66 
18 Comanche shale c,d Proctor Dam, TX, USA 62 32 68 0.44 
19 Breccia material b, e Manta, Ecuador 64 41 25 0.92 
20 Bearpaw shale c,d Billings, MT, USA 68 24 51 0.86 
21 Slide debris d San Francisco, CA, USA 69 22 56 0.84 
22 Bay Mud b,d San Francisco, CA, USA 76 41 16 2.19 
23 Patapsco shale c,d Washington D.C., USA 77 25 59 0.88 
24 Nile deposit b, e Damanhur, Egypt 82 27 58 0.95 
25 Pierre shale c,d Limon, CO. USA 82 30 42 1.24 
26 Red Sea gray shale e Alsokhna, Egypt 84 27 44 1.30 
27 Upper Pepper shale e Waco, TX, USA 89 29 72 0.83 
28 Santiago claystone d San Diego, CA, USA 89 44 57 0.79 
29 Toshka shale e Toshka, Egypt 91 30 58 1.05 
30 Lower Pepper shale d Waco Dam, TX, USA 94 26 77 0.88 
31 Altamira Bentonitic tuff d Portuguese Bend, CA, USA 98 37 68 0.90 
32 Brown London clay d Bradwell, England 101 35 66 1.00 
33 Mokattam yellow shale e Cairo, Egypt 103 33 43 1.63 
34 Cucaracha shale c,d Panama Canal 111 42 63 1.10 
35 Otay Bentonitic shale d San Diego, CA, USA 112 53 73 0.81 
36 Denver shale c,d Denver, CO, USA 121 37 67 1.25 
37 Bearpaw shale c,d Saskatchewan, Canada 128 27 43 2.35 
38 Mokattam gray shale e Cairo, Egypt 134 37 79 1.23 
39 Pierre shale New Castle, WY, USA 137 32 67 1.57 
40 Oahe firm shale d Oahe Dam, SD, USA 138 41 78 1.24 
41 Claggett shale c,d Benton, MT, USA 157 31 71 1.78 
42 Bentonitic claystone e Fayoum, Egypt 164 55 79 1.38 
43 Taylor shale c,d San Antonio, TX, USA 170 39 72 1.82 
44 Pierre shale c,d Reliance, SD, USA 184 55 84 1.54 
45 Oahe bentonitic shale d Oahe Dam, SD, USA 192 47 65 2.23 
46 Panoche clay gouge d San Francisco, CA, USA 219 56 72 2.26 
47 Midra gray shale e Sealine, Qatar 231 74 79 1.99 
48 Lea Park bentonitic shale d Saskatchewan, Canada 253 48 65 3.15 
49 Bearpaw shale c,d Fort Peck Dam, MT, USA 288 44 88 2.77 
50 Bentonitic clay b,e, f El Hammam, Egypt 293 46 89 2.78 

                            a Quantity of particles < 0.002 mm.  
                                         b Samples not ball-milled. 
                                         c Index properties from Mesri and Cepeda-Diaz (1986). 
                                         d Residual shear strength at normal stress of 50, 100, 400, and 700 kPa from Stark and Eid (1994), and at 
                               normal stress of 10, 25, 200, 300 kPa from Eid (2014) were used. 
                             e Residual shear strength at normal stress of 10, 25, 50, 100, 200, 300, 400, and 700 kPa from Eid (2014) 
                              were used. 
                                         f Received in the form of powder passed through sieve # 200. 
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Remolded specimens for ring shear testing were obtained by adding distilled 

water to the air-dried and processed samples until a liquidity index of 1.5 was 

obtained. The sample was then allowed to rehydrate for at least one week in a moist 

room. The modified Bromhead ring shear apparatus described in Stark and Eid 

(1993) was utilized for measuring the residual shear strength. The modified 

apparatus allows for eliminating the effect of wall friction during shear which is 

especially crucial for accurate measurement of low shear stresses developed when 

testing soils at effective normal stresses as low as 10 kPa. 

 For each soil presented in Table 4.1, the residual shear strength was 

determined using a ring shear specimen overconsolidated and presheared at 700 

kPa. The multistage shearing process as described in Stark and Eid (1993 and 

1994) and ASTM D6467 (1999) was followed for shear testing at normal stresses 

of 10, 25, 50, 100, 200, 300, 400, and 700 kPa. Multistage shear tests were 

conducted by Eid (2014) at normal stresses of 10, 25, 200, and 300 only for 

materials tested in Stark and Eid (1994). 

To investigate the degrees of nonlinearity of the residual failure envelopes, the 

determined residual shear strength values as well as the residual stress ratios (τr/σ'n) 

are plotted in Fig. 4.2 against the corresponding effective normal stresses. It can be 

seen that the residual stress ratios are higher at low effective normal stress levels. 

This clearly indicates the curvature of the residual shear strength envelope. Such 

curvature or nonlinearity significantly decreases at effective normal stresses higher 

than 200 kPa. This also shows the importance of having shear strength data at the 

low and intermediate to high effective normal stresses considered in this study to 

efficiently describe the shape of the drained residual shear strength failure 
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envelopes. Details about the degrees of nonlinearity of these envelopes are 

presented in the subsequent section. 

 

Figure 4.2 Relationship of the residual stress ratio and residual strength to the 
effective normal stress for Toshka shale.  

4.3. 18BAnalysis	of	Residual	Strength	Results	

The soils are sorted into three groups based on their clay-size fraction: less than or 

equal to 20%, between 25% and 45%, and greater than or equal to 50%. Similar 

grouping was first introduced by Lupini et al. (1981) to categorize soils that exhibit 

rolling, translational, and sliding shearing behavior, respectively. This grouping 

was also adopted by Skempton (1985) for developing his correlation between the 

residual shear strength friction angle and clay-size fraction. Grouping based on the 

clay-size fraction (as an indication of particle size) is effective in developing low-

scattering correlations between the liquid limit (as an indication of clay 

mineralogy) and the residual friction angle (Stark and Eid 1994). For soils with 
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clay-size fractions between 20% and 25%, and 45% and 50%, the friction angle can 

be estimated by interpolation between the clay-size fraction groups.  

4.3.1. 38BResidual	Shear	Strength	Envelope	

The provided test results were utilized to study the change in nonlinearity of the 

shear strength envelope over the effective normal stress ranges occasionally 

mobilized in slope failures. Fig. 4.3 was developed to present the failure envelope 

degree of nonlinearity over two effective normal stress ranges of approximately 

equal spans. The first range is between 10 and 200 kPa while the second is between 

200 and 400 kPa. Friction angle ratios were used to represent the degree of 

nonlinearity in Fig. 4.3. Secant residual friction angles at effective normal stresses 

of 10, 200, and 400 kPa [i.e., (ø'r)10, (ø'r)200, and (ø'r)400, respectively] were used to 

calculate these ratios. The secant residual friction angle is defined as the angle 

between the effective normal stress axis and the line formed from the origin to the 

residual shear strength at a particular effective normal stress. It can be seen from 

Fig. 4.3 that the curvature of the envelopes, as represented by the friction angle 

ratios, is generally more pronounced for soils with moderate to high plasticity and 

CF ≥ 50%. Such curvature is significant at effective normal stresses less than 200 

kPa. At the higher effective normal stresses considered in this study, the friction 

ratios are low and consequently the failure envelope can be assumed as a straight 

line without significant error (Figs. 4.2 and 4.3). A similar conclusion about the 

general shape of the residual shear strength envelopes was made by several 

researchers (e.g., Hawkins and Privett 1985; Maksimovic 1989 and 1996; Tiwari 

and Marui 2005). Having more curvature at low effective normal stress ranges can 

be attributed to orienting most of the clay particles in the direction of shear at such 
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range of stresses. The described general shape of the residual shear strength 

envelope was considered in presenting the corresponding correlations introduced in 

the next subsection. 

 

Figure 4.3 Change in the reduction of secant residual friction angle over different 
ranges of effective normal stress for soils with: (a) CF ≤ 20% and 25% ≤ CF ≤ 
45%; (b) CF ≥ 50%. 
  

4.3.2. 39BEmpirical	 Correlations	 for	 Estimating	 Drained	 Residual	 Shear	

Strength	

Several empirical correlations of soil shear strengths with index properties are 

available in the literature (Section 2.4). The correlations are particularly useful for 
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preliminary designs and when soil samples and funding resources are not readily 

available for advanced soil testing. Based on the shape of the residual shear 

strength failure envelope described herein and in the literature, having the shear 

strength at effective normal stresses of 10, 25, 50, and 100 kPa are needed to more 

accurately develop the potential significantly-curved initial part of the envelope. 

The approximately straight-line part of the same envelope that starts at effective 

normal stress of about 200 kPa can be developed by having the shear strength data 

at least at a single higher effective normal stress of those occasionally mobilized in 

slope failures. Consequently, shear strengths measured at effective normal stresses 

of 10, 25, 50, 100, 200, and 400 kPa were utilized in developing the correlations 

presented in this chapter. Clearly, the inclusion of data from tests conducted at 

different effective normal stresses between 10 kPa and 50 kPa as well as between 

100 kPa and 400 kPa provides an opportunity to improve the correlations 

developed by Stark and Eid (1994), Mesri and Shahien (2003), Stark et al. (2005), 

and Stark and Hussain (2013) for estimating the residual friction angles based on 

shear testing at effective normal stresses limited to 50, 100, 400, and 700 kPa. For 

example, drawing a smooth curve by connecting the data from these four effective 

normal stress levels to the origin of τ versus σ'n plot to develop the full shear 

strength failure envelope would lead to underestimating the shear strengths at 

effective normal stresses lower than 50 kPa as well as the shear strengths at 

effective normal stresses between 100 and 400 kPa. Fig. 4.4 shows the residual 

shear strength relationships developed in this study as a function of the liquid limit, 

clay-size fraction, and effective normal stress. Considering these three parameters 

combined with the utilization of ball-milled derived index parameters of indurated 
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materials seems to have resulted in good relationships with less scatter. It is noted 

that the testing program of this data is limited to sedimentary materials (i.e., 

material with mostly plate-like clay particles); as such, the relationships shown in 

Fig. 4.4 can be used to predict the drained residual friction angles of sedimentary 

fine-grained materials. 

Similar to the correlations presented in Chapter 3, the relationships of Fig. 4.4 

also exclude soils with distinct contents such as the carbonate soils (White et al. 

2012) and soils composed chiefly of allophane or halloysite (i.e., soils with non-

platy particles such as volcanic ashes) that are unlikely to have particle 

rearrangement towards some preferred orientation (Wesley 1977, 1992, and 2003). 

They also exclude marine soils that contain numerous skeletal remains or 

faraminifera (Mesri et al. 1975; Najjar et al. 2007). Most of these soils exhibit high 

friction angle and small or no difference between the drained peak shear strength 

and the drained residual shear strength regardless of their plasticity (Saldivar and 

Jardine 2005). 

 



    

   70 

 

 

Figure 4.4  Secant residual friction angle relationships with liquid limit and clay-
size fraction (sources of data as indicated in Table 4.1) 

 

 Fig. 4.4 shows that the secant residual friction angle of soil decreases 

considerably and almost linearly up to a liquid limit of 80%, higher than which the 

slope of the relation with liquid limit significantly flattens, especially at high 

effective normal stresses. Consequently, small errors in measuring the liquid limit 
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of soils with low to medium plasticity may lead to significant errors in estimated 

residual shear strengths. The relationships of Fig. 4.4 also show that the influence 

of the clay-size fraction, as an indication of particle size and shearing mode, on the 

measured residual friction angles decreases with reducing effective normal stress 

level. A similar conclusion was made in chapter 3 for residual friction angles of 

soils at effective normal stresses as low as 3 kPa. 

The reduction in the influence of clay-size fraction is clearer for residual friction 

angles of soils with clay-size fraction equal to or higher than 25% as indicated by 

the nearness of the clay-fraction trend lines for σ'n ≤ 25 kPa (Fig. 4.4). It should be 

noted that the distinguished effect of clay-size fraction on developing different 

residual shear strength modes, and in turn on the measured friction angles, was 

presented by several researchers for relatively higher effective normal stresses 

[e.g., Lupini et al. (1981) for effective normal stress of 350 kPa and Skempton 

(1985) for 100 kPa]. 

 To reinterpret slope failures that were presented in the literature without 

including information on clay-size fraction, Mesri and Shahien (2003) re-plotted 

the residual shear strength data from Stark and Eid (1994) and Eid (1996) against 

the plasticity index; in essence, plasticity index was considered a parameter that 

would encapsulate the effect of both liquid limit and clay-size fraction. A clear 

relationship between soil plasticity index and clay-size fraction has also been 

shown by Kenney (1959) and Nelson (1992). Using a similar line of thinking, the 

residual shear strength data from this study for six different effective normal 

stresses were also plotted against the plasticity index as shown in Fig. 4.5. 

Decreasing trends of the secant residual friction angle with increasing of plasticity 
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index can be clearly seen from these results. The comparison between the data 

scattering in Fig. 4.4 and 4.5 shows the importance of incorporating the clay-size 

fraction into the residual shear strength relationships. Similar conclusion was made 

by Kaya (2010) through a comprehensive sensitivity analysis based on a database 

of residual shear strength. The relationships shown in Fig 4.5 can still be useful in 

case of analyzing shallow slopes or mobilizing low effective normal stresses at 

which the percentage of clay particles has a small effect on the residual friction 

angle. Fig. 4.5 also helps in analyzing slopes with difficulties in determining the 

clay-size fraction as measured by the sedimentation method due to interaction and 

flocculation between soil particles (Bishop et al. 1971; Mesri and Cepeda-Diaz 

1986; Wesley 2003). 
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Figure 4.5 Secant residual friction angle relationships with plasticity index (sources 
of data as indicated in Table 4.1). 



    

   74 

 

4.3.2.1. Effect	of	Sample	Preparation	on	The	Measured	Liquid	 limit,	Plasticity	

Index	and	Clay‐Size	Fraction		

As explained previously, the liquid limit and clay-size fraction of heavily 

overconsolidated clays, mudstones, and shales shown in Table 4.1 were determined 

using ball-milled samples. The commercial laboratories usually utilize the standard 

sample preparation procedures described in ASTM D422 (1999) and ASTM D4318 

(1999) or BS 1377 (1990) for determining Atterberg limits and clay-size fraction. 

Using these standard-derived indices may lead to overestimating the friction angles 

of heavily overconsolidated clays, mudstones, and shales (Eid 2006). 

Consequently, the standard-derived index parameters should be adjusted before 

estimating the residual friction angles of these indurated materials using the 

empirical correlations presented in this chapter. 

Eid (2001 and 2006) made a comprehensive study on the effect of particle 

disaggregation, sample size, and rehydration time on the measured classification 

indices of shales. Liquid limits, plastic limits, and clay-size fractions derived from 

the standard sample preparation procedure (LLST, PLST, and CFST) and those 

resulted from using ball-milled samples (LLBM, PLBM, and CFBM) of the same 

shales were determined. Data presented in these studies are plotted to have a 

relationship between LLST and LLBM as shown in Fig. 4.6a. A similar relationship is 

presented in Fig. 4.6b for the plasticity indices (i.e., PIST and PIBM). Based on the 

same database, a relationship between clay-size fraction values derived from the 

standard sample preparation procedure in terms of the activity, AST and those 

derived using ball-milled samples is shown in Fig. 4.6c. Results of a similar sample 

preparation study presented by Stark et al. (2005) were also superimposed on Fig. 
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4.6a. Because of the lack of availability of the plastic limits, the results of such 

study were not represented in parts “b” and “c” of Fig. 4.6. Fig. 4.6 clearly shows 

the effect of sample preparation procedure on the measured liquid limit, plasticity 

index and clay-size fraction. For all practical purposes, the nonlinear relationships 

between the index properties derived from the standard and ball-milling sample 

preparation techniques shown in Fig. 4.6 can be expressed using the following 

simple equations 

                                              BM ST1.4LL LL                                                     (4.1) 

                                              BM ST1.7PI PI                                                       (4.2) 

                           2
BM ST ST ST30 1.0CF CF A for A                                     (4.3a) 

                            
BM ST ST2

ST

30
1.0CF CF for A

A
                                     (4.3b) 

For Red sea shale with LLST = 57%,  PIST = 32%, CFST = 25%, and AST = 1.28, Eid 

(2006) reported values of LLBM = 84%,  PIBM = 57%, CFBM = 44%. These ball-

milled derived liquid limit, plasticity index, and clay-size fraction can be estimated 

using Equations 4.1, 4.2, and 4.3 as 80%, 54%, and 43%, respectively. It should be 

noted that data scattering around the relationships shown in Fig. 4.6 can be 

attributed to the variation in the degree of induration of the tested materials. The 

increase in such scattering for materials with considerably high LLBM and PIBM 

would not have a significant effect on predicting the residual friction angle using 

the correlations of Figs. 4.4 and 4.5 due to the flatness of their trend lines in these 

liquid limit and plasticity index ranges.   
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Figure 4.6 Relationships between index parameters of shales, mudstones, and 
heavily overconsolidated clays disaggregated using the standard and ball milling 
procedures for: (a) liquid limit; (b) plasticity index; (c) clay-size fraction. 
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To facilitate the process of estimating the secant residual friction angle as a 

function of liquid limit, clay-size fraction and effective normal stress, the trend 

lines of Fig. 4.4 were re-plotted as shown in Fig. 4.7a. The equations needed to 

adjust the index parameters for estimating the friction angles of indurated materials 

are also encompassed in the same figure. The test data points were not shown in 

Fig. 4.7a for clear presentation and better comparison between trend lines of 

different clay-size fraction groups and effective normal stress levels. The 

configuration of Fig. 4.7a also helps to make the interpolation needed to estimate 

the drained friction angle in case of having clay-size fraction or effective normal 

stress different from those shown in the figure. The presentation technique used in 

Fig. 4.7a was used to develop residual shear strength correlation as a function of 

the plasticity index and effective normal stress (Fig 4.7b). 

The residual shear strength presented in the current study at relatively low effective 

normal stresses (i.e., 10 and 25 kPa) and correlated to soil index properties can be 

utilized in different geotechnical engineering applications rather than the slope 

stability analyses. Such applications include stability assessment of earth 

reinforcement, anchor rods, near-shore pipelines placed on seabed, and driven piles 

supporting shallow-water platforms. 
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Figure 4.7 Drained secant residual friction angle correlation as a function of: (a) 
liquid limit, clay-size fraction and effective normal stress; (b) plasticity index and 
effective normal stress. 
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4.4. 40Suitability	of	the	Correlations	

The suitability of using the correlations presented in this chapter to estimate soil 

drained residual shear strength at effective normal stresses relevant to slope 

stability analyses is illustrated in this section. This was done through checking the 

back-calculated residual friction angles reported for different case histories of 

reactivated landslides [ø'r]BC against those predicted, [ø'r]PR, using these correlations 

and other residual shear strength correlations available in the literature. Fifty four 

landslides through sedimentary fine-grained materials (i.e., clays, marls, 

mudstones, and shales) were used for such checking. These case histories (Table 

4.2) were chosen from the large number of reactivated landslides reported in the 

literature considering the need to have the following good reported 

data/information required for a worthy comparison: (1) a well-defined slip surface 

passing mostly through one material of a type similar to that of the materials tested 

in the current study (i.e., soils with mostly plate-like clay particles or minerals); (2) 

measured the pore-water pressures; (3) plasticity limits and clay-size fraction 

(defined as the quantity of particles smaller than 0.002 mm); (4) geometric 

configurations and unit weights that would allow accurate calculation of the 

average effective normal stress acting on the slip surface; and (5) drained residual 

friction angle back-calculated using a zero cohesion intercept in the effective stress 

space. For each considered case history, the reported data needed for the 

comparison are listed in Table 4.2. 
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Table 4.2 Reactivated landslides and reported soil indices and parameters used to calibrate the residual shear strength correlations 

No. 

 
 

                 Site        Stratum 

 
LL 
(%) 

PL 
(%) 

CF a 
(%) A 

' b
n  

 (kPa) 

c[ ]BC'r  
(deg.) Reference 

1-5 Chiusi della Verna (5 slides), 
Tuscany, Italy 

Clay shale 40d 19d  46d 0. 45d 166-588 
(av.=378) 

11.7-15.6 
(av.=13.2) 

Canuti et al. (1994) 

  6 River Beas Valley, India Siwalik rock 41 25 32 0.5 200 18-20 Henkel and Yudhbir (1966); Skempton and Hutchinson  (1969) 
  7 Jackfield, Shropshire, UK Carboniferous mudstone 45 20 42 0.6 62.3 17.1 Henkel and Skempton (1955); Skempton (1964) 
  8 St. Martino Valley, Italy Weathered marl 46d 23d 38d 0.5d 228 17 Bertini  et al. (1984) 
  9 Weirton,West Virginia, USA Colluviume 51 26 55 0.46 140 16 D’Appolonia et al. (1967) 
10 St. Cristoforo, Italy Lugagnano clay 53d 27d 38d 0.7d 115 11.5 Cancelli (1981) 
11 Mam Tor, Berbyshire, UK Edale shale 53 28 35 0.7 170-210 

(av.=188) 
14 Skempton et al. (1989) 

12-19 Seattle Freeway (8 slides), Seattle, USA 
 

Lawton clay  55d 24d 55-60 0.54 85-185 
(av.=127) 

13.6-16.5 
(av.=15.3) 

Palladino and Peck (1972) 

20 Walton’s Wood, Staffordshire, UK Carboniferous mudstone 57 27 70 0.43 54 13.5-15.5 Early and Skempton (1972) 
21 Lyme Regis, UK Lower Lias clay 57 28 60 0.48 125 11.2 James (1970) 
22 Bury Hill, Staffordshire, UK Etruria marl 60 27 52 0.64 97 12 Hutchinson et al. (1973); Skempton (1985) 
23 Burderop Wood, Swindon, UK Gault clay 64d 29d 47d 0.75d 31 13.3 Skempton (1972, 1985) 
24 Hodson, Swindon, UK Gault clay 64d 29d 47d 0.75d 42 14 Skempton (1972, 1985) 
25 Folkestone Warren, slip W4,  Kent, UK Gault clay 64d 29d 47d 0.75d 608-749 7.7-9.4 Hutchinson (1969); Hutchinson et al. (1980); Skempton  (1985) 
26 Barnsdale, Leicestershire, UK Upper Lias clay 64d 28d 52d 0.7d 92 10.4 Chandler (1976, 1982) 
27 Hambleton, Leicestershire, UK Upper Lias clay 64d 28d 52d 0.7d 107 10.3 Chandler (1976, 1982) 
28 Uppingham, Leicestershire, UK Upper Lias clay 64d 28d 52d 0.7d 12 16.2 Chandler (1970, 1976) 
29 Gretton, Northamptonshire, UK Upper Lias clay 64d 28d 52d 0.7d 38 13.5 Chandler et al. (1973); Chandler (1982) 
30 Daventry, Northamptonshire, UK Upper Lias clay 64d 28d 52d 0.7d 45 13 Biczysko and Starzewski (1977a,b); Chandler (1982) 
31 Rockingham, Northamptonshire, UK Upper Lias clay 64d 28d 52d 0.7d 34 13.9 Chandler (1971, 1976) 
32 Weedon, Northamptonshire, UK Upper Lias clay 64d 28d 52d 0.7d 20 14.2 Chandler et al. (1973); Chandler (1982) 
33 Wansford, Cambs, UK Upper Lias clay 64d 28d 52d 0.7d 120 9.8 Chandler (1979, 1982) 
34 Wardley, Leicestershire,UK Upper Lias clay 64d 28d 52d 0.7d 18 14.9 Chandler (1982) 
35 Endcombe, UK Atherfield clay 66d 25d 28d 1.46d 220 13.7 James (1970) 
36 Patney-Chirton, UK Gault clay 68 25 47d 0.92 33 11.9 James (1970); Skempton (1985) 
37 Petrofka, Saskatchewan, Canada Bedrock clay 69 27 42 1.0 830 5.7 Eckel et al. (1987) 
38 Spinney Hill, Saskatchewan, Canada Clay shale 70d 26d >50% NA 183 8.7 Sauer (1984) 
39 Denholm, Saskatchewan, Canada Bedrock clay 78 31 50 0.94 408 6.7 Christiansen (1983); Sauer (1983); Sauer and Christiansen (1987) 
40 Hadleigh, (slip surf. 2&3), Essex, UK Brown London clay 80d 29d 55d 0.9d 35 13.2 Hutchinson and Gostelow (1976) 
41 Hadleigh, (slip surf. 5), Essex, UK  Brown London clay 80d 29d 55d 0.9d 45 13.3 Hutchinson and Gostelow (1976) 
42 Hadleigh, (slip surf. 8), Essex, UK  Brown London clay 80d 29d 55d 0.9d 49 13.5 Hutchinson and Gostelow (1976) 
43 Hadleigh, (slip surf. 12), Essex, UK  Brown London clay 80d 29d 55d 0.9d 67 13.2 Hutchinson and Gostelow (1976) 
44 Guildford, Surrey, UK Brown London clay 80d 29d 55d 0.9d 69 10.9 Skempton and Petley (1967); Chandler (1982) 
45 Beacon Hill, Herne Bay, Kent, UK Brown and Blue London clay 80d 29d 55d 0.9d 108 14.1-14.8 Wise (1957); Hutchinson (1965b); Bayley (1972); Bromhead (1978) 
46–47 Queen’s Avenue, (1966,1970),  Herne 

Bay, Kent, UK  
Brown and Blue London clay 80d 29d 55d 0.9d 103-113 12.3-12.5 Hutchinson (1965b); Bromhead (1978) 

48–51 Miramar, (1953, 1956, 1966, 1970), Hern 
Bay, Kent, UK  

Brown and Blue London clay 80d 29d 55d 0.9d 123-154 10.8-12.3 Hutchinson (1965a,b); Bayley (1972); Bromhead (1972,1978) 

52 San Diego, California, USA Santiago claystone 89f 44f 57f 0.79f 288 7.5 Stark and Eid (1992, 1998) 
53 Portuguese Bend, California, USA Altamira bentonitic tuff 98f 37f 68f 0.90f 500 6.5 Stark and Eid (1994); Eid (1996) 
54 Gardiner Dam, Saskatchewan, Canada Bearpaw Shale 128f 27f 43f 2.35f 95 9.8 Jasper and Peters (1979); Mesri and Capeda-Diaz (1986); Stark and Eid (1994)  
a Quantity of particles < 0.002 mm; bAverage effective normal stress on the slip surface; cBack-calculated  residual friction angle reported for c' = 0; dAverage value; eNot indurated; fIndices for ball-milled materials. 
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4.4.1. Predicted	and	Back‐Calculated	Residual	Shear	Strength	Angles	

To predict the residual friction angle for a case history using each of the 

correlations of Fig. 4.7, a residual shear strength failure envelope of the concerned 

material was first developed by drawing a smooth curve connecting the shear 

strengths estimated at different effective normal stresses utilizing the reported 

liquid limit and clay-size fraction, or plasticity index (note that the index 

parameters were adjusted in case of sliding through indurated materials). The 

predicted residual friction angle was then determined as the inclination angle of a 

secant of the developed envelope at the reported average effective normal stress 

acting on the slip surface. Comparison between the back-calculated residual 

friction angles and those predicted using the correlations presented in this study is 

shown in Fig. 4.8. To evaluate the performance of the residual shear strength 

correlations presented in this chapter compared with those of similar correlations 

available in the literature, the back-calculated friction angles reported for the case 

histories listed in Table 4.2 were also checked against the friction angles predicted 

using twenty four of the residual shear strength correlations existing in the 

literature (Table 4.3). The back-calculated friction angles and the corresponding 

angles predicted using a representative set of these correlations as well as the 

correlation of Fig. 4.7a are shown in Fig. 4.9 for graphical comparison. All of the 

graphical correlations used in the comparison as well as their associated predicted 

angles plotted against the corresponding back-calculated residual friction angles 

are shown in Appendix A. 
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Figure 4.8 Comparison between the back-calculated secant residual friction angles 
and those predicted using the correlations developed in this study as a function of: 
(a) liquid limit, clay-size fraction, and effective normal stress [Fig. 4.7a]; (b) 
plasticity index and effective normal stress [Fig. 4.7b]. 
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Figure 4.9 Comparison between the back-calculated secant residual friction angles 
and those predicted using different empirical correlations. 
 



    

   84 

 

4.4.2. Calibration	 of	 Residual	 Shear	 Strength	 Correlations	 Through	

Statistical	Analysis	 

In an attempt to quantify statistically the performance of the correlations 

developed in this study (in predicting the residual friction angles back-calculated 

from the reactivated landslides) compared with those of the other correlations 

listed in Table 4.3, the coefficient of determination (R2) of the regression equation 

defined by [ø'r]PR = [ø'r]BC, as well as the mean (μ) standard deviation (S), and 

coefficient of variation (COV) of the ratio [ø'r]PR / [ø'r]BC were calculated for each 

correlation. The correlations developed in this study seem to yield the highest R2, 

closest μ to 1.0, and the lowest S and COV (Table 4.3) compared to other 

correlations – thus, suggesting the suitability of the correlations proposed in the 

current study in terms of their accuracies and precisions. This can be attributed to 

well accounting for the effects of clay mineralogy, soil texture, sample preparation 

techniques, and effective normal stress in ranges that are relevant to slope stability 

analyses. 

The work undertaken in this study confirms that considering the effect of 

normal stress is important for better prediction of the residual friction angle as 

most of the correlations that incorporate the effective normal stress yield fair 

agreement between the prediction and back-calculated angles indicated by having 

values close to 1.0 for μ, and relatively low S and COV (Table 4.3). However, the 

relative performance of these correlations would be governed by the levels of 

effective stress, soil index parameters and their range, method of sample 

preparation and testing, and number of data points used in presenting each 

correlation. For example, in spite of having trend lines that represent effective 
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normal stresses as low as 19.6 kPa, the correlation presented by Lambe (1985) as 

a function of the plasticity index was developed based on a relatively few number 

of tests on Amuay soils only. On the other hand, Stark and Eid (1994) developed 

their correlation based on a considerable number of test results of several soil and 

shale types. However, they only covered the high level of effective normal 

stresses relevant to slope stability analyses. By adding more ring shear test results 

to those presented in Stark and Eid (1994), Stark et al. (2005) introduced a 

revisited residual strength correlation that has the same limitation in addition to 

those related to utilizing index parameters of claystones and shales derived from 

different sample preparation procedures, miss plotting some of the Stark and Eid 

(1994) data points (e.g., those of Bearpaw shale, Saskatchewan, Canada), and 

using some results collected from commercial sources. Kaya (2009) noted that the 

revised correlation by Stark et al. (2005) shows a larger data scatter up to LL of 

100%. This may be the reason for the lower R2 value observed in Table 4.3 for the 

Stark et al. (2005) correlation compared with that of Stark and Eid (1994) in 

predicting the back-calculated friction angles. The correlation of Stark and 

Hussain (2013) inherited the same limitations but exhibits a performance better 

than that of Stark et al. (2005) correlation due to extending the covered level of 

effective normal stress down to 50 kPa. 
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Table 4.3 Results of statistical analysis and calibration of residual shear strength correlations used in predicting the back-calculated friction angles reported for reactivated landslides considered in 
this study. 

 

Correlation reference Source of test data 
 
Test device and σn' used Parameters used for prediction  

R2 for 
[ør']PR = [ør']BC 

Statistical parameters for 
the ratio [ør']PR / [ør']BC 
µ S COV 

Skempton (1964)a Skempton (1964)  Direct shear, σn' = 35 to 280 kPa CF ―f 1.41 0.53 0.38 
Voight (1973) Kenney (1967); Nonveiller (1967); Skempton and 

Petley (1967); D’Appolonia et al. (1967); Skempton 
et al. (1969); Hutchinson (1967, 1969); Chandler 
(1969, 1970); Hamel (1970) 

Direct shear, σn' = 10 to 885 kPa PI ―f 1.32 0.48 0.36 

Kanji (1974) Bishop et al. (1971); Tulinov and Molokov (1971); 
Kanji (1970, 1972);  Townsend and Gilbert (1973) 

Direct shear and Ring shear, σn' = 6.9 to 1177 kPa PI ―f 0.84 0.27 0.33 

Mitchel (1976)a Deere (1974)                ―b LL ―f 1.28 0.37 0.29 
Mitchel (1976)a Deere (1974)                ―b PI  ―f 1.23 0.39 0.32 
Cancelli (1977) Jamiolkowski and Pasqualini (1976)                ―b LL ―f 1.14 0.33 0.29 
Lupini et al. (1981) Lupini et al. (1981) Ring shear, σn' = 177 to 352 kPa PI ―f 1.85 0.65 0.35 
Lambe (1985)e Lambe (1985)  Direct shear, σn' = 19.6, 48, 98, and 196 kPa PI, and σn'   0.27 1.10 0.31 0.28 
Skempton (1985)a Skempton (1985) Ring shear, σn' ≃ 100 kPa CF ―f 1.06 0.39 0.36 
Mesri and Cepeda-Diaz (1986) Kenney (1967); Mesri and Cepeda-Diaz (1986) Direct shear, σn' = 19.6 to 785 kPa LLc ―f 0.79 0.26 0.32 
Collotta et al. (1989)a Collotta et al. (1989) Direct shear, σn' = 100 to 700 kPa   CALIP = (CF)2 × LL×PI×10-5 ―f 0.96 0.54 0.56 
Collotta et al. (1989)a Collotta et al. (1989) Ring shear, σn' = 100 to 700 kPa CALIP = (CF)2 × LL×PI×10-5 ―f 0.85 0.37 0.44 
Nelson (1992) Nelson (1992) Direct shear, σn' = 96, 192, 383, and 479 kPa LL  0.26 1.03 0.35 0.34 
Nelson (1992) Nelson (1992) Direct shear, σn' = 96, 192, 383, and 479 kPa PI  0.05 1.04 0.52 0.50 
Nelson (1992) Nelson (1992) Direct shear, σn' = 96, 192, 383, and 479 kPa CF  ―f 0.78 0.33 0.42 
Stark and Eid (1994)e Stark and Eid (1994) Ring shear, σn' = 100, 400, and 700 kPa LLc,  CFc, and σn'  0.23 0.90 0.18 0.20 
Mesri and Shahien (2003)a,e Stark and Eid (1994); Eid (1996) Ring shear, σn' = 50, 100, and 400 kPa   PI c, and σn'   ―f 0.88 0.18 0.20 
Wesley (2003)a Townsend and Gilbert (1973); Lupini et al. (1981); 

Wesley (1992) 
Ring shear, and Direct shear, σn' = 6.9 to 1177 kPa ∆Ip = PI – 0.73 (LL-20) ―f 1.06 0.55 0.52 

Sridharan and Raghuveer Rao (2004) Townsend and Gilbert (1973); Lupini et al. (1981); 
Wesley (1992); Wesley (2003) 

Ring shear, and Direct shear, σn' = 6.9 to 1177 kPa LL  ―f 0.99 0.29 0.29 

Sridharan and Raghuveer Rao (2004) Townsend and Gilbert (1973); Lupini et al. (1981); 
Wesley (1992); Wesley (2003) 

Ring shear, and Direct shear, σn' = 6.9 to 1177 kPa CF  ―f 0.93 0.37 0.39 

Sridharan and Raghuveer Rao (2004) Townsend and Gilbert (1973); Lupini et al. (1981); 
Wesley (1992); Wesley (2003) 

Ring shear, and Direct shear, σn' = 6.9 to 1177 kPa LL, and ∆Ip  ―f 1.03 0.33 0.32 

Stark et al. (2005)e Stark and Eid (1994); Stark et al. (2005) Ring shear, σn' = 100, 400, and 700 kPa LLd,  CFd, and σn'   0.12 0.88 0.21 0.23 
White and Randolph (2007) White and Randolph (2007) Ring shear, σn' = 50 to 300 kPa σn'   0.21 1.09 0.52 0.48 
Stark and Hussain (2013)e Eid (1996); Stark et al. (2005); Stark and Hussain 

(2013) 
Ring shear, σn' = 50, 100, 400, and 700 kPa   LLd,  CFd, and σn' 0.26 0.89 0.19 0.21 

This studye,g Stark and Eid (1994) ; Eid (1996); This study Ring shear, σn' = 10, 25, 50, 100, 200, and 400 kPa   LLc,  CFc, and σn' 0.65 0.95 0.14 0.15 
This studye,g Stark and Eid (1994) ; Eid (1996); This study Ring shear, σn' = 10, 25, 50, 100, 200, and 400 kPa   PI c, and σn'   0.40 0.94 0.19 0.20 
aAverage curve for the correlation upper and lower bounds was used in determining [ør']PR   
bNo available information  
c Reported index properties of shales, mudstones, and overconsolidated clays were adjusted using the relationships of Fig. 4.6 or Eqs 4.1, 4.2, and 4.3 of this study  
d Reported index properties of shales, mudstones, and overconsolidated clays were adjusted using the relationships presented in the correlation reference 
e[ør']PR determined as the inclination of a secant of the envelope-developed as a smooth curve connecting shear strengths estimated at σn' values utilized in the correlation-at the reported average σn' acting on the slip surface  
fFailure to represent the linear relationship of [ør']PR = [ør']BC   
gRanked the best based on their ability to predict the back-calculated friction angles for the considered cases (i.e., having highest R2, closest   to 1.0, and the lowest S and COV)  
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As it considers the effect of normal stress only, the correlation presented in 

White and Randolph (2007) either overestimates or underestimates the back-

calculated residual friction angles mobilized at low or high average effective 

normal stresses, respectively, of the reactivated landslides shown in Table 4.2. 

This may interpret having a reasonable value of μ, and high values of S and COV 

for the ratio [ø'r]PR / [ø'r]BC corresponding to such correlation (Table 4.3). As 

described earlier, by not considering shear strength data at effective normal stress 

ranges below 50 kPa and between 100 kPa and 400 kPa, the other existing residual 

shear strength correlations that incorporate the effect of normal stress 

underestimate the residual shear strength at these effective normal stress ranges 

and consequently have the tendency to underestimate the back-calculated residual 

friction angles (Fig. 4.9). 

4.5. 19BExpression	to	Account	for	Stress	Dependency	of	Residual	

Friction	Angle	

 
Using residual shear strength correlations shown in Fig. 4.7, it is possible to 

propose the following expression that would account for the dependence of the 

residual friction angle on the effective normal stress  

r
' ' a
r ' r P 'an n

P
( ) ( )

m

 
   

  
 

                                                          (4.4) 

where (ø'r)σ'n is the secant residual friction angle at any effective normal stress σ'n,  

higher than zero and (ø'r)Pa is the secant residual friction angle at an effective 

normal stress equal to the atmospheric pressure “Pa” (i.e., 100 kPa). The parameter 

mr is a constant that is practically independent of σ'n. Values of mr were 
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determined as the slopes of ln [(ø'r)σ'n/(ø'r)Pa] versus ln [Pa/σ'n] for soils with 

several liquid limits and clay-size fractions as well as several plasticity indices. An 

example of such process is shown in Fig. 4.10. It can be seen that having test 

results at the wide range of effective normal stress utilized in this study helped in 

better estimation of the values of mr. These values are plotted in Fig. 4.11a to be 

used in case of utilizing the liquid limit and clay-size fraction for estimating the 

secant residual friction angles. In case of utilizing the plasticity index for such 

estimation, Fig. 4.11b is to be used for determining the magnitudes of mr. It should 

be noted that Equation 4.4 has a form similar to that of the power expressions 

introduced by Mesri and Shahien (2003) and Lade (2010) for which no continuous 

relations between the soil index properties and the power parameters were 

presented. The processes of determining values of mr needed to develop the 

relationships of Fig. 4. 11 are shown in Appendix B.   

 

Figure 4.10 Definition of the parameter mr using trend lines of the residual shear 
strength correlations developed based on ring shear test results. 
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Figure 4.11 Values of parameter mr for estimating secant residual friction angle in 
terms of: (a) liquid limit and clay-size fraction; (b) plasticity index. 
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When (ø'r)Pa is determined using the trend lines of σ'n = 100 kPa in the 

correlations shown in Fig. 4.7, trend lines for other σ'n values of these correlations 

can be reproduced through utilizing Equation 4.4. The reproduced trend lines 

almost coincide with the original lines developed from actual data with maximum 

deviations limited to ± 0.7ᴼ. These deviations are traced at few ranges of soil 

plasticity and different levels of effective normal stresses (see Figs. 4.12 and 4.13 

as an example) Unlike the empirical correlations that are available in graphical 

form, Equation 4.4 can now be easily incorporated in slope stability software to 

generate smooth nonlinear residual shear strength failure envelopes. Values of 

(ø'r)Pa, and mr would be the only inputs needed to fully describe the drained 

residual shear strength for slope stability analyses. Values of (ø'r)Pa can be 

provided through direct laboratory measurements or estimation using shear 

strength correlations similar to those given in Fig. 4.7. The magnitudes of the 

corresponding parameter mr can then be provided through using Fig 4.11. It 

should be noticed that having the value of ø'r at any effective normal stress 

relevant to slope stability analyses, in addition to the magnitude of mr, is also 

enough to fully describe the residual strength envelope using Equation 4.4.  

Several expressions are presented in the literature for estimating the residual 

friction angles as a function of the soil index properties without considering the 

effective normal stress to yield linear shear strength envelopes (e.g., Kanji 1974; 

Cancelli 1977; Nelson 1992; Sridharan and Raghuveer Rao 2004) or at specific 

normal stresses to develop tri-linear or quad-linear shear strength envelopes (e.g., 

Stark and Hussain 2013). In conducting analyses using slope stability software, 

utilizing smooth nonlinear envelopes leads to an accurate determination of the 
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shear strength that corresponds to the effective normal stress acting on the base of 

each slice of the proposed failure wedge. Errors in determining these strengths 

may occur when linear envelopes or envelopes with limited number of linear 

segments are utilized in the analyses. 

 

Figure 4.12 Comparison of secant friction angle trend lines developed using 
different techniques as a function of liquid limit and clay-size fraction for different 
levels of effective normal stresses 
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Figure 4.13 Comparison of secant friction angle trend lines developed using 
different techniques as a function of plasticity index for different levels of 
effective normal stresses. 

4.5.1. 40B	Suitability	of	the	New	Residual	Friction	Angle	Expression	

The suitability of using the newly developed expression (Equation 4.4) to estimate 

soil residual shear strength at effective normal stresses relevant to slope stability 

analyses is presented in this subsection. This was done through checking the back-

calculated residual friction angles reported for different case histories of 

reactivated landslides [ø'r]BC against those predicted, [ø'r]PR, using the newly 

developed expression. The case histories of the fifty four landslides (Table 4.2) 

were used for such checking. Comparison between the back-calculated residual 

friction angles and those predicted using (Equation 4.4) presented in this study is 

shown in Fig. 4.14. Similar to the statistical analysis shown in section (4.4.2), the 

performance of the newly developed expression (in predicting the residual friction 

angles back-calculated from the reactivated landslides) was evaluated. The 
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coefficient of determination (R2) of the regression equation defined by [ø'r]PR = 

[ø'r]BC, as well as the mean (μ) standard deviation (S), and coefficient of variation 

(COV) of the ratio [ø'r]PR/[ø'r]BC were also calculated for this expression as shown 

in Fig. 4.14 . The newly developed expression seems to yield a relatively good 

agreement between the prediction and back-calculated angles indicated by having 

higher R2, μ close to 1.0, and lower S and COV compared with those calculated 

for the existing 24 correlations (Table 4.3) – thus, suggesting the suitability of the 

expression proposed in the current study in terms of their accuracies and 

precisions. 
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Figure 4.14 Comparison between the back-calculated secant residual friction 
angles and those predicted using the newly developed expression: (a) parameter mr 
in terms of liquid limit, and clay-size fraction [Fig.4.11a]; (b) parameter mr in 
terms of plasticity index [Fig.4.11b] 
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Chapter	5. 4B5B5BConclusions	

The following conclusions are drawn based on the results of soil and interface 

shear testing at low effective normal stresses (between 3 and 6 kPa) as well as an 

analysis of a provided set of data for soil drained residual shear strength measured 

at effective normal stresses as low as 10 kPa.  

1) The secant residual friction angle of soil decreases with increasing liquid 

limit and clay-size fraction. These soil parameters have a similar effect on 

the measured interface residual friction angles that are also lower for 

smoother surfaces. The change in effective normal stresses within the 

range of low effective normal stresses (between 3 and 6 kPa) utilized in 

this study did not show a considerable effect on the measured residual 

friction angles of soils and interfaces. 

2) For low effective normal stresses, the clay-size fraction, as an indication of 

particle size and shearing mode, has less influence on the measured 

residual friction angle than the influence of the liquid limit that indicates 

the clay mineralogy and particle shape. 

3) A correlation and a simple equation have been suggested for estimating the 

interface residual friction between fine-grained soils and solid surfaces 

sheared at low effective normal stresses as a function of the surface 

average roughness of the solid surface, Ra, and the soil residual friction 

angles. The residual interface efficiencies (i.e., the ratio between soil and 

interface friction angles) determined using the introduced correlation and 

equation compares well with those reported in the literature for high 
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effective normal stresses provided that soil and interface residual shear 

strengths that are estimated at the same effective normal stress range are 

used for efficiency calculations. 

4) Using the normalized roughness, Ra/D50, seems to be not effective in 

developing a better correlation to estimate the residual interface efficiency 

for fine-grained soils. It is advocated that the surface roughness alone may 

not adequately characterize a given surface. Parameters such as hardness, 

yield strength, the stress-strain behavior of solid material, and 

compatibility between soil particle size and interface surface roughness are 

likely to impact the overall interface frictional response observed at soil-

solid interfaces.  Further studies are warranted to explore these aspects.    

5) Nonlinearity of the residual shear strength envelopes is most pronounced 

at effective normal stresses lower than 50 kPa. For effective stresses equal 

or higher than 200 kPa that are occasionally mobilized in slope failures, 

these envelopes can be approximated as straight lines. The influence of 

clay-size fraction, which is the governing factor in developing different 

shearing behaviors, on the measured residual friction angle decreased with 

decreasing the effective normal stress level.  

6) Correlations were developed to help in estimating residual shear strength 

at low effective normal stresses for soil types similar to those utilized in 

the current study. The correlations describe the secant residual friction 

angle as a function of soil liquid limit and clay-size fraction as well as the 

plasticity index. Since the residual shear strength envelope of most fine-

grained soils is known to be nonlinear especially at low effective stress 
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ranges, the newly developed correlations can assist avoiding significant 

underestimation of residual shear strength angles that would occur when 

using current correlations that are developed for high effective normal 

stress ranges. They also avoid overestimating the drained residual friction 

angles of such soil types when using residual strength expressions, the 

development of which is influenced by testing soils of distinct contents 

(i.e., foraminifera, faecal pellets, carbonates, allophane, or halloysite) at 

low effective normal stresses and consequently do not consider the effect 

of soil plasticity. 

7) The suitability of the new correlations in predicting the residual strength 

was verified through comparisons with back-calculated shear strength data 

reported in the literature as well as results yielded from similar existing 

correlations. It was revealed that accounting for the effect of normal stress 

is an important consideration in arriving at better predictions using such 

empirical correlations.  

8) New simple formula was generated to express the residual shear strength 

correlations developed in this study. The formula should facilitate 

incorporating the nonlinearity of the residual shear strength envelopes in 

slope stability software. The suitability of the newly developed formula in 

predicting the residual strength was also verified through comparisons with 

back-calculated shear strength data reported in the literature.      
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Appendix A 

Comparison Between The Back-Calculated Secant Residual 
Friction Angles and The Residual Angles Predicted Using Existing 
Residual Shear Strength Correlations. 
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Figure. A-1-a.  Drained residual shear strength empirical correlation (after 
Skempton 1964) 

 

Figure. A-1-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by 
Skempton (1964)    
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Figure. A-2-a.  Drained residual shear strength empirical correlation (after Voight 
1973) 

 

Figure. A-2-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Voight 
(1973) 
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Figure. A-3-a.  Drained residual shear strength empirical correlation (after Kanji 
1974) 

 

Figure. A-3-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Kanji 
(1974) 
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Figure. A-4-a.  Drained residual shear strength empirical correlation (after Mitchel 
1976) 

 

Figure. A-4-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Mitchel 
(1976) 
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Figure. A-5-a.  Drained residual shear strength empirical correlation (after Mitchel 
1976) 

 

Figure. A-5-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Mitchel 
(1976) 
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Figure. A-6-a.  Drained residual shear strength empirical correlation (after 
Cancelli 1977) 

 

Figure. A-6-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by 
Cancelli (1976) 
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Figure. A-7-a.  Drained residual shear strength empirical correlation (after Lupini 
et al. 1981) 

 

Figure. A-7-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Lupini 
et al. (1981)  
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Figure. A-8-a.  Drained residual shear strength empirical correlation (after Lambe 
1985) 

 

Figure. A-8-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Lambe 
(1985) 
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Figure. A-9-a.  Drained residual shear strength empirical correlation (after 
Skempton 1985) 

 

Figure. A-9-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by 
Skempton (1985)    
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Figure. A-10-a.  Drained residual shear strength empirical correlation (after Mesri 
and Cepeda-Diaz 1986) 

 

Figure. A-10-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Mesri 
and Cepeda-Diaz (1986)  
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Figure. A-11-a.  Drained residual shear strength empirical correlation (after 
Collotta et al. 1989) 

 

Figure. A-11-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by 
Collotta et al. 1989)    
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Figure. A-12-a.  Drained residual shear strength empirical correlation (after 
Collotta et al. 1989) 

 

Figure. A-12-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by 
Collotta et al. 1989)    



    

   131 

 

 

Figure. A-13-a.  Drained residual shear strength empirical correlation (after Stark 
and Eid 1994) 

 

Figure. A-13-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Stark 
and Eid (1994) 
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Figure. A-14-a.  Drained residual shear strength empirical correlation (after Mesri 
and Shahien 2003) 

 

Figure. A-14-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Mesri 
and Shahien (2003) 
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Figure. A-15-a.  Drained residual shear strength empirical correlation (after 
Wesley 2003) 

 

Figure. A-15-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Wesley 
(2003)  
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Figure. A-16-a.  Drained residual shear strength empirical correlation (after Stark 
et al. 2005) 

 

Figure. A-16-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted using the correlation presented by Stark et 
al. (2005) 
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Figure. A-17-a.  Drained residual shear strength empirical correlation (after Stark 
and Hussain 2013) 

 

Figure. A-17-b.  Comparison between the back-calculated secant residual friction 
angles and the residual angles predicted  using the correlation presented by Stark 
and Hussain (2013) 
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Appendix B 

Determination of The Value of mr For an Existing Set of Data. 
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Figure. B-1-a.  Determination of the value of mr based on the liquid limit for soils 
with clay-size fraction less than or equal to 20%  
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Figure. B-1-b.  Determination of the value of mr based on the liquid limit for soils 
with clay-size fraction between 25% and 45%. 
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Figure. B-1-c.  Determination of the value of mr based on the liquid limit for soils 
with clay-size fraction greater than or equal to 50%.   



    

   140 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. B-2.  Determination of the value of mr for soils based on the plasticity 
index. 


