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ABSTRACT 

 
With the increasing demand placed on online systems by users, many organizations and companies 

are seeking to enhance their online interfaces to facilitate the search process on their hidden 

databases. Usually, users issue queries to a hidden database by using the search template provided 

by the system. In this thesis, a new approach based mainly on hidden database reduction preserving 

functional dependencies is developed for enhancing the online system interface through a small 

screen device. The developed approach is applied to online market systems like eBay. Offline 

hidden data analysis is used to discover attributes and their domains and different functional 

dependencies. In this thesis, a comparative study between several methods for mining functional 

dependencies shows the advantage of conceptual methods for data reduction. In addition, by using 

online consecutive reductions on search results, we adopted a method of displaying results in order 

of decreasing relevance. The validation of the proposed designed and developed methods prove 

their generality and suitability for system interfacing through continuous data reductions. 
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Chapter 1: Introduction 
 

 

1.1 Introduction 

Recently, with the increased use of online systems for different scientific and/or marketing 

purposes, many organizations are working toward enhancing their web interfaces to facilitate user 

searches and provide better results. Usually, these search interfaces are correlated to hidden 

databases or deep web content. One way to enhance these online interfaces is based primarily on 

hidden data analytics. In [1], a third-party system named “MOBIES (MOBile Interface 

Enhancement System)” was implemented to improve the online mobile interface of a hidden 

database using data analytics.  This helps identify the domain of the attributes of the hidden 

database. Another enhancement method was proposed in [2] based on “attribute temporality” to 

allow for tailoring of the interface. An automatic interface for mobile devices was generated in [3], 

which originates from constraint-based and division methods, such as depth-first and breadth-first 

principals.  

In this thesis, a technique for enhancing the web interface of hidden databases is developed. Our 

technique depends on the Formal Concept Analysis theory and data reduction methods.  

Formal Concept Analysis (FCA) was first introduced as an applied mathematical field derived 

from concepts and concept hierarchy paradigms[4]. It has been widely used in different fields, like 

medicine, biology, computer science, electrical, chemical and civil engineering, sociology and 

linguistics [4]. This mathematical tool has been used efficiently to identify functional dependencies 

(FDs) [5] from a relational database after transforming the database into a binary relation between 

the  object’s set  and the attribute’s set and building a formal context (FC). It was mathematically 
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proven that the attribute implications extracted from the FC are equivalent to functional 

dependencies in the relational database [6]. However, this transformation leads to a quadratic 

representation of the dataset compared to the original relation; thus, data reduction methods are 

used to minimize the number of records obtained in the FC [6].  

In this thesis, two types of data analytics are performed on the hidden data. The first type is an 

offline static hidden-data analysis performed on the hidden database. The second type is an online 

real-time data analysis for the enhancement of the interface of an online system. The aim of an 

offline static data analysis is to discover the domain of the hidden database in terms of attributes 

and their cardinalities. In addition, functional dependencies are extracted at this stage for the 

knowledge discovery (KD) process of deep web data. Real-time data analysis, mainly using 

conceptual data reduction, is applied to enhance the interface of the mobile application by 

providing different consecutive summaries of the current remaining results for a better 

representation of query results. 

 

1.2 Problem Statement 

In this thesis, a new approach based on offline static data analysis and real-time data analysis is 

developed to enhance the web interface of an e-commerce website such as eBay so it can be used 

on a small screen device.  

The success of the developed techniques can be measured by answering the basic research 

questions of this thesis: 

 To what extent is an offline static data analysis useful for discovering the domain of a 

hidden database? 
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 Is the implemented real-time data analysis using approximate formal context with 

conceptual data reduction and the preservation of functional dependencies improving the 

mobile application interface? 

 Are the results obtained from a search query after using the developed techniques satisfying 

the users?  

 

 1.3 Objectives  

The aim of this thesis is to propose a general methodology based on data analysis of a hidden 

database that might be applied to improve the user interface and enhance the user experience. The 

general method could be applied to small screens for a commercial website such as eBay. This 

goal can be met through the following specific objectives: 

 Propose offline static data analysis to discover the domain of hidden databases and mining 

FDs. 

 Explore real-time hidden-data analysis to improve the interface of mobile applications. 

 Explain to what extent applying formal concept analysis on reduced search data based on 

the preservation of functional dependencies is rewarding. 

 Study the quality and efficiency of online real-time systems based on the new interfacing 

method. 

 Present test results in detail for at least one real-life application on small screens on android 

devices. 

 Provide recommendations for future research work. 
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 1.4 Document Overview 

This thesis is structured as follows: First, we start in this current chapter with an introduction. In 

chapter 2, I present background and related work about functional dependencies, formal concept 

analysis, concept lattice, the data reduction method, the Lukasiewicz implication, hidden 

databases, online system interfacing and interfacing small screen devices. In chapter 3, I discuss 

the new conceptual approach that is proposed, which is data reduction by the preservation of 

functional dependencies, and I justify its utilization, as reduced databases have a good prediction 

accuracy. After that, one may find a presentation of the methodology and its implementation in 

chapter 4, which describes the two stages of offline static data analysis and real-time data analysis. 

In chapter 5, I will talk about the experimental result, the evaluation and the validation of the 

proposed interface. Finally, in chapter 6, I conclude my work and give recommendations for 

future development. 
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Chapter 2: Background and Related Work 
 

This chapter discusses the background and related work in regards to functional dependencies, 

algorithms for mining functional dependencies, formal concept analysis, concept lattices, the data 

reduction method, the Lukasiewicz implication, a deep web or hidden database, online system 

interfacing and interfacing with a small screen design .  

 

2.1 Functional Dependencies 

In a relational database, different types of dependencies exist. Among these different types of 

dependencies, functional dependencies are the most important and have been widely studied in 

research [5][6][7][8][9][10]. Characterizing functional dependencies from a relational database is 

an important database topic and has many applications in different fields, such as database 

management, query optimization, database normalization and reverse engineering. In a given 

relation, functional [6]dependency is usually used to express the relationship between the 

attributes. A functional dependency can be expressed  as “X→Y” [10], which means that the value 

of attribute X functionally determines the value of attribute Y and that any two tuples that share 

attribute X’s value also share attribute Y’s value [10]. 

Definition 1: “Let R be a database schema; a functional dependency over R is an expression X→A, 

where X ⊆ R, and A ⋲ R. The functional dependency X→A holds in an instance of relation r if 

and only if ∀ ti , tj ⋲ r , ti [X] = tj[X] → ti [A] = tj[A]” [10]. The below table expresses the functional 

dependency between the attributes in the relation r.  
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Table 1: Relation r 

 

 

 

 

 

 

 

From the above relation r in Table 1, we can conclude that A→D and D→A are valid in the relation 

r; however, A → C does not hold since t2[A] = t4[A] and t2[C] ≠ t4[C]. 

Definition 2: “The set of all dependencies that include F as well as all dependencies that can be 

inferred from F is called the closure of F, and it is denoted by F+” [36]. 

The following will explain the well-known set of “Armstrong inference rules “used to determine 

new dependencies from a given set of dependencies [36]:   

 “IR1 (Reflective Rule): If X ⊇ Y, then X → Y, which means that a set of attributes always 

determines itself or any of its subsets” [36]. 

 “IR2 (Augmentation Rule): {X → Y} ⊨ XZ→YZ, which means that adding the same set 

of attributes to both the left- and right-hand sides of dependency yields in another valid 

dependency” [36]. 

A   B C D 

2 5 4 1 

3 5 4 2 

2 6 4 1 

3 5 7 2 
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 “IR3 (Transitive Rule):{X → Y, Y→Z} ⊨ X → Z, which means that functional 

dependencies are transitive” [36]. 

 “IR4 (Decomposition or Projective Rule):{ X → YZ} ⊨ X → Y, which means that we 

can remove attributes from the right hand side of dependency” [36]. 

 “IR5 (Union or Additive Rule) :{X → Y, X→Z} ⊨ X → YZ, which means that we can 

combine a set of dependencies into a single one” [36]. 

 “IR6 (Pseudo-Transitive Rule): {X → Y, WY→Z} ⊨ WX → Z, which allows us to 

replace a set of attribute Y on the left hand side of a dependency with another set X that 

functionally determines Y” [36]. 

 

2.2 Mining Functional Dependency Algorithms 

In the literature, there have been many research studies done in the field of discovering the 

functional dependencies of a database. Many algorithms have been developed for the goal of 

extracting functional dependencies from a given set (or sets) of data. Among these algorithms, 

there were seven that were the most cited and important algorithms [11]. According to [11], these 

algorithms were categorized into three main categories, which are lattice traversal algorithms, 

difference- and agree-set algorithms and dependency induction algorithms. In the lattice traversal 

algorithms, a powerset lattice of attribute combinations was built and traversed either by using a 

bottom-up traversal strategy or by using a depth-first random walk. It produces FD candidates and 

validates it using a stripped partition approach. TANE, FUN, FD_MINE and DFD algorithms are 

all lattice traversal algorithms. Two algorithms belong to the category of difference- and agree-set 

algorithms, which are DEP-MINER and FASTFDs. In this category, difference and agree sets are 

generated to characterize minimal functional dependency by looking for sets of attributes that have 
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the same values in some tuples. After obtaining the agree sets, valid FDs are extracted from them. 

The dependency induction algorithm category, such as FDEP, begins by assuming that each 

attribute is functionally determining other attributes and then by using observation on the data set 

the FDs were either validated or removed [11]. 

The TANE algorithm introduced by Huhtala et al. [12] was used for extracting FDs and 

approximate FDs. The search space in this algorithm is represented as a Hasse diagram of its 

attributes. Its functionality to detect FDs is based on three main principles to detect. First, it uses 

partition refinement to determine whether an FD is holding or not. Second, it uses apriori-gen 

functions to verify that only minimal functional dependencies are discovered. Finally, to reduce 

the search space of the lattice, pruning rules are used [12]. In the TANE algorithm, the input lattice 

is divided into levels of attributes, where each level number represents the attribute combination 

size. Detecting FDs starts from level 1 of the lattice and continues upward, level by level. Each 

attribute combination in every level is tested for functional dependency. Then, the supersets of the 

detected FDs are pruned using pruning rules. At the last step of the algorithm, the apriori-gen 

function tests the attribute combinations that were left unchecked from the previous level [12]. 

The FUN algorithm, which is proposed by Novelli and Cichetti [13], is a level-wise algorithm that 

traverses the attribute input lattice relation level after level bottom-up and uses the partition 

refinement techniques to characterize functional dependencies. It uses the concept of free sets and 

non-free sets to validate FD candidates that result in non-minimal FDs [13]. By free sets, we mean, 

“the sets of attributes that do not include attributes that are functionally dependent on another 

subset of attributes” [13]. Other attributes that are not in the free sets are members of non-free sets. 

In this algorithm, the attribute sets are validated incrementally, level by level, based on their length, 

after considering the knowledge acquired from the previous level. For testing to identify if a 
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candidate is a free set or not, a comparison is done between its cardinality and the cardinality of 

its entire maximal subset. If it is found that it is a free set, then it might be a possible candidate for 

FD. Otherwise, its entire superset of attributes are discarded because they are not candidates for 

FDs. The candidate generation mechanism follows the Apriori algorithm [14].  

Similar to the TANE and FUN algorithms, in the DFD algorithm [15], a powerset lattice is built, 

which represents all attribute combinations. In order to characterize FDs, the powerset lattice has 

to be traversed in depth-first random walk to test valid FDs. This power set lattice is considered to 

be multiple lattices that are traversed one after another—using a decidable path [15].     

The FD_MINE algorithm proposed by Yao et al. [8] is another algorithm belonging to the lattice 

traversal category that traverses the attribute lattice level-wise bottom up by using stripped 

partitions and partition intersection techniques to mine the FDs. In addition to the latter techniques, 

it uses the equivalence classes concept of attribute sets to minimize the number of sets and FDs to 

be validated [8]. If two attribute sets are functionally dependent on each other, then they are 

considered equivalent. Each level in the attribute lattice is visited and validated to detect the FDs 

and the equivalent FDs. Whenever equivalent attributes are discovered, the algorithm prunes only 

one from the lattice because they are functionally dependent [8]. 

The DEP_MINER algorithm was proposed by Lopes et al. [10]. Its basic idea works on computing 

the minimal FDs from the agreed sets of attributes and their inverse difference agreed sets. Agreed 

sets can be defined as sets of attributes that have the same value in some tuples, and their inverses 

are the difference agreed sets. Executing the algorithm can be divided into five stages [10]. In the 

first stage, the algorithm computes the stripped partition for each attribute in a given relation to be 

used in the second stage for calculating the agreed sets of attributes. Partitions can be defined as 



10 
 

sets of equivalence classes that contain tuples that have the same values in given attributes [10]. A 

stripped partition can be defined as a partition that groups equivalence classes having a size greater 

than one [10]. In the third stage, the agreed set is converted to maximal sets of attributes, which 

are sets of attributes with no supersets that have the same value in any two given tuples. Next, in 

the fourth stage, complement sets are calculated from the agreed sets. In the last stage, the minimal 

FDs are extracted using a level-wise search on the complement sets [10] . 

The FASTFDs algorithm proposed by Wyss et al. [16] uses the concept of agree sets and difference 

agree sets of attributes to detect minimal FDs. This algorithm is considered an improvement upon 

the DEP_MINER algorithm, and it was proven more efficient than DEP_MINER. It depends on a 

depth-first, heuristic-driven search (DFHS) to traverse the search tree of attributes. Similar to the 

DEP-MINER algorithm, it starts by calculating the agree sets of attributes to extract the FDs, then 

it calculates the difference sets as “Dr: = { R\X|X ϵ ag(r)}” (where R is a database schema and 

ag(r) denotes agree sets) on the agree sets to derive the minimal functional dependency [16]. After 

that, it computes the difference set of r module A  as “Dr
A :={D-{A}|D ϵ Dr ^ A ϵ D},”  which was 

proven to be more efficient than the complement set calculated in DEP_MINER [16]. Then, at the 

last stage, it finds the minimal cover over “Dr
A” by traversing the search tree using the depth-first 

driven heuristic.  

The FDEP algorithm was proposed by Flash and Savnik [17]. Unlike the previously mentioned 

algorithms, FDEP uses a special approach to extract the FDs. This approach is based on the 

comparison of every two tuples in any given relation to find the minimal FDs. There are three 

mechanisms for implementing the traversal of the FDEP search tree; they are top-down, 

bidirectional and bottom-up. Among the three versions of the FDEP algorithm, the bottom-up 

approach was proved to be the best in performance [17]. It consists of two phases, which are 
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calculating the negative cover construction and the negative cover inversion. The negative cover 

set refers to the set of all non-FDs for a given relation and contains all non-FDs that do not hold in 

a given relation, while the negative cover inversion refers to the set of all minimal FDs. Thus, the 

algorithm identifies the set of all FDs after transforming the negative cover into the positive cover 

of FDs (i.e. it represents the set of all minimal FDs). 

Many experiments were conducted for assessing the performance of the seven algorithms and 

shows their strength and weakness points[11]. It was observed that lattice traversal algorithm 

performs best with dataset that contains few tuples. However, it performance decreases with 

dataset that contains many attributes. Moreover, difference and agreed set algorithm as well as 

dependency induction algorithm perform well with dataset that contains many attributes but their 

performance decreases with dataset that contains many tuples[11].The below table 2 summarize 

the performance of the seven algorithms. 
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Table 2: Comparison of the seven algorithms 

 

 

 

 

Algorithms Row Scalability Runtime 

(Row Sc) 

Column Scalability Runtime 

(Column Sc) 

TANE Best with many rows 

dataset 

Linear  Best with low columns dataset Exponential 

FUN Best with many rows 

dataset 

Linear Best with low columns dataset Exponential 

DFD Best with many rows 

dataset 

Linear Best with low columns dataset Exponential 

FD_MINE Best with many rows 

dataset 

Not 

Applicable 

Best with low columns dataset Exponential 

DEP_MINER Best with few rows 

dataset 

Quadratic Middle performance Exponential 

FASTFD Best with few rows 

dataset 

Quadratic Middle performance Exponential 

FDEP Best with few rows 

dataset 

Quadratic Best with many columns 

dataset 

Exponential 
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One application of extracting functional dependency was used in [38] for completing missing data. 

If the functional dependency was already defined for a given set , then the dependency was used 

for completing missing data .Otherwise, the functional dependency was extracted first by 

transforming the dataset into Formal Concept Analysis then applying data reduction method to 

reduce the size of the Formal Context and Finally extracting the Functional dependency using “ 

ConExp “ tool [38]. 

 

2.3 Formal Concept Analysis 

Formal Concept Analysis (FCA) is a mathematical tool used in the data analytics field. It was 

originally created based on concepts and concept hierarchy [4]. The term “concept” can be defined 

as “the basic unit of thought formed in dynamic processes within social and cultural environments” 

[4]. A concept consists of two parts: The first part is the “extension” and represents all objects that 

belong to the concept, and the second part is the “intension” of the concept, which represents all 

attributes shared by the extension [4]. In FCA, there exists an ordered relationship between the 

concepts of a context, called the “subconcept-superconcept relation “. In this relation, the 

“extension” of the “subconcept” is included in the “extension” of the “superconcept” and the 

“intension” of the “subconcept” includes the “intension” of the “superconcept” [4]. 

Definition 3: “A formal context is defined as a set of structure 𝕂:=(G,M,I), for which G and M 

are sets, while I is a binary relation between G and M , i.e. I ⊆ G×M” [4]. 

The elements of G represent the objects, and the elements of M represent the attributes. 

To obtain a formal concept in a given context, two derivation operators  are used for X⊆ G and Y 

⊆ M , as follows [4]: 
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“X ↦ XI ≔ {m ⋲ M ∣ g I m for all g ⋲ X}” (1) 

“Y ↦ YI ≔ {g ⋲ G ∣ g I m for all m ⋲ Y}” (2). 

“A formal concept of a formal context 𝕂 := (G,M,I)  is represented as the pair (A,B), where A⊆ 

G , B ⊆ M , A= BI and B=AI; A and B are called the extent and the intent of the formal concept, 

respectively” [4] . 

The above two derivation operators are used as a general method in the literature to obtain formal 

concepts “(XII, XI) and (YI,YII)” [4][3]. “The subconcept-superconcept order relation is 

mathematically defined as follows “ [4]: 

“(A1, B1) ≤ (A2, B2): ⟺ A1 ⊆ A2 (⟺ B1 ⊇ B2)” (3). 

Example: Consider the following formal context shown below in Table 2. 

 

Table 3: Formal Context 

 d1 d2 d3 

c1 × ×  

c2   × 

c3 × ×  

 

 

From the above table and using the two derivative operators defined previously, we can obtain the 

following concept ({c1, c3}, {d1, d2}), which can be interpreted as saying that both object c1 and 

c3 share attributes d1 and d2. 
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2.4 Concept Lattice 

A concept lattice, which is known also as Galois lattice, has many applications in several different 

fields, like information retrieval, knowledge representation and bioinformatics [19]. The concept 

lattice is represented as a Hasse diagram of concepts. The input of a concept lattice is the set of all 

ordered formal concepts of the context (G, M, I). 

Definition 4: “A concept lattice can be briefly defined as follows. Given a binary relation between 

an object set and an attribute set, a concept is a pair of object set A and attribute set B denoted by 

(A,B) and the concept lattice is the partially ordered set of all concepts” [19]. 

Basic Theorem on Concept Lattice: “Let: = (G, M, I) be a formal context. Then, (𝕂) is a 

complete lattice, called the concept lattice of (G, M, I), for which infimum and supremum can be 

described as follows” [4]: 

                                               “⋀t∊ T (At, Bt) = (∩t∊T At, (∪t∊T Bt)II)” (1) 

                                                 “⋁ t∊ T (At, Bt) = ((∪t∊T At) II, ∩t∊T Bt)” (2). 

The following figure (Figure 1) represents the concept lattice of the formal context in Table 2. 
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Figure 1 : Concept Lattice 

 

2.5 Data Reduction Methods 

Since many databases contain massive number of records and attributes, it is essential to reduce 

the size of the database either by eliminating unnecessary attributes, removing rows, reducing both 

database dimensions while preserving some relevant information or keeping a good prediction 

accuracy. There have been many database reduction methods in the literature. In [20], a technique 

was developed to exact or approximate the reduction of database attributes. This technique was 

implemented successfully using Structured Query Language (SQL) in a database. The approximate 

reduction technique is beneficial for dirty data, while the exact reduction method is used when no 

dirty data exist.  

In the exact reduction of [20], all the information is preserved by eliminating only superfluous 

attributes, which are attributes or sets of attributes that are not required for the correct classification 

of database objects.  

Consider the example below in Table 4: 
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Table 4: Dataset R [20] 

Cyl Size Power Weight Mileage 

4 Sub Low Low High 

4 Sub Medium High High 

6 Comp Medium Medium * 

4 Comp Medium High Low 

6 Comp High High Low 

 

 

In the above table, the first four columns represent the condition attributes, and the last column 

represents the decision attribute, which is mainly an attribute that is used to classify or categorize 

database objects. The reduction process is done using two database operations, which are project 

and card. The project operation (⊓) is used to eliminate some columns and remove duplicated 

rows, as illustrated in Table 5. After applying the project operation, two columns are deleted, and 

one row is removed. 
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Table 5: Result of ⊓ (Cylinders, Size, Mileage)[20] 

 

 

 

 

 

 

 

The card operation is performed after applying the projection process to return the number of rows. 

From the above table, card (⊓(Cylinders, Size, Mileage)) = 4 [20]. 

In [20], the approximate reduction was performed by computing the information preservation ratio 

(IPR) and the information loss ratio (ILR) for a subset of attributes that is included in a set such as  

Q’ ⊆ Q. 

IPR = Card (⊓ (Q – Q’)) / Card (⊓ (Q – Q’ + {c})) 

ILR = 1-IPR 

When IPR is near to 1, it implies that discarding attributes in the set Q’ yields the loss of a very 

small portion of information. ILR shows the amount of decrease in the dependency degree when 

eliminating attributes in Q’. It was noticed that eliminating one attribute reduces the IPR by 13%, 

while eliminating two attributes decreases the IPR value by 23% [20]. 

Cylinders Size Mileage 

4 Sub High 

6 Comp * 

4 Comp Low 

6 Comp Low 
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In [21], an automated scalable approach was proposed by Tuya et al. for reducing large database 

rows using sets of SQL queries and a coverage criterion. This reduction approach was implemented 

to reduce the size of test databases. The general idea of this method is to create a subset of 

meaningful data from the production database to become the test database. To accomplish the task 

of selecting a subset of meaningful data, a test criterion, which is called SQL full predicate 

coverage (SQLFpc), is used. SQLFpc consists of modified condition/decision coverage (MCDC) 

for SQL and creates sets of coverage rules written in SQL expressions. Then, these rules are 

executed to determine whether the specific requirements for a given query are satisfied [21]. After 

that, the data that meet the coverage rule are collected, reduced and inserted into a new empty 

database that becomes the reduced test database. Several optimization techniques were performed 

for this method to reduce the reduction time by parallelizing different tasks  and reducing the rows 

retrieved from the initial database [21]. Table 6 compare the above two disused data reduction 

methods. 

 

Table 6: Comparison Between the two Data Reduction Methods 

Data Reduction 

Methods 

Implementation Application Reduction 

Dimensions 

[20] SQL Exact  and 

Approximate 

Reduction 

Database attributes 

[21] SQL Exact reduction Database rows 

 

 

2.6 Lukasiewicz Implication  

Data reduction methods are used to reduce the size of the database without losing knowledge. By 

knowledge, we mean the association rules of the database. In the literature, there have been many 
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data reduction methods implemented; however, most of these methods are not efficient, inaccurate 

and do not fit for fuzzy data [22]. The Lukasiewicz implication, which is based on a fuzzy Galois 

connection at different precision levels, is one of the efficient reduction methods used for reducing 

the size of objects or attributes of fuzzy or crisp formal context [22] . 

“ Definition of a Lukasiewicz-Based Fuzzy Galois Connection: Let R be a fuzzy binary relation 

defined on U for two sets A and B such that A ⊆ O, B is a fuzzy set defined on P and δ ∊ [0,1]” 

[22]. 

The operators” f “and “hδ “ are Lukasiewicz-based Galois connections and are defined as follows 

[22]: 

“f (A) = {d/α ∣ α = min {μR (g, d) ∣g ∊ A}, d∊ P}” (1) and 

“hδ (B)= { g ∣ d ∊ P ⟹ ( μB(d)→L  μR(g,d)) ≥δ }” (2). 

Where “ →L” represents the “Lukasiewicz implication” for a, b ∊ [0,1], “a →L b= min (1, 1-a+b)”, 

μR(g,d) is the weight of attribute d in object g in the fuzzy relation R, and μB(d) represents 

the weight of attribute d in fuzzy set B. f(A) computes the fuzzy set of the common properties 

of the objects A. hδ (B) represents the object sets that satisfy all properties in B at a given level. 

The two operators f and hδ are the fuzzy Galois connection between the subsets A and B [22]. 

The Lukasiewicz reduction algorithm consists of the following steps [22]: 

1. For each object in the (FC), a set of verifying objects is calculated by using the Lukasiewicz 

implication hδ (B).  

2. The functional dependencies are maintained by computing f(A) on the set of the verifying 

object and comparing it with the candidate object. 
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Example: Consider the fuzzy binary relation R in Table 7.  

 

Table 7: Fuzzy Binary Relation R [22]. 

 A B C 

O1 0.5 0.7 1.0 

O2 0.2 0.3 0.4 

O3 0.1 0.2 0.4 

O4 0.4 0.3 1.0 

O5 0.1 0.2 0.7 

O6 0.2 1.0 0.4 

 

 

After applying the Lukasiewicz fuzzy reduction at a different precision level, we obtain the 

following reduced relation, as shown below in Table 8. 

 

Table 8: Reduced Database for Different Values of δ [22]. 

  δ = 0.9 δ = 0.7 δ = 0.5 

Remaining Objects {O1,O4, O5, O6} {O1, O5, O6} {O5, O6} 

 

 

In the next chapter, the Lukasiewicz reduction is used to find another algorithm for reducing 

database instance, preserving functional dependency. 
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2.7 Deep Web or Hidden Database 

Deep web content represents a huge amount of structured data on the web. By the term “deep web” 

or “hidden database,” we mean the data content that is hidden behind HTML forms [23]. To 

retrieve data or information from the deep web, which is represented by the expression “crawling 

deep web,” the user enters a valid query on the form provided by the organization or institute, and 

then the deep web returns the result that matches the query.  

Crawling deep web content is used in many tasks such as data integration and web indexing [24].  

Two methods of accessing deep web content have been studied and implemented in the literature 

[23]. The idea of the first method is to build for each specific domain a search engine such as 

books, mobiles, etc. To implement this method, a mediator form was developed for each domain, 

and then each mediator form is mapped to its data source individually. By mediator form, we mean 

the form that is provided by any mediator system [25], which is a system that provides the user 

with access to information from heterogeneous resources [25]. However, implementing this 

method has several disadvantages, such as the high cost of creating the mediator form and the 

mapping to its data sources. In addition, matching each input query to its domain is considered a 

challenging problem. Moreover, defining data on different domains is not easy, since the nature 

and the boundaries of the data on the web are not clear [23]. 

The second method is implemented using “surfacing,” which relies on pre-computing the results 

of each form submission for all forms. Many algorithms were implemented in the literature to 

surface the deep web content. Computing the resulting URLs is done offline and indexed the same 

way as an HTML page. Using this approach proved very beneficial in leveraging the search engine 

infrastructure for the deep web content. Whenever a user selects a search result, the fresh content 

of the relevant website is directed to him or her [23]. 
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Deep web sites or hidden web sites’ contents can be categorized into two categories: document-

oriented textual contents and  entity-oriented content [24]. The document-oriented textual content 

represents popular websites such as Wikipedia, Twitter, etc. The entity-oriented content of deep 

web can be represented by online shopping websites such as eBay, Amazon, etc. Each deep web 

category has different crawling techniques or algorithms. The following is a description of an 

entity-oriented crawl system [24] that is specified to crawl entity-oriented deep web content and 

use it for advertisement purposes. Each structured entity in such deep web content represents a 

specified product. The objective behind implementing this system is to get the representative 

coverage of a specified item for a user. This system consists of the following main components, 

as illustrated in Diagram 2: URL template generation, query generation and URL generation, 

empty page filter (or web page filter) and URL extraction and deduplication [24]. 
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  Figure 2 : Overview of the Entity-Oriented Crawl System [24] 

 
 

 

 “URL Template Generation” : This component produces a list of URL 

templates after taking the domain name of the deep web sites as an input [24]. 

 “Query Generation and URL Generation “: The query generation 

component is used to generate a query after getting the input from the freebase 

and the query log. After that, the generated query will be input to the URL 

generation for getting the final query that will be stored in the URL repository 

[24]. 

 “Empty Page Filter”: This component is used to detect the retrieved pages 

that contain no entities or errors. This component is considered critical for 

most entity-oriented deep web sites [24]. 
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 “URL Extraction and Deduplication”: This component is used to remove 

the second-level URLs, which are the URLs on the search results pages and 

different from the URL generated from the URL template and these URLs will 

not lead to deep web content [24]. 

 In [26], a hidden web crawler was built for document-oriented deep web content. The crawler 

built was automatically generating query for indexing and discovering hidden web pages. To 

implement its main task, the crawler has to perform these steps: First, it generates a query 

.Second, it is delivered to the web site and finally, the required pages are obtained [26]. 

The most critical task performed in the crawling algorithm is choosing the relevant query 

word that will obtain the required user pages. Many options were provided for choosing 

relevant queries. Query words can be chosen randomly from an English dictionary or by using 

the most frequent keywords after analyzing a corpus of collected documents. Another 

“adaptive” method is used for selecting the query depending on analyzing the results obtained 

from a previous query and estimating the promising query that will return a matching result 

[26]. 

 

2.8 Online System Interfacing 

Developing a mobile application with an efficient and easy-to-use interface is considered a 

complicated task. Many researchers found that the user interface code (UI) of the mobile 

application makes up about 80% of the whole application, and it takes about 50% of the code 

implementation time [27]. Thus, developing the UI of an application is considered a critical task 

for the implementation of the application. 
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A mobile phone device consists of the following main components: user interface (UI) system, 

operating system and many other hardware devices [27]. The UI system takes an input from the 

user and executes a corresponding output result. In the market, there are many tools available for 

creating mobile UI systems such as eMbedded Visual C++, Rapid and Symbian’s Eclipse tool. 

While implementing and designing UIs for mobile applications, some problems could face the 

programmers, as follows [27]: 

 writing appropriate program code; 

 the cooperation between the UI designer and the UI programmer; and 

 the lack of a UI design template generator in the current mobile application. 

To overcome the previously mentioned problems, a UI design template generator was 

implemented and designed in [27] for mobile application that includes the UI template, the UI 

template constructor, the UI template manager, the UI template constructor and a UI template 

database. 

 

2.9 Interfacing Small Screen Devices 

There has been much research in the literature on developing an automatic interface for mobile 

computing devices. In fact, it is not an easy task to display the whole personal computer (PC) 

interface on one mobile device due to the small size of the mobile phone screen. Many techniques 

have been proposed to solve the interface division problem. One solution is to use interface 

tailoring, which adapts only important information and displays it in the interface [28]. In [3], an 

approach was developed to solve the interface division problem using two methods, which are 

depth-first and breadth-first principles. The model used was based on a constraint-based PC user 
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interface description method, and the design process had many stages, as illustrated in the below 

figure (3)[3] . 

 

Figure 3: The Design Process of a Mobile Device Interface [3] 

 

A main step in developing the mobile interface is to use the constraint-based user interface design 

method to describe the interface. Two types of constraints are contained in this model, which are 

“abstract constraints” and “spatial constraints”. “Abstract constraints include logical constraints, 

dependent constraints and geometric constraints” and are used for describing the logical relation 

of the interface components. Spatial constraints are used to describe the positional relation of the 

interface components [3]. The mechanism of the constraint interface relies on the abstract 

constraint and grouping the interface components into a component tree to describe the user 

interface information.  

The component tree of the mobile interface can be divided using two approaches, which are the 

depth-first approach and the breadth-first approach. The tree non-leaf node represents component 

groups, while the leaf nodes represent concrete components. In the depth-first approach, all of the 

leaf nodes that have the same parent nodes are displayed on the same screen. If there is a need to 

come back to a displayed leaf node, then all the screens that are between the current screen and 
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representati
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the screen that contained that node are displayed in reverse order [3]. In the breadth-first approach, 

all of the child nodes of the root node are displayed first, and then the interface waits for a user 

action. If the action occurs, then the interface will display the entire child node of the chosen node. 

When a user needs to come back from a screen, the interface will display the parent node of the 

current node and its sibling [3]. 

A technique implemented in [39] for improving the interface of online system on small screen 

device. This technique is based on system decomposition and conceptual browser that: allows 

extracting main concepts from hidden data, structures search results in a tree view and allows users 

to move between tree nodes to reach search goal. On the other hand, this technique is not 

considering functional dependency preservation or data reduction that are targeted in our 

methodology. 

The previous background and related work will be the foundation for constructing our 

methodology for the enhancement of the interface in chapter 3.   
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Chapter 3: Data Reduction by Functional Dependencies 

Preservation: A New Conceptual Approach 
 

Interfacing online systems requires an analysis of real-time search data results and utilization of 

reduction methods to initially display only a sample of the most representative data. Sampling 

methods might offer a good alternative for that [29][30]. In this chapter, we describe an original 

approach for creating a conceptual sample from data (i.e., reduced database), which can preserve 

functional dependencies between the different attributes existing in the initial search result. To 

assess the quality of the reduced database, we select a benchmark of a database of objects, and we 

check the prediction accuracy of the reduced database. This chapter describes in detail the 

conceptual approach used in this thesis towards achieving our objectives and goal, which consists 

of converting a database into an approximate formal context, applying an incremental reduction 

process and extracting functional dependency or mapping the formal context back into a database 

instance, as shown below in Figure 4:  

 

 

 

 

 

 

 

 

Figure 4: Conceptual Method 
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3.1 Transform DB into an Approximate Formal Context  

The transformation is done using a pairwise comparison between the tuples of the obtained 

database [6]. In the exact formal context analysis, a value of “1” is assigned whenever there is an 

exact match between the same values of an attribute for the compared tuples; otherwise, a value 

of “0” is given. As exact equality is too restrictive, so we will propose different similarity functions 

to consider approximate functional dependencies.  

Example: Figure (5) represents an exact transformation of a database into an exact FC. 

Each row in the FC represents a possible pattern of zeros (i.e. disagreements) or ones (i.e. 

agreements) between two pairs of tuples of the initial dataset (i.e. instance of a database). 
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Figure 5: Converting a Database into a Formal Context (FC) 

 

 

According to [6] , it was proved that the functional dependencies (FDs) extracted from the original 

database are equivalent to the set of implications that we could extract from the formal context  

(FC). 

The exact transformation into a FC results in a significant loss of information due to the exact 

comparison of the tuples value, thus we use in this thesis an approximate FC using similarity 

measures [31] to avoid such information loss. There are many similarity measure functions, which 

can be categorized based on the checked data to textual, numerical and binary forms [31]. 

ID A B C D 

t1 2 1 6 2 

t2 3 1 5 1 

t3 2 3 5 1 

t4 3 2 5 2 

ID A B C D 

t1- t2 0 1 0 0 

t1- t3 1 0 0 0 

t1- t4 0 0 0 1 

t2- t3 0 0 1 1 

t2- t4 1 0 1 0 

t3- t4 0 0 1 0 
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In our case, we use the similarity measure between numerical and textual values. In the numerical 

value, the similarity between two numbers is calculated based on the difference between two 

compared numbers that are given a reference number, as shown in the following formula [31]: 

                  “Similarity (n1, n2) = [1- |n1- n2| / max (n1, n2)]” (2), 

Where n1 and n2 represent the two compared numbers.  

The similarity between two textual data is calculated using the algorithm proposed by Simon White 

[32]. Its functionality is based on comparing adjacent pairs, as in the following formula [31]: 

“Similarity (S1, S2) = 2 ×| pairs (S1) ∩ pairs (S2)| / | pairs (S1) + pairs (S2)|” (3), 

Where S1 and S2 represent two strings. 

Example: Consider the two words “Italy” and “Italian.” We divide them into pairs of string as 

follows: {IT, TA, AL, LY}, {IT, TA, AL, LI, IA, AN}. Then, the similarity between the two 

strings is calculated using the above similarity formula, as follows: 

Similarity (ITALY,ITALIEN)= 2× |(IT,TA,LA)|/|{IT,TA,AL,LY}|+|{ IT,TA,AL,LI,IE,EN}| 

                                                   = 2 × 3 / 4+ 6 = 0.6  

At the step of transferring the data set into an approximate FC, the similarity was calculated in the 

tuples comparison process using formulas 2 and 3, so that the FC is assigned a value of “1” if their 

similarity is greater than a certain threshold (in our case, a threshold of 85 was chosen) [33]. 

Otherwise, “0” is assigned. 

Very relevant to our research, in [4], the authors proved that applying the Lukasiewicz reduction 

to the FC might reduce it with the elimination of many objects without losing implications between 
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the different attributes of the FC. In the next section, we propose an efficient incremental approach 

to reduce the FC. 

 

3.2 Apply Incremental Reduction to FC 

Data reduction methods play a vital role in FCA due to the large obtained objects in the context, 

which negatively imposes excessive time and storage needs. The Lukasiewicz reduction [22] is 

implemented in a new way in this proposed conceptual method, which is incremental on packages 

of a certain number of FC objects. Thus, this leads us to avoid having an FC with n2 objects 

compared to the number of database objects and waiting until the entire formal context is build. 

Another advantage of implementing the Lukasiewicz reduction incrementally is that it enables the 

dynamic reduction of formal context as long as new objects are available [22]. 

After that, the Lukasiewicz reduction was further applied iteratively in the obtained reduced FC to 

further reduce its size in terms of objects and attributes without loss (attribute implications that are 

equivalent to functional dependencies). In fact, the reduction is implemented in the approximate 

FC iteratively multiple times for columns and rows until reaching stability, which means that no 

more columns or rows can be reduced. The precision level used was δ = 1 to guarantee  information 

preservation while reducing rows and attributes [22]. 

The steps of the Lukasiewicz reduction algorithm (discussed previously in chapter 2) were applied 

as follows [22]: 

1. For each object in the approximate FC, a set of verifying objects was calculated by using 

Lukasiewicz implication hδ (B) (previously defined in chapter 2). 
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2. The functional dependency was maintained by computing f (A) (previously defined in 

chapter 2) to the set of verifying objects and comparing it with the candidate object. 

The following example will illustrate how to apply the Lukasiewicz reduction algorithm to the 

FC to obtain a reduced FC. 

Example: Apply the Lukasiewicz reduction algorithm at δ = 1 in the following FC Table 9 to 

reduce both objects and attributes.  

 

Table 9: Formal Context (FC) 

 A B C D 

O1 1 1 0 1 

O2 1 1 0 1 

O3 0 0 0 1 

O4 0 1 1 1 

 

 

We will start by applying the algorithm for O1 and then calculate its set of verifying objects. To 

calculate the sets of verifying objects, we compute the” Lukasiewicz implication a            L b as  

Min (1, 1-a+b) ≥ δ  “for each attribute of the compared object. Table 10 will illustrate the 

computation. 
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Table 10: Calculating hδ (B) 

 O1-O2 O1-O3 O1-O4 

A  Check  Min (1,1- a1+a2) ≥ 1 

 Result            1 =1 

 Check Min (1,1- a1+a3) ≥ 1 

 Result                   0 <1  

The implication values is less 

than 1 so, we stop 

Check Min (1,1- a1+a4) ≥ 1 

Result                0 <1  

 The implication values is less 

than 1 so, we stop  

B Check   Min (1,1- b1+b2) ≥ 1 

 Result              1 =1 

  

C Check   Min (1,1- c1+c2) ≥ 1 

Result                    1 =1 

  

D Check   Min (1,1- d1+d2) ≥ 1 

Result                   1 =1 

  

 

 

For both objects 2 and 3, we stop on attribute A because the value of the Lukasiewicz implication 

is less than 1, so only O2 is in the set of verifying objects for O1. The next step is to calculate the 

minimum using f(A) as shown in Table 11 and compare it to the O1; if O1 is not less than the 

minimum, then it can be removed. 
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Table 11: Computing f(A)   

 

 

 

 

 

Since O1 is not less than the minimum, it can be eliminated from the formal context.  

After applying the Lukasiewicz algorithm to the remaining objects, we obtain the following 

reduced context, as shown below in Figure 6: 

 

              

 

 

 

 

 

 

 

Figure 6: Converting FC into Reduced FC 

 

 

 A B C D 

O1 1 1 0 1 

minimum 1 1 0 1 

 A B C D 

 O1 1 1 0 1 

O2 1 1 0 1 

 O3 0 0 0 1 

O4 0 1 1 1 

 A B C D 

O2 1 1 0 1 

 O3 0 0 0 1 

O4 0 1 1 1 
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The above algorithm was implemented for reducing FC objects, and the same procedure was used 

to reduce FC attributes after transposing the formal context (i.e. attributes become objects and vice 

versa). 

 

3.3 Extracting Functional Dependencies 

In this section, we explain how we could extract functional dependencies from the dataset of search 

results, as we need these to define some order between attributes. As the FDs in the initial dataset 

are equivalent to the implications in the corresponding FC, we have advantageously used a tool 

(ConExp) [34] to indirectly find FDs. 

The functional dependencies were extracted from the approximate reduced formal context. This 

process is done using the ConExp tool, which is an Open Source Java application used to extract 

different dependencies that exist between the attributes of the FC [34]. The ConExp tool [34] 

provides the following functionalities for the user: context editing, building concept lattices for a 

context, extracting attribute implications and association rules that are applicable in the context 

and attribute exploration. In our case, we will use the approximate reduced context obtained in the 

previous step as an input to the tool for extracting attribute implications that are equivalent to the 

functional dependencies in the original database [6] .  

Example: Consider the following formal context (FC) in ConExp, as shown below in Figure 7. 



38 
 

 

Figure 7: FC in ConExp 

 

Using this tool, we extract the attribute implications, as shown below in Figure 8. 

 

 

Figure 8: Extracting Attribute Implications using ConExp 

 

By extracting the functional dependencies between the attributes of the hidden database, we will 

display the most important attributes (dependent attributes) in the interface of the online system.  
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3.4 Map a Formal Context  into a Database 

The last step in the proposed conceptual method is to map back the reduced, approximate formal 

context into a database instance, which will result in a compact version of the original data set. 

The resulting database preserves all the data characteristics of the original database and will be 

used for displaying the output result in the improved interface system, which will be discussed in 

detail in chapter 4.  

Figure 9 displays the algorithm that maps a formal context into a database instance: 

 

 

Figure 9: Algorithm to Map Formal Context into a Database Instance. 

 

 

Algorithm : Convert a Formal Context into a Database Instance 

Input: Reduced Formal Context, Original Database R 

Output:Reduced Database Instance RD 

Begin 

For each object in the reduced formal context, which represents a pair of objects in the 

database, do the following: 

1- Compare the formal context object with the original database object. 

2- If there is a match and it is not on the RD, put the object in RD. 

End for 

End 
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Example : Consider the following dataset that consists of 100 objects and 11 attributes [37], as 

shown below in Figure 7: 

 

Figure 10: The Input Datasets of the Conceptual Method  

 

After applying the conceptual method on the dataset (i.e. running the developed software on that 

dataset), as shown below in Figure 11, that is, transferring the dataset into an approximate reduced 

FC (using 70% approximation level and δ = 1), then iteratively applying the Lukasiewicz reduction 

on objects and attributes and transferring the FC back into a database instance, we get the following 

reduced dataset with only 29 objects, as shown in Figure 11 :  
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Figure 11: Compact Version of DB after Running the Conceptual Method 

 

The fuzzy formal concept analysis was not used in the design of the proposed conceptual method 

.Although the validation of the conceptual method was done using fuzzy formal context and crisp 

formal context as shown on [33]. 

 

3.5 Complexity Analysis 

Complexity analysis is calculated to all processes of the developed conceptual method, which are 

transforming the database into approximate formal context, apply incremental reduction, and 

extract functional dependency or map back the formal context into a reduced database. 
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1. Transforming the dataset into approximate formal context and apply incremental reduction: 

Let have a relation r that contains n objects and m attributes, and then the n objects will 

iterate n times for comparing the attribute values which makes the complexity O (n2 * m) 

. The incremental reduction is applied on packages of fixed size formal context objects (10 

objects) while transferring the database into the approximate formal context .The 

complexity of reduction is  O (n4 * m). However, in reality the time complexity is much 

better with the usage of the incremental reduction as observed for different datasets. 

2. Extracting Functional Dependency: 

The functional dependencies were extracted using ConExp tool .Therefore, the best case 

for building the concept lattice and extract the functional dependencies is polynomial due 

to incremental reduction which speeds the process of mining functional dependencies  

while the worst case is exponential[40] . 

3. Map the formal context into reduced database: 

All pair of objects in the formal context were compared with the database objects in the 

attributes values in order to map back the formal context into a reduced database. 

Therefore, the complexity of this process at the best case is polynomial and at the worst 

case is equal to O (n2* m). 

The total complexity of the proposed conceptual method at the best case is polynomial and at the 

worst case is exponential. 

 

3.6 Validation of the Conceptual Method 

An experiment was conducted on “the Wisconsin Breast Cancer database of the UCI machine-

learning repository “ to validate the adopted conceptual method [33].This database consists of 699 
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tuples and 10 attributes. Samples of different sizes like 100, 200, 300 and 350 tuples were taken 

from this dataset to be an input for the conceptual method, as shown below in Table 12[33]. 
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Table 12: Experiment with Different Sample Sizes and Approximation Levels on the 

Conceptual Method [33] 

Sample Size FC Size Before 

Reduction 

Approximation  

Level 

FC Size After 

Reduction 

Database Size 

After Mapping 

100 4950 70 % 24 18 

80% 34 19 

90% 38 18 

200 19900 70% 26 24 

80% 42 24 

90% 39 24 

300 44850 70% 22 34 

80% 41 37 

90% 45 34 

350 61075 70% 22 33 

80% 43 37 

90% 48 32 
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It is clear that the conceptual method has reached a remarkable output; for example, an FC with 

size 4950 at an approximation level of 70% was compacted to 24 objects. The precision reduction 

was set to “1” during the entire experiment to prevent loss of information .  

After that, these reduced datasets are used as training examples to train a classifier that uses a 

machine learning algorithm. The classifier was built using an artificial neural network algorithm, 

which is a classic algorithm for handling complex problems[35]. Actually, the datasets were split 

in percentage, which means that the first split is used for testing and the remaining one is used for 

evaluating. Three evaluation metrics were used in the datasets, which are classification accuracy, 

root mean square error (RMSE) and reduced data size, as shown below in Table 13[33]. 
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Table 13: Evaluating the Dataset Using Three Evaluation Metrics [33]. 

Sample Size Approximation Level Classification Accuracy RMSE 

100 70 % 94.9% 0.19 

80 % 94% 0.20 

90 % 95% 0.18 

200 70 % 78.4% 0.44 

80 % 85.4% 0.35 

90 % 89.4% 0.30 

300 70 % 95.7% 0.19 

80 % 96.3% 0.18 

90 % 95.3% 0.20 

350 70 % 95.1% 0.20 

80 % 97.7% 0.15 

90 % 89.1% 0.30 

 

 

From the above table, it is observed that for a sample size of 100 objects, the classification accuracy 

is almost the same at a different approximation level due to the same reduced number of objects 
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obtained at a different approximation level, as shown previously in Table 3. The worst 

classification acurracy was obtained when the sample size was 200, due to the unbalanced reduced 

objects fed as a traning set to the classifier. It can be noticed that there is a strong relation between 

the classification accuracy and the traning set size and class balance. 

From the above experiment, it was proved by using a real test case that our proposed conceptual 

method, which is based on data reduction, achieves a highly accurate result, which shows its 

efficiency in being used for summarizing dataset results by first displaying only a sample of the 

most representative data  in an online system interface, as explained in chapter 4 
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Chapter 4: Methodology and Implementation  
 

In this chapter, we explain in detail the utilization of the conceptual method described previously 

in chapter 3 for designing the proposed solution that consists mainly of two stages for improving 

the online system interface: offline static data analysis and real time data analysis. 

 

4.1 Offline, Static Hidden-Data Analysis 

Most online systems do not provide direct access to their databases. Therefore, the process of 

offline static data analysis is essential in this thesis to discover the domains of their hidden 

databases in terms of number of attributes, attribute cardinality and the semantic relation between 

the attributes (functional dependencies). In addition, the discovered knowledge from this step is 

essential for enhancing the results displayed to the user. Usually, hidden databases or deep web 

enable users and researchers to interact with their databases and services using application 

programing interfaces (APIs). 

The process of static hidden-data analysis is conducted offline on the datasets obtained after 

running an API call for a specific item. Then, the developed conceptual method discussed 

previously in chapter 3 is applied on several datasets for the domain discovery knowledge and to 

extract the functional dependency. Figure 12 explains the process of offline static data analysis. 
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Figure 12: Offline Static Data Analysis   

 

In order to use the API provided for a hidden database, in our case the eBay database, we register 

for an API authentication using the eBay developer website. Once the API request is sent for a 

specific item, the returned results are in the form of an XML file. An API request is sent using a 

uniform resource locator (URL) and the GET Method provided by the Hypertext Transfer Protocol 

(HTTP). Figure 13 is an example of an eBay API call. 
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http://svcs.ebay.com/services/search/FindingService/v1?OPERATION-

NAME=findItemsByKeywords&SERVICE-VERSION=1.0.0&SECURITY-

APPNAME=QatarUni-4b86-4755-a046-f7374027425b&RESPONSE-DATA-

FORMAT=XML&REST-PAYLOAD&keywords=oracle%206 

Figure 13: API Call 

 

 

Each API call consists of the following parts, as shown in Table 14: 

 

Table 14: API Call Parts  

“http://svcs.ebay.com/services/search/FindingService/v1?”                 End point URL for the API 

request 

“OPERATION-NAME                      findItemsByKeywords” 

“SERVICE-VERSION                       1.0.0” 

“SECURITY-APPNAME                  QatarUni-4b86-4755-a046-f7374027425b” 

“RESPONSE-DATA-FORMAT                  XML” 

“keywords                    required item” 

 

 

After sending an API request, the response file will be in the XML format, as shown in Figure 14:   

1 

ke

yw

ord

s ke

yw

ord

s 

http://svcs.ebay.com/services/search/FindingService/v1
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Figure 14: XML Response for an API Call 

 

 

Several API requests were sent for various random items such as iPhones, iPads, cars, perfumes, 

glasses, clothes, cameras and watches. Then, the resulting XML file was processed in the format 

of an XML table in an Excel worksheet for the domain discovery knowledge process and to extract 

functional dependency, as shown in Figure 15.  
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Figure 15: API Data in the Form of an Excel Worksheet. 

 

 

The resulting datasets from an API call contain 56 attributes, such as itemId, title, category name, 

viewItemURL, etc. and approximately 100 rows depending on the search item. Then, the datasets 

are analyzed and many unnecessary attributes are eliminated. In addition, duplicated tuples are 

removed based on their IDs. At the end, we obtain a result that contains 11 attributes and around 
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100 unique objects for a specific item, as shown in Figure 16. The remaining attributes are mainly 

itemId, title, categoryId, categoryName, URL, image, price, country, location, shipping type and 

item condition. The attributes’ values were unique numbers for the itemId, text value for title, 

serial number for categoryID, text value for the categoryName, URL links in the URL attribute, 

links to the product image in the image attribute, etc. 
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Figure 16: Data after Preprocessing the API Request. 

 

After the domain discovery process, the dataset is converted into a CSV file format to become the 

input for the conceptual method, which will convert it into an approximate reduced FC, iteratively 

apply iteratively the Lukasiewicz reduction on FC rows and attributes and extract the functional 
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dependency using the ConExp tool (see the description of the conceptual method in chapter 3), as 

shown in Figure 17. 
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Figure 17: Applying the Conceptual Method on the Dataset   
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After receiving and analyzing the implication sets using the ConExp tool, we observe that most 

attributes depend on the title attribute. Therefore, we use it in the interface to display the search 

results of a query to the user. 

The functional dependencies extracted at the stage of offline data analysis from the different 

dataset (i.e. dataset coming from API request) are only the shared FD among the datasets and may 

change or updated if schema of the hidden database is updated. 

 

4.2 Real Time Data Analytic 

The objective of this step is to use data analytics to organize the online system interfacing by 

respecting some criteria of a good interface, such as first displaying a summary of the search results 

then repeating the same process on the remaining search results. The real-time data analysis stage 

is considered the essential stage in the implemented proposed solution, because all operations are 

done at that stage after the user issues a search query for a specific product. A real-time data 

analysis consists of the following activities:  

1. Obtain the user query as input for the search product. 

2. Use the eBay API to request the search product from the online marketplace (eBay). 

3. Preprocess the resulting data by removing duplicated tuples. 

4. Convert the data instance into an approximate reduced formal context and then map it back 

to a database instance to obtain a compact version of the search result. 

5. Display the reduced data to the user. 

6. A displayed further reduced dataset is available to the user upon his or her request by 

pressing on the next button on the screen. 
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7. When the user clicks on the desired record, the web browser will open the link of the 

desired product. 

 

Figure 18 illustrates the different activities of real-time data analysis: 
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Figure 18: Real-Time Data Analysis 

 

Real-time data analysis tasks are done automatically using the developed software in the Java 

programing language. These tasks are done sequentially, starting when the user issues a search 

query and continuing until he or she obtains the desired product, as will be explained in detail in 

the next section. 
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4.3 Implementation 

The developed app was named as an FD eBay search app. It was developed using Android Studio 

Integrated Development Environment (IDE) and Java.  By using the API authentication account 

in eBay, we were able to send a request for a specific item and get back the response in the format 

of an XML file. 

The app consists of the following classes: 

1. Main Activity Class: 

2. eBay XML Helper Class 

3. Post Value Class 

4. Record Item Class 

5. RecordListAdapter Class 

6. Transformer Class 

Figure 19 illustrates the workflow of the developed application.  
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Figure 19: Application Workflow 

 

After implementing the app that is based on the proposed conceptual method, the next step is to 

evaluate its performance and compare it with other online system as will be explained in the next 

chapter. 
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Chapter 5: Experimental Results, Validation and Evaluation  
 

 

In this chapter, we will talk about the validation of the developed online system interface. 

Therefore, the experiments conducted were for two purposes: one to evaluate the proposed app 

and the other to compare it with other available online systems to show its efficiency. 

 

5.1 Testing the Developed App 

The developed app was tested and evaluated using real smart phones instead of using the emulator 

provided by the PC for making the experiments real. Ten different cases were tested (i.e. 10 

different search products) using the developed app on a smart phone. This step was mainly 

conducted to prove the efficiency of the developed app by recording its performance and revealing 

its points of strengths and weaknesses. Five evaluation metrics were used: number of clicks, 

number of navigation screens, processing time, reduction percentage and efficiency. 

Testing and evaluating the proposed app starts after the user presses the search button for a specific 

product, as shown in Figure 20 for the following test case: A user enters a search query for iPhone 

SE. Then, an initial summary of results will be displayed on the screen. The displayed result 

contains the matched records for the input query from the eBay website, the description of the 

product, its price, the category name and the location. If the user finds his or her product from the 

first displayed summary, then he or she clicks on the desired description, and a link for the product 

will be opened. Otherwise, he or she presses on the next button to display another summary set 

and continues his or her search until he or she finds the desired product: 
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Figure 20: Testing the Developed App 
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5.2 Compare Developed App with eBay App 

In order to evaluate the developed app’s performance, ten users compared its performance with 

another online market system like eBay using five evaluation metrics: 

1. Number of clicks: the number of clicks needed after pressing the search button to reach 

the desired product 

2. Number of navigation screens: the number of search levels we have to go through before 

finding the product 

3. Response time: the time taken for the search results to appear on the screen after pressing 

the search button 

4. Reduction percentage: Shown as a group of percentages, this shows the percentage of 

reduced objects shown at each reduction level compared to the total number of search 

results. 

5. Relevance to the user (satisfaction): how satisfied the user was with the search results. 

This is put into a rating from 1 to 5, where each number stands for the following: 

a. 1 – Very dissatisfied 

b. 2 - Somewhat dissatisfied 

c. 3 – Neither satisfied nor dissatisfied 

d. 4 – Somewhat satisfied  

e. 5 – Very satisfied 

Tables 15 and 16, display the average results of evaluating the developed app versus the 

eBay online system using the five metrics above. 
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Table 15: Average Results of Evaluating the Developed App. 

Items 

Number 

of 

Clicks 

Number of 

Navigation 

Screens 

Response 

Time Reduction Percentage 

Relevance  

to the user 

Satisfaction 

1. Samsung  

Galaxy (J1) 3 4 21 secs 43/30/19/7/1 5 

2. Dior 

Perfume  

(Miss Dior) 0 1 24 secs 36/19/21/11/5/5/1 5 

3. Aldo 

Handbag 

(Faux 

Leather) 0 1 23 secs 19/17/11/10/10/9/9/10/5 5 

4.Loung 

Chair (patio) 1 2 14 secs 64/29/6/2 5 

5.Grandfather 

Clock 

(Tempus) 2 3 25 secs 38/27/18/13/3 5 

6.Water Floss 

(Waterpick) 0 1 30 secs 33/31/18/13/4/1 5 

7. Bvlgari 

Scarf (mens) 1 2 17 secs 23/33/35/9 5 

8. Compass 

(wrist) 2 3 28 secs 27/22/17/20/9/4/1/ 5 

9.Geometry 

Box (Faber 

Castell) 0 1 22 secs 55/27/13/5 5 

10.Rolex 

(Oyster 

Watch) 0 1 27 secs 25/24/14/9/7/7/8/5/1 5 
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Table 16: Average Results of Evaluating the EBay Application 

Items 

Number 

of 

Clicks 

Number of 

Navigation 

Screens 

Response 

Time 

Reduction 

Percentage 

Relevance  

to the user 

Satisfaction 

1. Samsung  

Galaxy (J1) 0 1 12 secs Not Applicable 4 

2. Dior 

Perfume  (Miss 

Dior) 0 1 4 secs Not Applicable 5 

3. Aldo 

Handbag (Faux 

Leather) 0 1 5 secs Not Applicable 5 

4.Loung Chair 

(patio) 0 1 30 secs Not Applicable 3 

5.Grandfather 

Clock 

(Tempus) 0 1 45 secs Not Applicable 3 

6.Water Floss 

(Waterpick) 0 1 52 secs Not Applicable 3 

7. Bvlgari 

Scarf (mens) 0 1 38 secs Not Applicable 3 

8. Compass 

(wrist) 0 1 31 secs Not Applicable 3 

9.Geometry 

Box (Faber 

Castell) 0 1 10 secs Not Applicable 4 

10.Rolex 

(Oyster Watch) 0 1 18 secs Not Applicable 3 

 

 

 

It is clear from the above evaluation metrics and the comparison with the eBay online system that 

the developed application is much faster than eBay, as shown by the time-consuming metrics. 

However, the user may need to go through many search summary sets (navigation screens) to reach 

his or her desired product, which is not the case when using the eBay online system. 
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Chapter 6: Conclusion and Future Work 

This chapter will conclude the thesis work and give some recommendations for future 

enhancement. 

 

6.1 Conclusion 

Improving online system interfaces that are built on hidden databases has become interesting to 

many researchers due to the increase in global usage of those online systems. In this thesis, a new 

data-analysis method is proposed that is based on functional dependency preservation and data 

reduction methods. The proposed conceptual method consists of two stages, which are offline 

static data analytic and real time data analytic. In the process of offline static data analysis, we 

were able to discover the domain of the hidden database and then extract the functional 

dependencies. Extracting the functional dependencies enables us to select the most dependent 

attributes that we consider in the interface. During real-time data analysis, Formal Concept 

Analysis and the data reduction method, which is based on the Lukasiewicz implication, were 

utilized to display multiple levels of the most representative data objects on the screen. 

Experiments were conducted on the developed mobile application, which proves its efficiency and 

shows promising results. Evaluation of the performance of the developed mobile application and 

comparison with other online market systems reveal the reduction power implemented in this 

research for improving the online system interface. In addition, Comparing the developed 

application that is based on the proposed conceptual method with the application developed in [39] 

shows the advantages of using functional dependencies preservation and data reduction method. 
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6.2 Future Works 

This thesis could be further developed and enhanced in a number of ways: 

 enabling the user to get multiple facets of summarized data and to be able to return back to 

any summarized sets; 

 improving the user interface of the developed app by displaying product’s image and gives 

more detail about the product; and/or 

 enhancing the speed of the application by improving the implemented algorithm by 

reducing the complexity of the algorithm. 
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