
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

MINIMIZING NUMBER OF SENSORS IN WIRELESS SENSOR

NETWORKS FOR STRUCTURE HEALTH MONITORING SYSTEMS

BY

FARAH ABDULMUTALEB ALQAWASMA

A Thesis Submitted to the Faculty of

College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in

Computing program

June 2016

© 2016 Farah Abdulmutaleb AlQawsma. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the thesis of Farah Abdulmutaleb AlQawsma

defended on [22
nd

 May, 2016].

Dr. Tarek El-Fouly

Thesis/Dissertation Supervisor

Dr. Mohamed Hossam Ahmed

Thesis/Dissertation Supervisor

Dr. Sebti Foufou

Committee Chair

Dr. Yasser Morgan

 Committee Member

Dr. Abbes Amira

 Committee Member

Dr. Tamer Mohamed Samir

Committee Member

Approved:

Dr. Khalifa AlKhalifa, Dean, College of Engineering

iii

ABSTRACT

Nowadays, wireless sensor networks (WSNs) are considered an essential candidate to

apply structural health monitoring (SHM). An important problem in this area is sensor

placement optimization. In many research works, solving this problem focuses only

on the network properties and requirements such as energy consumption, network

coverage, …etc., without considering the civil engineering requirements. However,

there are other research works that consider network and civil requirements while

optimizing the sensor placement. Unfortunately, although minimizing the number of

sensors is important, it has never been addressed. This could be noticed from the

limited literature found that addresses this problem while considering both the civil

and the network requirements. As a result, in this thesis we study the problem of

minimizing the number of sensors for SHM in WSNs. The idea behind this research is

to reduce the network size, which can solve some problems such as the scalability,

installation time and cost. Our contribution in this work is not limited to the

mathematical model of the mentioned problem, but will extend to solve the problem

using different methods: the exhaustive search, genetic algorithm (GA), and a

heuristic algorithm that applies the binary search. The problem is then solved for

different number of sensors as well as different placements in many conducted

experiments. Finally, the time complexity is evaluated to compare between all the

applied methods. The obtained results showed that minimizing the number of sensors

becomes more significant with big structures. Furthermore, the binary search

algorithm is the best to use to solve the problem for small buildings. But, For larger

buildings, there is a trade-off between the performance, and time complexity, where

iv

binary search gives optimal solution, but genetic algorithm gives better time

execution.

v

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. x

List of Abbreviations .. xiiii

Acknowledgements ... xivv

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Research Motivation .. 3

1.3 Problem Statement ... 4

1.4 Research Aim and Objectives .. 5

1.5 Scope of the Research .. 7

1.6 Significance of Research .. 8

1.7 Contributions of the Research .. 8

1.8 Thesis Outline .. 9

Chapter 2: Background and Literature Survey .. 10

2.1 Structural Health Monitoring (SHM) ... 10

2.2 SHM: Development of Technologies .. 13

2.3 Sensor Placement Problem ... 14

Chapter 3: Problem Formulation and Methodology .. 26

3.1 System Model and Problem Formulation ... 26

vi

3.2 Exhaustive Search .. 31

3.3 Genetic Algorithm .. 33

3.3.1 Encoding Mechanism .. 34

3.3.2 Fitness Function ... 36

3.3.3 Selection .. 36

3.3.4 Crossover .. 38

3.3.5 Mutation .. 39

3.3.6 Why Use GA ... 39

3.3.7 How Is GA Applied in This Research Work .. 41

3.4 Binary Search Method ... 43

Chapter 4: Implementation ... 45

4.1 Implementation of an Exhaustive Search Method .. 46

4.2 Implementation of the GA Method .. 50

4.3 Implementation of the Binary Search Method ... 52

Chapter 5: Results, Evaluation, and Validation ... 58

5.1 Parameters and Platform .. 58

5.2 Experiments and results ... 60

5.2.1 Five story building ... 60

5.2.2 Nine-story building .. 71

5.2.3 Two-bay – nine-story building ... 81

vii

5.3 Time Complexity Evaluation ... 97

5.3.1 Time complexity of exhaustive search .. 97

5.3.2 Time complexity of genetic algorithm ... 99

5.3.3 Time complexity of binary search ... 101

Chapter 6: Conclusion and Future Work ... 103

6.1 Conclusion ... 103

6.2 Challenges .. 105

6.3 Future Work ... 106

7 References ... 108

Appendix A : Binary Search Algorithm .. 118

Appendix B: How GA Process Works ... 119

viii

List of Tables

Table 1: SHM Applications ... 10

Table 2: Summary off sensor placement approaches .. 24

Table 3: Some problems’ parameter descriptions .. 45

Table 4: Input arguments for the ga function ... 51

Table 5: Some of the most important default settings when calling ga function 52

Table 6: The unified parameters used in all the methods applied in the thesis 59

Table 7: Platform specifications .. 60

Table 8: Results of implementing exhaustive search on five-sensors story building .. 63

Table 9:The computed information quality L for all the different combination of five

sensors .. 66

Table 10: Results of implementing genetic algorithm using a five-sensors story

building .. 68

Table 11: Results of implementing binary search on a five-sensors story building 70

Table 12: The results of implementing brute force on a nine-story building 73

Table 13: Results of implementing the genetic algorithm on a nine-sensors story

building .. 76

Table 14: Results of implementing binary search on a nine-sensors story building ... 78

Table 15: Results of implementing exhaustive search on a two-bay nine-story building

.. 87

Table 16:Results of implementing genetic algorithm on a two-bay nine-sensor story

building .. 89

Table 17: Results of implementing binary search on a two-bay nine- story building . 95

ix

Table 18: Computed L for the combination that appeared when implementing binary

search on a two-bay nine-story building .. 96

Table 19: Some of the parameters input into ga function .. 99

x

List of Figures

Figure 1: SHM Process .. 12

Figure 2: Encoding schemes in GA structure (A : binary encoding , B: permutation

encoding, C: value encoding, D: tree encoding) .. 36

Figure 3: The block diagram presenting the GA process[50] 40

Figure 4: Flowchart of the implemented exhaustive search method 48

Figure 5:Flowchart of the implemented binary search method 55

Figure 6: Coordinates of the five candidate sensors and the sink node 61

Figure 7:Five mode shapes used in a five-story building[64]...................................... 62

Figure 8: five-sensors story building placement based on different 𝐋𝐦𝐢𝐧 required . 64

Figure 9: Nine Candidate sensor locations .. 71

Figure 10: Sensor placement based on implementing brute force for different required

information quality... 73

Figure 11:Different results shown when implementing genetic algorithm using

Lmin=40 ... 75

Figure 12: Sensor placement when implementng binary search on a nine-sensors story

building .. 78

Figure 13: The effect of increasing the number of mode shapes on a five-story

building .. 80

Figure 14:The effect of increasing the number of mode shapes on a nine-story

building .. 81

Figure 15: Candidate sensor locations in a two-bays nine-sensor story building 82

Figure 16: Labels of the candidate sensor locations in a two- bay nine-sensor story

building .. 83

xi

Figure 17: Sensor placement when applying brute-force on a two-bay nine-sensor

story building ... 86

Figure 18: Sensor placement when implementing binary search on a two-bay nine-

sensor story building .. 90

Figure 19: The number of sensors reduced in all the different experiments for

different required 𝐋𝐦𝐢𝐧 using brute force and binary search 93

Figure 20: The number of sensors from implementing exhaustive search (ES), genetic

algorithm (GA), and binary search (BS) .. 93

Figure 21: The execution time (s) of implementing exhaustive search (ES), genetic

algorithm (GA), and binary search (BS) on a five-story building and a nine-

story building ... 94

Figure 22:The execution time (s) of implementing exhaustive search (ES), genetic

algorithm (GA,) and binary search (BS) on a two-bay nine-story building 94

xii

List of Abbreviations

B&B Branch and bound

DAQ Data Acquisition

EFI Effective Independence method

EFI-DPR Effective Independence-Driving Point Residue

EC Evolutionary Computation

FIM Fisher Information Matrix

FTSHM Fault-Tolerant wireless sensor configuration method for the SHM

GA Genetic Algorithm

GAG Generalized GA

GNTVT Guangzhou new TV tower

HN High-End Node

IAG Improved GA

LN Low-End Node

MAC Model Assurance Criterion

MSE-AGA Modal Strain Energy – Adaptive Genetic Algorithm

mop-SPEM Multi-Objectives SPEM

O() Big O notation

p-SPEM Power Aware Sensor Placement using EFI method

WSN Wireless Sensors Networks

RP Repairing Points

RN Redundant Node

SA Simulated Annealing

xiii

SPEM Sensor Placement using EFI Method

TPSP Three Phase Sensor Placement

xiv

Acknowledgements

First of all, I would like to thank Allah for giving me the strength to come over

all the stress and study pressure during my master’s study journey. Then I want to

give special thanks to many precious people in my personal life, to my husband for

his infinite love, patience and support all the time. To my mother for her continuous

love, prayers and endless support. To my father for his support to continue my studies

and for his great encouragement through my thesis work. To my lovely brothers, sister,

my family in low and friends for their help, and prayers. I would say that without their

full support and love, this work would not have been achieved.

In addition to that, I would like to acknowledge some valuable people in my

academic life. My sincere gratitude to the supervisors of this thesis Dr. Tarek El-

Fouly, and Dr. Mohamed Hossam for their guidance, help through my journey

towards producing this thesis. Also, I take this opportunity to convey my sincere

thanks to Prof. Ali Jaoua, the Master Coordinator, for guiding and helping in

submitting the thesis in an organized, and professional manner. In addition to that, we

would like to thank Qatar National Research Fund (QNRF) for funding the project
1
. I

wish to extend my heartfelt gratitude to some of NPRP project team, to Dr. Mohamed

Mahgoub, and Eng. Mohammed El-Sersy for their great help and collaboration in the

project. I wish to extend my thanks to all my wonderful professors for their never-

ending support and to my beloved university for everything that it gave me.

1
 This thesis is under the umbrella of one of the projects of National Priorities Research Program

(NPRP- 6-150-2-059) funded by Qatar National Research Fund under its). Its contents are solely the

responsibility of the authors and do not necessarily represent the official views of Qatar National

Research Fund.

1

Chapter 1: Introduction

1.1 Overview

Nowadays, many applications use wireless sensor networks (WSN), such as

wireless body area networks (WBAN) [1], surveillance systems [2], and structural

health monitoring (SHM). Structural health monitoring is the science of applying

damage detection to structures. WSNs are a promising candidate for SHM due to their

inelegance in sensing technologies and good computing abilities [3].

SHM applications of WSNs are great for high-rise towers and infrastructure

such as bridges [4]. SHM reduces economic loss, saves human lives, and decreases

catastrophic failures [5]. Some examples that show the importance of SHM are the

collapse of I-35W bridge in Minneapolis in 2007 and the breakdown of the I-5 Skagit

River bridge in Seattle in 2012 [6]. Implementing WSNs for SHM has several

benefits. WSNs will help ensure long-lasting structures for future SHM. Additionally,

deploying WSNs for SHM decreases installation time and reduces costs when

compared with deploying wired sensors network [7]. While there is a huge benefit to

deploying WSNs for SHM, challenges are faced in both the computer science and

civil engineering fields that need to be taken in consideration. For example, in WSN,

network scalability is one of the major challenges in that field, and the related

sequences are communication, fault tolerance (the network should be fail-safe),

energy, and high installation time and cost [8]. In civil engineering, there are some

specific requirements that should be considered, such as checking sensors’

information-quality. Information quality means to measure how much the data

obtained by the sensors in their specific positions is correct and accurate. In civil

engineering area, the sensor placement quality can be measured based on the by a

2

metric called fisher information matrix (FIM). If such civil requirement is not

considered when choosing the sensors’ location in the SHM network, it may lead to

misleading information about the structure damage because in damage surveillance

choosing the sensor locations is very sensitive.

As a result, optimizing sensor placement has become a very hot research area.

Many researchers worked on optimizing sensor placement to satisfy WSN

requirements, such as good area coverage, maximum network connectivity, maximum

network lifetime, minimum number of sensors, as in [9], [10], [11], [12], and [13].

But the solutions used in the listed research are general and did not consider civil

requirements. However, other research works do consider civil engineering

requirements to optimize sensor placement in addition to network needs, as in [14],

[15], [16], [17], [18], and others. The above-mentioned research greatly contributed to

this field, but if investigated further, we notice that they never considered minimizing

the number of sensors as part of the solution for the sensor placement problem. Many

solutions assume that there are M candidate sensor locations and N available sensors

to fit into some of the M candidate locations. We know that M can be a large number

if the granularity resolution of the surface is defined [14], [15]. Having such a huge

number of candidate sensors M means higher network size and more challenges in

obtaining scalability, and its related sequences as limitations in power, computational

capacities, time synchronization, coverage problems, huge cost and installation time,

and quality of service (QoS) related to the SHM applications and civil field

requirements [19].

3

1.2 Research Motivation

The first motivation to work in this field is the importance of sensor placement

optimization for SHM in WSN and its impact on global quality of life. Another

inspiration to engage in this research is, as mentioned in the overview, that the

problem of minimizing the number of sensors is not discussed in the literature,

especially in relation to computer science and the civil requirements of SHM in

WSNs. Additionally, we need to consider the enormous effects of having such large

M candidate sensor node locations. Minimizing the number of candidate sensor

locations can reduce these challenges. Another motivation is that this study offers a

theoretical point of view to help the designers of SHM in WSNs balance the number

of sensors deployed and the information quality gained. In cases of failure, this will

enable the designer to check if reducing the number of sensors in specific locations

effected the lower bound of the required information quality. Furthermore, this

research is a part of NPRP project
1

that aims to solve the following problem:

Minimize energy consumption, and maximize placement information-quality using

some constraints related to network requirements. In the mentioned problem, the

sensors are installed in infrastructures where it is difficult to change the batteries, so

the research team in the project decided to optimize energy consumption without

sacrificing the quality of the information by deploying the minimal number of

sensors. Another motivation related to the NPRP project which is the big umbrella for

this research work, that this project research work will be used for monitoring the

health of bridges existing in Qatar, where the main company in Qatar that is

responsible about infrastructure, and buildings (ASHGAL) assign the task of SHM of

one of the existing bridges in Qatar to the team of this NPRP project. So solving the

4

problem included in this thesis will contribute in designing a better WSN with

minimal number of sensors. These reasons all motivated me to do my master’s thesis

in this field.

1.3 Problem Statement

The thesis question is, “Can one find a minimal number of sensors for SHM in

WSN that satisfies civil requirements by maintaining a certain required information

quality and satisfies some WSN network requirements, such as assured

communication and specific energy level?”

The studied problem concerns researchers working in the field of sensor

placement optimization for SHM in WSN all over the world. The problem needs to be

studied and solved at the system design level, when a designer of SHM in WSN

networks want to place the sensors in their candidate locations. The designer should

have parameters, such as the M sensors’ candidate location coordinates and a civil

field parameter related to the information quality obtained by the entire sensors

network . The designer should specify the required information quality for the entire

system, for example, an information quality can be less or more than 80%, depending

on the study’s and the designer’s requirements. In addition, depending on the type of

sensor used, the designer needs the minimum transmission rate 𝑅𝑐 in the network and

the initial energy provided by each sensor. When the designer has all of the stated

parameters and requirements, he or she can start looking for a solution to the reported

problem.

This research will discuss how the solution to the problem can be obtained by

different methodologies and how it can be implemented into the sensor network to

5

monitor structure health. Solving the problem will save time and money in big

structures and reduce the challenges related to network scalability.

1.4 Research Aim and Objectives

This study aims to understand the reported problem and its corresponding

parameters and requirements; it will illustrate the concept and solve the problem by

minimizing the number of sensors for SHM in a WSN. To do this, the following steps

should be achieved:

1. Model the system problem to clearly illustrate the objective (minimizing

the number of sensors) and the related constraints to solve the problem’s

lower bound for information quality, upper bound for transmission range,

and limitations for energy consumption.

2. Find methodologies for the optimal or near-optimal solution for the

problem. There are many methods that can solve this problem. Three

methods are applied which are:

a. Exhaustive search which is the method of brute force all the possible

solutions, and although it is known by its high complexity, it is very

simple to run, and it is be considered a baseline to compare its results

to other algorithms results.

b. Genetic algorithm that is a heuristic method the mimics the evolution

process, and it is used because it is known that it is faster, and because

one of its well-known steps is binary encoding (the variable values are

changed to binary values 0-1) and this type of encoding fits the studied

problem in this thesis very much

6

c. Binary search which is a non-heuristic method, a heuristic application

of binary search method is used to get the optimal solution in better

time than classical method such as exhaustive search. It is known that

this method is applied on sorted arrays, and this is the case in the input

of this research work.

Some other methods that can be applied to solve this problem, but are not

applied in this work;

a. Greedy method that is an optimization approach that reaches the

solution by making a sequence of choices, each of which looks the

best at the moment (locally optimal).with the hope that the global

optimal solution will be obtained [20].

b. Branch-and-bound method which guarantees the optimal solution

with less time complexity[21].

Those methods were not applied, because in the worst case, both of them

can reach the time complexity of exhaustive search but with more

algorithmic complication. On the other hand, those methods may be used

in future work to compare their performance against the applied methods.

3. Implement the chosen algorithms and conduct experiments to show the

relation between the candidate sensors’ locations and the reduced number

of sensors using different required lower bounds of information quality.

4. Compare the performance of the different implemented algorithms with

the different sets of candidate sensor locations and compute the time

complexity of each.

7

1.5 Scope of the Research

Delimitations:

The delimitation of the studied problem is that there is a specified objective

function, which is to optimize (minimize) the number of sensors in a specific field,

which is SHM in WSN. Furthermore, the constraints on solving the problem are not

the typical ones used in WSNs without a specific application and don’t include all the

requirements of a WSN. Instead, a specific set is used to guarantee sensor node

communication by setting an upper bound of 𝑅𝑐, and a WSN energy requirement is

used so each sensor should have a lower bound of energy equal to the initial energy

𝐸𝑖𝑛𝑖𝑡 saved in the sensor. The last constraint is the information quality metric that is

the determinant of the Fisher information matrix (FIM), a requirement of the civil

field. This research can be extended in future work by changing the mathematical

formulation of the problem.

Limitations:

A limitation of the study is that the problem is solved for only one type of

structure: towers and high-rise buildings. In the future, the work can be extended to

bridges and other structures.

Finally, the study was conducted on different sets of sensors: 5 sensors,

representing a 5-story building; 9 sensors, representing a 9-story building; and 30

sensors, representing a 2-bay, 9-story building. Though these sets of sensors are

considered small, they illustrate the concept and demonstrate its validity. A future

work is to conduct experiments on larger sets of sensors.

8

1.6 Significance of Research

The research is considered significant in more than one way. First this thesis

solves for the first time the problem of minimizing the number of sensors for SHM in

WSN while satisfying both civil and network requirements. Also significant is that

minimizing the number of sensors in SHM can reduce installation time and cost for

high buildings, with further cost reduction if using SHM from the beginning. This

creates a good economic impact for the companies and countries that might use the

solution proposed in this paper to minimize the number of sensors for SHM in WSN.

In addition, the proposed solution can be used before implementing a wireless

sensor network in the field of SHM. If the designer used all candidate sensors, and if

some sensors failed, he or she could measure the reduced information quality and

compromise between the number of sensors and the information quality needed.

Nevertheless, the NPRP project
1
 team who are working on optimizing the energy

consumption and information quality can use this study to deploy the minimal number

of sensors.

1.7 Contributions of the Research

This thesis formulates the minimization problem of the number of sensors

using a single objective function. The objective function is employed to minimize the

number of sensors in WSN for SHM systems.

In this thesis, the contributions are summarized in the following points:

1. We propose a single, objective mathematical formulation to minimize the

number of sensors for SHM in WSN.

9

2. The optimal solution is found using an exhaustive search and a heuristic

that applies a binary search.

3. A sub-optimal solution is found using a genetic algorithm.

4. In the optimal solution, we confirmed the trade-off between number of

mode shapes used and number of reduced sensors, where increasing the

order of mode shapes (increasing the number of mode shapes) leads to

using more sensors.

5. We compared the solutions obtained by three different methods. The

numerical results show the binary search efficiency as a low complexity

solution for small buildings. There is a trade-off between an optimal

solution using binary search and better time complexity using a genetic

algorithm for large towers.

1.8 Thesis Outline

The outline of the rest of this thesis is as follows: An overview of the stated

problem’s main concepts, a literature analysis about SHM in WSN, and in Chapter 2,

optimizing sensor placement and sensor number are presented. Chapter 3 provides the

system model of the problem and demonstrates the different applied algorithms—

exhaustive search, genetic algorithm, and binary search—and explains the reasons for

choosing those methods to solve the problem. Chapter 4 describes in detail the

implementation of the proposed methods and presents related flowcharts. Chapter 5

discusses the experiments and corresponding results and validation. The time complexity

is then measured for the three applied methods with the validation of the computations.

Finally, the conclusion, challenges, and future work are reported in Chapter 6.

10

Chapter 2: Background and Literature Survey

2.1 Structural Health Monitoring (SHM)

Structural health monitoring (SHM) is the procedure of applying a damage

detection strategy for many fields such as aerospace, civil, and mechanical

engineering structures. Damage can occur due to mismanagement in construction,

lack of quality control, temperature, initiation of cracks caused by cyclic loading, or

changes in the geometric properties or characteristics of a system that harmfully affect

its current or future performance [22].

SHM is used in different fields, and some of the examples are mentioned in

Table 1.

Table 1: SHM Applications

Field Structure to monitor its health

Aerospace Civil and military airplanes, space craft ,

and helicopters

Civil engineering Buildings, bridges, dams, and tunnels

Transport Automotive trains, and ships

Energy Oil and gas installations and pipelines,

wind turbines, nuclear plants, and tidal

wave generators

Chemical installations Piping and tanks

11

SHM is mainly used to replace schedule- driven maintenance with condition-

based maintenance. It is important in insuring scalability in terms of monitoring many

structures. It can also increase the structure’s longevity by detecting damage in the

early stages to enable proactive maintenance. Furthermore, SHM has potential

economic and life safety benefits [23].

In the SHM process, the system is monitored over time using an array of

sensors. These sensors respond with periodically dynamic measurements. Then

extraction of damage-sensitive features from these measurements is done. After that, a

statistical analysis on those features is applied to define the current status of the

structure’s health [24].

The output of long-term SHM can be used to check the condition of the

structure, and to decide if it can perform its functions in light of the expected aging

and degradation resulting from the operational environment. Moreover, after a

dangerous occurrence like an earthquake, SHM can be used to provide reliable

information regarding the integrity of the structure [22].

To be more precise, the researchers in [22] think that the SHM process is a

pattern recognition problem that can be divided into four main parts, namely,

operational Evaluation, data acquisition, feature extraction, and statistical model

development for feature discrimination as shown in Figure 1.

12

Figure 1: SHM Process

Operational evaluation is used to define what is the economic motivation or

life safety motivation behind implementing the SHM process. Then it describes what

are the damage types to be detected and under which operational and environmental

conditions they are to be monitored. In addition to that, it shows the limitations of

acquiring data in SHM [24].

The data acquisition (DAQ) part of the SHM process includes selecting the

types of sensors to get the needed data, the number of sensors and the location where

the sensors should be positioned, the bandwidth, and the data acquisition, storage, and

transmittal hardware and equipment. The third main step in the SHM process is

feature extraction, which gives the needed technical literature such as data

normalization and processing techniques to recognize the damage-related information

from the measured data. That means distinguishing the changes in sensor readings due

to damage from those caused by varying operational and environmental conditions

[24].

13

Finally, the last step in the in the SHM process is the development of

statistical models to discriminate between features from the undamaged and damaged

structures. In this step, The algorithms that operate on the extracted features are

implemented to quantify the state of damage of the structure [25].

2.2 SHM: Development of Technologies

If a person wants to search about the development of using technologies in the

SHM process, he/she finds that old conventional monitoring systems are categorized

as having instrumentation points (sensors) wire-connected to the centralized DAQ

system through coaxial cables and that the system is just used for monitoring. In

addition to that, the sensors are independent and may not communicate with other

sensors. The following problems result from using wired systems : (1) as the number

of sensors increase, it becomes harder to install them; (2) the degree of sophistication

in data processing becomes greater. (3) the cost of maintenance is higher [22].

Although wired network systems are still used in some SHM applications,

wireless sensor network (WSN) systems are widely used for SHM nowadays due to

their huge advantages [26]. One of the benefits of using WSN systems is to solve the

recurring cabling problem of the conventional monitoring system. Furthermore, it is

considered cost-effective compared with wired systems. On the other hand, there are

also many constraints when WSN is deployed: scalability and the sequences of that:

communication, fault tolerance, energy, and high installation time and cost. As a

result, these constraints should be taken into consideration when the system is

deployed [8].

Generally, in computer science, because of lack of knowledge of civil

engineering, the sensor placement is often carried out randomly or uniformly to

14

monitor an event such as an object or a target. But deploying the sensors randomly

cannot be used in monitoring a structural event like a damage or crack because of the

characteristics of SHM, such as strain and vibration. With the common methods used

to implement WSN, effective SHM may not be possible because the spatial

information to describe the dynamic behavior of a structure or sensitivity of an event

(damage) is not sufficient at many locations, where choosing the sensor location is

sensitive in monitoring a damage. As a result, sensor placement needs to be optimized

during the DAQ step of the SHM process using the experience of civil engineers and

computer scientists. [14].

2.3 Sensor Placement Problem

Sensor placement is an essential part of SHM applications, and optimizing

sensor placement is very important in both civil engineering and computer science.

To understand the optimization of sensor placement problem, assume that we have M

possible locations for sensor deployment. M can become very large when the

structure becomes bigger (e.g., feasible locations in high-rise buildings), and usually,

there are a limited number of sensors (N<M). So to optimize the sensor placement,

the N sensors need to be attached to some locations that satisfy an objective function

or a multi objective function and some pre-specified constraints [14].

 Sensor placement based on network requirements:

In the networking community, the sensor placement optimization has been

one of the important research topics on WSNs. There have been a lot of studies done

on optimizing sensor placement in the WSNs framework. The researchers focus on

satisfying the requirements of various applications using WSNs, such as network life

15

time, area coverage, network connectivity, and data reliability, without taking into

consideration the requirements of SHM. Here are some examples:

In [9], the authors estimated and evaluated sensor placement models that

exploit different amounts of a priori information. The authors optimized the sensor

placement by providing minimum energy consumption and maximum sensing

coverage. Overall, the system requirements of WSNs, such as energy efficiency,

sensing coverage, and operational lifetime, were enhanced by the authors’ sensor

placement. On the other hand, several estimations were used that make their work

unfeasible when it comes to work with real structures.

In [10], the authors optimized the network life time and communication

between sensors. To achieve the authors’ target, the layout of the sensors was

optimized using genetic algorithm (GA). The sensors were placed in the closest-

possible distance in clusters using K-means clustering algorithm. In addition to that,

the sensors could communicate with each other, and transmit their data to a high

energy communication node (the cluster head) which acted as an interface between

the data processing unit (sink) and sensors. The experiments showed improvement in

the networks factors. Nonetheless, the number of computations in the used GA should

be highly increased.

In some other research works on WSN, researchers are taking into

consideration the minimization of a number of sensors as a part of network

parameters. But again, the requirements of SHM are not satisfied.

An example of this is in [11]. The authors suggested an algorithm to satisfy a

specific objective. The objective in that work was to optimize the sensor placement

using smallest number of sensors to offer sufficient coverage of the sensor field. This

16

minimum number of sensors was placed to transfer or report a minimum amount of

sensed data. As a result a unique “minimalistic” view of the distributed sensor

networks was achieved. Another algorithm was suggested to optimize the coverage.

The objective function (coverage optimization) was studied under the constraints of

imprecise detections and terrain properties. The suggested algorithm is a greedy

algorithm that tries to accomplish the coverage goal through the smallest number of

sensors. The method is iterative. One sensor is placed at the grid point with the least

coverage in each iteration. The algorithm ends when the coverage objective is met or

a bound on the sensor count is reached.

Another example is in [12]. Chen et al. studied an optimization problem with

the objective of knowing the minimum number of sensors and their deployment that

gives the network longest lifetime. An algorithm of two main steps was proposed to

solve the problem. First, a fixed number of sensors was placed to gain maximum

network lifetime. The authors defined this optimization as a multi-variant, nonlinear

problem and solved it numerically. In the second step, the number of sensors was

minimized, so the highest network lifetime per unit cost could be achieved. An

analytically derived solution was used to solve the second step.

One more example is in [13]. The authors of [13] formulated the sensor

placement problem as constrained multi objective optimization problem. The aim of

this work is to place the sensors in such way that they maximize network coverage,

minimize energy consumption, maximize network lifetime, and minimize the number

of sensors to reduce cost and the payload of placement. To solve the problem, the

authors divided the multi objective function into different single objective

optimization problems and used a tree structure to keep the connectivity between the

17

sensors and the sink. The authors compared their work with other works, and found

that their work is better.

Sensor placement based on civil engineering and network requirements:

 On the other hand, the optimal sensor placement problem for SHM using

WSN is studied in many old research works where the parameters of SHM are

considered alone or with the addition of network parameters as in the following

published papers.

In civil engineering there are some traditional methods for optimizing the

sensor placement in SHM that are reviewed in [8], [27], [28], and [29], such as the

effective independence (EFI) method, and effective independence driving point

residue (EFI-DPR) method . EFI is defined in [30] to be a sensor placement algorithm

that starts with all possible sensor positions and reaches the wanted number of

locations by gradually removing those that have the minimum contributions to the

linearly independent manifestation of the fixture faults. While EFI-DPR is a

composition of EFI method and an energetic approach, called the driving-point

residue (DPR) [31]. A sensor with low energy can be selected in EFI method, and

results with loss of information. EFI-DPR is used to avoid this weakness by using the

DPR method that takes the sensor energy in consideration [32].

In [14] and [15], the authors discussed the sensor placement optimization

problem for SHM in WSNs considering both network connectivity and civil

engineering requirements such as the coverage of critical locations in the structure.

The objective function studied is to maximize the Fisher information matrix (FIM)

determinant that is a standard metric to identify the sensor placement quality in civil

18

engineering [27], [14], [15]. In addition to that, maximizing the system life time that

totally depends on the energy consumption. The authors suggested an algorithm based

on EFI. The authors named their module (algorithm) sensor placement using the EFI

method (SPEM). In SPEM, The possible locations of sensors are sorted according to

the FIM results and excluding the nodes (locations) with the least quality and least

contribution. The authors showed how data routing, topology control, and energy

efficiency can be integrated with the SHM framework by introducing power aware

SPEM (p-SPEM) algorithm. The authors did some experiment on the built-in

Guangzhou New TV Tower, and the results on the sensor placement have validated

the effectiveness of their methods. Furthermore, the authors’ algorithm reduced the

complexity of placement from O(N
M

) to O(N
4
M) [14],[15].

The authors of [33] added an improvement to SPEM, which is considering the

amount of the energy consumption of a sensor node. In SPEM, the deployment of

sensors is determined based on the determinant of the FIM. A new single objective

function was proposed to be maximized, which is the determinant of FIM/ 𝐸𝑚𝑎𝑥,

where 𝐸𝑚𝑎𝑥 is the maximum energy used by a sensor in one round of data

transmission. As a result, the energy consumed by a sensor node is minimized.

In another work, improvement was done to p-SPEM in [16]. Multi objective p-

SPEM (mop-SPEM) algorithm for sensor deployment was suggested. The multi

objective formulation gives the choice to specify the weights of the two objectives

studied in the problem (energy consumption and information quality). As a result, the

two objectives can be easily traded off.

Furthermore, in [17], the authors note that when the EFI method is used to

have optimal sensor deployment, fault tolerance cannot be handled because EFI does

19

not take into consideration the WSN parameters, so some data can be lost. As a result,

the authors proposed a fault-tolerant wireless sensor configuration method for the

SHM (FTSHM). FTSHM has two steps: the first one is to place the sensors using EFI,

and then second, place some backup sensors called repairing points (RP) in a

decentralized manner to ensure network connectivity, prolonged network lifetime, and

reliable data delivery.

The authors in [26] and [34] designed a three-phase sensor placement

approach (TPSP). The main objective in [26]and [34] was to find a high-quality

sensor placement that could satisfy different system requirements while ensuring

communication efficiency, low communication cost, and fault tolerance. In this

research work, the sensor placement was addressed in heterogeneous WSN. Three

kinds of sensors were used: high-end nodes(HNs) that are resource high, low-end

nodes (LNs) that are resource limited, and redundant nodes (RNs) that have the same

functionality of LNs. Redundant nodes were added to enable the fault tolerance

ability in the network. The layout of these sensors was done based on three phases,

the first phase to sub-optimally place HNs, the second phase to place LNs optimally,

and the third one to place RNs to solve a sensor failure situation. The nodes

deployment developed connectivity trees in such a way that the network connectivity

is ensured. As a result, the structure health state or network maintenance after a sensor

fault can be achieved in a distributed and decentralized manner. To validate the

efficiency and effectiveness of TPSP, the authors ran extensive simulations. In

addition to that, they implemented the algorithm on a real physical structure to prove

the concept.

20

In some other work referenced in [35], the authors used a method called modal

assurance criterion (MAC). MAC is used to check whether the sensors’ locations are

good enough. Let Φ be the matrix of target mode shapes where a mode shape is

the shapes of the beam at different normal frequency. The MAC between model

vector Φ𝑖and Φ𝑗 is defined as

Ψ𝑖,𝑗 =
(Φ𝑖

𝑇Φ𝑗)
2

(Φ𝑖
𝑇Φ𝑖)(Φ𝑗

𝑇Φ𝑗)
 (1)

where Φ𝑖 ∶ 𝑖𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 Φ

 and Φ𝑗 ∶ 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 Φ

When the Ψ𝑖,𝑗 approaches 1, this means that the two model vectors are hard to

distinguish, and that there is more correlation between Φ𝑖 and Φ𝑗. A sensor position

is chosen so the maximum off-diagonal terms of the MAC matrix are minimized.

Some other authors of [36] extended the work in [35] by using the forward addition

minMAC method together with the backward deletion minMAC method because it

was noted that when the minMAC is used, when the number of sensors increases, the

off-diagonal terms of the MAC matrix do not decrease monotonically.

Lately, some computational intelligence methods have been deployed to

optimize sensor placement. One example is simulated annealing (SA). SA algorithm

[37] is initialized by selecting a single random solution. Then to find better solution,

the cost of one of the nearest neighbors of the selected solution is checked. If the

neighbor has a better cost, this neighbor becomes the new selected solution. On the

other hand, if the neighbor is with lower cost, then there is a probability whether to

choose the neighbor as the new selected solution or not. The SA algorithm is mainly

used when the best solutions have a tendency to be in one part of the structure space.

21

Another example of the computational intelligence algorithms is using genetic

algorithm (GA), which is based on biological development. From the characteristics

of GAs, the methods are not working with parameters directly, but the they are

converted (coded) to another scheme. Usually, binary encoding is used. The coding

has a discrete nature which makes the GAs a great option to solve discrete problems.

The main operators of a genetic algorithm are selection, crossover, and mutation.

First, some initial random solutions are selected using a specific selection algorithm .

These initial solutions are combined and mutated to search for improved solutions

through crossover and mutation steps.

 In [38], the authors used GA instead of EFI and used the objective function

to be about the determinant of FMI. In addition to that, the authors of [39] applied

GA and SA to have sensor placement optimization. From the research work done, GA

is a great method to try finding optimal solutions, but it can produce some invalid

solutions because of randomness. As a result, in different research papers, the authors

used GA with some modifications. For example in [40], the authors optimized the

sensor deployment based on detecting structural damage using improved genetic

algorithm (IGA). The modifications done on GA are the methods used to apply

crossover and mutation where in IGA, crossover is based on identification code and

mutation is based on two gene bits. The method used gives better optimization results

than a simple GA. On the other hand, in [18], the authors used generalized GA (GGA)

where the coding is dual structure based on the selection scheme, not binary based as

in simple GAs. The authors demonstrated the effectiveness of the GGA suggested on

the tallest building in the north of China. The GGA is compared with other GA

22

algorithms, and it was shown that the GGA can improve the convergence of the

algorithm and get the better placement scheme.

A hybrid optimization method called modal strain energy adaptive genetic

algorithm (MSE-AGA) is suggested in [41]. The MSE-AGA provides multiple

optimal indexes and has a short computation time. The MSE-AGA has three steps.

First, mode shape orders are chosen carefully using the modal participation factor.

After that, the MSE is used to get the initial sensor locations so that the location with

high modal energy index becomes a candidate location. Finally, the AGA is used to

minimize the number of sensors and their placement. The fitness function of the

AGA is MAC, which is applied to guarantee minimized root mean square and the

maximum of the off-diagonal elements are small.

A summary about sensor placement approaches is available in Table 2. From

Table 2 one can notice that, the sensor placement optimization problem is very

common in WSN where the deployment is achieved by ensuring optimizing one or

some of the parameters of WSN such as network lifetime, energy, or coverage, and in

some of them, the number of sensors used needed to be optimized. Nonetheless, the

ways used to solve the problem in those research works could not fit the SHM field

because of its special characteristic and parameters. On the other hand, in most of the

research works where SHM parameters are considered, minimizing the number of

sensors used is not part of the objectives when optimizing the sensor placement. And

when it was achieved in [41], the minimization of the number of sensors was

constrained by reducing the cost in the system. Based on all this, we introduce the

problem of minimizing the number of sensors in WSN for SHM systems under some

constraints related to WSN parameters such as connectivity and another important

23

constraint related to SHM parameters which is to have a specific level of information

quality represented by the FIM determinant.

24

Table 2: Summary off sensor placement approaches

Main Author Algorithm Name SHM

Requirements

Optimization Objectives Constraints Computed

Complexity

F. Oldewurtel [9] - None Energy consumption and sensing coverage - -

M.Romoozi [10] NSGA-II ,SPEA2,

Clustering Fuzzy C-

means

None Network life time and communication - -

S.S. Dhilon [11] MAX-MIN-COV,

MAX-AVG-COV

None Number of sensors Minimalistic sensor network O(𝐴2)2

Y. Chen [12] - None Number of sensors and network lifetime Coverage -

S. Sengupta [13] MOEA/D-DE None Area of coverage, net energy consumption,

network lifetime, and number of deployed sensors

Connectivity for proper data

transmission

-

B.Li [14], [15] SPEM Information quality Sensor placement quality and system life time Data delivery and connectivity O(𝑁4𝑀)

M. Najeeb [33] - Information quality Sensor placement quality and the sensors lifetime -

M. Elsersy [16] p-SPEM Information quality Information quality and total energy consumption Data delivery and limited

energy consumed

Z.A Bhuiyan [17] FTSHM Information quality Ensure information quality and fault tolerance - O(𝑛2)3

2
 A is the grid points in the in the sensor field

25

M. Z. Z. Bhuiyan

[26],[34]

TPSP Information quality Energy, cost, fault tolerance, and network life

time

Connectivity, transmission

load, data delivery

The input

size is

number of

HN and LN4

T. Carne [35], C.

Li [36]

MAC MAC maximum off-diagonal element of the MAC

matrix are selected

- -

L. Yao [38] - Information quality Information quality - -

H. Y. Guo [40] IGA Information quality Sensor deployment based on detecting structural

damage

- -

C. He [41] MSE-AGA MAC Sensor optimal locations based on MSE. - -

3
 n is number of sensors per cluster, and this complexity is for backup sensor placement in FISHM..

4
 HN: high nodes, LN: low nodes. The detailed complexity of the different phase of TPSP are computed in [26], and [34].

26

Chapter 3: Problem Formulation and Methodology

In this chapter, the system model and mathematical formulation will be

studied first. Then approaches used to solve the given problem will be introduced.

Three methods were mainly used: exhaustive search, genetic algorithm, and heuristic

algorithm, that is, using the bisection method.

3.1 System Model and Problem Formulation

This thesis formulates the minimization problem of the number of sensors

using a single objective function. The objective function is employed to minimize the

number of sensors in the WSN for SHM systems with some constraints. In this

chapter, the details behind the problem’s mathematical formulation and the system

model are mentioned.

Preliminaries:

The mathematical formulation for the thesis problem depends on the system

model in [14], [15], [16], and [42]. Consider that a location indicator S =

{S1,S2,…,SM}, where if 𝑆𝑖 equals 1, it means that the sensor node is selected,

otherwise it is not, and M is the number of possible locations. In those research works,

the researchers search for the optimal sensors placement by finding a location

indicator S = S = {S1,S2,…,SN}, where N is a set of sensor locations selected from the

feasible set of M total candidate locations that satisfy a certain objective function and

some constraints. On the other hand, in this research work, minimizing the number of

sensors is the goal of solving this thesis. In other words, we are trying to minimize the

value of N based on some constraints.

The Euclidean distance considered in this research between sensor node 𝑖 and

sensor node 𝑗 is given as follows:

27

𝑑𝑖𝑗 = √(𝑐𝑢(𝑖) − 𝑐𝑢(𝑗))
2
+ (𝑐𝑣(𝑖) − 𝑐𝑣(𝑗))

2
, ∀𝑖, 𝑗 (2)

where 𝑐𝑢 𝑎𝑛𝑑 𝑐𝑣 are the two dimensions plane, and 𝑐(𝑖) = (𝑐𝑢(𝑖), 𝑐𝑣(𝑖)) are the

Cartesian coordinates of a certain sensor 𝑖. So 𝐶 = {𝑐(1), 𝑐(2), … , 𝑐(𝑀)} are the

coordinates matrix of the M candidate nodes.

In this model, the WSN consisting of a number of sensors can be distributed in

the sensing field with one sink node, wherein the data flow is generated at the source

nodes and intended to the sink node. All sensors are assumed to have the same

capabilities in signal processing and communication features. Each sensor is offered

with a battery for power source. And the initial available energy node is set to be a

constant value 𝐸𝑖𝑛𝑖𝑡.

Decision variables:

The decision variable for the mathematical model is the following: 𝑆𝑖 is a

binary indicator to indicate whether the location is selected or not in 𝑆𝑖 ∈ {0, 1}, ∀ 𝑖.

Objective function:

There is a single objective function in this formulation which is to minimize

the number of sensors as follows:

Minimize
S

 ∑ Si
M
i=1 (3)

Problem constraints:

There are three constraints in this problem. Two are related to WSN

parameters connectivity and energy consumption. The third constraint is related to

SHM parameters, that is, to have a specific level of information quality represented by

the FIM determinant.

28

The first constraint is used to guarantee the data delivery where the distance

between two sensors is not exceeding a maximum transmission range 𝑅𝐶:

𝑑𝑖𝑗𝐼(𝑥𝑖𝑗 > 0) ≤ 𝑅𝐶 𝑖 ≠ 𝑗 ∀𝑖, 𝑗 C(1)

where 𝐼(𝑥𝑖𝑗 > 0) is a binary indicator to know if the link i − j is used. So it is

imposed that 𝑑𝑖𝑗 ≤ 𝑅𝐶 only if 𝐼(𝑥𝑖𝑗 > 0) is true.

The second constraint is related to energy consumption. The energy consumed

between two sensors 𝑖 and 𝑗 is given as follows :

𝑒𝑡(𝑖𝑗) = (𝜖𝑡 + 𝜖𝑎𝑚𝑝𝑑𝑖𝑗
𝛼)𝑛𝑏𝑥𝑖𝑗𝑆𝑖𝑆𝑗 ∀𝑖, 𝑗 (4)

where the radio parameter 𝜖𝑡 is the energy cost for transmission, 𝜖𝑎𝑚𝑝 is the power

amplifier energy cost as in [42], 𝛼 is the path loss exponent, and 𝑛𝒃 is number of bits

per packet [14]. In [42], 𝑥𝑖𝑗 is defined as the number of rounds the link 𝑖–𝑗 used. In

this thesis work, since routing is not considered in the model system, 𝑥𝑖𝑗 ensures

C(1), where if 𝑥𝑖𝑗 equals 1, it means that C(1) is satisfied, otherwise it equals infinity

because C(1) is false.

Assuming that 𝐸𝑡(𝑖) is the energy consumed for each sensor node 𝑖 during the

transmission process, the transmission energy is computed as follows:

𝐸𝑡(𝑖) = ∑ 𝑒𝑡(𝑖𝑗)
𝑀
𝑗=0 (5)

On the other hand, in the reception process, the energy consumed for sensor

node 𝑖 and j is:

𝑒𝑟(𝑗𝑖) = 𝜖𝑟𝑛
𝑏𝑥𝑖𝑗𝑆𝑖𝑆𝑗 ∀𝑖, 𝑗 (6)

29

where 𝜖𝑟 is the reception energy cost. The total energy consumed in the reception

process for sensor node 𝑖 is calculed as follows:

𝐸𝑟(𝑖) = ∑ 𝑒𝑟(𝑗𝑖)
𝑀
𝑗=1 (7)

As a result, the total energy consumed in sensor node 𝑖 through transmission

and reception is given as follows:

𝐸(𝑖) = 𝐸𝑡(𝑖) + 𝐸𝑟(𝑖) (8)

To ensure that the consumed energy will not exceed the initial energy 𝐸𝑖𝑛𝑖𝑡,

C(2) should be guaranteed.

𝐸𝑖(𝑆) ≤ 𝐸𝑖𝑛𝑖𝑡 C(2)

The third and last constraint is based on civil engineering requirements. In

civil engineering, every mechanical structure has a certain pattern of vibration at a

specific frequency. This is called mode shape. Mode shape also can be defined as in

section 2.3 Sensor Placement Problem the shapes of the beam at different normal

frequencies. In mathematics, the mode shapes of a certain structures form a mode

shapes information matrix called Φ , and it is given below:

Φ = [Φ1, Φ2, … ,Φ𝐾] = [

𝑎11 𝑎12 … 𝑎1𝐾
⋮ ⋮ … ⋮
𝑎𝑀1 𝑎𝑀2 … 𝑎𝑀𝐾

] (9)

where a column Φ𝑖 = [𝑎1𝑖 , 𝑎2𝑖, … , 𝑎𝑀𝑖]
′ is considered the 𝑖th order mode shape, and

a row [𝑎𝑗1,𝑎𝑗2, … , 𝑎𝑗𝐾]represents the contribution of sensor node 𝑗 in computing the

mode shape measurement.

As mentioned in the literature in section 2.3 Sensor Placement Problem, the

FIM determinant is a standard metric that measures the placement quality of sensors.

The FIM determinant is computed as follows:

30

|𝑄| = 𝑑𝑒𝑡[(Φ)𝑇 . 𝑅−1. Φ] (10)

where 𝑅 is the noise covariance of the sensor measurements. 𝑅 is a metric to

show the dependency between objects, and variance is a measurement for the

variability in the set of mode shape measured data. In addition to that,

mathematically, it can be defined as the average squared deviation from the mean

results.

Normalized |𝑄| (L) can be defined mathematically as:

L(S) =
|𝑸|

|𝑸|𝒎𝒂𝒙
∗ 100 (11)

The last constraint is to set a lower bound for L that can be called 𝐿𝑚𝑖𝑛:

𝐿(𝑆) ≥ 𝐿𝑚𝑖𝑛 C(3)

Problem formulation:

The authors could not confirm the convexity of the problem and the

optimization problem is formulated as follows:

Minimize
S

 ∑ Si
M
i=1

Subject to:

C(1) 𝑑𝑖𝑗 ≤ 𝑅𝐶 𝑖 ≠ 𝑗 ∀𝑖, 𝑗

 C(2) 𝐸𝑖(𝑆) ≤ 𝐸𝑖𝑛𝑖𝑡

 C(3) 𝑳(𝑺) ≥ 𝑳𝒎𝒊𝒏 (12)

31

3.2 Exhaustive Search

For any given optimization problem, there can be many ways to solve it. One

of them is using brute-force search or exhaustive search, which is also known as

generate and test.

Exhaustive search is a very general problem-solving methodology where all

the possible solutions are enumerated and checked one by one to get the solution that

satisfies the problem statement.

An easy example where brute-force method is used is in eight queens puzzle

when examining all the possible combinations of eight queen pieces on the

chessboard that has 64 squares, and, for each combination or arrangement, checking if

any of the queen pieces can attack any other or if it is a safe arrangement (solution) of

having all the right queens without having attacks.

 The brute-force approach is known for its complexity and cost, where the cost

is proportional to the number of candidate solutions. So if there are eight queens to

arrange in a 64- square chessboard, it means that there can be (8
2

8
) different candidate

solutions that need to be checked. And this is an indicator that whenever the problem

size is increased, the cost behind solving the problem using brute-force method

becomes higher [43].

Another example is the coin change, where a cashier has a group of coins of

different denominations and is required to count out a sum of change using the

smallest possible number of pieces[44].

The problem can be defined mathematically as follows:

32

Predefinitions:

N is the number of the pieces of coins.

P = {p1, p2…,pn} are the pieces of money (coins).

di is the denomination of pi (e.g., if pi, then di=10).

To count out a known sum of money A, we find the smallest subset of P,

S ⊆ P, where ∑ dipi∈S
= A.

Decision variables:

X = {x1, x2…,xn} where xi = 1 if pi ∈ S, otherwise xi = 0.

Problem objective function:

Minimize ∑ xi
n
i=1 (13)

Constraints:

∑ xi
n
i=1 di = A (14)

To solve this problem using brute force, the user needs to find the best

solution by checking all the possible values of X. For each value of X, the constraint

in equation (14) is checked if satisfied or not. If yes, then the solution is considered a

feasible solution. And the best solution for the problem is the feasible solution that

minimizes the objective function of the problem in equation (13).

33

Because the value of 𝑥𝑖 can be only zero or one, there are 2𝑛possible values

for X. The execution time needed to decide whether a possible value of X is feasible

is O(n), and the time needed to compute the objective function is as well O(n). As a

result, the time complexity of the brute-force algorithm is in the order O(n2𝑛)[44].

And although of this cost, exhaustive search is still used in solving problems

for different reasons. The first one is when simplicity of implementation is more

important than speed. In addition to that, brute-force method can be used to prove a

mathematical theorem, or it can be used as a baseline approach that gives the optimal

solution and compares it with other methods solving the same problem. It can also be

used when the problem size is manageable and limited.

In this thesis, the brute -force method was used due to its simplicity and to

later on compare its results with the other methods used in this research work. The

method is implemented in this thesis by running a code that brute force all the

possible feasible solutions, and sort them to get the best solution depending on the

objective function and constraints used.

3.3 Genetic Algorithm

The purpose behind developing genetic algorithms (GAs) was to study the

phenomena of natural adaptation, then apply it somehow into computer systems and

use the power of evolution to solve optimization problems. Genetic algorithms were

introduced by John Holland, in the early 1960s at the university of Michigan. GA is

an approximation heuristic search technique based on Darwinian’s theory of survival

of the fittest [45].

34

GA begins with solutions represented as one population of chromosomes that

contains a number of genes (e.g., strings of alleles, ones and zeros, or “bits”). After

that, it moves from that population to a new one using a type of natural selection in

addition to some genetics inspired operators of crossover and mutation. The selection

operator uses nature’s survival-of-the-fittest mechanism, where fitter chromosomes

survive while weaker ones perish. Crossover exchanges subparts of two

chromosomes, where some biological recombination between two single chromosome

organisms. Mutation randomly changes the allele values of some locations in the

chromosome. The mentioned process is repeated until some condition is satisfied.

The five main components in the GA process are encoding mechanism, fitness

function, selection, crossover, and mutation.

3.3.1 Encoding Mechanism

It is considered an essential part of the GA structure to present the

optimization problem’s variables and to transform the problem solution into

chromosomes [46], and [47]. There are many encoding methods known through the

published research work, and here are some of them:

a. Binary encoding: This is the most common used for encoding since it is

very simple. The variable values are transformed into binary strings

containing bits of 0s and 1s. Binary encoding provides several

chromosomes even with a small number of alleles. On the other hand, this

encoding is sometimes not natural for many problem variables, and some

corrections should be done after crossover and/or mutation. An example of

35

a problem where it is used is the knapsack problem. An example of binary

encoding can be seen in Figure 2 chromosome A.

b. Permutation encoding: In this kind of encoding, each chromosome is a

string of numbers that represent a position in a sequence. Permutation

encoding is used in ordering or queuing problems like the traveling

salesman problem, and similar to binary encoding, sometimes, crossover

or mutation corrections should be done to leave the chromosome

consistent with the same sequence in it. An example of permutation

encoding can be seen in Figure 2 chromosome B.

c. Value encoding: Each chromosome in this encoding is a string of values.

Values can be anything related to the problem, such as form numbers,

characters, or complicated objects. Value encoding is used in problems in

the neural networks field. On the other hand, it needs specially developed

crossover and mutation techniques. An example of this scheme can be seen

in Figure 2 chromosome C.

d. Tree encoding: This is used for developing programs or expressions and

for genetic programming where every chromosome is a tree of some

objects, such as functions or commands in programming language. An

example of this encoding can be seen in Figure 2 chromosome D.

36

Figure 2: Encoding schemes in GA structure (A : binary encoding , B: permutation

encoding, C: value encoding, D: tree encoding)

3.3.2 Fitness Function

It is the objective function to be optimized, whether minimized or maximized.

And it is the way to score each string so it can be decided whether to choose it or not

for the next generation. The ranges of fitness function values differ from problem to

another, and sometimes, normalization can be used to uniform the output to a range of

0 to 1 and then feed the normalized fitness function values to the selection mechanism

to evaluate the strings of the population [48].

3.3.3 Selection

The selection method is used in the GA process to choose the parents for the

next generation based on the fitness of each individual from the population in the

current generation. The main principle of the selection strategy is that if an individual

is better than others, then it has a higher chance of being a parent. There are many

algorithms used in the selection [49], [40], [46], [48], [50], and [51], and here are

some of them:

37

1. Proportional selection (or roulette wheel selection): This method is very

common for implementing fitness proportionate selection, where the

chromosomes with better fitness have more chances to be selected in the

next generation. An individual is assigned a portion of the circular roulette

wheel, and the size of the portion is proportional to the individual’s

fitness. As a result, when the individual has better fitness, it will have a

bigger slice in the roulette wheel than the others with smaller fitness. In

this function, the sum of the fitness of all individuals in the population is

calculated. Then a random number is generated from the given population

interval to select one of the slices with a probability equal to its area.

2. Stochastic universal sampling: This is a way of roulette wheel selection

that aims to reduce the risk behind premature convergence. In this method,

each parent takes a part of the line with a length proportional to its fitness.

The method goes through the line in steps of equal size, one step for each

parent. In each step, the method places a parent from the part it lands on.

3. Tournament selection: This is a variant of rank-based selection methods.

In this procedure, a set of k individuals are selected randomly, and then

the individuals are ranked based on their fitness. The fittest individual is

selected for reproduction. This process is repeated n times until the whole

next generation is chosen.

4. Uniform selection: This selects individuals randomly from a uniform

distribution using the expectations and number of parents. The result of

this selection is an undirected search. This method is not a useful search

strategy, but it can be used to test the genetic algorithm.

38

3.3.4 Crossover

In this step, recombination is done between two parents in the current

generation to produce a new child (parent in the next generation). There are a lot of

ways to do the crossover [47], [48], [46], and [51], and here are some:

1. Scattered crossover: In this recombination type, the parents exchange the

corresponding genes to form a child. It uses a random binary vector. Then

it selects the genes from the first parent when vector value is 1 and chooses

the genes from the other parent where the vector’s value is 0. An example

on that, if parent1 = [a b c d e f g h], parent 2 = [1 2 3 4 5 6 7 8], and the

random crossover vector is [11001000], then the new child after crossover

is [a b 3 4 e 6 7 8].

2. Single point crossover: A recombination is done between two parents

based on a point, where the new child’s first genes come from the first

parent, and genes after the randomly selected point come from the second

parent. For example, using the same parents in scattered crossover, if the

point selected is 3 then the new child is [a b c 4 5 6 7 8].

3. Two point crossover: In this crossover method, two points are randomly

selected. In this, from the new child is created as follows: The first part of

the first selected cross over point is copied from the first parent, and the

second part till the second crossover point is copied from the second

parent, and then the rest of the genes after the second selected crossover

point are copied from the first parent. So if 3 and 5 were the selected

crossover points, then the new child generated is [a b c 4 5 f g h].

39

4. Uniform crossover: In this scheme, the genes are randomly chosen from

the two parents to create the new child.

3.3.5 Mutation

This method comes after the crossover in the reproduction process, where

small random changes are done on the individuals in the population, which enable the

GA to search a broader space. There are many ways to do mutation [46], [47], [48],

and [51], and here are some:

1. Interchanging mutation: Two random positions of the individual are

chosen, and the genes according to those positions are interchanged.

2. Reversing mutation: Tt can be used in a binary encoded chromosome. In

reversing mutation, a random position is chosen and the bits next to that

position are reversed, and child string is generated.

3. Uniform mutation: In this scheme, the value of the chosen gene is changed

with the uniform random value selected between the specified upper and

lower bound for that gene. It can be used in real and integer representation.

4. Adaptive feasible: In this method, the directions are randomly

generated in such way that they are adaptive with respect to the last

successful or unsuccessful generation. The length of the step depends on

the satisfaction of the constraints and the bounds.

3.3.6 Why Use GA

Referring to [52], the block diagram of the presentation of the GA process is

shown in Figure 3. More details on how GA works can be found in Appendix B: How

GA Process Works.

40

Figure 3: The block diagram presenting the GA process[52]

It is known general genetic algorithm is used to find a suboptimal solution

(near-optimal solution) for the problem because the solution found depends on the set

of some random variables generated as it has been seen in the process of the GA[53].

Although GA is used in general to find a suboptimal solution, here are some

reasons that make it a good candidate for solving the problem studied in this thesis.

Referring to section 3.3.1 Encoding Mechanism, binary encoding is the most

common encoding used. And the studied problem in this thesis fits very much to be

41

binary encoded, where the sensor to be selected can be referred as 1; Otherwise, it is

0. This was a good motivation to use GA to solve the problem.

Moreover, we got the optimal solution for the problem using other classical

algorithm such as exhaustive search that is known of its huge time complexity; and if

one wants to compare classical algorithm and genetic algorithm, he/she will find that

GA are better because it is faster and less likely to get stuck in a local extreme like

other methods. Where in classical algorithms, a single point is generated at each

iteration, and then the sequence of points will approach an optimal solution. On the

other hand, in GA, a population of points is created at each iteration, and the best

population approaches an optimal solution [54].

In addition to that, referring to Salvator Mangano Computer Design, May

1995 [55], “genetic algorithms are good at taking large, potentially huge search

spaces and navigating the, looking for optimal combinations of things, solutions you

might not otherwise find in a life time.”

 Furthermore, because of its random nature, GA improves the chances of

finding a global solution. It can solve unconstrained, bound-constrained, and general

optimization problems, and continuous or discrete problems.

3.3.7 How Is GA Applied in This Research Work

It is good to know that there are different software or packages that can help to

solve problems using GA [53], [56], [57], [58],and [59]. One of the tools that can be

used is GPdotNET [59]. It is an artificial intelligence tool to apply GA and artificial

neural networks in the modelling and optimization of different engineering problems.

Another tool is open beagle [58]. It is a C++ evolutionary computation (EC)

framework. It offers a high-level software environment to apply any kind of EC, with

42

support for genetic algorithms. In addition to those tools, there is an optimization

toolbox in MATLAB software that provides functions to find parameters that

optimize (minimize or maximize) objectives while satisfying some introduced

constraints. The toolbox includes many solvers that can be used in linear

programming, quadratic programming, mixed-integer linear programming, nonlinear

optimization, and nonlinear least squares. The solvers are used to find the best

solutions to continuous and discrete problems The solver that is used is the GA solver

[53] that applies the genetic algorithm.

In this thesis work, GA solver is chosen through the MATLAB software

because dealing with MATLAB is easier. Moreover, the GA solver is very easy to

use, and it can be used in two ways. One is through the optimization tool graphical

user interface. The user can fill the parameters and change the options easily and see

the running process. Or the user can write a small code to set the parameters and pass

them to the function called GA and run the code to see the results.

 It is important to mention here, that in the optimization tool box there are

two functions that apply genetic algorithm which are ga [60], and gamultiobj[61].

And the reason behind using ga function and not gamultiobj is that the problem

solved in this research is single objective function, and that gamultiobj is used to

solve problems with multi objective functions, while ga is used for single objective

problems to find the minimum of a function using genetic methodology.

 The parameters that were passed to the function ga, are fitness function, the

inputs that need to be optimized, their upper and lower bounds, and how many inputs

are. The linear and nonlinear constraints if any. After feeding the parameters to the

43

function ga, call it by running the code to find the solution to the problem. More

details are discussed in Chapter 4: Implementation.

3.4 Binary Search Method

Binary search method is a classical non- heuristic method to solve a given

problem. A heuristic application of binary search is used to solve the problem in this

thesis to find the optimal solution. Heuristic method is a way for solving problems

more quickly when other classical methods such as brute-force are too slow to solve

the same problem or for finding an approximate solution when classical methods fail

to find an exact solution. The aim of using such heuristic method is to get a solution

in a good time frame that is reasonable enough for solving the problem at hand.

Binary search is called bisection method in some other references [62]. It is

important to know that this algorithm can only be used for a sorted array in

nondecreasing order. In this approach, if a person is searching for x in a sorted array,

then the algorithm compares x with the middle item of the array. If they are equal, the

solution is found. If x is smaller than the midpoint, then x, for sure, is in the first half

of the array (if it exists within the array). And the algorithm repeats itself in the first

half of the array until the solution is found. If x is larger than the midpoint, then the

search will be repeated in the second half of the array. This way is repeated until x is

found or that the algorithm stops and determine that x does not exist within the

array[63].

The general algorithm for this method [63] can be found in Appendix A :

Binary Search Algorithm.

44

As mentioned before, to solve this problem heuristically, many ways can be

chosen. The binary selection is chosen because the input parameter to the function is

considered a sorted array, where the number of sensors can be array of indexes from 1

to M. In addition to that the implementation and the analysis of such algorithm are

considered easy and straightforward. Other methods may be used in future work, and

compared with the current results of this work that can be seen in Chapter 5: Results,

evaluation, and Validation. In this research work, the input is the array of available

sensors A[1 .. M]. The algorithm will start by computing the middle item, and then

the combinations of that computed number of sensors will be found. After that, the

algorithm will start checking the feasibility of each combination until it finds a

feasible solution. If a solution is found, then in the next iteration, the algorithm will

search in the first half of the array to find a smaller number of sensors that can

optimize the problem. On the other hand, if there is no solution, the algorithm will

search in the second half of the array until a solution is found. The process will be

repeated until the problem is solved and a global optimal solution is found, or to state

that there is no solution. And it is known that using this searching algorithm will end

up with a maximum number of comparisons that equals to log 𝑛 + 1, where n is the

size of the input sorted array [20],[63]. More details about applying this algorithm and

implementing it will be seen in Chapter 4: Implementation section of the binary

search method.

45

Chapter 4: Implementation

This chapter provides a description on how the approaches mentioned in the

chapter titled “Chapter 3: Problem Formulation and Methodology” have been applied

or implemented to solve the minimization of number of sensors for SHM in WSN

problem in equation (12).

In all the approaches, some common variables were observed which you can

find in Table 3.

Table 3: Some problems’ parameter descriptions

Variable Description

M Possible locations for sensor deployment

|𝑄| Determinant of the Fisher information matrix

L Normalized determinant of Fisher information matrix

𝐿𝑚𝑖𝑛 Lower bound of the normalized |𝑄| (L)

Node coordinates Cartesian coordinates for all sensors M , and the sink

sensor node

Φ Matrix of target mode shapes for M sensors

𝑥𝑖𝑗 The number of rounds the link 𝑖 – 𝑗 is used

𝑑𝑖𝑗 Euclidean distance between sensor node 𝑖 and sensor

node 𝑗

46

4.1 Implementation of an Exhaustive Search Method

As mentioned in section 3.2 Exhaustive Search, in this approach all the

possible solutions are checked for their feasibility according to the information

quality, distance and energy constraints (C1–C3) related to the problem. After that,

all the feasible solutions are sorted according to their objective function stated in

equation (3) evaluation, and the solution that best minimizes the number of candidate

M sensor locations is chosen.

The flow chart presenting the brute- force algorithm is shown in Figure 4.

47

48

Figure 4: Flowchart of the implemented exhaustive search method

49

The explanation behind the flowchart in Figure 4 is found in the algorithm

below.

Input: M, 𝐿𝑚𝑖𝑛, node coordinates, and Φ

Output: Optimized solution with an minimized number of sensors

Algorithm:

1. Calculate the distance dij ∀i, j where i, j belong to M and the sink using

their given coordinates.

2. Compute the routing decision variable 𝑥𝑖𝑗

∀𝑖, 𝑗 where 𝑖, 𝑗 belong to M and the sink node M + 1. 𝑥𝑖𝑗 depends on the

evaluation of distance constraint (C1) in equation (12). If (C1) is satisfied,

and distance is limited within the transmission rang then we assume that a

rout is established. So 𝑥𝑖𝑗 = 1; otherwise, 𝑥𝑖𝑗 = 0 . In addition, in case

𝑖 = 𝑗 , or 𝑖 = 𝑡ℎ𝑒 𝑠𝑖𝑛𝑘 , then 𝑥𝑖𝑗 = 0.

3. Evaluate determinant of FIM |𝑄| as in equation (10) for M sensors when

all M sensors are selected.

4. Compute the possible combinations of M sensors. Then start with

combination 1.

5. Go through the combination of sensors, and then check the feasibility

of the solution. To check the feasibility of a combination:

a. Determinant of FIM |𝑄| and 𝐿(𝑆) are computed for the combination

of the selected sensors.

b. The total energy consumed in sensor node 𝑖 equation (8) is computed

for each sensor 𝑖 from the total selected nodes in the combination.

50

c. Check the satisfaction of the constrain related to information quality

by comparing the results from step 5a with 𝐿𝑚𝑖𝑛.

d. Check the energy constrain satisfaction by comparing the results \

from step 5b for each sensor 𝑖 a with 𝐸𝑖𝑛𝑖𝑡.

e. If any of the constraints is not satisfied, then the solution with that

certain combination is not feasible. Otherwise, if all constraints are

satisfied, then the solution is feasible.

f. Go to the next possible combination, and then go back to step 5 until

all the possible combinations are checked.

6. Sort all the feasible solutions from step 5 in ascending order according to

their objective function evaluation in equation (3) and then descending

according to their normalized |Q| (L).

7. Choose the first solution in the list to be the optimized solution, where the

combination of sensors has the least selected number of sensors with the

highest possible 𝐿 ≥ 𝐿𝑚𝑖𝑛.

4.2 Implementation of the GA Method

 As mentioned in section 3.3.7 How Is GA Applied in This Research Work,

the GA solver (ga function) from the optimization toolbox in MATLAB is used to

apply the genetic algorithm.

 All the input arguments passed to this function, and all the different syntaxes

that can be used to call the ga function are shown in [60].

The syntax I used to solve this problem is this:

ga(fitnessfcn,nvars,[],[],[],[],LB,UB,nonlcon,IntCon)

51

The input arguments that I used to solve the thesis problem is shown in Table 4.

Table 4: Input arguments for the ga function

Input argument Description

Fitnessfcn This parameter is a handler to the fitness function of the problem , which in the thesis problem is to minimize the number of sensors as

in equation (3).

Nvars This parameter stands for the number of design variables in the problem (M+1).

A,b, Aeq,beq These parameters are used to set the linear equality and inequality constraints. And because there are no linear constraints in the thesis

problem ,these parameters are substituted with null arguments [].

LB The vector of lower bounds. In this problem, the decision variables that present the selection of the sensors in the solution are binary.

So expressing the lower bound for choosing a certain sensor out of the M sensors, means that it is not selected . As a result, the lower

bound is zero. But when one thinks about the sink node, he or she cannot eliminate it from the selection , so the lower bound of the sink

node is 1.

UB The vector of upper -bounds. Setting the higher bound for choosing a sensor, means that the sensor is selected. As a result, the UB is 1.

Nonlcon This is the nonlinear constraints function handler [c,ceq] = nonlcon(x). Where GA tries to get c ≤ 0 and ceq = 0, c stands for nonlinear

inequality constraints, and ceq stands for nonlinear equality constraints. Both c and ceq can be used as row vectors in case of multiple

constraints. The unused output can be set to null argument[]. In the thesis problem, we have M+2 nonlinear inequality constraints.

(M+1) constraints to implement (C2) for each sensor in the combination used, in addition to one constraint that is applying (C3) in

equation (12) . All the nonlinear inequality constraints in (C2) and (C3) are shown as follows:

(C2) Ei(S) − Einit ≤ 0

 (C3) Lmin − L(S) ≤ 0

IntCon This is the index vector of integer variables, which include all the M+1 sensors in this problem.

52

Another parameter that can be passed to the ga function is options [60]. In this

thesis the default values set by the MATLAB optimization tool box are used to solve

the problem, and one can see the important set of options chosen in Table 5, where

the methods selected were explained before in sections 3.3.3 Selection, 3.3.4

Crossover, and3.3.5 Mutation.

Table 5: Some of the most important default settings when calling ga function

Option Description Method selected

SelectionFcn This option is used to choose

the selection algorithm used in

ga.

Stochastic uniform (stochastic

universal sampling)

CrossoverFcn This option is used to handle

the crossover methodology.

Scattered crossover

MutationFcn This option is used to express

the mutation process.

Adaptive feasible

4.3 Implementation of the Binary Search Method

The flowchart of the implemented method is shown in Figure 5.

53

54

55

Figure 5:Flowchart of the implemented binary search method

The algorithm used behind the flowchart is shown below:

Input: M, 𝐿𝑚𝑖𝑛, node coordinates, Φ , low (the lowest number of sensors can be

used), and high (the highest number of sensors can be used).

Output: Optimized solution with an minimized number of sensors.

Algorithm:

The first three steps are the same first steps used in the implementation of

the exhaustive search method:

56

1. Calculate dij ∀i, j where i, j belong to M and the sink using their given

coordinates.

2. Compute 𝑥𝑖𝑗 ∀𝑖, 𝑗 where 𝑖, 𝑗 belong to M and the sink node M + 1.

3. Calculate |𝑄| when all M sensors are selected.

The next steps, from 4 to 10, show how the binary search method is implemented to

find the best solution.

4. Check if 𝑙𝑜𝑤 ≤ ℎ𝑖𝑔ℎ; if not, terminate the program. Otherwise, go to step

5.

5. Calculate the midpoint as (high + low) / 2.

6. Compute the different combinations of choosing midpoint sensors out of M

sensors. Start with the first combination.

7. Go through the combination, and then check the feasibility of the solution.

To check the feasibility of a combination:

a. Detriment of |Q| and L(S) are computed for that combination of the

selected sensors.

b. The total energy consumed by sensor 𝑖 is computed for each sensor 𝑖

from the total selected nodes in the combination.

c. Check the satisfaction of information quality constrain (C3) from

equation (12) by comparing the results from step 7a with 𝐿𝑚𝑖𝑛.

d. Check the satisfaction of energy constrain (C2) from equation (12) by

comparing the results from step 7b for each sensor 𝑖 with 𝐸𝑖𝑛𝑖𝑡.

e. If all the constraints are satisfied, the solution of the combination of

sensors is feasible. So stop looking through the other combinations to

choose midpoint sensors out of M sensors. Then go to step 8.

57

Otherwise, the solution is not feasible, so go to the next combination

and start again with step 7. Repeat step 7 until a feasible solution is

found or all the combinations for choosing the midpoint out of M

sensors are checked, and then go to step 8.

8. Check the validity of this statement: there is no feasible solution at

midpoint sensors. If the statement is valid, it means that one needs to look

for a feasible solution with a larger number of sensors. As a result, assign

low to be the midpoint (low = mid), and then go to step 4. Otherwise, if the

condition is not satisfied, go to step 9.

9. Otherwise, check if there is a feasible solution at midpoint sensors and

whether that solution is better than the previous one. Or there is a chance

of finding a better solution with a lower number. If any of the conditions

holds, then assign high to be the midpoint (high =mid), and then go to step

4. Otherwise, go to step 10.

10. When this step is reached, it means that no better solution can be found

and that the best solution has been found already. So display it out and

terminate the program.

58

Chapter 5: Results, Evaluation, and Validation

This chapter shows the different results obtained from this research work and

how the findings have been evaluated, tested, and finally validated. All the data and

parameter values related to verification and testing will be presented with the

adequate explanation.

5.1 Parameters and Platform

 Parameters:

The list of unified parameters used in all the different methods applied in this

thesis with the needed description and values are presented in Table 6.

59

Table 6: The unified parameters used in all the methods applied in the thesis

Parameter Description Value

𝑅𝐶 Maximum transmission range 30 m
5,6

𝑛𝑏 Number of bits per packet 2Kb
5,7,8

 Α The path loss exponent 2 to 6
5,6

𝐸𝑖𝑛𝑖𝑡 Initial energy at a sensor node 1500mAhr
5,6

𝜖𝑟 The reception energy cost 50nJ/bit
5,6

𝜖𝑡 The transmission energy cost 50nJ/bit
5,6

𝜖𝑎𝑚𝑝 The power amplifier energy cost 10 pJ/bit/m2
5,6

 Platform specifications:

The device used in the implementation of all the experiments is a laptop for

daily use. It has a ThinkPad T440s platform [64]. The specifications of the platform

are shown in Table 7.

5
 This value is referred to the research work in [42].

6
 This value is referred to the research work in [16].

7
 This value is referred to the research work in [14].

8
 This value is referred to the research work in [15].

60

Table 7: Platform specifications
9

Processor 4th generation Intel® Core™ i7

processor

Processor number i7-4600U

Number of cores 2

CPU base frequency 2.10 GHz

CPU maximum turbo frequency 2.7 GHz

Installed memory 8.00 GB

System type 64-bit operating system

Software used MATLAB

5.2 Experiments and results

In this thesis, exhaustive search, genetic algorithm, and binary search were

applied using different numbers of sensors (five, nine, and 30) and one sink node. The

setup and results for applying the different algorithms on the cases of five sensors ,

nine sensors, and 30 sensors are shown in this section.

5.2.1 Five story building

Although the number of sensors in this experiment is very small, this

experiment is very important because it illustrates the concept and explains the idea of

the studied problem, and it is used to validate the results and make sure that the

algorithms used to solve the problem are implemented correctly since the results are

9
 You can get the platform by right-clicking on “My Computer”, then choose Properties.

61

considered small compared with the results of experiments with a larger number of

sensors.

Setting up:

In this case, the building is assumed to be composed of five floors with no

bays. Each floor is 3.65 meters high. It is also assumed that the five candidate sensors

can be placed as one sensor per floor and that there is a one sink node used to collect

the data out of other sensors in the WSN. The sink is placed 10 meters away from the

first candidate sensor in the first floor. The sensor node coordinates are shown in

Figure 6.

Figure 6: Coordinates of the five candidate sensors and the sink node

The mode shapes matrix (Φ) for the five sensors are shown below[65]:

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Z
ax

is
-

b
u

ild
in

g
h

e
ig

h
t

X axis - building base

Locations of the candidate
5 sensors

Location of sink node

62

Φ =

{

0.334
0.641
0.895
1.078
1.173

−0.8954
−1.173
−0.641
0.334
1.078

1.173
0.334
−1.078
−0.641
0.895

−1.078
0.895
0.334
−1.173
0.641

0.641
−1.078
1.173
−0.895
0.334 }

where each column represents a mode shape and each row represents the

contribution of the candidate sensors in all mode shapes used. Another way to look at

the mode shapes matrix is seen in Figure 7, which shows the natural modes of

vibration of a five-story building.

Figure 7:Five mode shapes used in a five-story building[65]

In all the experiments done, three mode shapes are used to represent the

information quality matrix. Expect in one experiment where the relation between the

number of mode shapes and number of sensors used in the solution is expressed and

discussed.

Results of implementing brute force on a five-sensors story building :

 The first part of the experiment is to implement brute force using five sensors.

Using different runs, the minimum information quality required was changed from 0

to 100, and depending on that, each time different optimized solutions appear with

different sensor placement is shown in Table 8 and Figure 8. Figure 8 shows the

63

different sensor node placement based on the quality information required 𝐿𝑚𝑖𝑛. The

sensor node placement showing the coordinates for each placed sensor using the

candidate sensor node locations is shown in Figure 6. For example, when

𝐿𝑚𝑖𝑛= 20, the best solution is to place three sensors out of three in the first floor, third

floor, and fifth floor where the coordinates of the first sensor in the first floor (10,0),

the coordinates of the second sensor in the third floor (10,7.3), and the coordinates of

the last sensor in the fifth floor is (10,14.6).

Table 8: Results of implementing exhaustive search on five-sensors story

building

𝑳𝒎𝒊𝒏 minimized

of sensors

Optimized Placement

1
st
 f 2

nd
 f 3

rd
 f 4

th
 f 5

th
 f

time

(s)
10

100 5 1 1 1 1 1 0.128264

80 5 1 1 1 1 1 0.134359

60 4 1 1 1 0 1 0.140677

40 4 1 1 1 0 1 0.145564

20 3 1 0 1 0 1 0.150977

0 0 0 0 0 0 0 0.001659

10

 The time is calculated using the functions tic, and toc in MATLAB software.

64

Figure 8: five-sensors story building placement based on different 𝑳𝒎𝒊𝒏 required

In this experiment, the optimal number of sensors is found with the best

information quality that can be reached. For example, when the 𝐿𝑚𝑖𝑛 required is 20,

the optimal solution is to place three sensors, one in the first floor, another in the third

floor, and the last one in the fifth floor, and when one calculates the percentage of

information quality L, he/she finds that L= 33.28. This quality information is the

highest when three sensors are placed, and that happened because in the end of the

algorithm the feasible solutions are sorted depending on the minimized number of

sensors and then based on the best information quality.

 One can see in Table 8 that whenever the quality information needed

increases, more sensors are required to be placed. And this matches what is found in

literature [14], [15], and [16].

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Z
A

xi
s

-
b

u
ild

in
g

h
e

ig
h

t

X Axis- building base

Lmin =100 , Lmin =80 Lmin=60 , Lmin =40 Lmin=20 Lmin=0

65

Validation:

The results of this part of the experiment are validated by calculating the

information quality for all the different combinations and manually checking the

results based on 𝐿𝑚𝑖𝑛 as shown in Table 9.. For example, when Lmin=80 , the optimal

solution using the brute force algorithm is choosing all the five sensors. And this

matches the results in Table 9, where the least number of sensors that results with

minimum L=80 is the combination of choosing all the five sensors where L =100.

Another example when Lmin =5, the best solution is the combination of choosing the

first, third, and fifth sensors out of the five sensors. This is validated manually by

looking at Table 9. The combinations that gives Lmin = 5 are [(1,2,5), (1,3,4), (1,3,5),

(2,3,4), (2,3,5), (1,2,3,4), (1,2,3,5), (1,2,4,5), (1,3,4,5), (2,3,4,5), and (1,2,3,4,5)], and

the best combination is (1,3,5) where it has the least number of sensors and best

information quality among the combinations that place three sensors out of five.

66

Table 9:The computed information quality L for all the different combination of five

sensors

Combination L Combination L Combination L

1 7.99E-33 25 2.03E-15 235 22.991

2 3.83E-33 34 1.97E-15 245 0.1321

3 1.97E-32 35 4.07E-15 345 2.2055

4 -2.96E-33 45 8.78E-17 1234 30.463

5 0 123 0.258007 1235 65.583

12 -1.62E-16 124 4.494342 1245 15.55

13 7.13E-16 125 9.04963 1345 52.067

14 0 134 14.70369 2345 36.336

15 0 135 33.28403 12345 100

23 -5.42E-16 145 1.874299

24 7.23E-16 234 11.00719

Moreover, the optimal solutions are checked using another method that

guarantee global optimization called branch and bound
11

 using a solver called the

BARON. The BARON solver
12

 gives the same results we get from implementing

exhaustive search algorithm. Finally, the run was repeated several times, and the

same results always show up.

11

 For more details about the branch-and-bound method check reference [63].
12

 More information about the BARON solver can be found in

http://archimedes.cheme.cmu.edu/?q=baron [21].

67

Results of implementing GA on a five-sensors story building :

The second part of the experiment is to implement genetic algorithm using

five sensors. Using different runs, the minimum information quality required was

changed from 0 to 100 , and depending on that, each time different optimized

solutions appear with different sensor placement is shown in Table 10. In this part, the

run is repeated 10 times for each required 𝐿𝑚𝑖𝑛 . The different runs for a specific 𝐿𝑚𝑖𝑛

always show the same optimized solution with the least number of possible sensors.

On the other hand, different sensors placement is presented where the placements

satisfy the problem’s objective function and constraints. For example, when 𝐿𝑚𝑖𝑛=40

, in 10 different runs, we get the same minimized number of sensors (4). On the other

hand, two different node placements appear among 10 different runs, which are the

combinations [(1,2,3,5) and (1,3,4,5)] as shown in Table 10. In some other cases, we

always get the same optimal solution of the same sensor locations as in 𝐿𝑚𝑖𝑛 =80.

68

Table 10: Results of implementing genetic algorithm using a five-sensors story

building

𝑳𝒎𝒊𝒏

Minimized # of sensors

Optimized

Placement

1 2 3 4 5

Average time (s)

100 5 1 1 1 1 1 1.085821

80 5 1 1 1 1 1 1.083507

60 4 1 1 1 0 1 1.088228

40 4 1 1 1 0 1 1.098744

 4 1 0 1 1 1

20 3 1 0 1 0 1 1.098624

 3 0 1 1 0 1

0 0 0 0 0 0 0 1.091493

Validation:

First, in genetic algorithm, there is randomness in selection, so it is normal to

get different solutions or near-optimal solution. In this case, all the solutions were

optimal.
13

 This is validated by finding that for different required 𝐿𝑚𝑖𝑛, we get the

same number of sensors as in exhaustive search implementation. The validation of the

different placements we have in the different runs for a certain 𝐿𝑚𝑖𝑛is done using the

values in Table 9. For instance, in Table 10, when 𝐿𝑚𝑖𝑛 = 20, the best solution is

placing three sensors out of five. And from the different runs, there are two ways that

13

 Note that using genetic algorithm does not guarantee global optimality in other cases

69

satisfy this: using the combination (1,3,5) or the combination (2,3,5). If you look at

Table 9, you can find that the combination (1,3,5) has quality information=33.28, and

the combination (2,3,5) has quality information=22.991. This guarantees that those

two solutions are true. Furthermore, if one asks, “Can we get other solutions with

more different runs?” the answer in this case is no. The evidence on that is in Table 9,

where you will not find any other solution that meet the constraints and the objective

function of the problem other than (1,3,5) and (2,3,5).

Results of implementing binary search on a five-sensors story building :

The results are shown in Table 11, and Figure 8. One can see that we get the

same number of minimized sensors as in implementing brute force method, but with

less time since not all the possible combinations of five sensors are checked. This

saves time, and ensures less complexity.

Validation:

The validation of the results is easy, because the results are only compared to

the optimal solutions from implementing brute force. And the good thing is that the

results are the same. Furthermore, the change in time is logical. For example, when

𝐿𝑚𝑖𝑛=60 and brute force is implemented, we need to check 25 − 1 = 31 different

combinations to end up with the best solution of using four sensors out of five. But

when binary search is implemented, you start with low=0, and high=5. The first

midpoint equals 3,and all the different combination of choosing three out of five are

checked (which are 10 combinations), but the result is that there is no feasible

solution with three sensors. As a result, low is assigned as 3, so the new midpoint

equals 4. The second combination of four sensors (1,2,3,5) gives a feasible solution,

so no more combinations of choosing four out of five will be checked. Using the

70

implemented algorithm 4 sensors is the best solution to solve the problem when

𝐿𝑚𝑖𝑛=60, so the program will terminate. The total number of combinations checked in

this example is 12 which is less than 31, and that for sure can reduce the time in

solving the problem as shown in Table 11.

Table 11: Results of implementing binary search on a five-sensors story building

𝑳𝒎𝒊𝒏

Minimized

of sensors

Optimized Placement

1
st
 f 2

nd
 f 3

rd
 f 4

th
 f 5

th
 f

time (s)

100 5 1 1 1 1 1 0.016758

80 5 1 1 1 1 1 0.034036

60 4 1 1 1 0 1 0.065281

40 4 1 1 1 0 1 0.053999

20 3 1 0 1 0 1 0.035904

0 0 0 0 0 0 0 0.002584

Summary:

As you can see, implementing the three methods on five sensors gives the

same minimized number of sensors. But there are some differences from different

point of views. For example, applying brute-force gives the optimal number of

sensors with the best sensor placement that guarantees the largest information quality

that can be reached. On the other hand, when this method is implemented, all the

different combinations of five sensors are checked, and this results with longer

71

execution time that applying the binary search method that gives better execution

time and less complexity, and this is validated above. Moreover, in applying GA, one

can see that different placements for the sensors can appear with different runs, and

this is due to randomization in selection.

5.2.2 Nine-story building

In this experiment, the number of floors is increased to nine, and the candidate

sensor locations are nine as well with the sink sensor node. This experiment shows

better results in terms of minimizing the number of sensors since the candidate sensor

locations are increased. Moreover, having more than one experiment with different

M candidate sensors help in comparing between the three methods applied.

Setting up:

The sensor node coordinates are shown in Figure 9.

Figure 9: Nine Candidate sensor locations

0

5

10

15

20

25

30

35

0 10 20 30

Z
A

xi
s-

 b
u

ild
in

g
h

e
ig

h
t

X Axis- building base

Candidate sensor
nodes locations

Sink node

72

The mode shapes matrix (Φ) for the nine sensors using three mode shapes are shown

below
14

:

Φ =

{

0.26
0.51
0.75
1.04
1.29
1.50
1.73
1.87
1.91

−0.69
−1.25
−1.58
−1.60
−1.22
−0.52
0.72
1.69
2.01

1.12
1.68
1.39
0.08
−1.29
−1.79
−0.75
1.04
1.79

}

Results of implementing brute force on a 9-sensors story building :

In this part of the experiment, the optimal number of sensors is found with the

best information quality that can be reached. The placement of the minimized number

of sensors based on the required information quality is seen in Figure 10.

In addition to that, Table 12 shows the results of implementing exhaustive

search on a nine-sensors story building. You can see that the minimization of the

number of sensors is enhanced by comparing the solutions shown on implementing

the same method on a five-sensors story building.

14

 The matrix is provided by Dr. Mohamed Mahgoub, and computed by Dr. Mostafa Elmorsi using

Advanced SAP2000 v17.1.1 (an integrated solution for structural analysis and design).

73

Table 12: The results of implementing brute force on a nine-story building

𝑳𝒎𝒊𝒏 minimized

#of sensors

Optimized Placement

1 2 3 4 5 6 7 8 9

time (s)

100 9 1 1 1 1 1 1 1 1 1 0.175736

80 8 0 1 1 1 1 1 1 1 1 0.152554

60 7 0 1 1 0 1 1 1 1 1 0.157443

40 6 0 1 1 0 1 1 0 1 1 0.16647

20 5 0 1 1 0 1 1 0 0 1 0.151972

0 0 0 0 0 0 0 0 0 0 0 0.129678

Figure 10: Sensor placement based on implementing brute force for different required

information quality

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Z
A

xi
s-

 b
u

ild
in

g
h

ie
h

gt

X Axis- building base

Lmin=100

Lmin =80

Lmin=60

Lmin=40

Lmin=20

74

Validation:

The validation of this part of the experiment follows the same way of

implementing brute force on a five-sensors story building where the information

quality for all the different combinations (29 − 1 = 511 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) are computed

and then choosing some random results and checking them manually. For example

there are two combinations out of nine sensors that satisfy the constraint Lmin=80.

The combinations are [(1,2,3,4,5,6,7,8,9) and (2,3,4,5,6,7,8,9)] . But since the second

combination satisfies the objective function, which is minimizing the number of

sensors, then it is chosen to be the optimal solution.

Results of implementing GA on a nine-sensors story building :

Increasing the number of sensors from five to nine proves that the genetic

algorithm can’t guarantee optimal solutions, but it can find near-optimal solutions

because of the randomization used in selection. This is shown when 𝐿𝑚𝑖𝑛 = 40. In

Table 13, and Figure 11, one can see that depending on 10 different runs, different

solutions with different number of sensors resulted, where the first combination

(2,3,5,6,8,9) show the optimized solution of placing six sensors out of nine, but the

other two combinations (3,4,5,6,7,8,9) and (1,2,3,4,6,7,9) place seven out of nine

candidate sensors. Moreover, from the results one can see different feasible solutions

are outputted for the same required 𝐿𝑚𝑖𝑛 in different runs (as shown before in the

case of five sensors).

75

Figure 11:Different results shown when implementing genetic algorithm using

Lmin=40

0

5

10

15

20

25

30

35

0 10 20 30

Z
A

xi
s-

 b
u

ild
in

g
h

ie
h

gt

X Axis- building base

Lmin=40-Combination1

Lmin=40- Combination 2

Lmin=40- Combination 3

76

Table 13: Results of implementing the genetic algorithm on a nine-sensors story

building

𝑳𝒎𝒊𝒏 Minimized

#of sensors

Optimized Placement

1 2 3 4 5 6 7 8 9

Average

time (s)

100 9 1 1 1 1 1 1 1 1 1 2.078938

80 8 0 1 1 1 1 1 1 1 1 2.099514

60 7 0 1 1 0 1 1 1 1 1 2.073879

 7 0 1 1 1 1 1 0 1 1

40 6 0 1 1 0 1 1 0 1 1 2.032474

 7 0 0 1 1 1 1 1 1 1

 7 1 1 1 1 0 1 1 0 1

20 5 0 1 1 0 1 1 0 0 1 2.085858

 5 0 0 1 1 0 1 1 0 1

 5 0 1 0 1 0 1 1 0 1

 5 0 0 1 1 0 1 0 1 1

 5 0 1 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2.032564

Validation:

First, the optimal results that we get from implementing brute force for each

required 𝐿𝑚𝑖𝑛 appear within the 10 runs for implementing the genetic algorithm. That

is a good sign, but to validate the cases where different solutions appeared for the

required 𝐿𝑚𝑖𝑛, random check is done. Information quality is computed for the

77

combinations that did not show optimal solution from implementing exhaustive

search. Then the combination is checked whether it is greater than 𝐿𝑚𝑖𝑛or not. If it is

larger than 𝐿𝑚𝑖𝑛, then the solution meets the constraints and objective function, so it is

feasible and correct. For instance, when 𝐿𝑚𝑖𝑛=60, the combination that does not show

in implementing the brute force on nine sensors is (2,3,4,5,6,8,9). This solution is

feasible because the information quality L equals to 63.451, which is larger than 60.

Results of implementing binary search on a nine-sensors story building :

The results of this part are shown in Figure 12 and Table 14. From the results,

we can find that the optimal solutions with a minimal number of sensors appeared in

implementing exhaustive search. On the other hand, it is not necessary to have the

same sensor placement for the same required 𝐿𝑚𝑖𝑛 in both methods. Actually, the

reason behind this is to make the execution faster using the binary search method. In

implementing the binary search method whenever there is a feasible combination of

choosing midpoint sensors out of M sensors, the algorithm will break the loop ,and

will not look for another solution of the same number of sensors.

78

Figure 12: Sensor placement when implementng binary search on a nine-sensors

story building

Table 14: Results of implementing binary search on a nine-sensors story building

𝑳𝒎𝒊𝒏 Minimized

#of sensors

Optimized Placement

1 2 3 4 5 6 7 8 9

time (s)

100 9 1 1 1 1 1 1 1 1 1 0.020687

80 8 0 1 1 1 1 1 1 1 1 0.028136

60 7 0 1 1 1 1 1 0 1 1 0.035904

40 6 0 1 1 0 1 1 0 1 1 0.038616

20 5 0 1 1 1 0 1 0 0 1 0.035586

0 0 0 0 0 0 0 0 0 0 0 0.006462

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Z
A

xi
s-

 b
u

ild
in

g
h

ie
h

gt

X Axis- building base

Lmin=100

Lmin =80

Lmin=60

Lmin=40

Lmin=20

79

Validation:

In this part when 𝐿𝑚𝑖𝑛 equals 100, 80, 40, or 0, the results are correct and

valid because they are the same as the result output from implementing brute-force.

For the other cases when 𝐿𝑚𝑖𝑛 equals 60 or 20, the number of candidate sensors to be

used is the same, but the placement of the sensors is different, so the placements given

are checked. When 𝐿𝑚𝑖𝑛=60, the combination chosen to be the solution

(2,3,4,5,6,8,9) is 63.25, which is greater than 60. So the combination is valid as

solution for this required information quality. The same when 𝐿𝑚𝑖𝑛=20, the

information quality computed for the output combination (2,3,4,6,9) is 22.26. This

makes this solution right.

Summary:

From the results of applying the three algorithms on nine sensors, more

important details appear. For instance, the results prove that using GA can’t provide

100% warranty of getting the optimal solution of the minimal number of sensors.

Moreover, using the heuristic method of applying binary search guarantees to give the

optimal solution within much shorter time than applying exhaustive search.

Relation between number of mode shapes and number of sensors used to

solve the problem:

In this part of the experiment, we want to check the effect of increasing the

number of mode shapes on the results that we get. For simplicity, we run the

experiment on a five-story, and nine-story building for different required 𝐿𝑚𝑖𝑛. The

experiment done on five-story building is checked for the first five mode shapes.

And the experiment done on a nine-story building is checked for the first nine mode

80

shapes.
15

 The number of sensors obtained in the different number of mode shapes is

shown in Figure 13 and Figure 14. One can see that increasing the number of mode

shapes leads to hiring more sensors to solve the problem. This matches what is found

in literature as in [15] and [14]. In this research work, our experiments are conducted

using three mode shapes as used in literature [15] and [14]. In addition to that, three

mode shapes are advised and recommended by people in civil engineering for a

typical and normal tower
16

where they informed that the mostly used mode shapes are

the first three out of 12.

Figure 13: The effect of increasing the number of mode shapes on a five-story

building

15

 The number of mode shapes K checked out is based on the available data we can get. For example, in

the phi matrix for five-story building, we have the needed data for the first five modes only out of 12.

In the phi matrix for nine-story building, we have the needed data for the first nine modes out of 12.

16

 The number of mode shapes is advised by Dr. Mohammed Mahgoub, an associate professor and

program director of the concrete Industry Management (CIM) program at the John A. Reif Jr.

Department of Civil and Environmental Engineering, Newark College of Engineering, New Jersey

Institute of Technology, University Heights Newark, New Jersy

0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

se
n

so
rs

 d
e

p
lo

e
d

Required Lmin

1 mode shpe

2 mode shapes

3 mode shpaes

4 mode shapes

5 mode shapes

81

Figure 14:The effect of increasing the number of mode shapes on a nine-story

building

5.2.3 Two-bay – nine-story building

In the following experiment, the number of floors is nine as in the last

experiment, but the candidate sensors locations are increased to 30. Increasing the

number of candidate sensors can better show the importance of the solved problem in

this thesis. In addition to that, the first two experiments are conducted to validate the

idea of the solved problem and make sure of the correctness of the values. This

experiment ensure the same. Furthermore, it is more realistic in terms of having two

bays in the simulated building. Like others, this experiments gives good insight on

the implemented algorithms to solve the problem ,and shows the difference in the

performance and complexity between them.

0

1

2

3

4

5

6

7

8

9

10

Lmin=100 Lmin=80 Lmin=60 Lmin=40 Lmin=20

N
u

m
b

e
r

o
f

se
n

so
rs

 d
e

p
lo

ye
d

Required Lmin

1 mode shpe

2 mode shapes

3 mode shpaes

4 mode shapes

5 mode shapes

6 mode shapes

7 mode shapes

8 mode shapes

9 mode shapes

82

Figure 15: Candidate sensor locations in a two-bays nine-sensor story building

Setting up:

The sensor node coordination is seen in Figure 15. Moreover, the labels of the

sensors are shown in Figure 16. For example, the candidate sensor locations in the

first floor (not ground) are called 2, 12, and 22 and so on.

0

5

10

15

20

25

30

35

0 2 4 6 8 10

Z
A

xi
s-

 b
u

ild
in

g
h

e
ig

h
t

X Axis- building base

Sensor Candidate
Locations

Sink Node

83

Figure 16: Labels of the candidate sensor locations in a two- bay nine-sensor story

building

The target mode shapes matrix(Φ) for the two-bay nine-sensor story building

using three mode shapes is shown below:

84

Φ =

{

0
−2.011978
−4.007836
−6.056818
−8.165988
−10.312154
−12.459848
−14.571959
−16.616821
−18.574111

0
−2.011959
−4.007691
−6.056809
−8.166107
−10.31237
−12.460146
−14.572332
−16.617268
−18.574541

0
−2.011978
−4.007836
−6.056818
−8.165988
−10.312154
−12.459848
−14.571959
−16.616821
−18.574111

0
6.838295
12.081435
14.740655
14.269124
10.691622
4.604105
−2.953242
−10.726328
−17.544559

0
6.842414
12.08817
14.748933
14.277179
10.697648
4.606623
−2.955153
−10.732907
−17.554403

0
6.838295
12.081435
14.740655
14.269124
10.691622
4.604105
−2.953242
−10.726328
−17.544559

0
0.00016
0.000268
0.000281
0.000257
0.00022
0.000177
0.000127
−0.000047
−0.001823

0
7.222𝐸 − 09
1.183𝐸 − 09
−1.13𝐸 − 09
5.307𝐸 − 09
−1.237𝐸 − 08
9.348𝐸 − 09
3.63𝐸 − 09
−8.068𝐸 − 09
1.69𝐸 − 09

0
−0.00016
−0.000268
−0.000281
−0.000257
−0.00022
−0.000177
−0.000127
0.000047
0.001823

 }

Results of implementing brute force on a two-bay nine-sensor story building :

The results are shown in Table 15. The table shows the optimized number of

sensors chosen to solve the problem with the corresponding 𝐿𝑚𝑖𝑛 required.

Additionally, the table shows the best sensor placement that satisfies the objective

function and the constraint of the problem that can also be seen in Figure 17.

Likewise in Table 15, you can see the total time needed to find each solution. This

part of the experiment is the best among the experiments done in emphasizing the

importance of solving the problem stated in this thesis. The minimization of the

85

number of sensors is shown in a better way. For example when 𝐿𝑚𝑖𝑛=80, eight

sensors are reduced out of 30 , and when 𝐿𝑚𝑖𝑛=60 , 13 sensors are reduced out of 30.

This gives a huge expectation to increase minimizing the number of candidate sensors

when the number of candidate sensors is increased. Moreover, this part of the

experiment can show the disadvantages of using exhaustive search method, although

it gives the optimal solutions. The disadvantage here is the long execution time. The

average time to get the optimal solution for different required 𝐿𝑚𝑖𝑛 is almost 18

hours. This is the result of checking all the different combinations out of 30 sensors

and then sorting the feasible solutions to find the optimal solution.

Validation:

In this part of the experiment, the number of combinations out of 30 sensors is

1073741823. So it would be hard to get them all and check them one by one. As a

result, to check the correctness of the results, some of the inputs are chosen randomly

and checked corresponding to their satisfaction to the objective function and

constraints. For example, when 𝐿𝑚𝑖𝑛=100, the best solution given is having 27

sensors out of 30. First, L is calculated for the given solution with its specific

placement, and it gives 100. Moreover, the distance between the selected node

locations is less than the transmission range given in this problem. In addition to that,

the energy constraint is satisfied. Furthermore, to be more certain, the contribution of

the three sensors that are not part of the solution is checked, and it is found that their

contribution in the mode shape matrix is 0. All the evidence point that such result is

true and correct.

86

Figure 17: Sensor placement when applying brute-force on a two-bay nine-sensor

story building

0

5

10

15

20

25

30

35

0 2 4 6 8 10

Z
ax

is
-

b
u

ild
in

g
h

e
ig

h
t

X Axis- building base

Lmin=100

Lmin = 80

Lmin =60

Lmin =40

Lmin =20

87

Table 15: Results of implementing exhaustive search on a two-bay nine-story building

𝑳𝒎𝒊𝒏

Optimized Placement

Minimiz

ed

 # of

 sensors

time

(s)

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

100 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 64464.

51

80 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 22 64440.

25

60 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 17 64129.

87

40 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 13 64186.

47

20 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 9 64215.

24

88

Results of implementing genetic algorithm on two-bay nine-sensor story

building:

The results of applying this algorithm are seen in Table 16. The different

solutions from 10 different runs for each required 𝐿𝑚𝑖𝑛 are stated. From the results,

one can notice that although the execution time of implementing genetic algorithm is

much less than the execution time of implementing exhaustive search, the genetic

algorithm cannot guarantee outputting the optimal solution. For example, from the 10

different runs, when 𝐿𝑚𝑖𝑛=f20 or 𝐿𝑚𝑖𝑛=40, the solution given may be near optimal.

Additionally, sometimes the execution time is finished by giving a non-feasible

solution that provides the optimal number of sensors but does not satisfy the quality

constraint. This happened when 𝐿𝑚𝑖𝑛=100, the second solution stated in Table 16. It

gives the optimal number of sensors as found in exhaustive search implementation,

but the information quality computed for the given sensor placement is 98.48, which

is less than 100. That is why the solver gave a message without the output to indicate

that the solution is not satisfying the constraints of the problem.

Validation:

Again, in this part, random results are checked, especially the suspicious ones.

Near-optimal solutions are expected as the nature of genetic algorithm cannot be

forced to have an optimal solution. One of the results that I checked is

when𝐿𝑚𝑖𝑛=100. In one from the 10 runs, we got the following combinations (1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29 ,30), it

was given in the output that the solution is not satisfying the constraints. To validate

that, the distance, energy, and information constraints are checked.

89

Table 16:Results of implementing genetic algorithm on a two-bay nine-sensor story building

𝑳𝒎𝒊𝒏

Optimized Placement

Minimized

 # of

 sensors

time (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

100

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 3.0124

1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27

80 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 22 3.0447

0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 22

0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 22

60 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 17 3.0313

0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 17

40 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 13 2.983

0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 15

0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 14

20 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 9 2.845

0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1` 0 0 0 1 1 9

0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 10

90

It is found that the quality of that combination is 98.48, which is actually not

satisfying the information quality constraint, so the result given by the solver is true.

Another random solution checked is (4, 5, 6, 9, 10, 14, 15, 16, 19, 20, 24, 25, 26, 27,

29, 30) This combination is found to be feasible with L= 60.1, which is larger than

L=60. As a result, it is a valid solution when the required minimum L is 60.

Figure 18: Sensor placement when implementing binary search on a two-bay nine-

sensor story building

0

5

10

15

20

25

30

35

0 2 4 6 8 10

Z
A

si
x-

 b
u

ild
in

g
h

e
ig

h
t

X Axis- building base

Lmin =100

Lmin=80

Lmin =60

Lmin =40

Lmin =20

91

Results of implementing binary search algorithm on a two-bay nine-sensor

story building:

The results of implementing binary search are seen in Figure 18, and Table 17.

The results gives the same optimal solutions in terms of minimizing the number of

sensors as shown before in implementing the brute force method. The sensor

placement is different, but it meets the problem objective function and constraints.

Validation:

Since the number of sensors are the same in both cases (binary search and

brute force) this is a good. To better validate the results, the constraints are checked

for all the combinations that resulted in the different required Lmin.It is found that all

of the results are feasible and optimal. Table 18 shows the computed L for each

combination seen in the results in Table 17.

Summary:

This experiment makes the seen very clear. First this experiment gives the

expectation that whenever a number of candidate sensors increase, the number of

sensors that we can reduce increases as shown in Figure 19. This confirms that the

thesis problem can be shown clearly with structures that need large number of

sensors to monitor its health. As a result, this emphasizes the importance of solving

the problem in those cases and optimizing the solution, which is the core of this

research work. Furthermore, from this experiment, one can see that optimal solutions

can be found using exhaustive search and binary search methods while genetic

algorithm can find near or sub optimal solutions. In this experiment, one can also

see that the time execution for all the applied algorithms increases since there are

more sensors. The execution time of applying the genetic algorithm is the best in this

92

experiment, where the average time to apply genetic algorithm on a two-bays , 9-

sensor story building is 2.98 seconds. In contrast, there is no guarantee to find

optimal solution. In addition, the worst execution time results from implementing

exhaustive search, where the average time used when implementing this method is

64281.45 seconds, which equals to 17.86 hours. Solving the problem with the binary

search method is the best among the algorithms used, as it guarantees optimal

solution and, better time than exhaustive search, averaging time 4.4 hours.

To summarize, Figure 20 shows the minimized number of sensors in all the

different combinations. One can see that binary search and exhaustive search always

give the optimal solution. On the other hand, genetic algorithm cannot assure that, and

this is further shown with the increase of candidate sensors. In addition, Figure 21

shows that binary search is the best method among the three applied methods in terms

of execution time to use for building that needs a small number of sensors to monitor

its health. On the other hand, for towers that need a larger number of sensors, there is

a trade-off between the execution time and the performance. If execution time is

preferred, then genetic algorithm should be applied as shown in Figure 22. But if

performance is preferred, then binary search will be better to use than brute force.

 Another way of comparing the methods used is by computing and evaluating

the time complexity that is shown in the next section.

93

Figure 19: The number of sensors reduced in all the different experiments for

different required 𝑳𝒎𝒊𝒏 using brute force and binary search

Figure 20: The number of sensors from implementing exhaustive search (ES), genetic

algorithm (GA), and binary search (BS)

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

re
d

u
ce

d
 s

e
n

so
rs

five-story building nine-story building two-bay nine-story building

0

5

10

15

20

25

30

5 9 30 5 9 30 5 9 30 5 9 30 5 9 30

Lmin=20 Lmin =40 Lmin=60 Lmin=80 Lmin=100

N
u

m
b

e
r

 o
f

se
n

so
rs

 in
 t

h
e

 s
o

lu
ti

o
n

ES

GA

BS

94

Figure 21: The execution time (s) of implementing exhaustive search (ES), genetic

algorithm (GA), and binary search (BS) on a five-story building and a nine-story

building

Figure 22:The execution time (s) of implementing exhaustive search (ES), genetic

algorithm (GA,) and binary search (BS) on a two-bay nine-story building

0

0.5

1

1.5

2

2.5

5 9 5 9 5 9 5 9 5 9

Lmin=20 Lmin =40 Lmin=60 Lmin=80 Lmin=100

Ti
m

e
 (

s)

ES

GA

BS

0

10000

20000

30000

40000

50000

60000

70000

Ti
m

e
 (

s)

ES

GA

BS

95

Table 17: Results of implementing binary search on a two-bay nine- story building

𝑳𝒎𝒊𝒏

Optimized Placement

Minimiz

ed

 # of

 sensors

time

(s)

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

100 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 8956.9

69

80 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 22 12982.

67

60 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 17 27316.

81

40 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 13 24158.

92

20 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 9 6035.1

45

96

Table 18: Computed L for the combination that appeared when implementing binary search on a two-bay nine-story building

Optimized Placement

𝑳𝒎𝒊𝒏 Compute

d L

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 100 100

0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 80 80.2158

0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 60 60.0053

0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 40 40.2046

0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 20 20.1232

97

5.3 Time Complexity Evaluation

To compute the time complexity of all the applied methods in this research

work, Big O notation is used. Big O notation is used to classify methods by how they

respond to changes in input size [63]. The input size used in all the applied methods

is the number of candidate sensor locations. In genetic algorithm , the input size is

affected by other things such as the number of generations, the population size, and

the length of one solution.

5.3.1 Time complexity of exhaustive search

Time complexity of the method brute force is O(2𝑀 . 𝑀6).The computation of

the complexity according to the implemented algorithm is shown below.

1. The Euclidean distance is computed among all the sensors M used in the

network. The worst case is in order of O(𝑀2). Euclidean distance is

computed via a function called pdist. Pdist output is a vector of size

(M+1(M)/2). After that, another function called squareform is used to

convert the vector into a square symmetric format that takes the same

complexity in order of O(𝑀2). So the overall complexity of this step is

O(𝑀4).

2. Calculate to check whether the distance between each pair of sensors within

transmission range 𝑅𝑐 is in order of 𝑂((𝑀 + 1)2). So one can say that to

compute the distance constraint we need O(𝑀4) + 𝑂((𝑀 + 1)2), which

can be considered in order of O(𝑀4).

3. Evaluate the determinant of FIM (|𝑄| = 𝑑𝑒𝑡[(Φ)𝑇 . 𝑅−1. Φ]

) for M sensors when all sensors M are selected. The complexity of

computing the transpose of an input O(𝑀2) , the inverse of a matrix of size

98

M x M using Gaussian elimination, needs O(𝑀3). In addition, the

determinant function is in order of O(𝑀3). In total the determinant in this

case needs O(𝑀3). (O(𝑀3)+ O(𝑀2)) = O(𝑀6).

4. Compute the different possible combinations of M sensors that need

𝑂 (∑ (𝑀
𝑗
)𝑀

𝑗=1).

5. Go through all combinations of sensors needs ∑ (𝑀
𝑗
)𝑀

𝑗=1 iterations and

check the feasibility of the solution in each iteration. To check the

feasibility of a combination,

a. one needs to check the information quality constraint that needs the

evaluation of determinant of FIM |𝑄| (|𝑄| = 𝑑𝑒𝑡[(Φ)𝑇 . 𝑅−1. Φ]. This

gives complexity in order of O(𝑀6).

b. one needs to check the energy constraint by computing the total

consumed energy for each sensor i in the combination, and this is in

order of O(𝑀2). As a result, since ∑ (𝑀
𝑗
)𝑀

𝑗=1 ≪ 2𝑀 then this step

needs O(2𝑀. (𝑀6 +𝑀2)) = O(2𝑀 . 𝑀6).

6. Sort all the feasible solutions in ascending order according to their objective

function evaluation in equation (3) and then in descending order according

to their normalized |Q| (L) and finally get the optimal solution. In the worst

case, all the M solutions are feasible, so sorting in that case has a time

complexity O(𝑀 log𝑀).

 So the complexity of the brute force is O(𝑀4) + O(𝑀6) + O(2𝑀 . 𝑀6) that ends

up with complexity of order O(2𝑀. 𝑀6).

99

5.3.2 Time complexity of genetic algorithm

In this part, the default setting was used to set the different parameters and

algorithms of GA operators. The most important default parameters and algorithms

are shown in Table 19.

Table 19: Some of the parameters input into ga function

Parameter/ga operator Value /Type of algorithm

Population size (𝑁𝑖𝑛𝑑) 20

Number of generations (g) 100

Creation function for population Based on constraints

Selection Stochastic Universal Sampling (SUS)

Crossover Scattered (with fraction =0.8)

Mutation Constraint dependent (Adaptive feasible)

In general, the time complexity of GA algorithm (without the evaluation of

objective function and constraints complexity) is in order of O(𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑), where

𝑁𝑖𝑛𝑑 is the population size, and 𝐿𝑖𝑛𝑑 is the length of an individual [66]. It is also

known that the complexity of GA can be different from implementation to another,

where the parameters and operator algorithms can be changed, and generally, it

depends on the following:

1. Fitness function and constraints (application dependent)

2. Selection operator

100

3. Cross over operator

4. Mutation operator

The complexity of the implemented GA is calculated to be O(g. 𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑.

𝑀9).The following are the details behind the calculations:

1. Fitness function: The time complexity of the fitness function depends on

the number of decision variables in the problem which are M decision

variables. As a result, time complexity equals O(M).

2. Constraints :

a. Distance: As discussed before in exhaustive search, the distance

constraint has a time complexity in order of O(𝑀4).

b. Energy: As discussed before in exhaustive search, the distance

constraint has a time complexity in order of O(𝑀2).

c. Quality: O(𝑀6) is computed in brute-force analysis.

3. Selection operator: According to the literature review, the time complexity

of SUS algorithm is O(𝑁𝑖𝑛𝑑)[67]. And since the fitness function is used as

a parameter in the selection, the final time complexity is O(M . 𝑁𝑖𝑛𝑑).

4. Crossover operator: According to the definition of scattered crossover in

section (3.3.4 Crossover), the time complexity is computed as follows: In

the worst case,
𝑁𝑖𝑛𝑑

2
 iterations are generated to guarantee that crossover is

applied in all the parent pairs in the population. Each time a crossover

between a pair of parents is done, a random binary vector of individual’s

length is generated, and 𝐿𝑖𝑛𝑑 comparisons are done to generate the new

101

parent. This means to finish the crossover operator,
𝑁𝑖𝑛𝑑

2
. 𝐿𝑖𝑛𝑑 comparisons

are done, which result in time complexity of order O(𝑁𝑖𝑛𝑑 . 𝐿𝑖𝑛𝑑).

5. Mutation operator: As shown in Table 19 the mutation algorithm is

adaptive feasible because the problem has constrains. Adaptive feasible

means that the decision of applying mutation depends on the constraints of

the problem , and in the worst-case, all the population individuals are

mutated, so the time complexity for the mutation operator is in order

O((𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑 . O(𝑀2) + O(𝑀2) + 𝑂(𝑀9).

Therefore, the time complexity for GA for the number of generations g

is

O(g(M . 𝑁𝑖𝑛𝑑 + 𝑁𝑖𝑛𝑑 . 𝐿𝑖𝑛𝑑 + 𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑 . 𝑀
9) = O(g. 𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑 . 𝑀

9) = O (𝑀.

𝑀9) = O(𝑀10), where, in this research work, g=20, population size 𝑁𝑖𝑛𝑑 =

100, and individual size 𝐿𝑖𝑛𝑑 = M .

5.3.3 Time complexity of binary search

The steps used to compute the complexity of applying binary search algorithm

are as follows:

1. Compute the complexity needed to evaluate the distance constraint which

is the same computation done as in applying brute force. This needs

complexity of order O(𝑀4).

2. Compute |Q| for all selected M sensors that take time complexity of

O(𝑀6).

3. Then in the binary search start to look for the optimal solution., where

midpoint is computed, and then search for a solution for midpoint sensors.

102

To do this, the problem constraints related to the information quality and

energy should be checked, and to apply this for one single solution, the

time complexity is in order 𝑂(𝑀6).

4. In the worst case, there is no solution at midpoint sensors, which means

that different (𝑀
𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

) combinations are checked.

5. After that, depending on the result of looking for a solution using midpoint

sensors, a series of three nested IF conditions need to be checked to know

whether we need to look for a solution with a smaller number of sensors

or a higher number of sensors, or just to determine that an optimal

solution is found. In the worst case, all the conditions need to be checked.

6. The loop used to find the optimal solution can take log𝑀 + 1 iterations in

the worst case.

From the different steps above, one can see that the total time complexity in worst

case needed to apply the binary search is in order O(

(𝑀4) + (𝑀6) + (3. ∑ (𝑀
𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

) . (𝑀6))
𝑙𝑜𝑔𝑀+1
𝑗=1) which can be presented in the order of

O((𝑙𝑜𝑔𝑀 + 1(𝑀
𝑙𝑜𝑔𝑀+1

)). (𝑀6))where choosing logM+1 sensors out of M candidate

sensors gives the highest number of combinations.

As you can see the time complexity is computed in the worst case. But of

course, we can get better results in the average case and best case.

103

Chapter 6: Conclusion and Future Work

This chapter summarizes the research work, its related results and findings.

Then the challenges faced while working on this research problem. Finally, the

future research directions are reported.

6.1 Conclusion

This thesis discussed the problem of minimizing the number of sensors for

SHM in WSN systems. This problem was never discussed in the literature. We

presented a new mathematical formulation for the problem that addresses WSN

requirements such as communication and energy consumption without ignoring the

civil requirements such as the information quality computed using determinant of the

FIM. Reducing the network size solves the problems of scalability, installation time,

and cost. In addition to, solving the problem, from a theoretical point of view, shows

the trade-off between the number of sensors and the information quality when the

designer chooses to use all the candidate sensors to place. Based on the conclusion of

this study, designers can know how much information quality will be reduced if they

will use fewer nodes. In cases of node failure, the designer will know how much

information quality will remain if certain nodes fail.

Three methods were implemented to solve the problem. The methods are

exhaustive search, genetic algorithm, and binary search. The experiments applied the

three methods on different configurations of sensors. The first configuration of

sensors represents a building with 5 floors with 5 candidate sensor locations , the

second configurations represents a 9 story building with 9 candidate sensor locations,

and the last configuration represents a 2-bay 9 story building with 30 candidate sensor

locations. We studied the performance of utilizing each algorithm on the different

104

configurations for different required lower bound for the normalized determinant

FIM (𝐿𝑚𝑖𝑛). Additional experiments studied the relationship between the number of

mode shapes versus the number of required sensors. Finally, the time complexity of

the three applied methods was calculated to compare the three algorithms and to

validate the results of the conducted experiments.

The obtained results showed that minimizing the number of sensors becomes

more significant with big structures that require more sensors. Whenever the number

of candidate sensors increased, the number of reduced sensors increased. Minimizing

the number of sensors will result in a minimized network size, and lower cost and

time for installation. Furthermore, we found that the binary search algorithm is best

for small buildings because it gives the optimal solution with the best execution time.

On the other hand, in larger buildings, there will be a trade-off between the

performance (getting the optimal solution for the problem) and the execution time to

get the results. If the designer wants to raise performance the binary search is best.

Otherwise, the genetic algorithm is a better choice to find the near-optimal solution in

a much less time. These results were confirmed with the evaluation of the time

complexity for the three applied methods. Exhaustive search has the highest time

complexity for large buildings in the order of O(2𝑀 . 𝑀6). It is reduced in the other

two algorithms. The time complexity for the genetic algorithm is O(𝑀10) , and in

our own heuristic that applies the binary search, the worst-case time complexity is in

the order of O(𝑙𝑜𝑔𝑀 + 1(𝑀
𝑙𝑜𝑔𝑀+1

)). (𝑀6)), where M is the number of candidate

locations.

105

6.2 Challenges

Collecting mode shape information matrixes for large, tall structures was

difficult. We tried to get the mode shape information matrix for the famous

Guangzhou New TV Tower (GNTVT) [14], but the research team who worked on it

did not reply. Additionally, the computation of the mode information matrix takes a

long time and needs study that is beyond the scope of this research. As a result, our

research team asked some researchers from the civil engineering field to compute the

matrixes of a 9-story building and a 2-bays, 9-story building, while we got the mode

shape information matrix of 5-story building from [65], so we can use them in this

research work.

The second challenge was obtaining the optimal solution from applying the

exhaustive search on a 2-bays 9-story building. The algorithm code needs to run for

18 hours. To solve this problem, I conducted the experiments with the different

required 𝐿𝑚𝑖𝑛 on different devices to quickly collect the results.

Understanding how a genetic algorithm works and measuring its time

complexity was another challenge that was faced. In this research work, the method

using MATLAB’s GA solver from the optimization tool box was applied. The solver

made implementing the algorithm very easy because it handles the details of the

method. However, finding the time complexity was challenging as the details behind

the running function needed to be understood to accurately compute the time

complexity.

The last challenge I faced is related to finding the optimal solution. In addition

to using the exhaustive search to find the optimal solution, we had planned to use the

106

branch-and-bound (B&B) algorithm through the BARON solver [21] which

guarantees the optimal solution with less time complexity in the average-case, and

best-case. I modeled the problem for a 5-story building and passed it to the BARON

solver. The results were promising. But when I modeled the problem for 9-story

building, and for a 2-bay, 9-story building, the solver gave some results which differ

from this research’s results. A lot of time was spent on working by this solver and it

was realized that it doesn’t use a pure branch-and-bound algorithm; But there are

some modifications to the algorithm that lead to a local optimal solutions, but not a

global optimal solution when the number of candidate sensors increase. No more

investigations were hold due to time limitation, and running the exhaustive search

eventually gave the optimal results, which can be compared with results from the

other algorithms. One of the future work directions is inspired by this challenge.

6.3 Future Work

This research work suggests many directions for future work, we selected

some of them in the following list:

1. Conduct the experiments for larger sensor networks by collecting and

utilizing the mode shapes information matrixes for higher buildings with

more bays. The methods could also be applied to other type of structures,

such as bridges or stadiums.

2. Measure the effect of varying the initial total energy for sensors, and changing

the value of the transmission range.

3. Improve the problem formulation by adding more WSN constraints (e.g. add

constraint related to routing).

107

4. Apply the B&B, greedy algorithm, or other algorithms and compare their

performance with this research work applied algorithms used in this research.

108

 References

[1] M. Segovia, E. Grampín, and J. Baliosian, “Analysis of the Applicability of

Wireless Sensor Networks Attacks to Body Area Networks,” Proc. 8th Int.

Conf. Body Area Networks, vol. 1, pp. 509–512, 2013.

[2] T. He, S. Krishnamurthy, J. a. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T.

Yan, L. Gu, J. Hui, and B. Krogh, “Energy-efficient surveillance system using

wireless sensor networks,” pp. 270–283, 2004.

[3] X. Xie, J. Guo, H. Zhang, T. Jiang, R. Bie, and Y. Sun, “Neural-network based

structural health monitoring with wireless sensor networks,” Nat. Comput.

(ICNC), 2013 Ninth Int. Conf., no. 61171014, pp. 163–167, 2013.

[4] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan,

and D. Estrin, “A wireless sensor network For structural monitoring,” Proc.

2nd Int. Conf. Embed. networked Sens. Syst. - SenSys ’04, p. 13, 2004.

[5] S. Wijetunge, U. Gunawardana, and R. Liyanapathirana, “Wireless Sensor

Networks for Structural Health Monitoring: Considerations for communication

protocol design,” 2010 17th Int. Conf. Telecommun., pp. 694–699, 2010.

[6] S. Beskhyroun, L. D. Wegner, and B. F. Sparling, “New methodology for the

application of vibration-based damage detection techniques,” Struct. Control

Heal. Monit., no. May, 2011.

109

[7] F. P. Pentaris, J. Stonham, and J. P. Makris, “A review of the state-of-the-art of

wireless SHM systems and an experimental set-up towards an improved

design,” IEEE EuroCon 2013, no. July, pp. 275–282, 2013.

[8] G. Movva, Y. Wan, S. Fu, and H. F. Wu, “Optimal sensor placement for

structural health monitoring: a comparative study between the control

engineering and civil engineering approaches,” vol. 8694, p. 86941K, 2013.

[9] F. Oldewurtel and P. Mahonen, “Analysis of Enhanced Deployment Models for

Sensor Networks,” Veh. Technol. Conf. (VTC 2010-Spring), 2010 IEEE 71st,

pp. 1–5, 2010.

[10] M. Romoozi, M. Vahidipour, M. Romoozi, and S. Maghsoodi, “Genetic

Algorithm for Energy Efficient and Coverage-Preserved Positioning in

Wireless Sensor Networks,” 2010 Int. Conf. Intell. Comput. Cogn. Informatics,

pp. 22–25, 2010.

[11] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective coverage

and surveillance in distributed sensor networks,” 2003 IEEE Wirel. Commun.

Networking, 2003. WCNC 2003., vol. 3, no. C, pp. 1609–1614, 2003.

[12] Y. Chen, C.-N. Chuah, and Q. Zhao, “Sensor Placement for Maximizing

Lifetime per Unit Cost in Wireless Sensor Networks,” MILCOM 2005 - 2005

IEEE Mil. Commun. Conf., pp. 1–6, 2005.

[13] S. Sengupta, S. Das, M. D. Nasir, and B. K. Panigrahi, “Multi-objective node

deployment in WSNs: In search of an optimal trade-off among coverage,

110

lifetime, energy consumption, and connectivity,” Eng. Appl. Artif. Intell., vol.

26, no. 1, pp. 405–416, 2013.

[14] B. Li, D. Wang, F. Wang, and Y. Q. Ni, “High quality sensor placement for

SHM systems: Refocusing on application demands,” Proc. - IEEE INFOCOM,

pp. 1–9, 2010.

[15] B. Li, “Demo : On the High Quality Sensor Placement for Structural Health

Monitoring,” pp. 2–3.

[16] A. A. Elsersy, Mohamed, Hossam, Mohamed, Elfouly, Tarek, “Multi-Objective

Sensor Placement using the Effective Independence Model (SPEM) for

Wireless Sensor Networks in Structural Health Monitoring,” pp. 576–580,

2015.

[17] Z. A. Bhuiyan, J. Cao, and G. Wang, “Deploying Wireless Sensor Networks

with Fault Tolerance for Structural Health Monitoring,” vol. 64, no. 2, pp. 382–

395, 2012.

[18] T.-H. Yi, H.-N. Li, and M. Gu, “Optimal Sensor Placement for Health

Monitoring of High-Rise Structure Based on Genetic Algorithm,” Math. Probl.

Eng., vol. 2011, pp. 1–12, 2011.

[19] G. Fan, S. Jin, and D. Processing, “Coverage Problem in Wireless Sensor

Network : A Survey,” J. Networks, vol. 5, no. 9, pp. 1033–1040, 2010.

111

[20] K. Neapolitan, Richar, Naimipour, Foundations of algorithms, Fourth edi.

Jones & Bartlett Learning, 2011.

[21] “BARON Software | Sahinidis.” [Online]. Available:

http://archimedes.cheme.cmu.edu/?q=baron. [Accessed: 27-Mar-2016].

[22] D. D. S. Hoon Sohn, Charles R. Farrar, Francois M. Hemez and and J. J. C.

Daniel W. Stinemates, Brett R. Nadler, “A Review of Structural Health

Monitoring Literature : 1996 – 2001,” Los Alamos National Laboratory Report,

2004.

[23] C. R. Farrar and K. Worden, “An introduction to structural health monitoring.,”

Philos. Trans. R. Soc., vol. 365, no. 1851, pp. 303–15, 2007.

[24] K. Worden, C. R. Farrar, G. Manson, and G. Park, “The fundamental axioms of

structural health monitoring,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 463,

no. 2082, pp. 1639–1664, 2007.

[25] C. R. Farrar and K. Worden, Structural Health Monitoring: A Machine

Learning Perspective. UK: John Wiley & Sons, Ltd, 2013.

[26] M. Z. A. Bhuiyan, G. Wang, and J. Cao, “Sensor Placement with Multiple

Objectives for Structural Health Monitoring in WSNs,” 2012 IEEE 14th Int.

Conf. High Perform. Comput. Commun. 2012 IEEE 9th Int. Conf. Embed.

Softw. Syst., pp. 699–706, 2012.

112

[27] M. Meo and G. Zumpano, “On the optimal sensor placement techniques for a

bridge structure,” Eng. Struct., vol. 27, no. 10, pp. 1488–1497, 2005.

[28] G. W. van der Linden, A. Emami-Naeini, R. L. Kosut, H. Sedarat, and J. P.

Lynch, “Optimal sensor placement for health monitoring of civil structures,”

Am. Control Conf. (ACC), 2011, pp. 3116–3121, 2011.

[29] P. G. Bakir, “Evaluation of Optimal Sensor Placement Techniques for

Parameter Identification in Buidlings,” Math. Comput. Appl., vol. 16, no. 2, pp.

456–466, 2011.

[30] J. a. Camelio, S. J. Hu, and H. Yim, “Sensor Placement for Effective Diagnosis

of Multiple Faults in Fixturing of Compliant Parts,” J. Manuf. Sci. Eng., vol.

127, no. 1, p. 68, 2005.

[31] S.-F. Lung and C.-G. Pak, “Updating the Finite Element Model of the

Aerostructures Test Wing Using Ground Vibration Test Data,” 50th

AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 2009.

[32] A. Joorabchian and A. A. Golafshani, “Study of pattern of sensor installation

for analysis behavior of offshore jacket structure,” pp. 1677–1686.

[33] M. Najeeb and V. Gupta, “Energy Efficient Sensor Placement for Monitoring

Structural Health,” Int. Electron. Conf. Sensors Appl., pp. 1–6, 2014.

113

[34] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, “Sensor Placement with

Multiple Objectives for Structural Health Monitoring,” ACM Trans. Sens.

Networks, vol. 10, no. 4, pp. 1–45, 2014.

[35] T. Carne and C. Dohrmann, “A modal test design strategy for model

correlation,” Proceedings-Spie …, no. NOVEMBER 1994, pp. 927–933, 1995.

[36] D. Li, C. Fritzen, H. Li, C. Engineering, L. Rd, P. Str, and D.- Siegen,

“Extended MinMAC algorithm and comparison of sensor placement methods.”

[37] L. CanXing, Z. Ping, and D. Jing, “A Review on Optimal Sensor Placement for

Health Monitoring,” 2007 8th Int. Conf. Electron. Meas. Instruments, pp. 4–

170–4–173, 2007.

[38] L. Yao, W. a. Sethares, and D. C. Kammer, “Sensor placement for on-orbit

modal identification via a genetic algorithm,” AIAA Journal, vol. 31. pp. 1922–

1928, 1993.

[39] K. Worden and a. P. Burrows, “Optimal sensor placement for fault detection,”

Eng. Struct., vol. 23, no. 8, pp. 885–901, 2001.

[40] H. Y. Guo, L. Zhang, L. L. Zhang, and J. X. Zhou, “Optimal placement of

sensors for structural health monitoring using improved genetic algorithms,”

Smart Mater. Struct., vol. 13, no. 3, pp. 528–534, 2004.

114

[41] C. He, J. Xing, J. Li, Q. Yang, R. Wang, and X. Zhang, “A Combined Optimal

Sensor Placement Strategy for the Structural Health Monitoring of Bridge

Structures,” Int. J. Distrib. Sens. Networks, vol. 2013, pp. 1–9, 2013.

[42] M. Elsersy, “Joint Optimal Placement and Routing for Wireless Sensor

Networks in Structural Health Monitoring.”

[43] “Eight Queens Problem.” [Online]. Available:

http://www.datagenetics.com/blog/august42012/. [Accessed: 08-Mar-2016].

[44] “Data Structures and Algorithms with Object-Oriented Design Patterns in

C++.” .

[45] M. Melanie, An Introduction to Genetic Algorithms. MIT press, 1998.

[46] R. Malhotra, N. Singh, and Y. Singh, “Genetic Algorithms : Concepts , Design

for Optimization of Process Controllers,” vol. 4, no. 2, pp. 39–54, 2011.

[47] P. G. Aggarwal, Shaifali, Richa Garg, “A Review Paper on Different Encoding

Schemes used in Genetic Algorithms,” Adv. Res. Comput. Sci. Softw. Eng.,

vol. 4, no. 1, pp. 596–600, 2014.

[48] M. Srinivas and L. M. Patnaik, “Genetic Algorithms : A Survey,” Computer

(Long. Beach. Calif)., vol. 27, no. 6, pp. 17–26, 1994.

[49] S. Jin, M. Zhou, and A. S. Wu, “Sensor Network Optimization Using a Genetic

Algorithm,” 7th World Multiconference Syst. Cybern. Informatics., pp. 109–

116, 2003.

115

[50] “Selection.” [Online]. Available:

https://courses.cs.washington.edu/courses/cse473/06sp/GeneticAlgDemo/select

ion.html. [Accessed: 28-Jan-2016].

[51] “Genetic Algorithm Options - MATLAB & Simulink.” [Online]. Available:

http://www.mathworks.com/help/gads/genetic-algorithm-options.html#f6633.

[Accessed: 01-Feb-2016].

[52] “Genetic algorithms.” [Online]. Available:

http://www.slideshare.net/unalozgur/genetic-algorithms-16439115. [Accessed:

08-Mar-2016].

[53] “Genetic Algorithm - MATLAB & Simulink.” [Online]. Available:

http://www.mathworks.com/help/gads/genetic-algorithm.html. [Accessed: 01-

Feb-2016].

[54] “What Is the Genetic Algorithm? - MATLAB & Simulink.” [Online].

Available: http://www.mathworks.com/help/gads/what-is-the-genetic-

algorithm.html. [Accessed: 01-Feb-2016].

[55] “Research.” [Online]. Available:

http://bees2006.awardspace.com/Research.htm. [Accessed: 01-Feb-2016].

[56] “JGAP: Java Genetic Algorithms Package.” [Online]. Available:

http://jgap.sourceforge.net/#documentation. [Accessed: 02-Feb-2016].

116

[57] “ECJ.” [Online]. Available: http://cs.gmu.edu/~eclab/projects/ecj/. [Accessed:

02-Feb-2016].

[58] “Google Code Archive - Long-term storage for Google Code Project Hosting.”

[Online]. Available: https://code.google.com/archive/p/beagle/. [Accessed: 02-

Feb-2016].

[59] “Function optimization with Genetic Algorithm by using GPdotNET |

Bahrudin Hrnjica Blog on WordPress.com.” [Online]. Available:

http://bhrnjica.net/2013/03/26/function-optimization-with-genetic-algorithm-

by-using-gpdotnet/. [Accessed: 02-Feb-2016].

[60] “Find minimum of function using genetic algorithm - MATLAB ga.” [Online].

Available: http://www.mathworks.com/help/gads/ga.html?refresh=true.

[Accessed: 12-Mar-2016].

[61] “Find minima of multiple functions using genetic algorithm - MATLAB

gamultiobj.” [Online]. Available:

http://www.mathworks.com/help/gads/gamultiobj.html. [Accessed: 13-Mar-

2016].

[62] “Binary search.” [Online]. Available:

https://www.math.ust.hk/~mamu/courses/231/Slides/ch02_1.pdf. [Accessed:

08-Mar-2016].

[63] M. H. Alsuwaiyel, Algorithms Design Techniques and Analysis, 13th ed.

World Scientific, 1999.

117

[64] “ThinkPad T440 Platform Specifications.” [Online]. Available:

http://www.lenovo.com/psref/pdf/tabook_WE.pdf. [Accessed: 28-Mar-2016].

[65] Anil K. Chopra, Dynamics of Structures: International Edition. Pearson, 2015.

[66] C. Chipperfield, A., Fleming, P., Pohlheim, H., & Fonseca, “Genetic algorithm

toolbox for use with MATLAB,” 1994.

[67] Belew, Richard K. Foundations of Genetic Algorithms-FOGA 4: Proceedings.

Eds. Richard K. Belew, and Michael D. Vose. Morgan Kaufmann, 1997, 1997.

118

Appendix A : Binary Search Algorithm

In this appendix, the general algorithm of the binary search method [63] is presented:

Input: An array A[1..n] of sorted n elements in non-decreasing order

and element x.

Output: The index of x j where x = A[j] where 1 ≤ j ≤ n . Otherwise it

will be zero.

Algorithm:

1: low =1 , high =n, j=0

2: while (low ≤ high), and (j=0)

3: mid = (low + high)/2

4: if x=A[mid]m, then j = mid, and stop.

5: else if x <A[mid] m, then high = mid-1.

6: else low= mid+1

7: End while

8 : Return j

119

Appendix B: How GA Process Works
Algorithmically, the general genetic GA is applied as below [46]:

An example of a problem that can be solved using genetic algorithm is the

eight- queens problem mentioned in section 3.2 Exhaustive Search section. Here are

steps that can be used to solve it using GA:

1. Start by generating a population 'P' of strings with '8' row positions,

the row position generated randomly for each column, representing a

configuration of queens on the board. For example, '6 3 1 7 4 8 5 2'

1. Start by generating a random population of solution “chromosomes.”

2. Evaluate the fitness function of each chromosome in the population.

3. Create a new population using the following steps, and repeat them until the new

population is complete, and the solution is found.

a. Select two parent chromosomes from a population based on their fitness

where if the fitness is better, then there is a bigger chance to be selected as

parent.

b. Cross over the parents to form a new offspring, that is, children. If no

crossover was performed, the offspring is the exact copy of parents.

c. Mutate new offspring at some locations in the chromosome.

d. Place new offspring in the new population.

4. Use the generated population for a additional run of the algorithm.

5. Check the end condition. If it is satisfied, stop and return the optimal solution in

the current population.

6. Otherwise, loop and go to step 2.

120

is a string of size '8' belonging to population 'P'. Create 'P' such

strings.

2. As a result, an initial population Pi is ready to be selected.

3. Evaluate the fitness value for each solution, then choose randomly

some strings to be in next generations depending on their scores in the

fitness function.

4. Apply crossover to some chosen strings and generate one new string

S. For example:

String 1: '6 3 1 7 4| 8 5 2'

String 2: ' 1 4 3 25 |7 6 8'

New string S based on crossover: '6 3 1 7 4 7 6 8'.

5. With a small probability, apply mutation to string S. Otherwise leave

it as it is.

6. Apply steps 2 to 5 until a solution string (string with maximum

fitness value) representing a correct solution, for example '6 3 1 8 5 2 9 7 4'.

