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ABSTRACT 

Nowadays, wireless sensor networks (WSNs) are considered an  essential candidate to 

apply structural health monitoring (SHM). An important problem in this area is sensor 

placement optimization. In many research works, solving this problem focuses only 

on the network properties and requirements such as energy consumption, network 

coverage, …etc., without considering the civil engineering requirements. However, 

there are other research works that consider network and civil requirements while 

optimizing the sensor placement. Unfortunately, although minimizing the number of 

sensors is important, it has  never been addressed. This could be noticed from the  

limited literature found that addresses this problem while considering both the civil 

and the network requirements. As a result, in this thesis we study the problem of 

minimizing the number of sensors for SHM in WSNs. The idea behind this research is 

to reduce the network size, which can solve some problems such as the scalability, 

installation time and cost. Our contribution in this work is not limited to the 

mathematical model of the mentioned problem, but will extend to  solve the problem 

using different methods: the exhaustive search, genetic algorithm (GA),  and a 

heuristic algorithm that applies the binary search. The problem is  then solved for 

different number of sensors as well as different placements in many conducted 

experiments. Finally, the time complexity is evaluated to compare between all the 

applied methods. The obtained results showed that minimizing the number of sensors 

becomes more significant with big structures. Furthermore, the binary search 

algorithm is the best to use to solve the problem for small buildings. But, For larger 

buildings, there is a trade-off between the performance, and time complexity, where 
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binary search gives optimal solution, but genetic algorithm gives better time 

execution.
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Chapter 1: Introduction 

1.1 Overview 

Nowadays, many applications use wireless sensor networks (WSN), such as 

wireless body area networks (WBAN) [1], surveillance systems [2], and structural 

health monitoring (SHM). Structural health monitoring is the science of applying 

damage detection to structures. WSNs are a promising candidate for SHM due to their 

inelegance in sensing technologies and good computing abilities [3].  

SHM applications of WSNs are great for high-rise towers and infrastructure 

such as bridges [4]. SHM reduces economic loss, saves human lives, and decreases 

catastrophic failures [5]. Some examples that show the importance of SHM are the 

collapse of I-35W bridge in Minneapolis in 2007 and the breakdown of the I-5 Skagit 

River bridge in Seattle in 2012 [6]. Implementing WSNs for SHM has several 

benefits. WSNs will help ensure long-lasting structures for future SHM. Additionally, 

deploying WSNs for SHM decreases installation time and reduces costs when 

compared with deploying wired sensors network [7]. While there is a huge benefit to 

deploying WSNs for SHM, challenges are faced in both the computer science and 

civil engineering fields that need to be taken in consideration. For example, in WSN, 

network scalability is one of the major challenges in that field, and the related 

sequences are communication, fault tolerance (the network should be fail-safe), 

energy, and high installation time and cost [8]. In civil engineering, there are some 

specific requirements that should be considered, such as checking sensors’ 

information-quality. Information quality means to measure how much the data 

obtained by the sensors in their specific positions is correct and accurate. In civil 

engineering area, the sensor placement quality can be measured based on the by a 
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metric called fisher information matrix (FIM). If such civil requirement is not 

considered when choosing the sensors’ location in the SHM network, it may lead to 

misleading information about the structure damage because in  damage surveillance 

choosing the sensor locations is very sensitive.   

As a result, optimizing sensor placement has become a very hot research area. 

Many researchers worked on optimizing sensor placement to satisfy WSN 

requirements, such as good area coverage, maximum network connectivity, maximum 

network lifetime, minimum number of sensors, as in [9], [10], [11], [12], and [13]. 

But the solutions used in the listed research are general and did not consider civil 

requirements. However, other research works do consider civil engineering 

requirements to optimize sensor placement in addition to network needs, as in [14], 

[15], [16], [17], [18], and others. The above-mentioned research greatly contributed to 

this field, but if investigated further, we notice that they never considered minimizing 

the number of sensors as part of the solution for the sensor placement problem. Many 

solutions assume that there are M candidate sensor locations and N available sensors 

to fit into some of the M candidate locations. We know that M can be a large number 

if the granularity resolution of the surface is defined [14], [15]. Having such a huge 

number of candidate sensors M means higher network size and more challenges in 

obtaining scalability, and its related sequences as limitations in power, computational 

capacities, time synchronization, coverage problems, huge cost and installation time, 

and quality of service (QoS) related to the SHM applications and civil field 

requirements [19].  
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1.2 Research Motivation 

The first motivation to work in this field is the importance of sensor placement 

optimization for SHM in WSN and its impact on global quality of life. Another 

inspiration to engage in this research is, as mentioned in the overview, that the 

problem of minimizing the number of sensors is not discussed in the literature, 

especially in relation to computer science and the civil requirements of SHM in 

WSNs. Additionally, we need to consider the enormous effects of having such large 

M candidate sensor node locations. Minimizing the number of candidate sensor 

locations can reduce these challenges. Another motivation is that this study offers a 

theoretical point of view to help the designers of SHM in WSNs balance the number 

of sensors deployed and the information quality gained. In cases of failure, this will 

enable the designer to check if reducing the number of sensors in specific locations 

effected the lower bound of the required information quality. Furthermore, this 

research is a part of NPRP project
1 

that aims to solve the following problem: 

Minimize energy consumption, and maximize placement information-quality using 

some constraints related to network requirements. In the mentioned problem, the 

sensors are installed in infrastructures where it is difficult to change the batteries, so 

the research team in the project decided to optimize energy consumption without 

sacrificing the quality of the information by deploying the minimal number of 

sensors. Another motivation related to the NPRP project which is the big umbrella for 

this research work, that this project research work will be used for monitoring the 

health of bridges existing in Qatar, where the main company in Qatar that is 

responsible about infrastructure, and buildings (ASHGAL) assign the task of SHM of 

one of the existing bridges in Qatar to the team of this NPRP project. So solving the 



4 

 

problem included in this thesis will contribute in designing a better WSN with 

minimal number of sensors.  These reasons all motivated me to do my master’s thesis 

in this field.  

1.3 Problem Statement 

The thesis question is, “Can one find a minimal number of sensors for SHM in 

WSN that satisfies civil requirements by maintaining a certain required information 

quality and satisfies some WSN network requirements, such as assured 

communication and specific energy level?”  

The studied problem concerns researchers working in the field of sensor 

placement optimization for SHM in WSN all over the world. The problem needs to be 

studied and solved at the system design level, when a designer of SHM in WSN 

networks want to place the sensors in their candidate locations. The designer should 

have parameters, such as the M sensors’ candidate location coordinates and a civil 

field parameter related to the information quality obtained by the entire sensors 

network . The designer should specify the required information quality for the entire 

system, for example, an information quality can be less or more than 80%, depending 

on the study’s and the designer’s requirements. In addition, depending on the type of 

sensor used, the designer needs the minimum transmission rate 𝑅𝑐 in the network and 

the initial energy provided by each sensor. When the designer has all of the stated 

parameters and requirements, he or she can start looking for a solution to the reported 

problem.  

This research will discuss how the solution to the problem can be obtained by 

different methodologies and how it can be implemented into the sensor network to 
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monitor structure health. Solving the problem will save time and money in big 

structures and reduce the challenges related to network scalability.  

1.4 Research Aim and Objectives 

This study aims to understand the reported problem and its corresponding 

parameters and requirements; it will illustrate the concept and solve the problem by 

minimizing the number of sensors for SHM in a WSN. To do this, the following steps 

should be achieved:  

1. Model the system problem to clearly illustrate the objective (minimizing 

the number of sensors) and the related constraints to solve the problem’s 

lower bound for information quality, upper bound for transmission range, 

and limitations for energy consumption.  

2. Find methodologies for the optimal or near-optimal solution for the 

problem. There are many methods that can solve this problem. Three 

methods are applied which are: 

a.  Exhaustive search which is the method of brute force all the possible 

solutions, and although it is known by its high complexity, it is very 

simple to run, and it is be considered a baseline to compare its results 

to other algorithms results. 

b.  Genetic algorithm that is a heuristic method the mimics the evolution 

process, and it is used because it is known that it is faster, and because 

one of its well-known steps is binary encoding ( the variable values are 

changed to binary values 0-1) and this type of encoding fits the studied 

problem in this thesis very much  
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c.  Binary search which is a non-heuristic method, a heuristic application 

of binary search method is used to get the optimal solution in better 

time than classical method such as exhaustive search. It is known that 

this method is applied on sorted arrays, and this is the case in the input 

of this research work.  

Some other methods that can be applied to solve this problem, but are not 

applied in this work;  

a. Greedy method that is an optimization approach that reaches the 

solution by making a sequence of choices, each of which looks the 

best at the moment (locally optimal).with the hope that the global 

optimal solution will be obtained [20].  

b. Branch-and-bound method which guarantees the optimal solution 

with less time complexity[21].  

Those methods were not applied, because in the worst case, both of them 

can reach the time complexity of exhaustive search but with more 

algorithmic complication. On the other hand, those methods may be used 

in future work to compare their performance against the applied methods.  

3. Implement the chosen algorithms and conduct experiments to show the 

relation between the candidate sensors’ locations and the reduced number 

of sensors using different required lower bounds of information quality. 

4.  Compare the performance of the different implemented algorithms with 

the different sets of candidate sensor locations and compute the time 

complexity of each. 
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1.5 Scope of the Research 

Delimitations:  

The delimitation of the studied problem is that there is a specified  objective 

function, which is to optimize (minimize) the number of sensors in a specific field, 

which is SHM in WSN. Furthermore, the constraints on solving the problem are not 

the typical ones used in WSNs without a specific application and don’t include all the 

requirements of a WSN. Instead, a specific set is used to guarantee sensor node 

communication by setting an upper bound of 𝑅𝑐, and a WSN energy requirement is 

used so each sensor should have a lower bound of energy equal to the initial energy 

𝐸𝑖𝑛𝑖𝑡 saved in the sensor. The last constraint is the information quality metric that is 

the determinant of the Fisher information matrix (FIM), a requirement of the civil 

field. This research can be extended in future work by changing the mathematical 

formulation of the problem. 

Limitations:  

A limitation of the study is that the problem is solved for only one type of 

structure: towers and high-rise buildings. In the future, the work can be extended to 

bridges and other structures. 

Finally, the study was conducted on different sets of sensors: 5 sensors, 

representing a 5-story building; 9 sensors, representing a 9-story building; and 30 

sensors, representing a 2-bay, 9-story building. Though these sets of sensors are 

considered small, they illustrate the concept and demonstrate its validity. A future 

work is to conduct experiments on larger sets of sensors. 
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1.6 Significance of Research 

The research is considered significant in more than one way. First this thesis 

solves for the first time the problem of minimizing the number of sensors for SHM in 

WSN while satisfying both civil and network requirements. Also significant is that 

minimizing the number of sensors in SHM can reduce installation time and cost for 

high buildings, with further cost reduction if using SHM from the beginning. This 

creates a good economic impact for the companies and countries that might use the 

solution proposed in this paper to minimize the number of sensors for SHM in WSN. 

In addition, the proposed solution can be used before implementing a wireless 

sensor network in the field of SHM. If the designer used all candidate sensors, and if 

some sensors failed, he or she could measure the reduced information quality and 

compromise between the number of sensors and the information quality needed. 

Nevertheless, the NPRP project
1
 team who are working on optimizing the energy 

consumption and information quality can use this study to deploy the minimal number 

of sensors. 

1.7 Contributions of the Research 

This thesis formulates the minimization problem of the number of sensors 

using a single objective function. The objective function is employed to minimize the 

number of sensors in WSN for SHM systems.  

In this thesis, the contributions are summarized in the following points: 

1. We propose a single, objective mathematical formulation to minimize the 

number of sensors for SHM in WSN.  
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2. The optimal solution is found using an exhaustive search and a heuristic 

that applies a binary search.  

3. A sub-optimal solution is found using a genetic algorithm. 

4. In the optimal solution, we confirmed the trade-off between number of 

mode shapes used and number of reduced sensors, where increasing the 

order of mode shapes (increasing the number of mode shapes) leads to 

using more sensors. 

5. We compared the solutions obtained by three different methods. The 

numerical results show the binary search efficiency as a low complexity 

solution for small buildings. There is a trade-off between an optimal 

solution using binary search and better time complexity using a genetic 

algorithm for large towers.  

1.8 Thesis Outline 

The outline of the rest of this thesis is as follows: An overview of the stated 

problem’s main concepts, a literature analysis about SHM in WSN, and in Chapter 2, 

optimizing sensor placement and sensor number are presented. Chapter 3 provides the 

system model of the problem and demonstrates the different applied algorithms—

exhaustive search, genetic algorithm, and binary search—and explains the reasons for 

choosing those methods to solve the problem. Chapter 4 describes in detail the 

implementation of the proposed methods and presents related flowcharts. Chapter 5 

discusses the experiments and corresponding results and validation. The time complexity 

is then measured for the three applied methods with the validation of the computations. 

Finally, the conclusion, challenges, and future work are reported in Chapter 6. 
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Chapter 2: Background and Literature Survey 

2.1 Structural Health Monitoring (SHM)   

Structural health monitoring (SHM)  is the procedure of applying a damage 

detection strategy for many fields such as aerospace, civil, and mechanical 

engineering structures. Damage can occur due to mismanagement in construction, 

lack of quality control, temperature, initiation of cracks caused by cyclic loading, or 

changes in the geometric properties or characteristics of a system that harmfully affect 

its current or future performance [22].  

SHM is used in different fields, and some of the examples are mentioned in 

Table 1. 

 

Table 1: SHM Applications 

Field Structure to monitor its health 

Aerospace Civil and military airplanes, space craft , 

and helicopters 

Civil engineering Buildings, bridges, dams, and tunnels 

Transport Automotive trains, and ships 

Energy Oil and gas installations and pipelines, 

wind turbines, nuclear plants, and tidal 

wave generators 

Chemical installations Piping and tanks 
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SHM is mainly used to replace schedule- driven maintenance with condition-

based maintenance. It is important in insuring scalability in terms of monitoring many 

structures. It can also increase the structure’s longevity by detecting damage in the 

early stages to enable proactive maintenance. Furthermore, SHM has potential 

economic and life safety benefits [23]. 

In the SHM process, the system is monitored over time using an array of 

sensors. These sensors respond with periodically dynamic measurements. Then 

extraction of damage-sensitive features from these measurements is done. After that, a 

statistical analysis on those features is applied to define the current status of the 

structure’s health [24]. 

The output of long-term SHM can be used to check the condition of the 

structure, and to decide if it can perform its functions in light of the expected aging 

and degradation resulting from the operational environment. Moreover, after a 

dangerous occurrence like an earthquake, SHM can be used to provide reliable 

information regarding the integrity of the structure [22]. 

To be more precise, the researchers in [22] think that  the SHM process is a 

pattern recognition problem that can be divided into four main parts, namely, 

operational Evaluation, data acquisition, feature extraction, and statistical model 

development for feature discrimination as shown in Figure 1.  



12 

 

 

Figure 1: SHM Process 

 

Operational evaluation is used to define what is the economic motivation or 

life safety motivation behind implementing the SHM process. Then it describes what 

are the damage types to be detected and under which operational and environmental 

conditions they are to be monitored. In addition to that, it shows the limitations of 

acquiring data in SHM [24].  

The data acquisition (DAQ) part of the SHM process includes selecting the 

types of sensors to get the needed data, the number of sensors and the location where 

the sensors should be positioned, the bandwidth, and the data acquisition, storage, and 

transmittal hardware and equipment. The third main step in the SHM process is 

feature extraction, which gives the needed technical literature such as data 

normalization and processing techniques to recognize the damage-related information 

from the measured data. That means distinguishing the changes in sensor readings due 

to damage from those caused by varying operational and environmental conditions 

[24].  
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Finally, the last step in the in the SHM process is the development of 

statistical models to discriminate between features from the undamaged and damaged 

structures. In this step, The algorithms that operate on the extracted features are 

implemented to quantify the state of damage of the structure [25]. 

2.2 SHM: Development of Technologies 

If a person wants to search about the development of using technologies in the 

SHM process, he/she finds that old conventional monitoring systems are categorized 

as having instrumentation points (sensors) wire-connected to the centralized DAQ 

system through coaxial cables and that the system is just used for monitoring. In 

addition to that, the sensors are independent and may not communicate with other 

sensors. The following problems result from using wired systems : (1)  as the number 

of sensors increase, it becomes harder to install them; (2) the degree of sophistication 

in data processing becomes greater. (3) the cost of maintenance is higher [22]. 

Although wired network systems are still used in some SHM applications, 

wireless sensor network (WSN) systems are widely used for SHM nowadays due to 

their huge advantages [26]. One of the benefits of using WSN systems is to solve the 

recurring cabling problem of the conventional monitoring system. Furthermore, it is 

considered cost-effective compared with wired systems. On the other hand, there are 

also many constraints when WSN is deployed: scalability and the sequences of that: 

communication, fault tolerance, energy, and high installation time and cost. As a 

result, these constraints should be taken into consideration when the system is 

deployed [8].  

Generally, in computer science, because of lack of knowledge of civil 

engineering, the sensor placement is often carried out randomly or uniformly to 
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monitor an event such as an object or a target. But deploying the sensors randomly 

cannot be used in monitoring a structural event like a damage or crack because of the 

characteristics of SHM, such as strain and vibration. With the common methods used 

to implement WSN, effective SHM may not be possible because the spatial 

information to describe the dynamic behavior of a structure or sensitivity of an event 

(damage) is not sufficient at many locations, where choosing the sensor location is 

sensitive in monitoring a damage. As a result, sensor placement needs to be optimized 

during the DAQ step of the SHM process using the experience of civil engineers and 

computer scientists. [14]. 

2.3 Sensor Placement Problem  

Sensor placement is an essential part of SHM applications, and optimizing 

sensor placement is very important in both civil engineering and computer science. 

To understand the optimization of sensor placement problem, assume that we have M 

possible locations for sensor deployment. M can become very large when the 

structure becomes bigger (e.g., feasible locations in high-rise buildings), and usually, 

there are a limited number of sensors (N<M). So to optimize the sensor placement, 

the N sensors need to be attached to some locations that satisfy an objective function 

or a multi objective function and some pre-specified constraints [14].   

 Sensor placement based on network requirements:  

In the networking community, the sensor placement optimization  has been 

one of the important research topics on WSNs. There have been a lot of studies done 

on optimizing sensor placement in the WSNs framework. The researchers focus on 

satisfying the requirements of various applications using WSNs, such as network life 
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time, area coverage, network connectivity, and data reliability, without taking into 

consideration the requirements of SHM.  Here are some examples: 

In [9], the authors estimated and evaluated sensor placement models that 

exploit different amounts of a priori information. The authors optimized the sensor 

placement by providing minimum energy consumption and maximum sensing 

coverage. Overall, the system requirements of WSNs, such as energy efficiency, 

sensing coverage, and operational lifetime, were enhanced by the authors’ sensor 

placement. On the other hand, several estimations were used that make their work 

unfeasible when it comes to work with real structures.  

In [10], the authors optimized the network life time and communication 

between sensors. To achieve the authors’  target, the layout of  the sensors was 

optimized using genetic algorithm (GA). The sensors were placed in the closest- 

possible distance in clusters using K-means clustering algorithm. In addition to that, 

the sensors could communicate with each other, and transmit their data to a high 

energy communication node ( the cluster head) which acted as an interface between 

the data processing unit (sink) and sensors. The experiments showed improvement in 

the networks factors. Nonetheless, the number of computations in the used GA should 

be highly increased.  

In some other research works on WSN, researchers are taking into 

consideration the minimization of a number of sensors as a part of network 

parameters. But again, the requirements of SHM are not satisfied.  

An example of this is in [11]. The authors suggested an algorithm to satisfy a 

specific objective. The objective in that work was to optimize the sensor placement 

using smallest number of sensors to offer sufficient coverage of the sensor field. This 



16 

 

minimum number of sensors was placed to transfer or report a minimum amount of 

sensed data. As a result a unique “minimalistic” view of the distributed sensor 

networks was achieved. Another algorithm was suggested to optimize the coverage. 

The objective function (coverage optimization) was studied under the constraints of 

imprecise detections and terrain properties. The suggested algorithm is a greedy 

algorithm that tries to accomplish the coverage goal through the smallest number of 

sensors. The method is iterative. One sensor is placed at the grid point with the least 

coverage in each iteration. The algorithm ends when the coverage objective is met or 

a bound on the sensor count is reached. 

Another example is in [12]. Chen et al. studied an optimization problem with 

the objective of knowing the minimum number of sensors and their deployment that 

gives the network longest lifetime. An algorithm of two main steps was proposed to 

solve the problem. First, a fixed number of sensors was placed to gain maximum 

network lifetime. The authors defined this optimization as a multi-variant, nonlinear 

problem and solved it numerically. In the second step, the number of sensors was 

minimized, so the highest network lifetime per unit cost could be achieved. An 

analytically derived solution was used to solve  the second step. 

One more example is in [13]. The authors of  [13] formulated the sensor 

placement  problem as constrained multi objective optimization problem. The aim of 

this work is to place the sensors in such way that they maximize network coverage, 

minimize energy consumption, maximize network lifetime, and minimize the number 

of sensors to reduce cost and  the payload of placement. To solve the problem, the 

authors divided the multi objective function into different single objective 

optimization problems and used a tree structure to keep the connectivity between the 
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sensors and the sink. The authors compared their work with other works, and found 

that their work is better.  

Sensor placement based on civil engineering and network requirements:  

  On the other hand, the optimal sensor placement problem for SHM using 

WSN is studied in many old research works where the parameters of SHM are 

considered alone or with the addition of network parameters as in the following 

published papers. 

In civil engineering there are some traditional methods for optimizing the 

sensor placement in SHM that are reviewed in [8], [27], [28], and [29], such as the 

effective independence  (EFI) method, and effective independence driving point 

residue (EFI-DPR) method . EFI is defined in [30] to be a sensor placement algorithm 

that starts with all possible sensor positions and reaches the wanted number of 

locations by gradually removing those that have the minimum contributions to the 

linearly independent manifestation of the fixture faults. While EFI-DPR is a  

composition of EFI method and an energetic approach, called the driving-point 

residue (DPR) [31]. A sensor with low energy can be selected in EFI method, and 

results with loss of information. EFI-DPR is used to avoid this weakness by using the 

DPR method that takes the sensor energy in consideration [32].  

In [14] and  [15], the authors discussed the sensor placement optimization 

problem for SHM in WSNs considering both network connectivity and civil 

engineering requirements such as  the coverage of critical locations in the structure. 

The objective function studied is to maximize the Fisher information matrix (FIM) 

determinant that is a standard metric to identify the sensor placement quality in civil 
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engineering [27], [14], [15]. In addition to that, maximizing the system life time that 

totally depends on the energy consumption. The authors suggested an algorithm based 

on EFI. The authors named their module (algorithm) sensor placement  using the EFI 

method (SPEM). In SPEM, The possible locations of sensors  are sorted according to 

the FIM results and excluding the nodes (locations) with the least quality and least 

contribution. The authors showed how data routing, topology control, and energy 

efficiency can be integrated with the SHM  framework by introducing  power aware 

SPEM (p-SPEM) algorithm. The authors did some experiment on the built-in 

Guangzhou New TV Tower,  and the results on the sensor placement have validated 

the effectiveness of their methods. Furthermore, the authors’ algorithm reduced the 

complexity of placement from O(N
M

) to O(N
4
M) [14],[15].  

The authors of [33] added an improvement to SPEM, which is considering the 

amount of the energy consumption of a sensor node. In SPEM, the deployment of 

sensors is determined based on the determinant of the FIM. A new single objective 

function was proposed to be maximized, which is the determinant of FIM/ 𝐸𝑚𝑎𝑥, 

where 𝐸𝑚𝑎𝑥 is the maximum energy used by a sensor in one round of data 

transmission. As a result, the energy consumed by a sensor node is minimized. 

In another work, improvement was done to p-SPEM in [16]. Multi objective p-

SPEM (mop-SPEM) algorithm for sensor deployment was suggested. The multi 

objective formulation gives the choice to specify the weights of the two objectives 

studied in the problem (energy consumption and information quality ). As a result, the 

two objectives  can be easily traded off. 

Furthermore, in [17], the authors note that when the EFI method is used to 

have optimal sensor deployment, fault tolerance cannot be handled because EFI does 
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not take into consideration the WSN parameters, so some data can be lost. As a result, 

the authors proposed a fault-tolerant wireless sensor configuration method for the 

SHM (FTSHM). FTSHM has two steps: the first one is to place the sensors using EFI, 

and then second, place some backup sensors called repairing points (RP) in a 

decentralized manner to ensure network connectivity, prolonged network lifetime, and 

reliable data delivery. 

The authors in [26] and [34] designed a three-phase sensor placement 

approach (TPSP). The main objective in [26]and [34] was to find a high-quality 

sensor placement that could satisfy different system requirements while ensuring 

communication efficiency, low communication cost, and fault tolerance. In this 

research work, the sensor placement was addressed in heterogeneous WSN. Three 

kinds of sensors were used: high-end nodes(HNs) that are resource high, low-end 

nodes (LNs) that are resource limited, and redundant nodes (RNs) that have the same 

functionality of LNs. Redundant nodes were added to enable the fault tolerance 

ability in the network. The layout of these sensors was done based on three phases, 

the first phase to sub-optimally place HNs, the second phase to place LNs  optimally, 

and the third one to place RNs to solve a sensor failure situation. The nodes 

deployment developed connectivity trees in such a way that the network connectivity 

is ensured. As a result, the structure health state or network maintenance after a sensor 

fault can be achieved in a distributed and decentralized manner. To validate the 

efficiency and effectiveness of TPSP, the authors ran extensive simulations. In 

addition to that, they implemented the algorithm on a real physical structure to prove 

the concept.  
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In some other work referenced in [35], the authors used a method called modal 

assurance criterion (MAC). MAC is used to check whether the sensors’ locations are 

good enough.  Let Φ be the matrix of target mode shapes where a mode shape is 

the shapes of the beam at different normal frequency. The MAC between model 

vector Φ𝑖and Φ𝑗  is defined as  

Ψ𝑖,𝑗 =
(Φ𝑖

𝑇Φ𝑗)
2

(Φ𝑖
𝑇Φ𝑖)(Φ𝑗

𝑇Φ𝑗)
                                                                           (1) 

where    Φ𝑖 ∶ 𝑖𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 Φ 

 and     Φ𝑗 ∶ 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 Φ  

When the Ψ𝑖,𝑗 approaches 1, this means that the two model vectors are hard to 

distinguish, and that there is more correlation between Φ𝑖 and   Φ𝑗. A sensor position 

is chosen so the maximum off-diagonal terms of the MAC matrix are minimized. 

Some other authors of [36] extended the work in [35] by using the forward addition 

minMAC method together with the backward deletion minMAC method because it 

was noted  that when the minMAC is used, when the number of sensors increases, the 

off-diagonal terms of the MAC matrix do not decrease monotonically. 

Lately, some computational intelligence methods have been deployed to 

optimize sensor placement. One example is simulated annealing (SA). SA algorithm 

[37] is initialized  by selecting a single random solution. Then to find better solution, 

the cost of one of the nearest neighbors of the selected solution is checked. If the 

neighbor has a better cost, this neighbor becomes the new selected solution. On the 

other hand, if the neighbor is with lower cost, then there is a probability whether to 

choose the neighbor as the new selected solution or not. The SA algorithm is mainly 

used when the best solutions have a tendency to be in one part of the structure space. 
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Another example of the computational intelligence algorithms is using genetic 

algorithm (GA), which is based on biological development. From the characteristics 

of GAs, the methods are not working with parameters directly, but the they are 

converted (coded) to another scheme. Usually, binary encoding is used. The coding 

has a discrete nature which makes the GAs a great option to solve discrete problems. 

The main operators of a genetic algorithm are selection, crossover, and mutation. 

First, some initial random solutions are selected using a specific selection algorithm . 

These initial solutions are combined and mutated to search for improved solutions 

through crossover and mutation steps. 

 In [38], the authors used GA instead of EFI  and used the objective function 

to be about the determinant of  FMI. In addition to that, the authors of [39] applied 

GA and SA to have sensor placement optimization. From the research work done, GA 

is a great method to try finding optimal solutions, but it can produce some invalid 

solutions because of randomness. As a result, in different research papers, the authors 

used GA with some modifications. For example in [40], the authors optimized the 

sensor deployment based on detecting structural damage using improved genetic 

algorithm (IGA). The modifications done on GA are the methods used to apply 

crossover and mutation where in IGA, crossover is based on identification code and 

mutation is based on two gene bits. The method used  gives better optimization results 

than a simple GA. On the other hand, in [18], the authors used generalized GA (GGA) 

where the coding is dual structure based on the selection scheme, not binary based as 

in simple GAs. The authors demonstrated the effectiveness of the GGA suggested on 

the tallest building in the north of China. The GGA is compared with other GA 
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algorithms, and it was shown that the GGA can improve the convergence of the 

algorithm and get the better placement scheme. 

A hybrid optimization method called modal strain energy adaptive genetic 

algorithm (MSE-AGA) is suggested in [41]. The MSE-AGA provides multiple 

optimal indexes  and has a short computation time. The MSE-AGA has three steps. 

First, mode shape orders are chosen carefully using the modal participation factor. 

After that, the MSE is used to get the initial sensor locations so that the location with 

high modal energy index becomes a candidate location. Finally, the AGA is used to 

minimize the number of sensors and their placement. The fitness function of  the 

AGA is MAC, which is applied to guarantee minimized root mean square and the 

maximum of the off-diagonal elements are small. 

A summary about sensor placement approaches is available in Table 2. From 

Table 2 one can notice that, the sensor placement optimization problem is very 

common in WSN where the deployment is achieved by ensuring optimizing one or 

some of the parameters of WSN such as network lifetime, energy, or coverage, and in 

some of them, the number of sensors used needed to be optimized. Nonetheless, the 

ways used to solve the problem in those research works could not fit the SHM field 

because of its special characteristic and parameters. On the other hand, in most of the 

research works where SHM parameters are considered, minimizing the number of 

sensors used is not part of the objectives when  optimizing the sensor placement. And 

when it was achieved in [41], the minimization of the number of sensors was 

constrained  by reducing the cost in the system. Based on all this, we introduce the 

problem of minimizing the number of sensors in WSN for SHM systems under some 

constraints related to WSN parameters such as connectivity and another important 
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constraint related to SHM parameters which is to have a specific level of information 

quality represented by the FIM determinant. 
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Table 2: Summary off sensor placement approaches 

Main Author Algorithm Name SHM  

Requirements 

Optimization Objectives  Constraints Computed 

Complexity  

F. Oldewurtel [9] - None Energy consumption and sensing coverage - - 

M.Romoozi [10] NSGA-II ,SPEA2, 

Clustering Fuzzy C-

means 

None Network life time and communication - - 

S.S. Dhilon [11] MAX-MIN-COV, 

MAX-AVG-COV 

None Number of sensors  Minimalistic sensor network  O(𝐴2)2 

Y. Chen [12] - None Number of sensors and network lifetime Coverage  - 

S. Sengupta [13] MOEA/D-DE None Area of coverage, net energy consumption, 

network lifetime, and number of deployed sensors  

Connectivity for proper data 

transmission 

- 

B.Li [14], [15] SPEM Information quality  Sensor placement quality and system life time Data delivery and connectivity  O(𝑁4𝑀) 

M. Najeeb [33] - Information quality Sensor placement quality and the sensors lifetime   - 

M. Elsersy [16] p-SPEM Information quality Information quality and total energy consumption Data delivery and limited 

energy consumed 

 

Z.A Bhuiyan [17] FTSHM Information quality Ensure information quality and fault tolerance - O(𝑛2)3 

                                                 
2
 A is the grid points in the in the sensor field 
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M. Z. Z. Bhuiyan 

[26],[34] 

TPSP Information quality Energy, cost, fault tolerance, and network life 

time 

Connectivity, transmission 

load, data delivery  

The input 

size is 

number of 

HN and LN4 

T. Carne [35], C. 

Li [36] 

MAC MAC maximum off-diagonal element of the MAC 

matrix are selected  

- - 

L. Yao [38] - Information quality Information quality  - - 

H. Y. Guo [40] IGA Information quality Sensor deployment based on detecting structural 

damage 

- - 

C. He [41] MSE-AGA MAC Sensor optimal locations based on  MSE. - - 

 

                                                                                                                                                                                                                              
3
 n is number of sensors per cluster, and this complexity is for backup sensor placement in FISHM.. 

4
 HN: high nodes, LN: low nodes. The detailed complexity of the different phase of TPSP are computed in [26], and [34]. 
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Chapter 3: Problem Formulation and Methodology 

In this chapter, the system model and mathematical formulation will be 

studied first. Then approaches used to solve the given problem will be introduced. 

Three methods were mainly used: exhaustive search, genetic algorithm, and  heuristic 

algorithm, that is, using the bisection method. 

3.1  System Model  and Problem Formulation 

This thesis formulates the minimization problem of the number of sensors 

using a single objective function. The objective function is employed to minimize the 

number of sensors in the WSN for SHM systems with some constraints. In this 

chapter, the details behind the problem’s mathematical formulation  and the system 

model are mentioned.  

Preliminaries:  

The mathematical formulation for the thesis problem depends on the system 

model in [14], [15], [16], and [42]. Consider that a location indicator S = 

{S1,S2,…,SM}, where if 𝑆𝑖 equals 1, it means that the sensor node is selected, 

otherwise it is not, and M is the number of possible locations. In those research works, 

the researchers search for the optimal sensors placement by finding a location 

indicator S  = S = {S1,S2,…,SN}, where N is a set of sensor locations selected from the 

feasible set of M total candidate locations that satisfy a certain objective function and 

some constraints. On the other hand, in this research work, minimizing the number of 

sensors is the goal of solving this thesis. In other words, we are trying to minimize the 

value of N based on some constraints. 

The Euclidean distance considered in this research between sensor node  𝑖 and 

sensor node  𝑗 is given as follows:  
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𝑑𝑖𝑗 = √(𝑐𝑢(𝑖) − 𝑐𝑢(𝑗))
2
+ (𝑐𝑣(𝑖) − 𝑐𝑣(𝑗))

2
,      ∀𝑖, 𝑗                (2) 

where 𝑐𝑢 𝑎𝑛𝑑  𝑐𝑣   are the two dimensions plane, and  𝑐(𝑖) = (𝑐𝑢(𝑖), 𝑐𝑣(𝑖)) are the 

Cartesian coordinates of a certain sensor 𝑖. So  𝐶 = {𝑐(1), 𝑐(2), … , 𝑐(𝑀)}  are the 

coordinates matrix of the M candidate nodes. 

In this model, the WSN consisting of a number of sensors can be distributed in 

the sensing field with one sink node, wherein the data flow is generated at the source 

nodes and intended to the sink node. All sensors are assumed to have  the same 

capabilities in signal processing and communication features. Each sensor is offered 

with a battery for power source. And the initial available energy node is set to be a 

constant value 𝐸𝑖𝑛𝑖𝑡. 

Decision variables: 

The decision variable for the mathematical model is the following: 𝑆𝑖  is a 

binary indicator to indicate whether the location is selected or not in 𝑆𝑖  ∈ {0, 1},  ∀ 𝑖.  

Objective function: 

There is a single objective function in this formulation which is to minimize 

the number of sensors as follows:  

Minimize 
S

  ∑ Si
M
i=1                                               (3) 

Problem constraints: 

There are three constraints in this problem. Two are related to WSN 

parameters  connectivity and energy consumption. The third constraint is related to 

SHM parameters, that is, to have a specific level of information quality represented by 

the FIM determinant. 
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The first constraint is used to guarantee the data delivery where the distance 

between two sensors is not exceeding a maximum transmission range 𝑅𝐶: 

𝑑𝑖𝑗𝐼( 𝑥𝑖𝑗 > 0) ≤  𝑅𝐶  𝑖 ≠ 𝑗 ∀𝑖, 𝑗                                    C(1) 

where 𝐼( 𝑥𝑖𝑗 > 0) is a binary indicator to know if the  link i − j is used. So it is 

imposed that 𝑑𝑖𝑗 ≤ 𝑅𝐶  only if 𝐼( 𝑥𝑖𝑗 > 0) is true.  

The second constraint is related to energy consumption. The energy consumed 

between two sensors 𝑖 and   𝑗 is given as follows :  

𝑒𝑡(𝑖𝑗) = (𝜖𝑡 + 𝜖𝑎𝑚𝑝𝑑𝑖𝑗
𝛼 )𝑛𝑏𝑥𝑖𝑗𝑆𝑖𝑆𝑗         ∀𝑖, 𝑗                                          (4) 

where the radio parameter 𝜖𝑡 is the energy cost for transmission, 𝜖𝑎𝑚𝑝 is the power 

amplifier energy cost as in [42], 𝛼 is the path loss exponent, and 𝑛𝒃 is number of bits 

per packet [14]. In [42], 𝑥𝑖𝑗 is defined as the number of rounds the link 𝑖–𝑗 used. In 

this thesis work, since routing is not considered in the model system,  𝑥𝑖𝑗 ensures 

C(1), where if 𝑥𝑖𝑗 equals 1, it means that C(1) is satisfied, otherwise it equals infinity 

because C(1) is false.  

Assuming that 𝐸𝑡(𝑖)  is the energy consumed for each sensor node 𝑖 during the 

transmission process, the transmission energy is computed as follows:  

𝐸𝑡(𝑖) =  ∑ 𝑒𝑡(𝑖𝑗)                                         
𝑀
𝑗=0                                       (5) 

On the other hand, in the reception process, the energy consumed for sensor 

node 𝑖  and j  is:  

 

𝑒𝑟(𝑗𝑖) = 𝜖𝑟𝑛
𝑏𝑥𝑖𝑗𝑆𝑖𝑆𝑗         ∀𝑖, 𝑗                                                             (6) 
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where 𝜖𝑟 is the reception energy cost. The total energy consumed in the reception 

process for sensor node 𝑖 is calculed as follows:  

𝐸𝑟(𝑖) =  ∑ 𝑒𝑟(𝑗𝑖)                                                                            
𝑀
𝑗=1  (7) 

As a result, the total energy consumed in sensor node 𝑖 through transmission 

and reception is given as follows:  

𝐸(𝑖) =  𝐸𝑡(𝑖) + 𝐸𝑟(𝑖)                                                                         (8) 

To  ensure that the consumed energy will not exceed the initial energy 𝐸𝑖𝑛𝑖𝑡, 

C(2) should be guaranteed.    

𝐸𝑖(𝑆) ≤  𝐸𝑖𝑛𝑖𝑡                                                                           C(2) 

The third and last constraint is based on civil engineering requirements. In 

civil engineering, every mechanical structure has a certain pattern of vibration at a 

specific frequency. This is called mode shape. Mode shape also can be defined as in 

section 2.3 Sensor Placement Problem the shapes of the beam at different normal 

frequencies.  In mathematics, the mode shapes of a certain structures form a mode 

shapes information matrix called  Φ , and it is given below:  

Φ = [Φ1, Φ2, … ,Φ𝐾] = [

𝑎11 𝑎12        … 𝑎1𝐾
⋮      ⋮         … ⋮
𝑎𝑀1 𝑎𝑀2         … 𝑎𝑀𝐾

]                (9) 

where a column Φ𝑖 =  [𝑎1𝑖 , 𝑎2𝑖, … , 𝑎𝑀𝑖]
′ is considered the 𝑖th order mode shape, and 

a row  [𝑎𝑗1,𝑎𝑗2, … , 𝑎𝑗𝐾]represents the contribution of sensor node  𝑗 in computing the 

mode shape measurement. 

As mentioned in the literature  in section 2.3 Sensor Placement Problem, the 

FIM determinant  is a standard metric that measures the placement quality of sensors. 

The FIM determinant is computed as follows: 
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|𝑄| = 𝑑𝑒𝑡[(Φ)𝑇 . 𝑅−1. Φ]                                                                   (10) 

where 𝑅 is the noise covariance of the sensor measurements. 𝑅 is a metric to 

show the dependency between objects, and variance is a measurement for the 

variability in the set of mode shape measured data. In addition to that, 

mathematically,  it can be defined as the average  squared deviation from the mean 

results. 

Normalized |𝑄| (L) can be defined mathematically as:  

L(S) = 
|𝑸|

|𝑸|𝒎𝒂𝒙
∗ 100                                                                            (11) 

The last constraint is to set a lower bound  for L  that can be called 𝐿𝑚𝑖𝑛: 

𝐿(𝑆)  ≥  𝐿𝑚𝑖𝑛                                                                                     C(3) 

Problem formulation: 

The authors could not confirm the convexity of the problem and the 

optimization problem is formulated as follows: 

Minimize 
S

  ∑ Si
M
i=1  

Subject to: 

C(1)                   𝑑𝑖𝑗  ≤  𝑅𝐶  𝑖 ≠ 𝑗 ∀𝑖, 𝑗   

                                  C(2)                   𝐸𝑖(𝑆) ≤  𝐸𝑖𝑛𝑖𝑡                          

                                 C(3)                  𝑳(𝑺)  ≥  𝑳𝒎𝒊𝒏                    (12)    
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3.2  Exhaustive Search 

For any given optimization problem, there can be many ways to solve it. One 

of them is using brute-force search or exhaustive search, which is also known as 

generate and test.  

Exhaustive search is a very general problem-solving methodology where all 

the possible solutions are enumerated and checked one by one to get the solution that 

satisfies the problem statement.  

An easy example where brute-force method is used is in eight queens puzzle 

when examining all the possible combinations of eight queen pieces on the 

chessboard that has 64 squares, and, for each combination or arrangement, checking if 

any of the queen pieces can attack any other or if it is a safe arrangement (solution) of 

having all the right queens without having attacks. 

  The brute-force approach is known for its complexity and cost, where the cost 

is proportional to the number of candidate solutions. So if there are eight queens to 

arrange in a 64- square chessboard, it means that there can be (8
2

8
) different candidate 

solutions that need to be checked. And this is an indicator that whenever the problem 

size is increased, the cost behind solving the problem using brute-force method 

becomes higher [43]. 

Another example is the coin change, where a cashier has a group of coins of 

different denominations and is required to count out a sum of change  using the 

smallest possible number of pieces[44]. 

The problem can be defined mathematically as follows:  
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Predefinitions:  

N is the number of  the pieces of coins. 

P = {p1, p2…,pn} are the pieces of money (coins). 

di is the denomination of pi (e.g., if pi, then di=10). 

To count out a known sum of money A, we find the smallest subset of P, 

S ⊆ P, where ∑ dipi∈S
= A. 

Decision variables:  

X = {x1, x2…,xn} where xi = 1 if pi ∈ S, otherwise xi = 0. 

Problem objective function:  

Minimize ∑ xi
n
i=1                                                                                           (13) 

Constraints: 

∑ xi
n
i=1 di = A                                                                                    (14) 

To solve this problem using brute force, the user needs to find the best 

solution by checking all the possible values of X. For each value of X, the constraint  

in equation (14) is checked if satisfied or not. If yes, then the solution is considered a 

feasible solution. And the best solution for the problem is the feasible solution that 

minimizes the objective function of the problem in equation (13).  
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Because the value of 𝑥𝑖 can be only zero or one, there are 2𝑛possible values 

for X. The execution time needed to decide whether a possible value of X is feasible 

is O(n), and the time needed to compute the objective function is as well O(n). As a 

result, the time complexity of the brute-force algorithm is in the order O(n2𝑛)[44]. 

And although of this cost, exhaustive search is still used in solving problems 

for different reasons. The first one is when simplicity of implementation is more 

important than speed. In addition to that, brute-force method can be used to prove a 

mathematical theorem, or it can be used as a baseline approach that gives the optimal 

solution and compares it with other methods solving the same problem. It can also be 

used when the problem size is manageable and limited.  

In this thesis, the brute -force method was used due to its simplicity and to 

later on compare its results with the other methods used in this research work. The 

method is implemented in this thesis by running a code that brute force all the 

possible feasible solutions, and sort them to get the best solution depending on the 

objective function and constraints used.  

3.3 Genetic Algorithm 

The purpose behind developing genetic algorithms (GAs) was to study the 

phenomena of natural adaptation, then apply it somehow into computer systems and  

use the power of evolution to solve optimization problems. Genetic algorithms were 

introduced by John Holland, in the early 1960s at the university of Michigan. GA is 

an   approximation heuristic search technique based on Darwinian’s theory of survival 

of the fittest [45]. 
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GA begins with solutions represented as one population of chromosomes that 

contains  a number of genes (e.g., strings of alleles, ones and zeros, or “bits”). After 

that, it moves from that population to a new one using a type of natural selection in 

addition to some genetics inspired operators of crossover and mutation. The selection 

operator uses nature’s survival-of-the-fittest mechanism, where fitter chromosomes 

survive while weaker ones perish. Crossover exchanges subparts of two 

chromosomes, where some biological recombination between two single chromosome 

organisms. Mutation randomly changes the allele values of some locations in the 

chromosome. The mentioned process is repeated until some condition is satisfied. 

The five main components in the GA process are encoding mechanism, fitness 

function, selection, crossover, and mutation. 

3.3.1   Encoding Mechanism 

It is considered an essential part of the GA structure to present the 

optimization problem’s variables and to transform the problem solution into 

chromosomes [46], and [47]. There are many encoding methods known through the 

published research work, and here are some of them: 

a. Binary encoding: This is the most common used for encoding since it is 

very simple. The variable values are transformed into binary strings 

containing bits of 0s and 1s. Binary encoding provides several 

chromosomes even with a small number of alleles. On the other hand, this 

encoding is sometimes not natural for many problem variables, and some 

corrections should be done after crossover and/or mutation. An example of 
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a problem where it is used is the knapsack problem. An example of binary 

encoding can be seen in Figure 2 chromosome A. 

b. Permutation encoding: In this kind of encoding, each chromosome is a 

string of numbers that represent a position in a sequence. Permutation 

encoding is used in ordering or queuing problems like the traveling 

salesman problem, and similar to binary encoding, sometimes, crossover 

or mutation corrections should be done to leave the chromosome 

consistent with the same sequence in it. An example of permutation 

encoding can be seen in Figure 2  chromosome B. 

c. Value encoding: Each chromosome in this encoding is a string of values. 

Values can be anything related to the problem, such as form numbers, 

characters, or complicated objects. Value encoding is used in problems in 

the neural networks field. On the other hand, it needs specially  developed 

crossover and mutation techniques. An example of this scheme can be seen 

in Figure 2 chromosome C. 

d. Tree encoding: This is used for developing programs or expressions and 

for genetic programming where every chromosome is a tree of some 

objects, such as functions or commands in programming language. An 

example of this encoding can be seen in Figure 2 chromosome D. 
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Figure 2: Encoding schemes in GA structure (A : binary encoding , B: permutation 

encoding, C: value encoding, D: tree encoding) 

 

3.3.2    Fitness Function 

It is the objective function to be optimized, whether minimized or maximized. 

And it is the way to score each string so it can be decided whether to choose it or not 

for the next generation. The ranges of fitness function values differ from problem to 

another, and sometimes, normalization can be used to uniform the output to a range of 

0 to 1 and then feed the normalized fitness function values to the selection mechanism 

to evaluate the strings of the population [48]. 

3.3.3   Selection 

The selection method is used in the GA process to choose the parents for the 

next generation based on the fitness of each individual from the population in the 

current generation. The main principle of the selection strategy is that if an individual 

is better than others, then it has a higher chance of being a parent. There are many 

algorithms used in the selection [49], [40], [46], [48], [50], and [51], and here are 

some of them: 
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1. Proportional selection (or roulette wheel selection): This method is very 

common for implementing fitness proportionate selection, where the 

chromosomes with better fitness have more chances to be selected in the 

next generation. An individual is assigned a portion of the circular roulette 

wheel, and the size of the portion is proportional to the individual’s 

fitness. As a result, when the individual has better fitness, it will have a 

bigger slice in the roulette wheel than the others with smaller fitness. In 

this function, the sum of the fitness of all individuals in the population is 

calculated. Then a random number is generated from the given population 

interval to select one of the slices with a probability equal to its area.  

2. Stochastic universal sampling: This is a way of roulette wheel selection 

that aims to reduce the risk behind premature convergence. In this method, 

each parent takes a part of the line with a length proportional to its fitness. 

The method goes through the line in steps of equal size, one step for each 

parent. In each step, the method places a parent from the part it lands on.  

3. Tournament selection: This is a variant of rank-based selection methods. 

In this procedure,  a set of k individuals are selected randomly, and then 

the individuals are ranked based on their fitness. The fittest individual is 

selected for reproduction. This process is repeated n times until the whole 

next generation is chosen.  

4. Uniform selection: This selects individuals randomly from a uniform 

distribution using the expectations and number of parents. The result of 

this selection is an undirected search. This method is not a useful search 

strategy, but it can be used to test the genetic algorithm. 
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3.3.4   Crossover 

In this step, recombination is done between two parents in the current 

generation to produce a new child ( parent in the next generation). There are a lot of 

ways to do the crossover [47], [48], [46], and [51],  and here are some: 

1. Scattered crossover: In this recombination type, the parents exchange the 

corresponding genes to form a child. It uses a random binary vector. Then 

it selects the genes from the first parent when vector value is 1 and chooses 

the genes from the other parent where the vector’s value is 0. An example 

on that, if parent1 = [ a b c d e f g h], parent 2 = [ 1 2 3 4 5 6 7 8], and the 

random crossover vector is [11001000], then the new child after crossover 

is [ a b 3 4 e 6 7 8]. 

2. Single point crossover: A recombination is done between two parents 

based on a point, where the new child’s first genes come from the first 

parent, and genes after the randomly selected point come from the second 

parent. For example, using the same parents in scattered crossover, if the 

point selected is 3 then the new child is [a b c 4 5 6 7 8]. 

3. Two point crossover: In this crossover method, two points are randomly 

selected. In this, from the new child is created as follows: The first part of 

the first  selected cross over point is copied from the first parent, and the 

second part till the second crossover point is copied from the second 

parent, and then the rest of the genes after the second selected crossover 

point are copied from the first parent. So if 3 and 5 were the selected 

crossover points, then the new child generated is [a b c 4 5 f g h].  
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4. Uniform crossover: In this scheme, the genes are randomly chosen from 

the two parents to create the new child.  

3.3.5   Mutation 

This method comes after the crossover in the reproduction process, where 

small random changes are done on the individuals in the population, which enable the 

GA to search a broader space. There are many ways to do mutation [46], [47], [48], 

and [51], and here are some:  

1. Interchanging mutation: Two random positions of the individual are 

chosen, and the genes according to those positions are interchanged.  

2. Reversing mutation: Tt can be used in a binary encoded chromosome. In 

reversing mutation, a random position is chosen and the bits next to that 

position are reversed, and child string is generated. 

3. Uniform mutation: In this scheme, the value of the chosen gene is changed 

with the uniform random value selected between the specified upper and 

lower bound for that gene. It can be used in real and integer representation. 

4. Adaptive feasible:  In this method, the directions  are randomly 

generated in such way that they are adaptive with respect to the last 

successful or unsuccessful generation. The length of the step depends on 

the satisfaction of the constraints and the bounds. 

3.3.6   Why Use GA 

Referring to [52], the block diagram of the  presentation of the GA process is  

shown in Figure 3. More details on how GA works can be found in Appendix B: How 

GA Process Works.  
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Figure 3: The block diagram presenting the GA process[52] 

 

 

It is known general genetic algorithm is used to find a suboptimal solution 

(near-optimal solution) for the problem because the solution found depends on the set 

of some random variables generated as it has been seen in the process of the GA[53]. 

Although GA is used in general to find a suboptimal solution, here are some 

reasons that make it a good candidate for solving the problem studied in this thesis. 

Referring to section 3.3.1   Encoding Mechanism, binary encoding is the most 

common encoding used. And the studied problem in this thesis fits very much to be 
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binary encoded, where the sensor to be selected can be referred as 1; Otherwise, it is 

0. This was a good motivation to use GA to solve the problem.  

Moreover, we got the optimal solution for the problem using other classical 

algorithm such as exhaustive search that is known of its huge time complexity; and  if 

one wants to compare classical algorithm and genetic algorithm, he/she will find that 

GA are better because it is faster and less likely to get stuck in a local extreme like 

other methods. Where in classical algorithms, a single point is generated at each 

iteration, and then the sequence of points will approach an optimal solution. On the 

other hand, in GA, a population of points is created at each iteration, and the best 

population approaches an optimal solution [54]. 

In addition to that, referring to Salvator Mangano Computer Design, May 

1995 [55], “genetic algorithms are good at taking large, potentially huge search 

spaces and navigating the, looking for optimal combinations of things, solutions you 

might not otherwise find in a life time.” 

 Furthermore, because of its random nature, GA improves the chances of 

finding a global solution. It can solve unconstrained, bound-constrained, and general 

optimization problems, and continuous or discrete problems.  

3.3.7   How Is GA Applied in This Research Work  

It is good to know that there are different software or packages that can help to 

solve problems using GA [53], [56], [57], [58],and [59]. One of the tools that can be 

used is GPdotNET [59]. It is an artificial intelligence tool to  apply GA and artificial 

neural networks in the modelling and optimization of different engineering problems. 

Another tool is open beagle [58]. It is a C++ evolutionary computation (EC) 

framework. It offers a high-level software environment to apply any kind of EC, with 
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support for genetic algorithms. In addition to those tools, there is an optimization 

toolbox in MATLAB software that provides functions to find parameters that 

optimize (minimize or maximize) objectives while satisfying  some introduced 

constraints. The toolbox includes many solvers that can be used in linear 

programming, quadratic programming, mixed-integer linear programming, nonlinear 

optimization, and nonlinear least squares. The solvers are used to find the best 

solutions to continuous and discrete problems The solver that is used is the GA solver 

[53] that applies the genetic algorithm. 

In this thesis work, GA solver is chosen through the MATLAB software 

because dealing with MATLAB is easier. Moreover, the GA solver is very easy to 

use, and it can be used in two ways. One is through the optimization tool graphical 

user interface. The user can fill the parameters and change the options easily and see 

the running process. Or the user can write a small code to set the parameters and pass 

them to the function called GA and run the code to see the results. 

 It is important to mention here, that in the optimization tool box there are 

two functions that apply genetic algorithm which are ga [60], and gamultiobj[61]. 

And the reason behind using ga function and not gamultiobj is that the problem 

solved in this research is single objective function, and that gamultiobj is used to 

solve problems with  multi objective functions, while ga is used for single objective 

problems to  find the minimum of a function using genetic methodology.  

 The  parameters that were passed to the function ga, are fitness function, the 

inputs that need to be optimized, their upper and lower bounds, and how many inputs 

are. The linear and nonlinear constraints if any. After feeding the parameters to the 
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function ga, call it by running the code to find the solution to the problem. More 

details are discussed in Chapter 4: Implementation. 

3.4 Binary Search Method 

Binary search method is a classical non- heuristic method to solve a given 

problem. A heuristic application of binary search is used to solve the problem in this 

thesis to find the optimal solution. Heuristic method is a way for solving problems 

more quickly when other classical methods such as brute-force are too slow to solve 

the same problem or for finding an approximate solution when classical methods fail 

to find an exact solution. The aim of using such heuristic method is to get a solution 

in a good time frame that is reasonable enough for solving the problem at hand.  

Binary search is called bisection method in some other references [62]. It is 

important to know that this algorithm can only be used for a sorted array in 

nondecreasing order. In this approach, if a person is searching for x in a sorted array, 

then the algorithm compares x with the middle item of the array. If they are equal, the 

solution is found. If x is smaller than the midpoint, then x, for sure, is in the first half 

of the array (if it exists within the array). And the algorithm repeats itself in the first 

half of the array until the solution is found. If x is larger than the midpoint, then the 

search will be repeated in the second half of the array. This way is repeated until x is 

found or that the algorithm stops and determine that x does not exist within the 

array[63]. 

The general algorithm for this method [63] can be found in Appendix A : 

Binary Search Algorithm.  
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As mentioned before, to solve this problem heuristically, many ways can be 

chosen. The binary selection is chosen because the input parameter to the function is 

considered a sorted array, where the number of sensors can be array of indexes from 1 

to M. In addition to that the implementation and the analysis of such algorithm are 

considered easy and straightforward. Other methods may be used in future work, and 

compared  with the current results of this work that can be seen in Chapter 5: Results, 

evaluation, and Validation. In this research work, the input is the array of available 

sensors A[1 .. M]. The algorithm will start by computing the middle item, and then 

the combinations of  that computed number of sensors will be found. After that, the 

algorithm will start checking the feasibility of each combination until it finds a 

feasible solution. If a solution is found, then in the next iteration, the algorithm will 

search in the first half of the array to find a smaller number of sensors that can 

optimize the problem. On the other hand, if there is no solution, the algorithm will 

search in the second half of the array until a solution is found. The process will be 

repeated until the problem is solved and a global optimal solution is found, or to state 

that there is no solution.  And it is known that using this searching algorithm will end 

up with a maximum number of comparisons that equals to log 𝑛 + 1, where n is the 

size of the input sorted array [20],[63]. More details about applying this algorithm and 

implementing it will be seen in Chapter 4: Implementation section of the binary 

search method.  
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Chapter 4: Implementation 

This chapter provides a description on how the approaches mentioned in  the 

chapter titled “Chapter 3: Problem Formulation and Methodology” have been applied 

or implemented to solve the minimization of number of sensors for SHM in WSN 

problem in equation (12).  

In all the approaches, some common variables were observed which you can 

find in Table 3. 

 

 

Table 3: Some problems’  parameter  descriptions 

Variable  Description 

M Possible locations for sensor deployment 

|𝑄| Determinant of the Fisher information matrix 

L Normalized determinant of Fisher information matrix 

𝐿𝑚𝑖𝑛                                                                                   Lower bound of the normalized |𝑄| (L) 

Node coordinates Cartesian coordinates for all sensors M , and the sink 

sensor node  

Φ  Matrix of target mode shapes for M sensors 

𝑥𝑖𝑗  The number of rounds the link 𝑖 – 𝑗 is used 

𝑑𝑖𝑗 Euclidean distance between sensor node 𝑖 and sensor 

node 𝑗 
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4.1 Implementation of  an Exhaustive Search Method 

As mentioned in section 3.2  Exhaustive Search, in this approach all the 

possible solutions are checked for their feasibility according to the information 

quality, distance and energy constraints  (C1–C3) related to the problem.  After that, 

all the feasible solutions are sorted according to their objective function stated in  

equation (3)  evaluation, and the solution that best minimizes the number of candidate 

M sensor locations is chosen. 

The flow chart presenting  the brute- force algorithm  is shown in Figure 4. 
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Figure 4: Flowchart of the implemented exhaustive search method 
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The explanation behind the flowchart in Figure 4 is found in the algorithm 

below. 

Input: M, 𝐿𝑚𝑖𝑛, node coordinates, and Φ 

Output: Optimized solution with an minimized number of sensors 

Algorithm:  

1. Calculate the distance dij ∀i, j where i, j belong to M and the sink using 

their given coordinates. 

2. Compute the routing decision variable 𝑥𝑖𝑗 

∀𝑖, 𝑗  where 𝑖, 𝑗 belong to M and the sink node M + 1. 𝑥𝑖𝑗 depends on the 

evaluation of  distance constraint (C1) in equation (12). If (C1) is satisfied, 

and distance is limited within the transmission rang then we assume that a 

rout is established. So 𝑥𝑖𝑗 = 1; otherwise, 𝑥𝑖𝑗 = 0 . In addition, in case 

𝑖 = 𝑗 , or 𝑖 = 𝑡ℎ𝑒 𝑠𝑖𝑛𝑘 , then 𝑥𝑖𝑗 = 0. 

3. Evaluate determinant of  FIM |𝑄| as in equation (10) for M sensors when 

all M sensors are selected.  

4. Compute the possible combinations of M sensors. Then start with 

combination 1. 

5. Go through the combination of sensors, and then check the feasibility 

of the solution. To check the feasibility of a combination:  

a. Determinant of  FIM |𝑄| and 𝐿(𝑆) are computed for the combination 

of the selected sensors.  

b. The total energy consumed in sensor node 𝑖 equation (8) is computed 

for each sensor 𝑖 from the total selected nodes in the combination. 
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c. Check the satisfaction of  the constrain related to information quality 

by comparing the results from step 5a  with 𝐿𝑚𝑖𝑛.                                             

d. Check the  energy constrain satisfaction by comparing the results \ 

from step 5b for each sensor 𝑖 a with 𝐸𝑖𝑛𝑖𝑡. 

e. If any of the constraints is not satisfied, then the solution with that 

certain combination is not feasible. Otherwise, if all constraints are 

satisfied, then the solution is feasible.  

f. Go to the next possible combination, and then go back to step 5  until 

all the possible combinations are checked. 

6. Sort all the feasible solutions from step 5 in ascending order according to 

their objective function evaluation in equation (3) and then descending 

according  to their normalized |Q| (L).  

7. Choose the first solution in the list to be the optimized solution, where the 

combination of sensors has the least selected number of sensors with the 

highest possible 𝐿 ≥  𝐿𝑚𝑖𝑛.         

4.2 Implementation of the GA Method 

 As mentioned  in section 3.3.7   How Is GA Applied in This Research Work, 

the GA solver (ga function ) from the optimization toolbox in MATLAB is used to 

apply the genetic algorithm.  

 All the input arguments passed to this function, and all the different syntaxes  

that can be used to call the ga function are shown in [60].  

The syntax I used to solve this problem is this: 

ga(fitnessfcn,nvars,[],[],[],[],LB,UB,nonlcon,IntCon) 
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The input arguments that I used to solve the thesis problem is shown  in Table 4. 

 

 

Table 4: Input arguments for the ga function 

Input argument  Description 

Fitnessfcn This parameter is a handler to the fitness function of the problem , which in the thesis problem is to minimize the number of sensors as 

in equation (3). 

Nvars This parameter stands for the number of design variables in the problem (M+1). 

A,b, Aeq,beq These parameters are used to set the linear equality and inequality constraints. And because there are no linear constraints in the thesis 

problem ,these parameters are substituted with null arguments [ ].  

LB The vector of lower bounds. In this problem, the decision variables that present the selection of the sensors in the solution  are binary. 

So expressing the lower bound for choosing a certain sensor out of the M sensors, means that it is not selected . As a result,  the lower 

bound is zero. But when one thinks about the sink node, he or she cannot eliminate it from the selection , so the lower bound of the sink 

node is 1. 

UB The vector of upper -bounds. Setting the higher bound for choosing a sensor, means that the sensor is selected. As a result, the UB is 1. 

Nonlcon This is the nonlinear constraints function  handler [c,ceq] = nonlcon(x). Where GA tries to get c ≤ 0 and ceq = 0, c stands for nonlinear 

inequality constraints, and ceq stands for nonlinear equality constraints.  Both c and ceq can be used as row vectors in case of multiple 

constraints. The unused output can be set to null argument[ ]. In the thesis problem, we have M+2 nonlinear inequality constraints. 

(M+1) constraints to implement (C2) for each sensor in the combination used, in addition to one constraint that is applying (C3) in 

equation (12) . All the nonlinear inequality constraints in (C2) and (C3) are shown as follows:  

(C2)                   Ei(S) − Einit ≤ 0                           

 (C3)                Lmin −   L(S)  ≤ 0       

IntCon This is the index vector of integer variables, which include all the M+1 sensors in this problem. 
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Another parameter that can be passed to the ga function is options [60]. In this 

thesis the default values set by the MATLAB optimization tool box are used to solve 

the problem, and one can see the important set of options chosen in Table 5, where 

the methods selected were explained before in sections  3.3.3   Selection, 3.3.4   

Crossover, and3.3.5   Mutation.  

 

 

Table 5: Some of the most important default settings when calling ga  function 

Option  Description Method selected 

SelectionFcn This option is used to choose 

the selection algorithm used in 

ga. 

Stochastic uniform (stochastic 

universal sampling) 

CrossoverFcn This option is used to handle 

the crossover methodology.  

Scattered crossover  

MutationFcn This option is used to express 

the mutation process. 

Adaptive feasible  

 

 

4.3 Implementation of the Binary Search Method 

The flowchart of the implemented method is shown in Figure 5. 
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Figure 5:Flowchart of the implemented binary search method 

 

 

The algorithm used behind the flowchart is shown below: 

Input: M, 𝐿𝑚𝑖𝑛, node coordinates,  Φ , low (the lowest number of sensors can be 

used), and high ( the highest number of sensors can be used). 

Output: Optimized solution with an minimized number of sensors. 

Algorithm:  

The first three steps are the same first steps used in the implementation of 

the exhaustive search method: 
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1. Calculate dij ∀i, j  where i, j belong to M and the sink using their given 

coordinates. 

2. Compute 𝑥𝑖𝑗 ∀𝑖, 𝑗 where 𝑖, 𝑗 belong to M and the sink node M + 1. 

3. Calculate |𝑄| when all M sensors are selected.  

The next steps, from 4 to 10, show how the binary search method is implemented to 

find the best solution. 

4. Check if 𝑙𝑜𝑤 ≤ ℎ𝑖𝑔ℎ; if not, terminate the program. Otherwise, go to step 

5. 

5. Calculate the midpoint  as  (high + low) / 2. 

6. Compute the different combinations of choosing midpoint sensors out of M 

sensors. Start with the first combination. 

7. Go through the combination, and then check the feasibility of the solution. 

To check the feasibility of a combination:  

a. Detriment of |Q| and L(S) are computed for that combination of the 

selected sensors.  

b. The total energy consumed by sensor 𝑖  is computed for each sensor 𝑖 

from the total selected nodes in the combination. 

c. Check the satisfaction of  information quality constrain (C3) from 

equation (12) by comparing the results from step 7a  with 𝐿𝑚𝑖𝑛.                                             

d. Check the satisfaction of energy constrain (C2) from equation (12) by 

comparing the results from step 7b for each sensor 𝑖  with 𝐸𝑖𝑛𝑖𝑡. 

e.   If all the constraints are satisfied, the solution of the combination of 

sensors is feasible. So stop looking through the other combinations to 

choose midpoint sensors out of M sensors. Then go to step 8. 
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Otherwise, the solution is not feasible, so go to the next combination 

and start again with step 7. Repeat step 7 until a feasible solution  is 

found or all the combinations for choosing the midpoint out of M 

sensors are checked, and then go to step 8.  

8. Check the validity of this statement: there is no feasible solution at 

midpoint sensors. If the statement is valid, it means that one needs to look 

for a feasible solution with a larger number of sensors. As a result, assign 

low to be the midpoint (low = mid), and then go to step 4. Otherwise, if the 

condition is not satisfied, go to step 9. 

9. Otherwise, check if there is a feasible solution at midpoint sensors and 

whether that solution is  better than the previous one. Or there is a chance 

of finding a better solution with a lower number. If any of the conditions 

holds, then assign high to be the midpoint  (high =mid), and then go to step 

4. Otherwise, go to step 10. 

10. When this step is reached, it means that no better solution can be found 

and that the best solution has been found already. So display it out and 

terminate the program. 
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Chapter 5: Results, Evaluation, and Validation 

This chapter shows the different results obtained from this research work and  

how the findings have been evaluated, tested, and finally validated. All the data and 

parameter values related to verification and testing will be presented with the 

adequate explanation. 

5.1 Parameters and Platform 

 Parameters:  

The list of unified parameters used in all the different methods applied in  this 

thesis with the needed description and values are presented in Table 6. 
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Table 6: The unified parameters used in all the methods applied in the thesis 

Parameter Description Value 

𝑅𝐶   Maximum transmission range  30 m 
5,6

  

𝑛𝑏 Number of bits per packet 2Kb 
5,7,8

  

     Α The path loss exponent 2 to 6 
5,6

 

𝐸𝑖𝑛𝑖𝑡 Initial energy at a sensor node  1500mAhr 
5,6

 

𝜖𝑟 The reception energy cost 50nJ/bit 
5,6

 

𝜖𝑡 The transmission energy cost 50nJ/bit 
5,6

 

𝜖𝑎𝑚𝑝 The power amplifier energy cost 10 pJ/bit/m2 
5,6

 

 

 

 

 Platform specifications:  

The device used in the implementation of all the experiments is a laptop for 

daily use. It has a ThinkPad T440s platform [64]. The specifications of the platform 

are shown in Table 7. 

 

 

                                                 
5
  This value is referred to the research work in [42]. 

6
 This value is referred to the research work in [16]. 

7
 This value is referred to the research work in [14]. 

8
 This value is referred to the research work in [15]. 
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Table 7: Platform specifications
9
 

Processor 4th generation Intel® Core™ i7 

processor 

Processor number i7-4600U 

Number of cores 2 

CPU base frequency  2.10 GHz 

CPU maximum turbo frequency 2.7 GHz 

Installed memory 8.00 GB 

System type 64-bit operating system 

Software used MATLAB  

 

 

5.2 Experiments and results 

In this thesis, exhaustive search, genetic algorithm, and binary search were 

applied using different numbers of sensors (five, nine, and 30) and one sink node. The 

setup and results for applying the different algorithms on the cases of five sensors , 

nine sensors, and 30 sensors are shown in this section. 

5.2.1  Five story building 

Although the number of sensors in this experiment is very small, this 

experiment is very important because it illustrates the concept and explains the idea of 

the studied problem, and it is used to validate the results and make sure that the 

algorithms used to solve the problem are implemented correctly since the results are 

                                                 
9
 You can get the platform by right-clicking on “My Computer”, then choose Properties. 
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considered small compared with the results of experiments with a larger number of 

sensors. 

Setting up: 

In this case, the building is assumed to be composed of five floors with no 

bays. Each floor is 3.65 meters high. It is also assumed that the five candidate  sensors  

can be placed as one sensor per floor and that there is a one sink node used to collect 

the data out of other sensors in the WSN. The sink is placed 10 meters away from the 

first candidate sensor in the first floor. The sensor node coordinates are shown in 

Figure 6.   

 

 

Figure 6: Coordinates of the five candidate sensors and the sink node 

 

The mode shapes matrix (Φ) for the five sensors are shown below[65]:  
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Φ =

{
 
 

 
 
0.334   
0.641
0.895
1.078
1.173

   

−0.8954
−1.173
−0.641
0.334
1.078

    

1.173
0.334
−1.078
−0.641
0.895

    

−1.078
0.895
0.334
−1.173
0.641

     

0.641
−1.078
1.173
−0.895
0.334 }

 
 

 
 

 

where each column represents a mode shape and each row represents the 

contribution of the candidate sensors in all mode shapes used. Another way to look at 

the mode shapes matrix is seen in Figure 7, which shows the natural modes of 

vibration of a five-story building.   

 

Figure 7:Five mode shapes used in a five-story building[65] 

 

In all the experiments done, three mode shapes are used to represent the 

information quality matrix. Expect in one experiment where the relation between the 

number of mode shapes and number of sensors used in the solution  is expressed and 

discussed. 

Results of implementing brute force on a five-sensors story building : 

 The first part of the experiment is to implement brute force using five sensors. 

Using different runs, the minimum information quality required was changed from 0 

to 100, and depending on that, each time different optimized solutions appear with 

different sensor placement is shown in Table 8 and Figure 8. Figure 8 shows the 
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different sensor node placement based on the quality information required 𝐿𝑚𝑖𝑛. The 

sensor node placement showing the coordinates for each placed sensor using the 

candidate sensor node locations is shown in Figure 6.  For example, when  

𝐿𝑚𝑖𝑛= 20, the best solution is to place three sensors out of three in the first floor, third 

floor, and fifth floor where the coordinates  of the first sensor in the first floor (10,0), 

the coordinates of the second sensor in the third floor (10,7.3), and the coordinates of 

the last sensor  in the fifth floor is (10,14.6). 

 

Table 8: Results of implementing exhaustive search on five-sensors story 

building 

𝑳𝒎𝒊𝒏 minimized 

# of sensors 

Optimized Placement 

1
st
 f   2

nd
 f   3

rd
 f   4

th
 f   5

th
 f 

time 

(s)
10

 

100 5 1           1           1          1         1 0.128264 

80 5 1           1            1          1        1 0.134359 

60 4 1           1            1          0        1 0.140677 

40 4 1           1            1          0        1 0.145564 

20 3 1           0            1          0        1 0.150977 

0 0 0           0            0          0        0 0.001659 

 

                                                 
10

 The time is calculated using the functions tic, and toc in MATLAB software. 
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Figure 8: five-sensors story building  placement based on different 𝑳𝒎𝒊𝒏  required 

 

 

In this experiment, the optimal number of sensors is found with the best 

information quality that can be reached. For example, when the 𝐿𝑚𝑖𝑛 required is 20, 

the optimal solution is to place three sensors, one in the first floor, another in the third 

floor, and the last one in the fifth floor, and when one calculates the percentage of  

information quality L, he/she finds that L= 33.28. This quality information is the 

highest when three sensors are placed, and that happened because in the end of the 

algorithm the feasible solutions are sorted depending on the minimized number of 

sensors and then based on the best information quality.  

 One can see in Table 8 that whenever the quality information needed 

increases, more sensors are required to be placed. And this matches what is found in 

literature [14], [15], and [16].   
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Validation:  

The results of this part of the experiment are validated by calculating the 

information quality for all the different combinations and manually checking the  

results based on 𝐿𝑚𝑖𝑛 as shown in Table 9.. For example, when Lmin=80 , the optimal 

solution using the brute force algorithm is choosing all the five sensors. And this 

matches the results in Table 9, where the least number of sensors that results with 

minimum L=80 is the combination of choosing all the five sensors where L =100. 

Another example when Lmin =5, the best solution is the combination of choosing the 

first, third, and fifth sensors out of the five sensors. This is validated manually by 

looking at Table 9. The combinations that gives Lmin = 5 are [(1,2,5), (1,3,4), (1,3,5), 

(2,3,4), (2,3,5), (1,2,3,4), (1,2,3,5), (1,2,4,5), (1,3,4,5), (2,3,4,5), and (1,2,3,4,5)], and 

the best combination is (1,3,5) where it has the least number of sensors and best 

information quality among the combinations that place three sensors  out of five.  
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Table 9:The computed information quality L for all the different  combination of five 

sensors 

Combination L Combination L Combination L 

1 7.99E-33 25 2.03E-15 235 22.991 

2 3.83E-33 34 1.97E-15 245 0.1321 

3 1.97E-32 35 4.07E-15 345 2.2055 

4 -2.96E-33 45 8.78E-17 1234 30.463 

5 0 123 0.258007 1235 65.583 

12 -1.62E-16 124 4.494342 1245 15.55 

13 7.13E-16 125 9.04963 1345 52.067 

14 0 134 14.70369 2345 36.336 

15 0 135 33.28403 12345 100 

23 -5.42E-16 145 1.874299   

24 7.23E-16 234 11.00719   

 

 

Moreover, the optimal solutions are checked using another method that 

guarantee global optimization called branch and bound
11

 using a solver called the 

BARON. The BARON solver
12

 gives the same results we get from implementing 

exhaustive search algorithm.  Finally, the run was repeated several times, and the 

same results always show up.  

  

                                                 
11

 For more details about the branch-and-bound method check reference [63]. 
12

 More information about the BARON solver can be found in 

http://archimedes.cheme.cmu.edu/?q=baron [21]. 
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Results of implementing GA on a five-sensors story building : 

The second part of the experiment is to implement genetic algorithm using 

five sensors. Using different runs,  the minimum information quality required was 

changed from 0 to 100 , and depending on that, each time different optimized 

solutions appear with different sensor placement is shown in Table 10. In this part, the 

run is repeated 10 times for each required 𝐿𝑚𝑖𝑛 . The different runs for a specific 𝐿𝑚𝑖𝑛 

always show the same optimized solution with the least number of possible sensors. 

On the other hand, different sensors placement  is presented where the placements 

satisfy the problem’s objective function and  constraints. For example, when 𝐿𝑚𝑖𝑛=40 

, in 10 different runs, we get the same minimized number of sensors (4). On the other 

hand, two different node placements appear among 10 different runs, which are the 

combinations [ (1,2,3,5) and (1,3,4,5)] as shown in Table 10.  In some other cases, we 

always get the same optimal solution of the same sensor locations as in 𝐿𝑚𝑖𝑛 =80. 
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Table 10: Results of implementing genetic algorithm using a five-sensors story 

building 

𝑳𝒎𝒊𝒏 

 

Minimized # of sensors 

 

Optimized 

Placement 

1  2  3  4  5 

Average time (s) 

 

100 5 1  1  1  1  1 1.085821 

80 5 1  1  1  1  1 1.083507 

60 4 1  1  1  0  1 1.088228 

40 4 1  1  1  0  1 1.098744 

 4 1  0  1  1  1  

20 3 1  0  1  0  1 1.098624 

 3 0  1  1  0  1  

0 0 0  0  0  0  0 1.091493 

 

 

Validation:  

First, in genetic algorithm, there is randomness in selection, so it is normal to 

get different solutions or near-optimal solution. In this case, all the solutions were 

optimal.
13

 This is validated by finding that for different required 𝐿𝑚𝑖𝑛, we get the 

same number of sensors as in exhaustive search implementation. The validation of the 

different placements we have in the different runs for a certain 𝐿𝑚𝑖𝑛is done using the 

values in Table 9. For instance, in Table 10, when 𝐿𝑚𝑖𝑛 = 20, the best solution is 

placing three sensors out of five. And from the different runs, there are two ways that 

                                                 
13

 Note that using genetic algorithm does not  guarantee global optimality in other cases 
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satisfy this: using the combination (1,3,5) or the combination (2,3,5). If you look at 

Table 9, you can find that the combination (1,3,5) has quality information=33.28, and 

the combination (2,3,5) has  quality information=22.991.  This guarantees that those 

two solutions are true. Furthermore, if one asks, “Can we get other solutions with 

more different runs?” the answer in this case is no. The evidence on that is in Table 9, 

where you will not find any other solution that meet the constraints and the objective 

function of the problem other than (1,3,5) and (2,3,5).  

Results of implementing binary search on a five-sensors story building : 

The results are shown in Table 11, and Figure 8. One can see that we get the 

same number of minimized sensors  as in implementing brute force method, but with 

less time since not all the possible combinations of five sensors are checked.  This 

saves time, and ensures less complexity.  

Validation:  

The validation of the results is easy, because the results are only compared to 

the optimal solutions from implementing brute force. And the good thing is that the 

results are the same. Furthermore, the change in time is logical. For example, when 

𝐿𝑚𝑖𝑛=60 and brute force is implemented, we need to check 25 − 1 = 31 different 

combinations to end up with the best solution of using four sensors out of five. But 

when binary search is implemented, you start with low=0, and high=5. The first 

midpoint equals 3,and all the different combination of choosing three out of five are 

checked ( which are 10 combinations), but the result is that there is no feasible 

solution with three sensors. As a result, low is assigned as 3, so the new midpoint 

equals 4. The second combination of four sensors (1,2,3,5) gives a feasible solution, 

so no more combinations of choosing four out of five will be checked. Using the 



70 

 

implemented algorithm  4 sensors is the best solution to solve the problem when 

𝐿𝑚𝑖𝑛=60, so the program will terminate. The total number of combinations checked in 

this example is 12 which is less than 31, and that for sure can reduce the time in 

solving the problem as shown in Table 11. 

 

 

Table 11: Results of implementing binary search on a five-sensors story building 

𝑳𝒎𝒊𝒏 

 

Minimized 

# of sensors 

Optimized Placement 

1
st
 f   2

nd
 f   3

rd
 f   4

th
 f   5

th
 f 

time (s) 

 

100 5 1         1           1          1         1 0.016758 

80 5 1          1            1          1        1 0.034036 

60 4 1          1            1          0        1 0.065281 

40 4 1          1            1          0        1 0.053999 

20 3 1          0            1          0        1 0.035904 

0 0 0          0            0          0        0 0.002584 

 

 

Summary:  

As you can see, implementing the three methods on five sensors gives the 

same minimized number of sensors. But there are some differences from different 

point of views. For example, applying brute-force gives the optimal number of 

sensors with the best sensor placement that guarantees the largest information quality 

that can be reached. On the other hand, when this method is implemented, all the 

different combinations of five sensors are checked, and  this results with longer 
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execution time that applying the binary search method  that gives better execution 

time and less complexity, and this is validated above. Moreover, in applying GA, one 

can see that different placements for the sensors can appear with different runs, and 

this is due to randomization in selection. 

 

5.2.2 Nine-story building 

In this experiment, the number of floors is increased to nine, and the candidate 

sensor locations are nine as well with the sink sensor node. This experiment shows 

better results in terms of minimizing the number of sensors since the candidate sensor 

locations are increased. Moreover, having more than one experiment with different  

M candidate sensors help in comparing between the three methods applied.  

 

Setting up: 

The sensor node coordinates are shown in Figure 9. 

 

 

Figure 9: Nine Candidate sensor locations 
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The mode shapes matrix (Φ) for the nine sensors using three mode shapes are  shown 

below
14

:  

Φ =

{
 
 
 
 

 
 
 
 
0.26  
0.51
0.75
1.04
1.29
1.50
1.73
1.87
1.91

   

−0.69
−1.25
−1.58
−1.60
−1.22
−0.52
0.72
1.69
2.01

    

1.12
1.68
1.39
0.08
−1.29
−1.79
−0.75
1.04
1.79

    

}
 
 
 
 

 
 
 
 

 

Results of implementing brute force on a 9-sensors story building : 

In this part of the experiment, the optimal number of sensors is found with the 

best information quality that can be reached. The placement of the minimized number 

of sensors based on the required information quality is seen in Figure 10. 

In addition to that, Table 12 shows the results of implementing exhaustive 

search on a nine-sensors story building. You can see that the minimization of the 

number of sensors is enhanced by comparing the solutions shown on implementing 

the same method on a five-sensors story building. 

 

  

                                                 
14

 The matrix is provided by Dr. Mohamed Mahgoub, and computed by Dr. Mostafa Elmorsi using 

Advanced SAP2000 v17.1.1 ( an integrated solution for structural analysis and design). 
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Table 12: The results of implementing brute force on a nine-story building 

𝑳𝒎𝒊𝒏 minimized 

#of sensors 

Optimized Placement 

1     2     3     4     5     6    7     8      9 

time (s) 

100 9 1     1     1     1     1     1     1     1     1 0.175736 

80 8 0     1     1     1     1     1     1     1     1 0.152554 

60 7 0     1     1     0     1     1     1     1     1 0.157443 

40 6 0     1     1     0     1     1     0     1     1 0.16647 

20 5 0     1     1     0     1     1     0     0     1 0.151972 

0 0 0     0     0     0     0     0     0     0     0 0.129678 

 

 

 

Figure 10: Sensor placement based on implementing brute force for different required 

information quality 
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Validation:  

The validation of this part of the experiment follows the same way of 

implementing brute force on a five-sensors story building where the information 

quality for all the different combinations (29 − 1 = 511 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) are computed 

and then choosing some random results and checking them manually. For example 

there are two combinations out of nine sensors that satisfy the constraint Lmin=80. 

The combinations are [(1,2,3,4,5,6,7,8,9) and (2,3,4,5,6,7,8,9)] . But since the second 

combination satisfies the objective function, which is minimizing the number of 

sensors, then it is chosen to be the optimal solution.  

Results of implementing GA on a nine-sensors story building : 

Increasing the number of sensors from five to nine proves that the genetic 

algorithm can’t guarantee optimal solutions, but it can find near-optimal solutions 

because of the randomization used in selection. This is shown when 𝐿𝑚𝑖𝑛 = 40. In 

Table 13, and Figure 11, one can see that depending on 10 different runs, different 

solutions with different number of sensors resulted, where the first combination 

(2,3,5,6,8,9) show the optimized solution of placing six sensors out of nine, but the 

other two combinations (3,4,5,6,7,8,9) and (1,2,3,4,6,7,9) place seven out of nine 

candidate sensors. Moreover, from the results one can see different feasible solutions 

are outputted for the same required 𝐿𝑚𝑖𝑛  in different runs ( as shown before in the 

case of five sensors).  
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Figure 11:Different results shown when implementing genetic algorithm using 

Lmin=40 
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Table 13: Results of implementing the genetic algorithm on a nine-sensors story 

building 

𝑳𝒎𝒊𝒏 Minimized 

#of sensors 

Optimized Placement 

1     2     3     4     5     6    7     8      9 

Average 

time (s) 

100 9   1     1     1     1     1     1     1     1     1 2.078938 

80 8 0     1     1     1     1     1     1     1     1 2.099514 

60 7 0     1     1     0     1     1     1     1     1 2.073879 

  7  0     1     1     1     1     1     0     1     1   

40 6 0     1     1     0     1     1     0     1     1 2.032474 

  7  0     0     1     1     1     1     1     1     1   

  7 1     1     1     1     0     1     1     0     1   

20 5 0     1     1     0     1     1     0     0     1 2.085858 

  5 0     0     1     1     0     1     1     0     1    

  5  0     1     0     1     0     1     1     0     1   

  5 0     0     1     1     0     1     0     1     1   

  5  0     1     1     1     0     1     0     0     1   

0 0 0     0     0     0    0     0     0     0     0 2.032564 

 

 

Validation:  

First, the optimal results that we get from implementing brute force for each 

required 𝐿𝑚𝑖𝑛 appear within the 10 runs for implementing the genetic algorithm.  That 

is a good sign, but to validate the cases where different solutions appeared for the 

required 𝐿𝑚𝑖𝑛, random check is done. Information quality is computed for the 
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combinations that did not show optimal solution from implementing exhaustive 

search. Then the combination is checked whether  it is greater than 𝐿𝑚𝑖𝑛or not. If it is 

larger than 𝐿𝑚𝑖𝑛, then the solution meets the constraints and objective function, so it is 

feasible and correct. For instance, when 𝐿𝑚𝑖𝑛=60, the combination that does not show 

in implementing the brute force on nine sensors is (2,3,4,5,6,8,9). This solution is 

feasible because the information quality L equals to 63.451, which is larger than 60. 

Results of implementing binary search on a nine-sensors story building : 

The results of this part are shown in Figure 12 and Table 14. From the results, 

we can find that the optimal solutions with a minimal number of sensors appeared in 

implementing exhaustive search. On the other hand, it is not necessary to have the 

same sensor placement for the same required 𝐿𝑚𝑖𝑛 in both methods. Actually, the 

reason behind this is to make the execution faster using the binary search method. In 

implementing the binary search method whenever there is a feasible combination of 

choosing midpoint sensors out of M sensors, the algorithm will break the loop ,and 

will not look for another solution of the same number of sensors.   
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Figure 12: Sensor placement when implementng binary search on a nine-sensors 

story building 

 

 

Table 14: Results of implementing binary search on a nine-sensors story building 

𝑳𝒎𝒊𝒏 Minimized 

#of sensors 

Optimized Placement 

1        2       3     4     5     6       7     8      9 

time (s) 

100 9   1     1     1     1     1     1     1     1     1 0.020687 

80 8 0     1     1     1     1     1     1     1     1 0.028136 

60 7 0     1     1     1     1     1     0     1     1 0.035904 

40 6 0     1     1     0     1     1     0     1     1 0.038616 

20 5  0     1     1     1     0     1     0     0     1 0.035586 

0 0 0     0     0     0     0     0     0     0     0 0.006462 
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Validation: 

In this part when 𝐿𝑚𝑖𝑛 equals 100, 80, 40, or 0, the results are correct and 

valid because they are the same as the result output from implementing brute-force.   

For the other cases when 𝐿𝑚𝑖𝑛 equals 60 or 20, the number of candidate sensors to be 

used is the same, but the placement of the sensors is different, so the placements given 

are  checked. When 𝐿𝑚𝑖𝑛=60, the combination chosen to be the solution 

(2,3,4,5,6,8,9) is 63.25, which is greater than 60. So the combination is valid as 

solution for this required information quality. The same when 𝐿𝑚𝑖𝑛=20, the 

information quality computed for the output combination (2,3,4,6,9) is 22.26. This 

makes this solution right.   

Summary:  

From the results of applying the three algorithms on nine sensors, more 

important details appear. For instance, the results prove that using GA can’t provide 

100% warranty of getting the optimal solution of the minimal number of sensors. 

Moreover, using the heuristic method of applying binary search guarantees to give the 

optimal solution within much shorter time than applying exhaustive search. 

Relation between number of mode shapes and number of sensors used to 

solve the problem: 

In this part of the experiment, we want to check the effect of increasing the 

number of mode shapes on the results that we get. For simplicity, we run the 

experiment on a five-story, and nine-story building for different required 𝐿𝑚𝑖𝑛. The 

experiment done on five-story building is checked for the first five mode shapes. 

And the experiment done on a nine-story building is checked for the first nine mode 
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shapes.
15

 The number of sensors obtained in the different number of mode shapes is 

shown in Figure 13 and Figure 14. One can see that increasing the number of mode 

shapes leads to hiring more sensors to solve the problem. This matches what is found 

in literature as in [15] and [14]. In this research work, our experiments are conducted 

using three mode shapes as used in literature [15] and [14]. In addition to that, three 

mode shapes are advised and recommended by people in civil engineering for a 

typical and normal tower
16

where they informed that the mostly used mode shapes are 

the first three out of 12.  

 

 

 

Figure 13: The effect of increasing the number of mode shapes on a five-story 

building 

 

                                                 
15

 The number of mode shapes K checked out is based on the available data we can get. For example, in 

the phi matrix for five-story building, we have the needed data for the first five modes only out of 12. 

In the phi matrix for nine-story building, we have the needed data for the first nine modes out of 12. 

 
16

 The number of mode shapes is advised by Dr. Mohammed Mahgoub, an associate professor and 

program director of the concrete Industry Management (CIM) program at the John A. Reif Jr. 

Department of Civil and Environmental Engineering, Newark College of Engineering, New Jersey 

Institute of Technology, University Heights Newark, New Jersy 
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Figure 14:The effect of increasing the number of mode shapes on a nine-story 

building 

 

5.2.3    Two-bay – nine-story building  

In the following experiment, the number of floors is nine as in the last 

experiment, but the candidate sensors locations are increased to 30. Increasing the 

number of candidate sensors can better show the importance of the solved  problem in 

this thesis. In addition to that, the first two experiments are conducted to validate the 

idea of the solved problem and make sure of the correctness of the values. This 

experiment ensure the same. Furthermore, it is more realistic in terms of having two 

bays in the simulated building. Like others, this experiments gives  good insight on 

the implemented algorithms to solve the problem ,and shows the difference in  the 

performance and complexity between them. 
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Figure 15: Candidate sensor locations  in a two-bays nine-sensor story building 

 

 

Setting up:  

The sensor node coordination is seen in Figure 15. Moreover, the labels of the 

sensors are shown in Figure 16. For example, the candidate sensor locations in the 

first floor (not ground)  are called 2, 12, and 22 and so on.  
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Figure 16: Labels of the candidate sensor locations in a two- bay nine-sensor story 

building 

 

 

The target mode shapes matrix(Φ) for the two-bay nine-sensor story building  

using three mode shapes is  shown below:    
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Φ =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0  
−2.011978
−4.007836
−6.056818
−8.165988
−10.312154
−12.459848
−14.571959
−16.616821
−18.574111

0
−2.011959
−4.007691
−6.056809
−8.166107
−10.31237
−12.460146
−14.572332
−16.617268
−18.574541

0
−2.011978
−4.007836
−6.056818
−8.165988
−10.312154
−12.459848
−14.571959
−16.616821
−18.574111

   

0
6.838295
12.081435
14.740655
14.269124
10.691622
4.604105
−2.953242
−10.726328
−17.544559

0
6.842414
12.08817
14.748933
14.277179
10.697648
4.606623
−2.955153
−10.732907
−17.554403

0
6.838295
12.081435
14.740655
14.269124
10.691622
4.604105
−2.953242
−10.726328
−17.544559

    

0
0.00016
0.000268
0.000281
0.000257
0.00022
0.000177
0.000127
−0.000047
−0.001823

0
7.222𝐸 − 09
1.183𝐸 − 09
−1.13𝐸 − 09
5.307𝐸 − 09
−1.237𝐸 − 08
9.348𝐸 − 09
3.63𝐸 − 09
−8.068𝐸 − 09
1.69𝐸 − 09

0
−0.00016
−0.000268
−0.000281
−0.000257
−0.00022
−0.000177
−0.000127
0.000047
0.001823

 

   }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Results of implementing brute force on a two-bay nine-sensor story building : 

The results are shown in Table 15.  The table shows the optimized number of 

sensors chosen to solve the problem with the corresponding 𝐿𝑚𝑖𝑛 required. 

Additionally, the table shows the best sensor placement that satisfies the objective 

function and the constraint of the problem that can also be seen in Figure 17. 

Likewise in Table 15, you can see the total time needed to find each solution. This 

part of the experiment is the best among the experiments done in emphasizing the 

importance of solving the problem stated in this thesis. The minimization of the 
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number of sensors is shown in a better way. For example when 𝐿𝑚𝑖𝑛=80, eight 

sensors are reduced out of 30 , and when 𝐿𝑚𝑖𝑛=60 , 13 sensors are reduced out of 30. 

This gives a huge expectation to increase minimizing the number of candidate sensors 

when the number of candidate sensors is increased. Moreover, this part of the 

experiment can show the disadvantages of using exhaustive search method, although 

it gives the optimal solutions. The disadvantage here is the long execution time. The 

average time to get the optimal solution for different required 𝐿𝑚𝑖𝑛 is almost 18 

hours. This is the result of checking all the different combinations out of 30 sensors 

and then sorting the feasible solutions to find the optimal solution. 

Validation:  

In this part of the experiment, the number of combinations out of 30 sensors is 

1073741823. So it would be hard to get them all and check them one by one. As a 

result, to check the correctness of the results, some of the inputs are chosen randomly 

and checked corresponding to their satisfaction to the objective function and 

constraints. For example, when 𝐿𝑚𝑖𝑛=100, the best solution given is having 27 

sensors out of 30. First, L is calculated for the given solution with its specific 

placement, and it gives 100. Moreover, the distance between the selected node 

locations is less than the transmission range given in this problem. In addition to that, 

the energy constraint is satisfied. Furthermore, to be more certain, the contribution of 

the three sensors that are not part of the solution is checked, and it is found that their 

contribution in the mode shape matrix is 0. All the evidence point that such result is 

true and correct.  
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Figure 17: Sensor placement when applying brute-force on a two-bay nine-sensor 

story building 
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Table 15: Results of implementing exhaustive search on a two-bay nine-story building 

𝑳𝒎𝒊𝒏  

Optimized Placement 

Minimiz

ed 

 # of 

 sensors 

time 

(s) 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

100 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 64464.

51 

80 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 22 64440.

25 

60 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 17 64129.

87 

40 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 13 64186.

47 

20 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 9 64215.

24 
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Results of implementing genetic algorithm on two-bay nine-sensor story 

building: 

The results of applying this algorithm are seen in Table 16. The different 

solutions from 10 different  runs for each required 𝐿𝑚𝑖𝑛 are stated. From the results, 

one can notice that although the execution time of implementing genetic algorithm is 

much less than the execution time of implementing exhaustive search, the genetic 

algorithm cannot guarantee outputting the optimal solution. For example, from the 10 

different runs, when 𝐿𝑚𝑖𝑛=f20 or 𝐿𝑚𝑖𝑛=40, the solution given may be near optimal. 

Additionally, sometimes the execution time is finished by giving a non-feasible 

solution that provides the optimal number of sensors but does not satisfy the quality 

constraint. This happened when 𝐿𝑚𝑖𝑛=100, the second solution stated in Table 16. It 

gives the optimal number of sensors as found in exhaustive search implementation, 

but the information quality computed for the given sensor placement is 98.48, which 

is less than 100. That is why the solver gave a message without the output to indicate 

that the solution is not satisfying the constraints of the problem. 

Validation:  

Again, in this part, random results are checked, especially the suspicious ones. 

Near-optimal solutions are expected as the nature of genetic algorithm cannot be 

forced to have an optimal solution. One of the results that I checked is 

when𝐿𝑚𝑖𝑛=100.  In one from the 10 runs,  we got the following combinations (1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29 ,30), it 

was given in the output that the solution is not satisfying the constraints. To validate 

that, the distance, energy, and information constraints are checked.
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Table 16:Results of implementing genetic algorithm on a two-bay nine-sensor story building 

𝑳𝒎𝒊𝒏  

Optimized Placement 

Minimized 

 # of 

 sensors 

time (s) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

100 

 

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 3.0124 

1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 

80 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 22 3.0447 

0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 22 

0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 22 

60 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 17 3.0313 

0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 17 

40 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 13 2.983 

0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1 15 

0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 14 

20 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 9 2.845 

0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1` 0 0 0 1 1 9 

0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 10 
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It is found that the quality of that combination is 98.48, which is actually not 

satisfying the information quality constraint, so the result given by the solver is true. 

Another random solution checked is (4, 5, 6, 9, 10, 14, 15, 16, 19, 20, 24, 25, 26, 27, 

29, 30) This combination is found to be feasible with L= 60.1, which is larger than 

L=60. As a result, it is a valid solution when the required minimum L is 60.  

 

 

Figure 18: Sensor placement when implementing binary search on a two-bay nine-

sensor story building 
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Results of implementing binary search algorithm on a two-bay nine-sensor 

story building: 

The results of implementing binary search are seen in Figure 18, and Table 17. 

The results gives the same optimal solutions in terms of minimizing the number of 

sensors as shown before in implementing the brute force method. The sensor 

placement is different, but it meets the problem objective function and constraints.  

Validation:  

Since the number of sensors are the same in both cases (binary search and 

brute force) this is a good. To better validate the results, the constraints are checked 

for all the combinations that resulted in the different required Lmin.It is found that all 

of the results are feasible and optimal. Table 18 shows the computed L for each 

combination seen in the results in Table 17. 

Summary:  

This experiment makes the seen very clear. First this experiment gives the 

expectation that whenever a number of candidate sensors increase, the number of 

sensors that we can reduce increases as shown in Figure 19. This confirms that the 

thesis problem can be shown clearly with structures that  need large number of 

sensors to monitor its health. As a result, this emphasizes the importance of  solving 

the problem in those cases and optimizing the solution, which is the core of this 

research work. Furthermore, from this experiment, one can see that optimal solutions 

can be found using exhaustive search and binary search methods while genetic 

algorithm can find near or sub optimal solutions.  In this experiment, one can also 

see that the time execution for all the applied algorithms increases since there are 

more sensors. The execution time of applying the genetic algorithm is the best in this 
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experiment, where the average time to apply genetic algorithm on a two-bays , 9-

sensor story building is 2.98 seconds. In contrast, there is no guarantee to find 

optimal solution. In addition, the worst execution time results from implementing 

exhaustive search, where the average time used when implementing this method is 

64281.45 seconds, which equals to 17.86 hours. Solving the problem with the binary 

search method is the best among the algorithms used, as it guarantees optimal 

solution and, better time than exhaustive search, averaging time 4.4 hours.  

To summarize, Figure 20 shows the minimized number of sensors in all the 

different combinations. One can see that binary search and exhaustive search always 

give the optimal solution. On the other hand, genetic algorithm cannot assure that, and 

this is further shown with the increase of candidate sensors. In addition,  Figure 21 

shows that binary search is the best method among the three applied methods in terms 

of execution time to use for building that needs a small number of sensors to monitor 

its health. On the other hand, for towers that need a larger number of sensors, there is 

a trade-off between the execution time and the performance. If execution time is 

preferred, then genetic algorithm should be applied as shown in Figure 22. But if 

performance is preferred, then binary search will be better to use than brute force.  

 Another way of comparing the methods used is by computing and evaluating 

the time complexity that is shown in the next section.  
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Figure 19: The number of sensors reduced in all the different experiments for 

different required 𝑳𝒎𝒊𝒏 using brute force and binary search 

 

 

Figure 20: The number of sensors from implementing exhaustive search (ES), genetic 

algorithm (GA), and binary search (BS) 
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Figure 21: The execution time (s) of implementing exhaustive search (ES), genetic 

algorithm (GA), and binary  search (BS)  on a five-story building and a nine-story 

building   

 

 

Figure 22:The execution time (s) of implementing exhaustive search (ES), genetic 

algorithm (GA,) and binary  search (BS)  on a two-bay nine-story building  
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Table 17: Results of implementing binary search on a two-bay nine- story building 

𝑳𝒎𝒊𝒏  

Optimized Placement 

Minimiz

ed 

 # of 

 sensors 

time 

(s) 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

100 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 27 8956.9

69 

80 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 22 12982.

67 

60 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 17 27316.

81 

40 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 13 24158.

92 

20 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 9 6035.1

45 
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Table 18: Computed L for the combination that appeared when implementing binary search on a two-bay nine-story building 

 

Optimized Placement 

𝑳𝒎𝒊𝒏 Compute

d L  

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 100 100 

0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 80 80.2158 

0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 60 60.0053 

0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 40 40.2046 

0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 20 20.1232 
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5.3 Time Complexity Evaluation 

To compute the time complexity of all the applied methods in this research 

work, Big O notation is used. Big O notation is  used to classify methods by how they 

respond to changes in input size [63]. The input size used in all the applied methods  

is the number of candidate sensor locations. In genetic algorithm , the input size is 

affected by other things such as the number of generations, the population size, and 

the length of one solution. 

5.3.1   Time complexity of exhaustive search 

Time complexity of the method brute force is O(2𝑀 . 𝑀6).The computation of 

the complexity  according to the implemented algorithm is shown below.  

1. The Euclidean distance is computed  among all the sensors  M used in the 

network. The worst case is in order of O(𝑀2). Euclidean distance is 

computed via a function  called pdist. Pdist output is a vector of size 

(M+1(M)/2). After that, another function called squareform is used to 

convert the vector into a square symmetric format that takes the same 

complexity in order of O(𝑀2). So the overall complexity of this step is 

O(𝑀4). 

2. Calculate to check whether the distance between each pair of sensors within 

transmission range 𝑅𝑐 is in order of 𝑂((𝑀 + 1)2). So one can say that to 

compute the distance constraint we need O(𝑀4) +  𝑂((𝑀 + 1)2), which 

can be considered in order of O(𝑀4). 

3. Evaluate the determinant of FIM (|𝑄| = 𝑑𝑒𝑡[(Φ)𝑇 . 𝑅−1. Φ]                                                                   

) for M sensors when all sensors M are selected. The complexity of 

computing the transpose of an input O(𝑀2) , the inverse of a matrix of size 
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M x M using Gaussian elimination, needs O(𝑀3). In addition, the 

determinant function is in order of O(𝑀3). In total the determinant in this 

case needs O(𝑀3). (O(𝑀3)+ O(𝑀2)) = O(𝑀6). 

4. Compute the different possible combinations of M sensors that need 

𝑂 (∑ (𝑀
𝑗
)𝑀

𝑗=1  ). 

5. Go through all combinations of sensors needs ∑ (𝑀
𝑗
)𝑀

𝑗=1  iterations and 

check the feasibility of the solution in each iteration. To check the 

feasibility of a combination,  

a. one needs to check the information quality constraint that needs the 

evaluation of  determinant of FIM |𝑄| (|𝑄| = 𝑑𝑒𝑡[(Φ)𝑇 . 𝑅−1. Φ]. This 

gives complexity in order of O(𝑀6). 

b. one needs to check the energy constraint by computing the total 

consumed energy for each sensor i in the combination, and this is in 

order of O(𝑀2). As a result, since ∑ (𝑀
𝑗
)𝑀

𝑗=1 ≪ 2𝑀 then this step 

needs O(2𝑀. ( 𝑀6 +𝑀2)) = O(2𝑀 . 𝑀6). 

6. Sort all the feasible solutions in ascending order according to their objective 

function evaluation in equation (3) and then in descending order according  

to their normalized |Q| ( L) and finally get the optimal solution. In the worst 

case, all the M solutions are feasible, so sorting in that case has a time 

complexity O(𝑀 log𝑀). 

 So the complexity of the brute force is O(𝑀4) + O(𝑀6) + O(2𝑀 . 𝑀6) that ends 

up with complexity of order O(2𝑀. 𝑀6). 

  



99 

 

5.3.2 Time complexity of genetic algorithm  

In this part, the default setting was used to set the different parameters and 

algorithms of GA operators. The most important default parameters and algorithms  

are shown in Table 19. 

 

Table 19: Some of the parameters input into ga function 

Parameter/ga operator Value /Type of algorithm 

Population size (𝑁𝑖𝑛𝑑) 20 

Number of generations (g) 100  

Creation function for population Based on constraints 

Selection Stochastic Universal Sampling  (SUS) 

Crossover Scattered (with fraction =0.8) 

Mutation Constraint dependent  (Adaptive feasible)  

 

 

In general, the time complexity of GA algorithm (without the evaluation of 

objective function and constraints complexity) is in order of O(𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑), where 

𝑁𝑖𝑛𝑑 is the population size, and 𝐿𝑖𝑛𝑑 is the length of an individual [66]. It is also 

known that the complexity of GA can be different from implementation to another, 

where the parameters and operator algorithms can be changed, and generally, it 

depends on the following:  

1. Fitness function and constraints ( application dependent) 

2. Selection operator 
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3. Cross over operator 

4. Mutation operator 

The complexity of the implemented GA is calculated to be O(g. 𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑. 

𝑀9).The following are the details behind the calculations:  

1. Fitness function: The time complexity of the fitness function depends on 

the number of decision variables in the problem which are M decision 

variables. As a result, time complexity equals O(M). 

2. Constraints : 

a. Distance: As discussed before in exhaustive search, the distance  

constraint has a time complexity in order of O(𝑀4). 

b. Energy: As discussed before in exhaustive search, the distance  

constraint has a time complexity in order of O(𝑀2). 

c. Quality: O(𝑀6) is computed in brute-force analysis. 

3. Selection operator: According to the literature review, the time complexity 

of SUS algorithm is O(𝑁𝑖𝑛𝑑)[67]. And since the fitness function is used as 

a parameter in the selection, the final time complexity is O(M . 𝑁𝑖𝑛𝑑). 

4. Crossover operator: According to the definition of scattered crossover in  

section (3.3.4   Crossover), the time complexity is computed as follows: In 

the worst case, 
𝑁𝑖𝑛𝑑

2
 iterations are generated to guarantee that crossover is 

applied in all the parent pairs in the population. Each time a crossover 

between a pair of parents is done, a random binary vector of individual’s 

length is generated, and 𝐿𝑖𝑛𝑑 comparisons are done to generate the new 
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parent. This means to finish the crossover operator, 
𝑁𝑖𝑛𝑑

2
. 𝐿𝑖𝑛𝑑 comparisons 

are done, which result in time complexity of order O(𝑁𝑖𝑛𝑑 . 𝐿𝑖𝑛𝑑). 

5. Mutation operator: As shown in Table 19  the mutation algorithm is 

adaptive feasible because the problem has constrains. Adaptive feasible 

means that the decision of applying mutation depends on the constraints of 

the problem , and in the worst-case, all the population individuals are 

mutated, so the time complexity for the mutation operator is in order 

O((𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑 . O(𝑀2) + O(𝑀2) + 𝑂(𝑀9). 

Therefore, the time complexity for GA for the number of generations g 

is  

O(g(M . 𝑁𝑖𝑛𝑑 + 𝑁𝑖𝑛𝑑 . 𝐿𝑖𝑛𝑑 + 𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑 . 𝑀
9) = O(g. 𝑁𝑖𝑛𝑑. 𝐿𝑖𝑛𝑑 . 𝑀

9) = O (𝑀. 

𝑀9) = O(𝑀10), where, in this research work, g=20, population size 𝑁𝑖𝑛𝑑 = 

100, and individual size 𝐿𝑖𝑛𝑑 = M .  

5.3.3 Time complexity of binary search 

The steps used to compute the complexity of applying binary search algorithm 

are as follows: 

1. Compute the complexity needed to evaluate the distance constraint which 

is the same computation done as in applying brute force. This needs 

complexity of order O(𝑀4). 

2. Compute |Q| for all selected M sensors that take time complexity of 

O(𝑀6). 

3. Then in the binary search start to look for the optimal solution., where 

midpoint is computed, and then search for a solution for midpoint sensors. 
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To do this, the problem constraints related to the information quality and 

energy should be checked, and to apply this for one single solution, the 

time complexity is in order 𝑂(𝑀6).  

4. In the worst case, there is no solution at midpoint sensors, which means 

that different   ( 𝑀
𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

) combinations are checked. 

5. After that, depending on the result of looking for a solution using midpoint 

sensors,  a series of three nested IF conditions need to be checked to know 

whether we need to look for a solution with a smaller number of sensors  

or a higher number of sensors,  or just to determine that an optimal 

solution is found. In the worst case, all the conditions need to be checked.   

6. The loop used to find the optimal solution can take log𝑀 + 1 iterations in 

the worst case.   

From the different steps above, one can see that the total time complexity in worst 

case  needed to apply the binary search is in order O( 

(𝑀4) + (𝑀6) + (3. ∑ ( 𝑀
𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡

) . (𝑀6))
𝑙𝑜𝑔𝑀+1
𝑗=1 ) which can be presented in the order of 

O((𝑙𝑜𝑔𝑀 + 1( 𝑀
𝑙𝑜𝑔𝑀+1

)). (𝑀6))where choosing logM+1 sensors out of M candidate 

sensors gives the highest number of combinations. 

As you can see the time complexity is computed in the worst case. But of 

course, we can get better results in the average case and best case.  
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Chapter 6: Conclusion and Future Work 

This chapter summarizes the research work, its related  results and findings. 

Then the challenges faced while working on this research problem. Finally, the 

future research directions are reported.    

6.1 Conclusion 

This thesis discussed the problem of minimizing the number of sensors for 

SHM in WSN systems. This problem was never discussed in the literature. We 

presented a new mathematical formulation for the problem that addresses WSN 

requirements such as communication and energy consumption without ignoring the 

civil requirements such as the information quality computed using determinant of the 

FIM. Reducing the network size solves the problems of scalability, installation time, 

and cost. In addition to, solving the problem, from  a theoretical point of view, shows 

the trade-off between the number of sensors and the information quality when the 

designer chooses to use all the candidate sensors to place.  Based on the conclusion of 

this study, designers can know how much information quality will be reduced if they 

will use fewer nodes. In cases of node failure, the designer will know how much 

information quality will remain if certain nodes fail.  

Three methods were implemented to solve the problem. The methods are 

exhaustive search, genetic algorithm, and binary search. The experiments applied the 

three methods on different configurations of sensors. The first configuration of 

sensors represents a building with 5 floors with 5 candidate sensor locations , the 

second configurations represents a 9 story building with 9 candidate sensor locations, 

and the last configuration represents a 2-bay 9 story building with 30 candidate sensor 

locations. We studied the performance of utilizing each algorithm on the different 
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configurations for  different required lower bound for the normalized determinant 

FIM (𝐿𝑚𝑖𝑛).  Additional experiments studied the relationship between the number of 

mode shapes versus the number of required sensors. Finally, the time complexity of 

the three applied methods was calculated to compare the three algorithms and to 

validate the results of the conducted experiments. 

The obtained results showed that minimizing the number of sensors becomes 

more significant with big structures that require more sensors. Whenever the number 

of candidate sensors increased, the number of reduced sensors increased.  Minimizing 

the number of sensors will result in a minimized network size, and lower cost and 

time for installation. Furthermore, we found that the binary search algorithm is best 

for small buildings because it gives the optimal solution with the best execution time. 

On the other hand, in larger buildings, there will be a trade-off between the 

performance (getting the optimal solution for the problem) and the execution time to 

get the results. If the designer wants to raise performance the binary search is best. 

Otherwise, the genetic algorithm is a better choice to find the near-optimal solution in 

a much less time. These results were confirmed with the evaluation of the time 

complexity for the three applied methods. Exhaustive search has the highest time 

complexity for large buildings in the order of O(2𝑀 . 𝑀6). It is reduced in the other 

two algorithms. The time complexity for the genetic algorithm is  O(𝑀10)  , and in  

our own heuristic that applies the binary search, the worst-case  time complexity is in 

the order of O(𝑙𝑜𝑔𝑀 + 1( 𝑀
𝑙𝑜𝑔𝑀+1

)). (𝑀6)), where M is the number of candidate 

locations. 
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6.2 Challenges  

Collecting mode shape information matrixes for large, tall structures was 

difficult. We tried to get the mode shape information matrix for the famous 

Guangzhou New TV Tower (GNTVT) [14], but the research team who worked on it 

did not reply. Additionally, the computation of the mode information matrix takes a 

long time and needs study that is beyond the scope of this research.  As a result, our 

research team asked some researchers from the civil engineering field to compute the 

matrixes of a 9-story building and a 2-bays, 9-story building, while we got the mode 

shape information matrix of 5-story building from [65], so we can use them in this 

research work. 

The second challenge was obtaining the optimal solution from applying the 

exhaustive search on a 2-bays 9-story building. The algorithm code needs to run for 

18 hours. To solve this problem, I conducted the experiments with the different 

required 𝐿𝑚𝑖𝑛 on different devices to quickly collect the results.   

Understanding how a genetic algorithm works and measuring its time 

complexity was another challenge that was faced. In this research work, the method 

using MATLAB’s GA solver from the optimization tool box was applied. The solver 

made implementing the algorithm very easy because it handles the details of the 

method. However, finding the time complexity was challenging as the details behind 

the running function needed to be understood to accurately compute the time 

complexity. 

The last challenge I faced is related to finding the optimal solution. In addition 

to using the exhaustive search to find  the optimal solution, we had planned to use the 
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branch-and-bound (B&B) algorithm through the BARON solver [21] which 

guarantees the optimal solution with less time complexity in the average-case, and 

best-case. I modeled the problem for a 5-story building and passed it to the BARON 

solver. The results were promising. But when I modeled the problem for 9-story 

building, and for a 2-bay, 9-story building, the solver gave some results which differ 

from this research’s results. A lot of time was spent on working by this solver and  it 

was realized that it doesn’t use a pure branch-and-bound algorithm; But there are 

some modifications to the algorithm that lead to a local optimal solutions, but not a 

global optimal solution when the number of candidate sensors increase. No more 

investigations were hold due to time limitation, and running the exhaustive search 

eventually gave the optimal results, which can be compared with results from the 

other algorithms. One of the future work directions is inspired by this challenge.   

6.3 Future Work 

This research work suggests many directions for future work, we selected 

some of them in the following list:  

1. Conduct the experiments for larger sensor networks by collecting and 

utilizing the mode shapes information matrixes for higher buildings with 

more bays. The methods could also be applied to other type of structures, 

such as bridges or stadiums. 

2. Measure the effect of varying the initial total energy for sensors, and changing 

the value of the transmission range. 

3. Improve the problem formulation by adding more WSN constraints (e.g. add 

constraint related to routing).  
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4. Apply the B&B, greedy algorithm, or other algorithms and compare their 

performance  with this research work applied algorithms used in this research. 
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Appendix A : Binary Search Algorithm 

In this appendix, the general algorithm of the binary search method [63] is presented: 

 
  

Input: An array A[1..n] of sorted n elements in non-decreasing order 

and element x. 

Output: The  index of x j where x = A[j] where  1 ≤ j ≤ n . Otherwise it 

will be zero. 

Algorithm: 

1: low =1 , high =n, j=0 

2: while ( low ≤ high), and (j=0) 

3: mid = (low +  high )/2 

4: if x=A[mid]m, then j = mid, and stop. 

5: else if x <A[mid] m, then high = mid-1. 

6: else low= mid+1 

7: End while 

8 : Return j 
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Appendix B: How GA Process Works 
Algorithmically, the general genetic GA is applied as below [46]: 

 

An example of a problem that can be solved using genetic algorithm is the 

eight- queens problem mentioned in section 3.2  Exhaustive Search section. Here are 

steps that can be used to solve it using GA: 

1. Start by generating a population  'P' of strings with '8' row positions, 

the row position  generated randomly for each column, representing a 

configuration of  queens on the board. For example,  '6 3 1 7 4 8 5 2' 

1. Start by generating a random population of solution “chromosomes.” 

2. Evaluate the fitness function of each chromosome in the population. 

3. Create a new population  using the following steps, and repeat them until the new 

population is complete, and the solution is found. 

a. Select two parent chromosomes from a population based on their fitness 

where if the fitness is better, then there is a bigger chance to be selected as 

parent. 

b. Cross over the parents to form a new offspring, that is, children. If no 

crossover was performed, the offspring is the exact copy of parents.  

c. Mutate new offspring at some locations in the chromosome. 

d. Place new offspring in the new population. 

4. Use the generated population for a additional run of the algorithm. 

5. Check the end condition. If it is satisfied, stop and return the optimal solution in 

the current population.  

6.  Otherwise, loop and go to step 2. 
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is a string of size '8' belonging to population 'P'. Create 'P' such 

strings.  

2. As a result, an initial population Pi is ready to be selected. 

3. Evaluate the fitness value for each solution, then  choose randomly 

some strings to be in next generations depending on their scores in the 

fitness function. 

4. Apply crossover to some chosen strings and generate one new string 

S. For example: 

String 1:  '6 3 1 7 4| 8 5 2'  

String 2: ' 1 4 3 25 |7 6 8' 

New string S based on crossover: '6 3 1 7 4 7 6 8'.  

5. With a small probability, apply mutation to string S. Otherwise leave 

it as it is. 

6. Apply steps 2 to 5 until a solution string (string with maximum 

fitness value) representing a correct solution, for example '6 3 1 8 5 2 9 7 4'. 

 

 


