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1. Introduction

Throughout this paper, we let p′ denote the dual exponent to p defined
by 1/p+ 1/p′ = 1. Let n ≥ 2 and Sn−1 represent the unit sphere in Rn

equipped with the normalized Lebesgue measure dσ = dσ(·). Let K be
a kernel of Calderón-Zygmund type on Rn given by

K(x) =
Ω(x)

|x|n
,

where Ω is a homogeneous function of degree 0, integrable over Sn−1,
and satisfies

(1.1)

∫
Sn−1

Ω (u) dσ (u) = 0.

It is well-known that the Triebel-Lizorkin space Ḟ β,qp (Rn) is a unified
setting of many well-known function spaces including Lebesgue spaces
Lp(Rn), the Hardy spaces Hp(Rn) and the Sobolev spaces Lβp (Rn).

Our main focus as the title of the paper suggests will be on studying
the boundedness of three types of rough integral operators on Triebel-
Lizorkin spaces. We start with the first type which concerns the homo-
geneous Calderón-Zygmund singular integral operator TΩ given by

TΩf(x) = p.v.

∫
Rn

f (x− y)K(y) dy,

where f ∈ S(Rn), the space of Schwartz functions.
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The investigation of the Lp boundedness of TΩ was pioneered by
Calderón and Zygmund in [3] and then continued by many authors.
In [3], Calderón and Zygmund showed that the Lp (1 < p <∞) bound-
edness of TΩ holds if Ω ∈ L logL

(
Sn−1

)
and that this condition is essen-

tially the weakest possible size condition on Ω for the Lp (1 < p < ∞)
boundedness of TΩ to hold. For endpoint results, A. Seeger in [20]
proved that TΩ is of weak-type (1, 1) under the same L logL

(
Sn−1

)
con-

dition, but in general TΩ with such an Ω is not bounded on H1 (Rn) , as
pointed out by M. Christ (see [21]). On the other hand, Connett [10]
and Coifman and Weiss [9] independently showed that TΩ is bounded
on Lp (1 < p < ∞) for Ω ∈ H1

(
Sn−1

)
. Here, H1

(
Sn−1

)
is the Hardy

space on the unit sphere which contains the space L logL
(
Sn−1

)
as a

proper space. In [13], Grafakos and Stefanov introduced the following
condition:

(1.2) sup
ξ∈Sn−1

∫
Sn−1

|Ω(y)|
(

log |ξ · y|−1
)1+α

dσ(y) <∞

and showed that it implies the Lp boundedness of TΩ for p in a range
dependent on the positive exponent α. For any α > 0, we let Gα(Sn−1)
denote the family of Ω’s which are integrable over Sn−1 and satisfy (1.2).

Theorem A ([13]). Let Ω∈Gα(Sn−1) for some α > 0 and satisfy (1.1).
Then if α > 0, TΩ is bounded on Lp(Rn) for p ∈ ( 2+α

1+α , 2 + α).

This range of p was later improved to be ( 2+2α
1+2α , 2 + 2α) (see [11]).

However, it is still unknown whether the latter range of p is sharp. We
point out that Grafakos and Stefanov in [13] showed that⋃

q>1

Lq(Sn−1) & Gα(Sn−1) for any α > 0,(1.3)

⋂
α>0

Gα(Sn−1) * H1
(
Sn−1

)
*
⋃
α>0

Gα(Sn−1).(1.4)

In recent years, the investigation of boundedness of TΩ on Triebel-
Lizorkin space Ḟ β,qp (Rn) has attracted the attention of many authors.
For relevant results one may consult [5], [16], [6], [7], among others.
For example, J. Chen and C. Zhang in [7] (see also [24]) proved the
following:

Theorem B. Suppose that Ω satisfies (1.1) and Ω ∈ Gα(Sn−1) for all

α > 1. Then the operator TΩ is bounded on Ḟ β,qp (Rn) for all 1 < p, q <
∞ and β ∈ R.
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We notice that the condition imposed on Ω is that Ω ∈ Gα(Sn−1) for
all α > 1. The question that arises naturally is whether the operator TΩ

is bounded on Ḟ β,qp (Rn) if Ω ∈ Gα(Sn−1) for some α > 0. We shall show

that the condition Ω ∈ Gα(Sn−1) for all α > 1 is not necessary and we
just need Ω ∈ Gα(Sn−1) for some α > 0. The condition that α > 1 is
not necessary as described in the following theorem.

Theorem 1.1. Let Ω ∈ Gα(Sn−1) for some α > 0 and satisfy (1.1).

Then if α > 0, TΩ is bounded on Ḟ β,qp (Rn) for p ∈ ( 2+2α
1+2α , 2 + 2α),

q ∈ ( 2+2α
1+2α , 2 + 2α) and β ∈ R.

The question concerning the boundedness of TΩ when Ω ∈ H1
(
Sn−1

)
,

which is separate from the problem addressed in Theorems A and B in
light of (1.4), had been answered by Y. Chen and Y. Ding in [8].

The second type of our operators concerns a certain class of oscillatory
singular integral operators. To state our second result, we need some
preparation. Let P(n;m) denote the set of polynomials on Rn which
have real coefficients and degrees not exceeding m, and let H(n;m) de-
note the collection of polynomials in P(n;m) which are homogeneous of
degree m. Also, let P(n;m, 0) be the class of all P ∈ P(n;m) with
∇P (0) = 0. For P (x) =

∑
|η|≤m aηx

η, we set ‖P‖ =
∑
|η|≤m |aη| .

Let n ≥ 2, m ∈ N and α > 0. An integrable function Ω on Sn−1 is
said to be in the space A(n;m;α) if

(1.5) sup
P∈H(n;m), ‖P‖=1

∫
Sn−1

|Ω(y)|
(

log
1

|P (y)|

)1+α

dσ(y) <∞.

It was noted in [2] that A(n; 1;α) = Gα(Sn−1) and in the case n = 2,

∞⋂
m=1

A(2;m;α) = Gα(S1).

For P ∈ P(n; d), let TΩ,P be the oscillatory singular integral operator
defined by

(1.6) TΩ,P f(x) = p.v.

∫
Rn

eiP (y) Ω(y)

|y|n
f(x− y) dy.

We have the following:
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Theorem 1.2. Let n ≥ 2, d ∈ N. Let Ω satisfy (1.1) and Ω ∈⋂d
m=1A(n;m;α) for some α > 0. Then

(1.7) sup
P∈P(n;d,0)

‖TΩ,P (f)‖Ḟβ,qp (Rn) ≤ C(log d+ 1) ‖f‖Ḟβ,qp (Rn) ,

for p ∈ ( 2+2α
1+2α , 2 + 2α), q ∈ ( 2+2α

1+2α , 2 + 2α) and β ∈ R, where C is a
positive constant that depends on β, p, q, but not on d.

While technically Theorem 1.1 can be subsumed in Theorem 1.2, we
will first prove Theorem 1.1 and then use it in the proof of Theorem 1.2.

Corollary 1.3. Let n = 2, d ∈ N. Let Ω satisfy (1.1) and Ω ∈ Gα(S1)
for some α > 0. Then

(1.8) sup
P∈P(2;d,0)

‖TΩ,P (f)‖Ḟβ,qp (Rn) ≤ C(log d+ 1) ‖f‖Ḟβ,qp (Rn) ,

for p ∈ ( 2+2α
1+2α , 2 + 2α), q ∈ ( 2+2α

1+2α , 2 + 2α) and β ∈ R, where C is a
positive constant that depends on β, p, q, but not on d.

We remark that the Lp(Rn) ( 2+2α
1+2α < p < 2+2α) boundedness of TΩ,P

can be obtained by using Theorem 2 in [2] and employing an argument
in [12].

The third type of our operators concerns Marcinkiewicz integral op-
erators MΩ,q defined by

MΩ,qf(x) =

(∫ ∞
0

|FΩf(t, x)|q dt
t

)1/q

,

where

FΩf(t, x) =
1

t

∫
|u|≤t

f(x− u)
Ω(u′)

|u|n−1 du.

We notice that MΩ,2(f) is the classical Marcinkiewicz integral defined
by Stein in [22]. Our result concerns MΩ,q is the following:

Theorem 1.4. Let Ω ∈ Gα(S
n−1

) for some α > 0 and satisfy (1.1).
Then

(1.9) ‖MΩ,q(f)‖Lp(Rn) ≤ C ‖f‖Ḟ 0,q
p (Rn) ,

for p ∈ ( 2+2α
1+2α , 2 + 2α) and q ∈ ( 2+2α

1+2α , 2 + 2α).

We point out that Theorem 1.4 represents a generalization of Theo-
rem 1 in [4]. Earlier results concerning the operatorMΩ,q can be found
in [5] and [16], among others.

Throughout this paper, the letter C will stand for a positive constant
that may vary at each occurrence. However, C does not depend on any
of the essential variables.
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2. Some definitions and lemmas

Now we recall the definition of the Triebel-Lizorkin spaces.
Fix a radial Schwartz function Ψ ∈ S(Rn) such that supp(Ψ̂) ⊂{
ξ ∈ Rn : 1

2 ≤ |ξ| ≤ 2
}

, 0 ≤ Ψ̂(ξ) ≤ 1, Ψ̂(ξ) ≥ c > 0, if 3
5 ≤ |ξ| ≤

5
3 . De-

note Ψ̂t(ξ) = Ψ̂(tξ), t ∈ R so that Ψt(x) = t−nΨ(x/t). For 1 < p, q <∞
and β ∈ R, the homogeneous Triebel-Lizorkin space Ḟ β,qp (Rn) is the
space of all tempered distributions f ∈ S ′(Rn) satisfying

‖f‖Ḟβ,qp (Rn)
∼=

∥∥∥∥∥
(∫ ∞

0

∣∣t−βΨt ∗ f
∣∣q dt

t

)1/q
∥∥∥∥∥
Lp(Rn)

<∞.

It is well-known that S(Rn) is dense in Ḟ β,qp (Rn) and also the follow-
ing hold:

(1) Lp(Rn) = Ḟ 0,2
p (Rn);

(2)
(
Ḟ β,qp (Rn)

)∗
= Ḟ−β,q

′

p′ (Rn);

(3) Ḟ β,q1p (Rn) ⊂ Ḟ β,q2p (Rn) if q1 ≤ q2.

We need the following result from [1].

Lemma 2.1. Let h(t) = b0 + b1t + · · · + bdt
d be a real polynomial of

degree at most d, and let ψ ∈ C1[a, b]. Then for any j0 with 1 ≤ j0 ≤ d,
there exists a positive constant C independent of a, b, the coefficients of
b0, . . . , bd and also independent of d such that∣∣∣∣∣

∫ b

a

eih(t)ψ(t) dt

∣∣∣∣∣ ≤ C |bj0 |− 1
d

{
sup
a≤t≤b

|ψ(t)|+
∫ b

a

|ψ′(t)| dt

}
holds for 0 < a < b ≤ 1.

3. Proof of main results

Before we start proving our main results we need some prepara-
tion. By the translation invariance of TΩ and TΩ,P , it suffices to es-
tablish their boundedness on the Triebel-Lizorkin spaces with β = 0.

Choose a real valued, radial function φ ∈ S(Rn) such that supp φ̂ ⊂{
ξ ∈ Rn : 1

2 ≤ |ξ| ≤ 2
}
, φ̂(ξ) ≥ 0, φ̂(ξ) ≥ c > 0, if 3

5 ≤ |ξ| ≤
5
3 and for

all ξ 6= 0,
∫
R

∣∣∣φ̂2t(ξ)
∣∣∣2 dt = 1, where φ̂2t(ξ) = φ̂(2tξ), t ∈ R. Note that

φ2t(x) = 2−tnφ(x/2t), x ∈ Rn. Let S2tf(x) = φ2t ∗ f(x). Then we have

f =

∫
R

S2t(S2tf) dt for all f ∈ S(Rn)
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and

‖f‖Ḟ 0,q
p (Rn)∼

∥∥∥∥∥
(∫ ∞

0

|φt∗f |q
dt

t

)1/q∥∥∥∥∥
Lp(Rn)

∼

∥∥∥∥∥
(∫

R

|S2tf |q dt
)1/q∥∥∥∥∥

Lp(Rn)

.

For t ∈ R, let

σt,P (x) = eiP (x) Ω(x′)

|x|n
χ[2t,2(t+1))(|x|),

σt(x) = σt,0(x),

|σt| (x) =
|Ω(x′)|
|x|n

χ[2t,2(t+1))(|x|),

and let

σ∗f(x) = sup
t∈R
|σt| ∗ |f | (x).

First, it is easy to see that

(3.1) |σt| ∗ |f | (x) ≤ C
∫

Sn−1

|Ω(y)|Myf(x) dσ(y),

where

Myf(x) = sup
ρ∈R

1

ρ

∫ ρ

0

|f(x− sy)| ds

is the Hardy-Littlewood maximal function of f in the direction of y.
Since My is bounded on Lp(Rn), 1 < p < ∞ with bound independent
of y, by Minkowski’s inequality we get

(3.2) ‖σ∗(f)‖Lp(Rn) ≤ C ‖Ω‖L1(Sn−1) ‖f‖Lp(Rn) for 1 < p <∞.

Also, we shall need to study the boundedness of |σt| ∗ |f | on Ḟ 0,q
p (Rn).

Since

|σt| ∗ |f | (x) =

∫
R

S2(t+s) (|σt| ∗ S2(t+s) |f | (x)) ds,

for any t ∈ R and for any g ∈ Ḟ 0,q′

p′ (Rn), by Hölder’s inequality we have

|〈|σt|∗|f |), g〉|=
∣∣∣∣∫

Rn

∫
R

|σt| ∗ S2(t+s) |f | (x)S∗2(t+s)g(x) ds dx

∣∣∣∣
≤

∥∥∥∥∥
(∫

R

||σt|∗S2(t+s) |f ||q ds
)1/q∥∥∥∥∥

p

∥∥∥∥∥
(∫

R

∣∣S∗2(t+s)g
∣∣q′ds)1/q′∥∥∥∥∥

p′

.
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Taking supremum over g with ‖g‖
Ḟ 0,q′
p′ (Rn)

≤ 1 and by Hölder’s inequal-

ity we have

(3.3) ‖|σt| ∗ |f |‖Ḟ 0,q
p (Rn) ≤ C

∥∥∥∥∥
(∫

R

||σt| ∗ S2(t+s)(|f |)|q ds
)1/q

∥∥∥∥∥
p

for any t ∈ R.

Now, since p > 1, by duality there exists a nonnegative function h ∈
Lp
′
(Rn) with ‖h‖p′ = 1 such that∥∥∥∥∫

R

||σt| ∗ S2(t+s)(|f |)| dt
∥∥∥∥
p

=

∫
R

〈||σt| ∗ S2(t+s)(|f |)| , h〉 dt

≤
∫

R

〈|S2(t+s) |f | (x)| , σ∗(h̃)(−x)〉 dt

≤
∥∥∥∥∫

R

|S2(t+s)(|f |)| dt
∥∥∥∥
p

∥∥∥σ∗(h̃)
∥∥∥
p′
.

By the last inequality and (3.2) we have

(3.4)

∥∥∥∥∫
R

||σt|∗S2(t+s)(|f |)| dt
∥∥∥∥
p

≤C ‖Ω‖L1(Sn−1)

∥∥∥∥∫
R

|S2(t+s)(|f |)| dt
∥∥∥∥
p

.

Also, by a similar argument as in the the proof of (3.2) we have

(3.5)

∥∥∥∥sup
t∈R
||σt| ∗ S2(t+s)(|f |)|

∥∥∥∥
p

≤ C ‖Ω‖L1(Sn−1)

∥∥∥∥sup
t∈R
|S2(t+s)(|f |)|

∥∥∥∥
p

.

By interpolation between (3.4) and (3.5) we get

(3.6)

∥∥∥∥∥
(∫

R

||σt| ∗ S2(t+s)(|f |)|q ds
)1/q∥∥∥∥∥

p

≤ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q
p (Rn) ,

which when combined with (3.3) implies

(3.7) ‖|σt| ∗ |f |‖Ḟ 0,q
p (Rn) ≤ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q

p (Rn)

for any t ∈ R and 1 < p, q <∞.

Proof of Theorem 1.1: It is easy to see that

TΩf(x) =

∫
R

σt ∗ f(x) dt

and hence we have

TΩ(f) =

∫
R

Hs(f) ds,
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where

Hs(f) =

∫
R

S2t+s (σt ∗ S2t+sf) dt.

Since

(3.8) ‖TΩ(f)‖Ḟ 0,q
p (Rn) ≤

∫
R

‖Hs(f)‖Ḟ 0,q
p (Rn) ds,

we just need to estimate ‖Hs(f)‖Ḟ 0,q
p (Rn) . By the same argument as

proving (3.3) we get

(3.9) ‖Hs(f)‖Ḟ 0,q
p (Rn) ≤ C

∥∥∥∥∥
(∫

R

|σt ∗ S2(t+s)(f)|q dt
)1/q

∥∥∥∥∥
Lp(Rn)

.

We need now to consider three cases:

Case 1. p = q = 2. By (3.9) and Plancherel’s theorem we obtain

‖Hs(f)‖2Ḟ 0,2
2 (Rn) ≤ C

∫
R

∫
Rn

∣∣∣φ̂(2t+sξ)σ̂t(ξ)f̂(ξ)
∣∣∣2 dξ dt

≤ C
∫

R

∫
∆t+s

(
φ̂(2t+sξ)

)2

|σ̂t(ξ)|2
∣∣∣f̂(ξ)

∣∣∣2 dξ dt,(3.10)

where ∆t+s =
{
ξ ∈ Rn : 1

2 ≤
∣∣2(t+s)ξ

∣∣ ≤ 2
}
. By (3.10), invoking the

following estimate from [13]

(3.11) |σ̂t(ξ)| ≤ min
{∣∣2tξ∣∣ , (log

∣∣2tξ∣∣)−1−α
}
,

the choice of φ and Plancherel’s theorem along with the fact Ḟ 0,2
2 (Rn) =

L2(Rn) we get

(3.12) ‖Hs(f)‖Ḟ 0,2
2 (Rn) ≤ C (1 + |s|)−(α+1) ‖f‖Ḟ 0,2

2 (Rn) .

Case 2. p = q. By (3.3) and the Lp(1 < p < ∞) boundedness of My

with bound independent of y we get

‖Hs(f)‖Ḟ 0,q
p (Rn)

≤ C
(∫

R

∫
Rn

(∫
Sn−1

|Ω(y)|MyS2(t+s)f(x) dσ(y)

)q
dx dt

)1/q

≤ C
(∫

R

(∫
Sn−1

|Ω(y)| ‖MyS2(t+s)(f)‖q dσ(y)

)q
dx dt

)1/q
≤ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q

p (Rn) .

(3.13)
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Case 3. p > q. Let λ = (p/q)
′
. By (3.9) and duality, there exists a

nonnegative function g ∈ Lλ(Rn) with ‖g‖λ = 1 such that

‖Hs(f)‖q
Ḟ 0,q
p (Rn)

≤ C
∫

R

∫
Rn

∣∣∣∣∣
∫

2t≤|y|<2(t+1)

Ω(y′)

|y|n
S2(t+s)f(x− y) dy

∣∣∣∣∣
q

g(x) dx dt.

Therefore, by Hölder’s inequality, the choice of g and (3.2) we have

‖Hs(f)‖q
Ḟ 0,q
p (Rn)

≤C‖Ω‖
q
q′

L1(Sn−1)

∫
R

∫
Rn

∫
2t<|y|≤2(t+1)

|Ω(y′)|
|y|n

|S2(t+s)f(x−y)|qg(x) dy dx dt

≤C‖Ω‖
q
q′

L1(Sn−1)

∫
Rn

σ∗(g̃)(−x)

(∫
R

|S2(t+s)f(x)|q dt
)
dx

≤C‖Ω‖
q
q′

L1(Sn−1)

∥∥∥∥∥
(∫

R

|S2(t+s)f |q dt
)1/q

∥∥∥∥∥
q

p

‖σ∗(g̃)‖λ

≤C‖Ω‖
q
q′+1

L1(Sn−1) ‖f‖
q

Ḟ 0,q
p (Rn)

.

By the last inequality and (3.13) we get

(3.14) ‖Hs(f)‖Ḟ 0,q
p (Rn) ≤ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q

p (Rn)

for p ≥ q. By duality and interpolation we get

(3.15) ‖Hs(f)‖Ḟ 0,q
p (Rn) ≤ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q

p (Rn)

for all 1 < p <∞ and 1 < q <∞. By interpolation between (3.12) and
(3.15) we get

(3.16) ‖Hs(f)‖Ḟ 0,q
p (Rn) ≤ C (1 + |s|)−(1+α)θ ‖f‖Ḟ 0,q

p (Rn)

for all 0 ≤ θ < 1,
θ

2
<

1

p
< 1 − θ

2
, and

θ

2
<

1

q
< 1 − θ

2
. Assuming

θ > 1
α+1 , by (3.16) and (3.8) we obtain

(3.17) ‖TΩ(f)‖Ḟ 0,q
p (Rn) ≤ C ‖f‖Ḟ 0,q

p (Rn)

for p, q ∈ ( 2+2α
1+2α , 2 + 2α), which in turn completes the proof of Theo-

rem 1.1.
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Proof of Theorem 1.2: Let P (x) =
∑
|η|≤m aηx

η with ∇P (0) = 0. Since

the constant term in P (tx), if any, can be assimilated in the function f ,
we may assume without loss of generality that P (tx) does not have a con-

stant term. Write P (rx) =
∑d
j=2 Pj(x)rj , where Ps(x) =

∑
|η|=s aηx

η.

We shall first consider the case d = 2k for some k ≥ 1. The general case
will be an easy consequence of this special case d = 2k. Let mj = ‖Pj‖
and Q be given by Q(rx) =

∑d/2
j=2 Pj(x)rj . By a dilation in r we may as-

sume, without loss of generality, that max d
2<j≤d

mj = 1 (see [6, p. 392]).

Also, there is a j0, d
2 < j0 ≤ d, such that mj0 = 1. It is easy to see that

(3.18) TΩ,P f(x) =

∫
R

σt,P ∗ f(x) dt.

Decompose TΩ,P f(x) as

TΩ,P f(x) =

∫
t≤t0

σt,P ∗ f(x) dt+

∫
t>t0

σt,P ∗ f(x) dt

:= T 0
Ω,P f(x) + T∞Ω,P f(x),

(3.19)

where t0 ∈ R is to be chosen later. We start with T 0
Ω,P (f). We write

T 0
Ω,P f(x)=

∫
t≤t0−1

(σt,P ∗f(x)−σt,Q∗f(x)) dt+

∫
t≤t0

σt,Q∗f(x) dt

:= I1f(x) + I2f(x).

(3.20)

Let

E(d) = sup
P∈P(n;m,0)

∥∥T 0
Ω,P (f)

∥∥
Ḟ 0,q
p (Rn)

.

Since ∇P (0) = 0, we have ∇Q(0) = 0 and since deg(Q) ≤ d
2 , by induc-

tion we get

(3.21) ‖I2(f)‖Ḟ 0,q
p (Rn) ≤ E

(
d

2

)
for p ∈

(
2+2α
1+2α , 2 + 2α

)
and q ∈

(
2+2α
1+2α , 2 + 2α

)
.

Choose t0 so that d
2 2(t+1)( d2−1) ≤ 1 for all t ≤ t0 − 1. Therefore, for all

t ≤ t0 − 1 and 2t ≤ r ≤ 2t+1 we have∣∣∣eiP (ry) − eiQ(ry)
∣∣∣ ≤ ∑

d
2<j≤d

mjr
j ≤

∑
d
2<j≤d

2(t+1)j ≤ 2t+1.
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Hence

|I1f(x)| ≤
∫
t≤t0−1

2t+1 (|σt| ∗ |f | (x)) dt,

which easily implies

(3.22) ‖I1(f)‖Ḟ 0,q
p (Rn) ≤

∫
t≤t0−1

2t+1 ‖|σt| ∗ |f |‖Ḟ 0,q
p (Rn) dt.

By (3.7) and (3.22) we get

(3.23) ‖I1(f)‖Ḟ 0,q
p (Rn) ≤ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q

p (Rn) .

Now, since∥∥T 0
Ω,P (f)

∥∥
Ḟ 0,q
p (Rn)

≤ ‖I1(f)‖Ḟ 0,q
p (Rn) + ‖I2(f)‖Ḟ 0,q

p (Rn) ,

by (3.21) and (3.23) we get

E(d) ≤ E
(
d

2

)
+ C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q

p (Rn) .

Since d = 2k with k ≥ 1 we get

E(2k) ≤ E(2k−1) + C ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q
p (Rn)

and hence

(3.24) E(2k) ≤ E(2) + Ck ‖Ω‖L1(Sn−1) ‖f‖Ḟ 0,q
p (Rn) .

We need now to estimate E(2). To this end, we write
P (x) =

∑
|α|=2 aαx

α. Without loss of generality, we may assume that∑
|α|=2 |aα| = 1. Write

T 0
Ω,P f(x)=

∫
t≤t0−1

(σt,P ∗f(x)−σt∗f(x)) dt+

∫
t≤t0−1

σt ∗ f(x) dt

:= J1f(x) + J2f(x).

(3.25)

By following the same argument as in the proof of Theorem 1.1 we get

(3.26) ‖J2(f)‖Ḟ 0,q
p (Rn) ≤ C ‖f‖Ḟ 0,q

p (Rn)

for p ∈ ( 2+2α
1+2α , 2+2α) and q ∈ ( 2+2α

1+2α , 2+2α). Now, we turn our attention

to ‖J1(f)‖Ḟ 0,q
p (Rn) . Since∣∣∣eiP (y)− 1
∣∣∣ ≤∑
|α|=2

|aα| |y|2≤ 2t+1 whenever |y| ≤ 2t+1 ≤ 1 for t ≤ t0−1,

we get

|J1f(x)| ≤
∫
t≤t0−1

2t+1 (|σt| ∗ |f | (x)) dt.
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By the last inequality and (3.7) we get

(3.27) ‖J1(f)‖Ḟ 0,q
p (Rn) ≤ C ‖f‖Ḟ 0,q

p (Rn) .

By combining (3.25), (3.27) and (3.24)

(3.28) E(2k) ≤ C(k + 1) ‖f‖Ḟ 0,q
p (Rn) .

The case of general d is now trivial. If 2k−1 < d ≤ 2k, then

(3.29) E(d) ≤ E(2k) ≤ C(k+1) ‖f‖Ḟ 0,q
p (Rn) ≤ C(log d+1) ‖f‖Ḟ 0,q

p (Rn) .

We shall now treat the term
∥∥T∞Ω,P (f)

∥∥
Ḟ 0,q
p (Rn)

. Write T∞Ω,P f(x) as

T∞Ω,P f(x) =

∫
t>t0−1

σt,P ∗ f(x) dt :=

∫
t>t0−1

Ftf(x) dt.

Since

(3.30)
∥∥T∞Ω,P (f)

∥∥
Ḟ 0,q
p (Rn)

≤
∫
t>t0−1

‖Ft(f)‖Ḟ 0,q
p (Rn) dt,

we just need to estimate ‖Ft(f)‖Ḟ 0,q
p (Rn) . By following an argument that

is similar to the one in the proof of (3.3), we have

(3.31) ‖Ft(f)‖Ḟ 0,q
p (Rn) ≤ C

∥∥∥∥∥
(∫

R

|σt,P ∗ S2(t+s)f |q ds
)1/q

∥∥∥∥∥
p

.

As in the proof of Theorem 1.1, we need to consider three cases: (1) p =
q = 2, (2) p = q and (3) p > q. Now if p = q = 2, by (3.31) and
Plancherel’s theorem we obtain

‖Ft(f)‖2Ḟ 0,2
2 (Rn) ≤ C

∫
R

∫
Rn

|σt,P ∗ S2(t+s)f(x)|2 dx ds

≤ C
∫

R

∫
Rn

∣∣∣φ̂(2t+sξ)σ̂t,P (ξ)f̂(ξ)
∣∣∣2 dξ ds

≤ C
∫

R

∫
∆t+s

(
φ̂(2t+sξ)

)2

|σ̂t,P (ξ)|2
∣∣∣f̂(ξ)

∣∣∣2 dξ ds.
(3.32)
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Now we need to estimate |σ̂t,P (ξ)| . By definition and a change of variable,
we have

σ̂t,P (ξ) =

∫
Sn−1

Ω(y)

(∫ 1

2−1

ei(P (2(t+1)uy)−2(t+1)uy·ξ) du

u

)
dσ(y).

By Lemma 2.1 we get∣∣∣∣∫ 1

2−1

ei(P (2(t+1)uy)−2(t+1)uy·ξ) du

u

∣∣∣∣ ≤ C ∣∣∣2j0(t+1)Pj0(y)
∣∣∣− 1

d

.

By combining the last estimate with the trivial estimate∣∣∣∣∫ 1

2−1

ei(P (2(t+1)uy)−2(t+1)uy·ξ) du

u

∣∣∣∣ ≤ 1,

we obtain∣∣∣∣∫ 1

2−1

ei(P (2(t+1)uy)−2(t+1)uy·ξ) du

u

∣∣∣∣
≤ C

(
log 2j0(t+1)

)−(α+1)
(
d+ α+ log

1

|Pj0(y)|

)α+1

.

By the last inequality and since (a+ b)θ ≤ 2θ−1
(
aθ + bθ

)
(for θ ≥ 1 and

a, b ≥ 0) we get∣∣∣∣∫ 1

2−1

ei(P (2(t+1)uy)−2(t+1)uy·ξ) du

u

∣∣∣∣
≤ C (j0(t+ 1))

−(α+1)

[
(d+ α)

α+1
+

(
log

1

|Pj0(y)|

)α+1
]

≤ C(t+ 1)−(α+1)

[
1 +

(
log

1

|Pj0(y)|

)α+1
]
.

Since Pj0 ∈ H(n;m) and ‖Pj0‖ = 1, we get

(3.33) |σ̂t,P (ξ)| ≤ C(t+ 1)−(α+1).
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Therefore, by (3.32)–(3.33) and by Plancherel’s theorem we get

(3.34) ‖Ft(f)‖Ḟ 0,2
2 (Rn) ≤ C(t+ 1)−(α+1) ‖f‖Ḟ 0,2

2 (Rn) .

As for the cases p = q and p > q, we follow the same argument as in the
proof of Theorem 1.1 (in dealing with these cases the factor eiP (y) being
harmless) to get

(3.35) ‖Ft(f)‖Ḟ 0,q
p (Rn) ≤ C ‖f‖Ḟ 0,q

p (Rn)

for p ≥ q. Now, the rest of the proof will follow by (3.30), (3.34)–(3.35)
and the same argument as in the proof of (3.17). This completes the
proof of Theorem 1.2.

Proof of Theorem 1.4: Define the family of measures {λt : t ∈ R} by

λt ∗ f(x) =
1

2t

∫
|y|≤2t

Ω(y′)

|y|n−1 f(x− y) dy.

It is easy to see that

MΩ,qf(x) ∼
(∫

R

|λt ∗ f(x)|q dt
)1/q

.

Write

λt ∗ f =

∫
R

(λt ∗ S2t+sf) ds,

where S2tf(x) = φ2t ∗ f(x) with φ given as above and satisfies the

condition

∫
R

φ̂2t(ξ) dt = 1 instead of

∫
R

∣∣∣φ̂2t(ξ)
∣∣∣2 dt = 1. Now, by

Minkowski’s inequality we have

‖λt ∗ f‖Lq(R) ≤
∫

R

As(f) ds,

where Asf(x) =

(∫
R

|λt ∗ S2t+sf(x)|q dt
)1/q

. By invoking the esti-

mates ∣∣∣λ̂t(ξ)∣∣∣ ≤ min
{∣∣2tξ∣∣ , (log

∣∣2tξ∣∣)−1−α
}

from [13] and following the same arguments as in the proof of (3.16) we
obtain

(3.36) ‖As(f)‖Lp(R) ≤ C (1 + |s|)−η ‖f‖Ḟ 0,q
p (Rn)
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for p ∈ ( 2+2α
1+2α , 2 + 2α), q ∈ ( 2+2α

1+2α , 2 + 2α) and for some η > 1. Thus we
have

‖MΩ,q(f)‖Lp(R) ≤ C ‖λt ∗ f‖Lp(Lq(R),Rn)

≤
∫

R

‖As(f)‖Lp(R) ds ≤ C ‖f‖Ḟ 0,q
p (Rn)

for p ∈ ( 2+2α
1+2α , 2 + 2α), q ∈ ( 2+2α

1+2α , 2 + 2α). Theorem 1.4 is proved.
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matics 78, Birkhäuser Verlag, Basel, 1983. DOI: 10.1007/978-3-

0346-0416-1.

http://dx.doi.org/10.1353/ajm.1997.0024
http://dx.doi.org/10.1512/iumj.1998.47.1521
http://dx.doi.org/10.1007/s11766-996-0025-0
http://dx.doi.org/10.1016/j.jmaa.2008.05.018
http://dx.doi.org/10.1016/j.jmaa.2008.05.018
http://dx.doi.org/10.1007/s00209-009-0559-y
http://dx.doi.org/10.1007/s00209-009-0559-y
http://dx.doi.org/10.1090/S0894-0347-96-00185-3
http://dx.doi.org/10.1090/S0894-0347-96-00185-3
http://dx.doi.org/10.1007/PL00004479
http://dx.doi.org/10.1007/PL00004479
http://dx.doi.org/10.1090/S0002-9947-1958-0112932-2
http://dx.doi.org/10.1090/S0002-9947-1958-0112932-2
http://dx.doi.org/10.1007/978-3-0346-0416-1
http://dx.doi.org/10.1007/978-3-0346-0416-1


Boundedness of Rough Integral Operators 277

[24] C. Zhang, Weighted estimates for certain rough singular integrals,
J. Korean Math. Soc. 45(6) (2008), 1561–1576. DOI: 10.4134/JKMS.

2008.45.6.1561.

H. M. Al-Qassem:

Department of Mathematics and Physics

Qatar University
Doha-Qatar

E-mail address: husseink@qu.edu.qa

L. C. Cheng:

Department of Mathematics

Bryn Mawr College
Bryn Mawr, PA 19010

U.S.A.

E-mail address: lcheng@brynmawr.edu

Y. Pan:

Department of Mathematics
University of Pittsburgh

Pittsburgh, PA 15260

U.S.A.
E-mail address: yibiao@pitt.edu
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