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In rotating machinery, the second most common fault after imbalance is misalignment. Misalignment can have a severe impact
on equipment and may reduce the machine’s lifetime considerably. In this paper, the simultaneous effect of imbalance and
misalignment (parallel or angular) on the vibration spectra of rotating machinery will be discussed. A numerical model is
developed and used to obtain the time and frequency responses of the rotor-coupling-bearing system to the simultaneous effect
of these faults. *e numerical model shows that the imbalance was mainly related to the peak located around 1X, whereas
misalignment was linked to the peak around 2X. In addition, the parallel misalignment fault magnifies the 2X amplitude of the
displacement response, whereas the response of angular misalignment is captured at the 2X and 4X amplitudes. *is study also
examines the effects of changing the model’s rotational speed, misalignment level, and coupling type for angular and
parallel misalignments.

1. Introduction

Rotating machinery is an essential part of many industrial
sectors, and thus monitoring the condition of such ma-
chinery is continuously attracting researchers. *e coupling
is a vital part of any rotating machine, but it is often
neglected because of its low cost against the total cost of the
equipment. Flexible couplings are essential mechanical el-
ements used in rotating machinery to allow power trans-
mission between a driver and a driven shaft. Couplings are
also used because they can compensate for inevitable mis-
alignments between linked shafts. In the research literature,
a strong focus on explaining the misalignment behavior in
rotor dynamics has led to the experimental approach being
used less frequently than numerical simulations. Suitable
experimental methods include vibration analysis, torque,
temperature capturing, and motor current consumption,
whereas simulation methods include structural analysis,
finite element (FE) analysis, and mathematical derivations.
Out of all these methods used to capture misalignment
faults, vibration spectrum analysis is the most widely

accepted one. Here, we propose a numerical model that can
evaluate the vibration response of misaligned shafts in ro-
tating systems.

1.1. Misalignment in Rotating Shafts. Vibration in rotating
machinery can sometimes be so dangerous that it destroys
critical parts of the machine. *e two primary sources of
vibration within rotating mechanisms are rotor imbalance
and shaft misalignment. Rotor imbalance is recognized as
one of themost common origins of machine vibration, and it
is present to some degree in nearly all rotating equipment.
Physically, imbalance occurs when the center of mass (axis of
inertia) of a rotating assembly does not coincide with the
center of rotation (the geometric axis). Misalignment occurs
when a rotating driveshaft, and the driven shafts coupled to
it, does not rotate around the same central axis. Despite
efforts to aligning interconnected shafts accurately, perfect
alignment between shafts is challenging to maintain and
achieve. Consequently, rotating machines often operate
under less than optimum alignment conditions. *is vexing
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problem has challenged and intrigued maintenance pro-
fessionals for decades because it can arise from many
sources, including manufacturing and mounting tolerances,
operational deflections caused by thermal expansion and
distortion, foundation accommodation, working forces, and
worn bearings [1]. *e many different causes of misalign-
ment are why this malfunction is known to be the second
most frequent source of faults in rotating machinery, with
only mass imbalance being more prevalent [2]. By itself, this
problem represents more than 60% of failures reported in
the industry [3, 4]. In the last decade, misalignment de-
tection techniques have developed rapidly. However, there
remains a need for a mechanism that describes misalign-
ment phenomena more scientifically. *ere are many ex-
perimental methods for predicting misalignment faults, such
as monitoring the motor’s current, torque, acoustic, and
vibration signals. *e vibration-based diagnostics are most
often used because vibration signals provide an abundance
of mechanical information and are easier to collect [5].
Nevertheless, the vibration response of a system including a
rotor, a coupling, and a bearing subjected to the coupled
effects of misalignment and imbalance faults has not yet
been fully explored.

1.2. Parallel and AngularMisalignments. In rotor dynamics,
shafts have either parallel or angular misalignment, or both,
as shown in Figure 1.

As portrayed in Figure 1, parallel misalignment is the
condition when the axes of rotation are not collinear and do
not intersect with each other. However, when the two axes of
rotation are not collinear, but their centerlines intersect, this
is known as angular misalignment. Parallel and angular
misalignments can occur vertically and horizontally.
Combined misalignment is the case where both parallel and
angular misalignments exist simultaneously.

1.3. Experimental and Numerical Investigation of the Rotor-
Coupling-Bearing System. In general, misalignment in the
coupling leads to vibration throughout the mechanical
system. *e characteristic used to identify shaft mis-
alignment includes a high level of axial vibrations, a 180°
phase shift between axial vibrations on the shaft tips, and
the manifest presence of a harmonic component in the
signal spectrum at double the rotation speed; these are all
widely accepted signs for fault diagnosis [6, 7], based on
system vibrations. Sudhakar and Sekhar [8] reviewed the
various methods that have been used for modeling the
coupling, the effects of misalignment, and the condition
monitoring techniques. Expressions for the forces and
moments generated by parallel misalignment were defined
by Gibbons [9]. Xu and Marangoni [10] explored mis-
aligned rotor systems with imbalance and misalignment
faults numerically and experimentally with flexible and
helical couplings. Typically, peaks at the rotation speed
(1X) and double the rotation speed (2X) were predominant
in the vibration spectra. Sekhar and Prabhu [11] modeled

the effects of coupling misalignment on rotor vibrations
with eight degrees of freedom (DOFs) per node and de-
veloped expressions for the forces and moments involved
in angular misalignment.

Despite the fact that 2X components on signal spectra
are frequently reported as a sign of misalignment [12–14],
varying results have been published, as shown in the
theoretical work of Al-Hussain and Redmond [15], who
showed that parallel misalignment manifests as synchro-
nous vibrations. Moreover, the experimental results of
different researchers revealed distinct spectral content for
particular couplings under the same conditions of mis-
alignment [3].

A simple linear mathematical model with flexible cou-
pling was developed by Redmond [16] to analyze the forces
in the system. He claimed that parallel misalignment by itself
produces multiharmonic (i.e., 1X, 2X, and 3X) static and
dynamic system responses. Lees [17], on the contrary, in-
vestigated rigid rotors and developed an analytical model for
a linear system that included parallel misalignment but no
damping. *is linear model generated responses at multiple
harmonics of the shaft’s rotation speed. Jalan and Mohanty
[18] used the residual generation method to develop a
model-based fault detection method for a simple system
involving a rotor and a bearing.

Similarly, Hariharan and Srinivasan [19, 20] developed
an FE model of a simple rotor-bearing system with flexible
coupling and correlated the FE model with experimental
results for parallel misalignment only and found that in this
case, 2X component was dominant. Xu and Marangoni [12]
conducted experiments which showed that the vibration
responses caused by misalignment occurred at even mul-
tiples of the rotational speed (2X, 4X, etc.). Patel et al. [21]
developed a coupled rotor model that applied Timoshenko’s
beam theory as well as the effects of parallel and angular
misalignments. Patel et al. used an experimental setup to
discover diagnostic features in the 1X to 3X range. Sekhar
and Prabhu [11] numerically estimated the effects of parallel
misalignment on the vibration response at 2X within the
rotating system. Jun-Lin and Yu-Chih Liu [22] used the
concept of multiscale entropy alongside wavelet denoising to
detect shaft misalignment. Dewell and Mitchell [13] showed
experimentally that the vibration components at 2X and 4X
mainly depend on misalignment in the coupling.

More recently, Hujare and Karnik [4] carried out ex-
perimental and numerical analysis (using FE models) for an
aluminum shaft-rotor-bearing system with parallel mis-
alignment. Misalignment effects at the coupling location
were simulated via a nodal force vector. *ey observed that
the impact of parallel misalignment was dominant at the
characteristic 2X frequency rather than the 1X and 3X
frequencies. *e natural frequency has a crucial role in
determining the speeds at which the characteristic 1X, 2X,
and 3X frequencies reach their maximum amplitudes.

More recently, Li et al. [23] used an asymmetrical
generator rotor system supported on journal bearings to
examine the nonlinear dynamic behavior induced by parallel
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misalignment. By using numerical techniques (e.g., rotor
orbits and their frequency spectra, Poincaré maps, and the
greatest Lyapunov exponent), Li et al. [23] demonstrated
that the supersynchronous component in the frequency
spectrum at 2X was the key to identifying and diagnosing
rotor misalignment.

Wand and Jiang [24] established a dynamic model for
researching imbalance-misalignment coupling faults in a
dual rotor system with intershaft bearing. Numerically
and experimentally, they investigated the effect of the
rotational speed ratio, mass eccentricity, misalignment
angle, and parallel misalignment on the vibration char-
acteristics of outer and inner rotors. *e proposed model
was verified by cascade plots, time waveforms, and fre-
quency spectra. Recently, Wang and Gong [25] developed
a comprehensive model to study misalignment and im-
balance faults for a rotor system, of six degrees of freedom,
via a FE approach. Misalignment effects were considered
at the coupling location through the application of nodal
force and moment vectors. Wang and Gong [25] managed
to highlight some exciting features of parallel and angular
misalignments in horizontal and vertical displacement
forces and moments. Srinivas et al. [26] analyzed various
system faults induced by angular misalignment within
coupled rotor-train systems integrated with auxiliary
active magnetic bearing (AMB) support. *e method
quantified the effect of misalignment by estimating ad-
ditive coupling stiffness. *e use of additive coupling
stiffness to assess the severity of angular misalignment was
a novel concept presented in this work. Sawalhi et al. [27]
showed a detailed FE and dynamic simulation model of a
vibration test rig. *e result of the simulation was com-
pared with experimental results. Both the simulated and
experimental results showed an increase in the lower and
higher harmonics of the shaft’s rotational speed when the
acceleration vibration signal with smearing was consid-
ered. Recently, the work presented in [28] investigated the
deformation in a hexangular flexible coupling that joined
a pair of rigid rotors that were misaligned (angular and
parallel misalignments). *e relationships among the
vibration responses of the 1X, 2X, and 3X components and

the moving orbits of the coupled rotors were simulated
numerically at different speeds of rotation with and
without misalignment. *e results provided theoretical
support for diagnosing and detecting faults within ro-
tating machinery that includes hexangular flexible
coupling.

*e majority of the cited articles mainly focused on
experimental and/or numerical investigations of angular
and parallel misalignments. However, very few studies have
analyzed a realistic case where misalignment and imbal-
ance coexist simultaneously. Until now, these conditions
have not been systematically investigated, although perfect
balance in a rotating system is hard to achieve in practice, as
some degrees of imbalance will always be present. Many of
the previous studies had noticeable limitations since their
systems were very complicated, or their theoretical de-
velopments were based on unrealistic assumptions that did
not describe the combined effect of imbalance and mis-
alignment, which were unable to capture real physical
phenomena or were not applied in extreme cases of loading
and deformation. *erefore, these systems are not easily
available and/or often practically not applicable. Accord-
ingly, this article aims to discuss the vibration features,
nonlinear dynamics, and parameter properties of the
combined effect of imbalance and misalignment in rotating
machinery.

*is paper is structured as follows: Section 2 presents the
model used in this paper and provides a mathematical
derivation of the forces and moments impacting the system
as a result of misalignment and imbalance. Section 3
presents the results of various numerical experiments that
were conducted and presents discussion of the results. Fi-
nally, Section 4 presents the conclusions of this research.

2. Modeling the Rotor-Coupling-
Bearing System

2.1. Multibody Dynamic Model of the Rotating Assembly.
*e rotating assembly considered in the present inves-
tigation consists of two shafts connected together at their
endpoints by a metallic spiral coupling. Each one of these
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Figure 1: (a) Parallel misalignment, (b) angular misalignment, and (c) combined misalignment.
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shafts is partially supported, from the coupling side, by a
ball bearing. To make the analysis nonspecific for a
particular type of coupling and to ease comparisons with
other investigations, the coupling was simulated as two
disks, interconnected by stiffness and damping elements.
A diagram of the assembly model, including the main
components and geometric parameters, is presented in
Figure 2.

*e coordinate system was chosen in this model so that
one of the axes (the z-axis) lay along the axial (longitudinal)
direction of both shafts, whereas the x-axis and the y-axis lay
along the radial directions. In the rest of the model de-
scription, the right-hand side of the coupling is indicated by
the index 1, and the left-hand side is indicated by 2. Each of
the coupling disks is able to move independently in three
directions and to rotate freely around three axes. *erefore,
with respect to Node 1, located at the center of gravity of the
outer surface of disk 1, and to Node 2, located at the center of
gravity of the outer surface of disk 2, the system’s motion is
described in total by 12 DOFs, in which each node has six
DOFs, as indicated by the following equation:

q(t) � x1 x2 y1 y2 z1 z2 θ1 θ2 β1 β2 c1 c2􏼂 􏼃
T
,

(1)

where x is the displacement in the radial horizontal direc-
tion, y is the displacement in the radial vertical direction, z is
the displacement in the axial/longitudinal direction, θ is the
rotation around the z-axis, β is the rotation around the x-
axis, and c is the rotation around the y-axis.

A second-order differential equation determines the
motions of the rotor-coupling-bearing system shown in
Figure 2:

[M] q
..

􏼈 􏼉 +[C] q
.

􏼈 􏼉 +[K] q􏼈 􏼉 � F(t){ }, (2)

where [K] is the stiffness matrix, [C] is the damping matrix,
and [M] is the mass matrix. Symbols with one dot and two
dots in equation (2) represent the first and second deriva-
tives with respect to time.

2.1.1. Determination of the Mass Matrix. *e system’s ki-
netic energy caused by rotation and translation motion is
expressed as follows:

T �
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(3)

where m1 is the mass of Subsystem 1 (the right-hand side of
the coupling), m2 is the mass of Subsystem 2 (the left-hand
side of the coupling), Ix1 is the mass moment of inertia of
Subsystem 1 in the x direction, Ix2 is the mass moment of
inertia of Subsystem 2 in the x direction, Iy1 is the mass
moment of inertia of Subsystem 1 in the y direction, Iy2 is
the mass moment of inertia of Subsystem 2 in the y direction,
Iz1 is the mass moment of inertia of Subsystem 1 in the z
direction, and Iz2 is the mass moment of inertia of Sub-
system 2 in the z direction.

*e coefficients of the mass matrix are obtained by the
following derivative rule:

Mij �
z

zq
.

i

z

zq
.

j

(T). (4)

By applying equation (4), we obtain the following ex-
pression of the mass matrix [M]:
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Figure 2: Multibody dynamic model of a rotating assembly (coupling + shafts + bearings).
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m1 0 0 0 0 0 0 0 0 0 0 0

0 m2 0 0 0 0 0 0 0 0 0 0

0 0 m1 0 0 0 0 0 0 0 0 0

0 0 0 m2 0 0 0 0 0 0 0 0

0 0 0 0 m1 0 0 0 0 0 0 0

0 0 0 0 0 m2 0 0 0 0 0 0

0 0 0 0 0 0 lz1 0 0 0 0 0

0 0 0 0 0 0 0 lz2 0 0 0 0

0 0 0 0 0 0 0 0 lx1 0 0 0

0 0 0 0 0 0 0 0 0 lx2 0 0

0 0 0 0 0 0 0 0 0 0 ly1 0

0 0 0 0 0 0 0 0 0 0 0 ly2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(5)

2.1.2. Determination of the Stiffness Matrix. Based on the
previously defined degrees of freedom, the equation for
potential energy, in the shafts and coupling, is given by

V �
1
2

KBS1xx
2
1 +

1
2

KBS1yy
2
1 +

1
2

KBS2xx
2
2 +

1
2

KBS2yy
2
2

+
1
2

KCx x1 − x2( 􏼁
2

+
1
2

KCy y1 − y2( 􏼁
2

+
1
2

KCz z1 − z2( 􏼁
2

+
1
2

KCTx β1 − β2( 􏼁
2

+
1
2

KCTy c1 − c2( 􏼁
2

+
1
2

KCTz θ1 − θ2( 􏼁
2

+
1
2

KS1zz
2
1 +

1
2

KS2zz
2
2

+
1
2

KS1Tzθ
2
1 +

1
2

KS2Tzθ
2
2,

(6)

where the index B refers to the bearing, S refers to the shaft,
C refers to the coupling, and T refers to torsion. In the
previous expressions, since the two springs KB and KS are
connected in parallel, their equivalent values will be

KBS1x �
KB1x

KS1x

� KB1x + KS1x,

KBS1y �
KB1y

KS1y

� KB1y + KS1y,

KBS2x �
KB2x

KS2x

� KB2x + KS2x,

KBS2y �
KB2y

KS2y

� KB2y + KS2y.

(7)

Similarly, the coefficients of the stiffness matrix are
obtained by the following derivative rule:

Kij �
z

zqi

z

zqj

(V). (8)

Consequently, the stiffness matrix [K] is given as

KBS1x + KCx −KCx 0 0 0 0 0 0 0 0 0 0

−KCx KBS2x + KCx 0 0 0 0 0 0 0 0 0 0

0 0 KBS1y + KCy −KCy 0 0 0 0 0 0 0 0

0 0 −KCy KBS2y + KCy 0 0 0 0 0 0 0 0

0 0 0 0 KCz + KS1z −KCz 0 0 0 0 0 0

0 0 0 0 −KCz KCz + KS2z 0 0 0 0 0 0

0 0 0 0 0 0 KCTz + KS1Tz −KCTz 0 0 0 0

0 0 0 0 0 0 −KCTz KCTz + KS2Tz 0 0 0 0

0 0 0 0 0 0 0 0 KCTx −KCTx 0 0

0 0 0 0 0 0 0 0 −KCTx KCTy 0 0

0 0 0 0 0 0 0 0 0 0 KCTx −KCTy

0 0 0 0 0 0 0 0 0 0 −KCTy KCTy
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.

(9)
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2.1.3. Determination of the Damping Matrix. *ere are
numerous paths to damping, and in a complex structure,
several means of damping may take place simultaneously at
different locations throughout the structure. *e damping
considered in this work accounts for the interconnecting
parts, at the endpoints of the shafts, namely, the bearings and
the coupling, and the structural damping of the shafts
themselves.

Viscous damping is a formulation of the damping
phenomena, in which the force of damping is proportional
to the velocity. Most often, viscous damping refers to
dashpot, a simple technique used to model the energy
dissipation in mechanical systems and thus represents
several dissipative phenomena such as heat, friction, and
plastic yielding. For those reasons, several dashpots were
introduced in the system to account for viscous damping
behavior. For the proposed model, the dissipation energy
equation because of viscous damping is detailed as follows:

Dv �
1
2

CB1x x
. 2
1 +
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2

CB1y y
. 2
1 +
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2

CB2x x
. 2
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CCz z
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(10)

*e coefficients of the viscous damping matrix are ob-
tained by using the following derivative rule:

Cv ij �
z

zq
.

i

z

zq
.

j

(Dv). (11)

*e produced viscous damping matrix [Cv] is detailed
below:

CB1x + CCx −CCx 0 0 0 0 0 0 0 0 0 0

−CCx CB2x + CCx 0 0 0 0 0 0 0 0 0 0

0 0 CB1y + CCy −CCy 0 0 0 0 0 0 0 0

0 0 −CCy CB2y + CCy2 0 0 0 0 0 0 0 0

0 0 0 0 CCz −CCz 0 0 0 0 0 0

0 0 0 0 −CCz CCz 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
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. (12)

It is quite common to describe the structural damping
matrix [Cs] of the system by a matrix that is proportional to
the mass and the stiffness matrices, which can be expressed
as

Cs􏼂 􏼃 � a[M] + b[K], (13)

where a and b are the constants; according to [25], they
have the following values: a � 5 and b � 1.35 × 10− 5,
respectively.

*e following expression describes the total damping
effect:

[C] � Cst􏼂 􏼃 + Cv􏼂 􏼃, (14)

where [Cst] is the structural damping matrix, [Cv] is the
viscous damping matrix, and [C] is the total damping
matrix

*e model of the rotor-coupling-bearing system has
several assumptions that apply throughout this paper:

(i) Both shafts were connected to the coupling by an
interference fit to avoid introducing keys to the
system

(ii) *e bearings did not impose any longitudinal
stiffness or damping

(iii) *e discs of the system are responsible for unbal-
ance (introduced into the system as eccentricity in
the excitation force equation)

(iv) *e coupling’s stiffness is independent of the angle
of rotation

(v) *e stiffness and damping coefficients of the cou-
pling are fully described in three directions (one
axial direction and two radial directions)

(vi) Imbalance and misalignment are the only excita-
tion forces in the system

(vii) *e gyroscopic effect is neglected since the rotation
speed is low (since less than 1000 rpm)
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2.2. Modeling the Forces of Imbalance and Misalignment.
*e general arrangement of the coupled shafts with parallel
and angular misalignments is shown in Figure 3.

*e total misalignment ∆E is defined as the sum of the
parallel misalignment Δy and the angular misalignment α,
where O1 and O2 are the center of articulation for Sub-
systems 1 and 2, respectively:

ΔE � Δy + ΔL tan(α). (15)

*e excitation force that applies within the coupling is
induced by two phenomena, which are the imbalance
(denoted IB) and the misalignment (denoted MA). *ere-
fore, the vector force has two components:

F(t){ } � FIB(t)􏼈 􏼉 + FMA(t)􏼈 􏼉 . (16)

2.2.1. Forces due to Imbalance. *e imbalance force is re-
lated to the dynamic eccentricity of the system that appears
in the two parts of the coupling. *e radial imbalance force
can be defined as follows:

FUB(t) �

Fx1 � m1e1ω
2sin(ωt + ϕ)

Fx2 � m2e2ω
2sin(ωt + ϕ)

Fy1 � m1e1ω
2cos(ωt + ϕ)

Fy2 � m2e2ω
2cos(ωt + ϕ)

Fz1 � 0

Fz2 � 0

Fθ1 �
Iz1

r
e1ω

2sin(ωt + ϕ)

Fθ2 �
Iz2

r
e2ω

2sin(ωt + ϕ)

Fβ1 � 0

Fβ2 � 0

Fc1 � 0

Fc2 � 0
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, (17)

where e1 is the mass eccentricity of Subsystem 1, e2 is the
mass eccentricity of Subsystem 2, ω is the rotational speed of
the shafts, t is the time, r is the radius of eccentricity in the
coupling, and ϕ is the phase between the imbalance and the
misalignment forces.

2.2.2. Forces due to Parallel Misalignment. Misalignment is
not easy to detect on machinery that is running. *e radial
forces transmitted from one shaft to another, through a
coupling, are typically combination of static (i.e., unidi-
rectional) and dynamic forces that are difficult to measure
externally. Unfortunately, outside evaluation of how much
force is being applied to the couplings is practically
unavailable.

In the literature, the attempts to theoretically describe
and quantify the internal forces inside a coupling are rel-
atively limited. Because of the difference in the internal
geometry, a theoretical model developed for a particular type
of coupling is generally not suitable for other types. Of
particular interest is the theoretical model developed by
Wang and Jiang [24], for a disc coupling, and refined by
Wang and Gong [25].

As developed in [25], in the case of a parallel mis-
alignment, the radial forces Fx1 andFy1 on the right-hand
side of the coupling are expressed as

Fx1 � F sin(ωt) � Kx

ΔE
2

cos(ωt)sin(ωt)

� Kx

ΔE
4

sin(2ωt),

(18)

Fy1 � F cos(ωt) � Ky

ΔE
2

cos(ωt)cos(ωt)

� Ky

ΔE
4

(1 + cos 2ωt),

(19)

where Kx and Ky are the coupling stiffness in the x and y
directions, respectively, and ΔE is the total misalignment.

In the previous equations, one can see that for the de-
veloped expressions, as expected beforehand, the force in the
x direction is harmonic. At the same time, the one in the y
direction, because of the supporting condition in that di-
rection, is a combination of static and harmonic compo-
nents. Moreover, in both directions, the forces are pulsating
with double the rotation frequency, i.e., the radial forces
change two times their directions for one rotation cycle of
the coupling.

*e radial forces on the left-hand side of the coupling are
simply the opposite of the opposite side:

Fx2 � −Fx1, (20)

Fy2 � −Fy1. (21)

ΔL

ΔE
Δy

O2

O1

α

Figure 3: Model of misalignment modeling between Subsystems 1
and 2.
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2.2.3. Forces due to Angular Misalignment. *e angular
misalignment forces were derived by following the meth-
odology of Xu and Marangoni [12] and Wang and Gong
[25]. Figure 4 illustrates the torque decomposition of the
coupling subsystems in which an angular misalignment fault
is present.

*e driving torque T, from the motor, splits into two
components, TZ and TR, when it passes through the mis-
aligned coupling, as shown below:

TR � T sin α, (22)

Tz � T cos α. (23)

*e torque component Tz is along the rotor axis, while
the component TR is perpendicular, causing lateral shaft
bending deflection. *e bending moment TR can be
decomposed into two components, in the x and y directions,
which can be expressed as follows:

Tx � T sin α cos(ωt),

Ty � T sin α sin(ωt).
(24)

As mentioned by Xu and Marangoni [12] andWang and
Gong [25], the ratio of the relative velocity between the
misaligned shafts is calculated as

ω2

ω1
�

C1

1 + C2cos 2ωt
, (25)

where

C1 �
4 cos α

3 + cos 2α
,

C2 �
1 − cos α
3 + cos 2α

.

(26)

By differentiating equation (25) and making minor
rearrangements, we can obtain an expression for the ac-
celeration at Node 2 as follows:

θ
..

�
2C1C2 ω

2sin 2ωt

1 + C2cos 2ωt( 􏼁
2. (27)

Next, the torque caused by angular misalignment is
calculated via the following equation:

TZ � IZθ
..

� IZ

2C1C2 ω
2sin 2ωt

1 + C2cos 2ωt( 􏼁
2. (28)

Consequently, the torques in the x and y directions are
expressed as

Tx � IZtan α
2C1C2 ω

2sin 2ωt

1 + C2cos 2ωt( 􏼁
2 cosωt,

Ty � IZtan α
2C1C2 ω

2sin 2ωt

1 + C2cos 2ωt( 􏼁
2 sinωt.

(29)

*e misalignment force vector for parallel and angular
misalignments is defined as follows:

FMA(t) �

Fx1 � +Kx

ΔE
4

sin(2ωt)

Fx2 � −Kx

ΔE
4

sin(2ωt)

Fy1 � +Ky

ΔE
4

(1 + cos 2ωt)

Fy2 � −Ky

ΔE
4

(1 + cos 2ωt)

Fy2 � −Ky

ΔE
4

(1 + cos 2ωt)

Fz1 � 0

Fz2 � 0

Fθ1 � +IZ2
2C1C2ω

2sin 2ωt

1 + C2cos 2ωt( 􏼁
2

Fθ2 � −IZ2
2C1C2ω

2sin 2ωt

1 + C2cos 2ωt( 􏼁
2

Fβ1 � +Fθ1tan α · cosωt

Fβ2 � −Fθ1tan α · cosωt

Fc1 � +Fθ1 tan α · sinωt

Fc2 � −Fθ1tan α · sinωt
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, (30)

2.3. Determination of Flexible Coupling Stiffness. *e two
couplings used in this study are aluminum spiral couplings
(Figure 5), with an outer diameter of 24/16 inches (38.1mm)
and an inner diameter of 10/16 inches (15.875mm). *ese
are named the “white” and “black” couplings due to the color
of their coatings. *e two couplings are similar in all aspects
apart from the length and degree of their spiral grooves. *e
white coupling has 380° grooves, while the black coupling
has 525° grooves.

*e coupling flexibility influences the dynamics of the
rotatory system, especially under misalignment conditions.
*e ability of a flexible coupling to accommodate mis-
alignment is a vital feature to reach desired performance in
terms of vibrational behavior.*erefore, accurate estimation
or measurement of the coupling stiffness is always a fun-
damental step in any theoretical or numerical investigation.
*e stiffness values of the actual couplings were estimated by
FE simulations, as portrayed in Figure 6. *e stiffness of the
coupling in a specific direction is calculated by correlating
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the load applied in that direction with the resulting de-
flection in the same direction. *e torsional stiffness is
obtained in a similar way, except for the load, which is
replaced by a moment.

*e reliability of any modeling process depends not only
on the development of the model itself but also on the
numerical values of its physical parameters. *erefore, it is
necessary to obtain accurate and realistic values obtained via
FE analysis. As a first check, some of the simulation results
for the white coupling were compared with the available data
provided by the manufacturer [29]. *e comparison dis-
played in Table 1 shows a reasonable degree of matching
between both sets of results.

*e linear and torsional stiffness values of the white
coupling resulting from the FE simulation are summarized
in Table 2.

2.4. Determination of the Coupling’s Damping Coefficients.
*e damping values of the coupling in three directions were
obtained experimentally by conducting an impact test with a
PCB PIZOTRONICS impact hammer (Model PCB-086,
0–500 lb, 10mV/lb), an ICP accelerometer (Model No.
352C33, 100mV/g), and a BETAVIB data acquisition unit, as
displayed in Figure 7. *e results are summarized in Table 3.

2.5. Stiffness and Damping of the Bearings and Shaft. *e
bearing’s stiffness and damping values were estimated in
accordance with the previous work of Badri [30]. *e
longitudinal, lateral, and torsional stiffness values of the
shafts were obtained by applying the laws of solidmechanics.

2.6. Numerical Solution of the Equations of Motion for the
Rotor-Coupling-Bearing System. To solve the equations of
motion numerically, a Matlab code was created to compute
the model’s states by applying an explicit Runge–Kutta (4,5)
formula for numerical integration. *e parameters of the
rotor-coupling-bearing system used in the numerical solu-
tion for the white coupling are listed in Tables 4–6. Table 4
presents the parameters of the rotor-bearing system; the
specific parameters of the white and black couplings are
shown in Tables 5 and 6, respectively.

3. Results and Discussion

*is section presents the simulation results for the rotor-
coupling-bearing system and discusses the findings. In the
simulation that examined the model’s response to imbalance
and misalignment forces, the white coupling was used. *e
simulation results are presented and analyzed in the time
and frequency domains. In the time domain, the results are
given up to the limit of 0.5 seconds, which allows visualizing
ten cycles of vibration.*e results are displayed up to 100 Hz
in the frequency domain, as this is the range that encloses
1X, 2X, 3X, and 4X.

3.1. Effect of Pure Imbalance on the Vibration Response.
*e effect of imbalanced forces on the vibration response of
the rotor-coupling-bearing system was investigated in both
the radial and angular directions.

3.1.1. Response to an Imbalance in the Radial Directions.
*e response of the system to an imbalance in the radial
directions (x1, x2, y1, y2) was investigated at a rotation speed
of 1200 rpm (1X � 20Hz). An eccentricity of 1mm was
introduced to the system in vertical and horizontal direc-
tions. Figure 8 shows the time- and frequency-domain re-
sponses in the x direction, and Figure 9 shows the responses
in the y direction.

O2

O2

O1

α

α

x

y

z

T

Tz Ty

Tx

TR

Figure 4: Torque decomposition of coupled shafts in which angular misalignment is present.

Figure 5: *e flexible spiral couplings used in this investigation.
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As expected, the imbalanced excitationmakes the system
oscillate in a harmonic way that manifests itself as a pure sine
wave in the time domain and a single peak in the frequency
domain. *e peak amplitudes of the displacement time
responses appeared at 5.214×10−3 µm for the x1 direction

and 5.265×10−3 µm for the y1 direction.*e peak amplitude
of the displacement time responses were 3.597×10−3 µm for
the x2 direction and 3.633×10−3 µm for the y2 direction.
Moreover, the vibrations at Node 1 are higher than those at
Node 2 as expected because Subsystem 1 had a greater mass
than Subsystem 2 (equations (17)–(23)). A slight change
appeared between the amplitudes in the time and frequency
domains, mainly caused by an error in the calculation of the
fast Fourier transform (FFT) function in Matlab. Further-
more, the response of the time and frequency domains to
displacement in the radial direction at Node 1 was almost
constant, suggesting that the displacement responses of x1
and y1 directions are similar. *e same was true for the
displacement response at Node 2. *is was expected because
the stiffness and damping of the coupling, bearings, and
shafts in the model were independent of both the vertical
and horizontal directions.

3.1.2. >e Unbalanced Response of the System in the Angular
Direction. For the same conditions of speed (1200 rpm) and
eccentricity (1mm), the response of the system to an im-
balance in the two angular directions (θ1, θ2) is displayed in
Figure 10.

(a) (b)

Figure 6: Finite element analysis of the spiral coupling. (a) Tension and compression in the z direction. (b) Bending around the y direction.

Table 1: Physical parameters of the white coupling obtained by FE simulation versus the supplier’s given data.

Physical parameters Simulation result Supplier data Relative error (%)
Mass 134 g 130 g 3
Moment of inertia in the z direction 2.8185 × 10− 5 kg/m2 2.9937 × 10− 5 kg/m2 6

Table 2: Linear and torsional stiffness values of the coupling
obtained by FE simulation.

Stiffness types Stiffness values

Linear
kx � 16.066KN/m
ky � 16.122KN/m
kz � 171.92KN/m

Torsional
kTx � 13.999N.mm/rad
kTy � 13.928N.mm/rad
kTz � 328.711N.mm/rad

Figure 7: Experimental procedure used to find the coupling’s
damping values.

Table 3: Damping coefficients of the white coupling, as obtained
experimentally.

Linear damping
x direction y direction z direction
CCx � 3.42Ns/m CCy � 3.27Ns/m CCz � 5.65Ns/m
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Table 4: Physical parameters of the rotor-bearing system.

Parameter Value Unit
KB1x 6.56×108 N/m
KB1y 6.56×108 N/m
KB2x 6.56×108 N/m
KB2y 6.56×108 N/m
KS1x 1.28×106 N/m
KS1y 1.28×106 N/m
KS1z 3.43×108 N/m
KS2x 7.27×106 N/m
KS2y 7.27×106 N/m
KS2z 6.12×108 N/m
KS1Tz 3790.15 N.m/rad
KS2Tz 6759.10 N.m/rad
CB1x 1.8×103 N.s/m
CB1y 1.8×103 N.s/m
CB2x 1.8×103 N.s/m
CB2y 1.8×103 N.s/m

Table 5: Physical parameters of the white flexible coupling.

Parameter Value Unit
m1 0.21745 kg
m2 0.15138 kg
Ix1 2.33×10−4 kg.m2

Ix2 4.90×10−5 kg.m2

Iy1 2.33×10−4 kg.m2

Iy2 4.88×10−5 kg.m2

Iz1 1.84×10−5 kg.m2

Iz2 1.66×10−5 kg.m2

KCx 16066 N/m
KCy 16122 N/m
KCz 171920 N/m
KCTx 13.999 N.m/rad
KCTy 13.928 N.m/rad
KCTz 328.711 N.m/rad
CCx 3.42 N.s/m
CCy 3.27 N.s/m
CCz 5.65 N.s/m

Table 6: Physical parameters of the black flexible coupling.

Parameter Value Unit
m1 0.21747 kg
m2 0.14640 kg
Ix1 2.24×10−4 kg.m2

Ix2 4.68×10−5 kg.m2

Iy1 2.24×10−4 kg.m2

Iy2 4.66×10−5 kg.m2

Iz1 1.74×10−5 kg.m2

Iz2 1.55×10−5 kg.m2

KCx 6422.6 N/m
KCy 6472.4 N/m
KCz 52315 N/m
KCTx 6.577 N.m/rad
KCTy 6.506 N.m/rad
KCTz 125.923 N.m/rad
CCx 1.62024 N.s/m
CCy 1.59528 N.s/m
CCz 1.39776 N.s/m
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Figure 8: Response of the time and frequency domains to an imbalance in the x direction. (a) Time response of x1. (b) Frequency response of
x1. (c) Time response of x2. (d) Frequency response of x2.
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Figure 9: Response of the time and frequency domains to an imbalance in the y direction. (a) Time response of y1. (b) Frequency response of
y1. (c) Time response of y2. (d) Frequency response of y2.
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Once more, the response is harmonic. It manifests as a
sinusoidal curve in the time domain and a single peak
centered at 1X in the frequency domain.

3.2. Vibration Response to the Combined Effects of Imbalance
and Parallel Misalignment. Parallel misalignment has a
strong influence on the vibration response of all rotating
assembly systems. In this section, a particular case of a 1mm
imbalance, combined to the simultaneous effect of a 1mm
gap of parallel misalignment, was simulated and analyzed.
*e system was supposed to rotate at the same speed
(1200 rpm). Figures 11 and 12 present the responses in the
time and frequency domains to faults in the radial directions
x and y.

In Figures 11 and 12 , the time-domain plots are no
longer harmonic, but rather periodic. In the frequency
domain, instead of a single peak, two peaks are now
dominating the spectrum. *e first one is the fundamental
frequency of the rotating assembly (1X), and the second one
is its second harmonic (2X).

Although the time domain’s waveform changed con-
siderably in both radial directions (x and y), one can see that
the amplitudes of x1 and y1 at Node 1 and x2 and y2 at Node
2 are comparable. *is can be explained by the same ar-
guments as for pure imbalance, previously described in
Section 3.1.1. Table 7 shows the peak amplitudes in the radial
direction obtained from the spectrum.

If we admit that the first peak (1X) is related to imbalance
and the second peak (2X) is related to misalignment, the
results reported in Table 7 clearly show that the amplitude of
2X is much more sensitive to parallel misalignment. *is
finding confirms the results already known to and widely
accepted by many practitioners and researchers (Section
1.3).

Moreover, the amplitude of 2X is almost constant in all
directions. *is is probably a result of the model properties
being similar in those directions.

3.2.1. Effect of Varying the Amount of Parallel Misalignment.
*e next step in our investigation of misalignment was to
alter the degree of parallel misalignment and analyze the
effects on the dynamic behavior of the rotor-coupling-
bearing system. To pursue this inquiry, a set of parallel
misalignment values, ranging from 0.2mm to 1.2mm with a
step of 0.2mm, were included in the simulation model.
During these simulations, the rotational speed was main-
tained at 1200 rpm. *e results of this investigation are
presented in Figure 13.

*e results displayed in Figure 14(a) show that the
amplitudes at Node 1 (for the right-hand side of the
coupling) are higher than those at Node 2 (the left-hand
side). Moreover, one can easily see that varying the
parallel misalignment has practically no influence on the
amplitude of the 1X peaks in all radial directions.
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Figure 10: Time- and frequency-domain response of the unbalanced system in angular directions θ1 and θ2. (a) Time response of θ1. (b)
Frequency response of θ1. (c) Time response of θ2. (d) Frequency response of θ2.
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Figure 11: Time- and frequency-domain response of unbalance and parallel misalignment fault in the x directions (x1 and x2). (a) Time
response of x1. (b) Frequency response of x1. (c) Time response of x2. (d) Frequency response of x2.
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Figure 12: Time- and frequency-domain response in the x directions (x1 and x2), resulting from imbalance and parallel misalignment. (a)
Time response of y1. (b) Frequency response of y1. (c) Time response of y2. (d) Frequency response of y2.
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However, the amplitude of the 2X peaks was found to
increase linearly as the degree of parallel misalignment
increased.

3.3. Vibration Response to the Combined Effect of Imbalance
and Angular Misalignment. *e goal of this section is to
investigate the vibrations patterns emerging from a faulty

D
isp

la
ce

m
en

t (
m

)

0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

–5

0

5

×10–9

(a)

D
isp

la
ce

m
en

t (
m

)

0 20 40 60 80 100
Frequency (Hz)

0

1

2

3

4

5

6

×10–9

(b)

D
isp

la
ce

m
en

t (
m

)

0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

–6

–4

–2

0

2

4

6
×10–9

(c)

D
isp

la
ce

m
en

t (
m

)

0 20 40 60 80 100
Frequency (Hz)

0

1

2

3

4

×10–9

(d)

Figure 14: Time- and frequency-domain responses in the radial directions x1 and x2, under the combined effects of imbalance and angular
misalignment. (a) Time response of x1. (b) Frequency response of x1. (c) Time response of x2. (d) Frequency response of x2.

Table 7: Peak amplitudes of the fundamental and second harmonics in the radial direction.

Amplitude (µm) x1 x2 y1 y2

Imbalance and parallel misalignment 1 × rpm 5.226×10−3 3.592×10−3 5.240×10−3 3.587×10−3

2 × rpm 6.084×10−3 6.041× 10−3 6.115×10−3 6.066×10−3

Pure imbalance 1 × rpm 5.214×10−3 3.597×10−3 5.265×10−3 3.633×10−3

2 × rpm 0 0 0 0
% increase of 2 × rpm with respect to 1 × rpm +16.4% +68.2% +16.7% +69.1%
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Figure 13: Effect of changing the extent of parallel misalignment on the vibration responses in the radial directions. (a) 1X; (b) 2X.
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Figure 16: Time- and frequency-domain responses to the combined effects of imbalance and angular misalignment in the angular directions
θ1 and θ2. (a) Time response of θ1. (b) Frequency response of θ1. (c) Time response of θ2. (d) Frequency response of θ2.
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Figure 15: Time- and frequency-domain responses in the radial directions y1 and y2, under the combined effects of imbalance and angular
misalignment. (a) Time response of y1. (b) Frequency response of y1. (c) Time response of y2. (d) Frequency response of y2.
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system when angular misalignment is present alongside
imbalance. Once again, the rotational speed and the ec-
centricity value were kept identical to the previous cases
(1200 rpm and 1mm of eccentricity). However, in this case,
an angular misalignment of 1° was introduced. Figures 15–17
display the new simulation results.

In conclusion, an angular misalignment of 1° was found
to generate two comparable peaks at 20Hz (1X) and 40Hz
(2X). *e peak amplitudes in the radial direction obtained
from the spectra are shown in Table 8.

Once again, the combined effect of imbalance and
angular misalignment had the same effect on the ampli-
tude of the fundamental peak (1X) as it did when the
imbalance was acting alone. However, when a small angle
of 1° was added to the mechanical system, this had a
significant effect on the amplitude of the second harmonic
of speed 2X.

*e response in the angular directions θ1 and θ2, under
the combined effects of imbalance and angular misalign-
ment, is displayed in Figure 16.

At first glance, several comments could be made about
the results. First, the noticeable difference in the time
waveform shapes between radial and angular directions.
Second, compared with the case of pure imbalance, one can
see that the response of the time domain in the angular
direction increased considerably because of one-degree
angular misalignment. Remarkable 1X, 2X, and 4X fre-
quency components can be observed in the amplitudes of the
spectrum, with the 2X component being the strongest.
Table 9 summarizes the peak amplitudes in this scenario.

In conclusion, a comparison between the case of a
single defect (pure imbalance) and the case of combined
defects (imbalance and angular misalignment) shows
that the angular misalignment did not have a noticeable

Table 8: Peak amplitudes of the fundamental and second harmonics in the radial direction under the combined action of imbalance and
angular misalignment.

Amplitude (µm) x1 x2 y1 y2

Imbalance and angular misalignment 1 × rpm 5.223×10−3 3.595×10−3 5.234×10−3 3.593×10−3

2 × rpm 3.714×10−3 3.692×10−3 3.735×10−3 3.707×10−3

Pure imbalance 1 × rpm 5.214×10−3 3.597×10−3 5.265×10−3 3.633×10−3

2 × rpm 0 0 0 0
% increase of 2 × rpm with respect to 1 × rpm −40.6% +2.7% −40.1% +3.2%
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Figure 17: Effects of different degrees of angular misalignment on the vibration response.

Table 9: Angular spectrum of the system including imbalance and misalignment.

Amplitudes (in degrees) θ1 θ2
1 × rpm 0.1 × 10− 3 0.0595 × 10− 3

2 × rpm 1.2 × 10− 3 0.5847 × 10− 3

4 × rpm 0.2 × 10− 3 0.1051 × 10− 3
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effect on the amplitude of 1X. In contrast, the increase in
the amplitude of 2X and 4X, noted in many previous
studies (Section 1), was clearly visible. Unlike the case of
parallel misalignment, the amplitudes of 2X and 4X were
higher at Node 1 because of a more significant moment of
inertia.

3.4. Effect of Varying the Angular Misalignment. Our next
step in investigating misalignment was to change the degree
of angular misalignment and examine its effects on the
dynamic behavior of the rotor-coupling-bearing system.

A range of angular misalignment values was considered,
from 0.2 to 1.2 degrees in steps of 0.2 degrees. For all

simulations, the rotational speed remained at 1200 rpm. *e
simulation results are displayed in Figure 17.

Varying the angular misalignment had almost no
effect on the amplitude of 1X. *is peak is clearly related
to imbalance. However, the angular misalignment could
be recognized by the harmonics of the fundamental fre-
quency (1X). *e amplitudes of 2X and 4X increased as the
degree of angular misalignment increased. In particular,
the 2X component was the most sensitive, which confirms
the findings of previous researches. Moreover, the am-
plitudes of 2X and 4X under angular misalignment were
higher at Node 1 than at Node 2 because of the more
significant moment of inertia in Subsystem 1 (equation
(28)).
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Figure 18: Effects of phase shift on the vibration response (time and frequency domains) in the radial direction x1. (a) Phase� 0°. (b)
Phase� 45°. (c) Phase� 90°.
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Figure 19: Effects of phase shift on the phase diagram between x1 and x2. (a) Phase� 0°. (b) Phase� 15°. (c) Phase� 45°. (d) Phase� 90°.
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3.5. Effects of Changing the Shift of Phase between Imbalance
and Misalignment. *e phase relationship between the im-
balance and the misalignment forces is investigated in this
section. To pursue this inquiry, a set of phase values, ranging
from 0 to 180°, were included in the simulation model. During
these simulations, all other running conditions were maintained
constant (the speed at 1200 rpm, imbalance eccentricity at 1mm,
angular misalignment at 1°, and no parallel misalignment). *e
results of this investigation are displayed in Figures 18–20.

Figure 18 displays the simulation response in the radial
direction x1, computed both in the time and the frequency
domains. A stepped variation of the phase shift, introduced
between the imbalance and themisalignment forces, is found to
alter the shape of the time waveform significantly. Such an

effect is not inflected to one particular direction, but rather to
all of them. *e phase diagram between x1 and x2 is a typical
example of such effect.*e orientation of the loop, displayed in
Figure 19, is directly related to the amount of phase shift
between the imbalance and misalignment. Moreover, a close
look to x1 and x2 graphs reveals an obvious variation of their
amplitudes. *e simulation displayed in Figure 20 shows that,
on a cycle of 180° variation of the phase shift, there is around
15% variation on x1 and x2 amplitudes.

3.6. Effects of Changing the Rotational Speed. To make our
investigations into misalignment more thorough, we
changed the rotational speed and examined the effects on the
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Figure 21: Effects of different rotational speeds on the vibration response of the system with imbalance and parallel misalignment.
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Figure 22: Effects of different rotational speeds on the vibration response of a system with imbalance and angular misalignment.
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Figure 23: Effects of changing the coupling type in the x direction for a system with imbalance and parallel misalignment. (a) Time response
of x1. (b) Frequency response of x1. (c) Time response of x2. (d) Frequency response of x2.
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Figure 24: Continued.
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Figure 24: Effects of changing the coupling type in the y direction for a system with imbalance and parallel misalignment. (a) Time response
of y1. (b) Frequency response of y1. (c) Time response of y2. (d) Frequency response of y2.
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Figure 25: Effects of changing the coupling type in the θ direction for a systemwith imbalance and angular misalignment. (a) Time response
of θ1. (b) Frequency response of θ1. (c) Time response of θ2. (d) Frequency response of θ2.
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rotor-coupling-bearing system’s dynamic behavior in the
presence of parallel and angular misalignments.

3.6.1. Effects of Altering Rotational Speed in the Presence of
Imbalance and Parallel Misalignment. In the established
rotor-coupling-bearing system with a constant parallel
misalignment fault of 1mm, the rotational speed was
changed from 1200 rpm to 2700 rpm in steps of 300 rpm.*e
results are shown in Figure 21.

As portrayed in Figure 19, the response in the radial di-
rections (x1, y1, x2, y2) at 1X increased significantly with in-
creased rotational speed. *is was mostly caused by the
unbalanced force that acted on the system (Section 3.2).
Furthermore, the increase in the 1X response wasmore rapid at
Node 1 (x1 andy1) than atNode 2 (x2 andy2).*is is probably
because at Node 1, the system was more flexible than it was at
Node 2. Moreover, the amplitude of 2X was constant despite
the change in rotational speed. *is was expected because the
model of parallel misalignment force depends on the system’s
stiffness rather than rotational speed.

3.6.2. Effect of Altering the Rotational Speed in the Presence of
Imbalance and Angular Misalignment. *e effects of
changing the rotational speed from 1200 rpm to 2700 rpm in
steps of 300 rpm on a rotor-coupling-bearing system with
both imbalance and angular misalignment faults were ex-
amined. Angular misalignment of 1° was maintained
throughout the process. *e results are shown in Figure 22.

Figure 22 shows that all peaks for 1X and its harmonics are
sensitive to speed variation but to different degrees. In particular,

the 2X and 4X amplitudes were found to be themost responsive
to changes in speed variation, and they were more sensitive at
Node 1(θ1) than at Node 2(θ2). *is can be explained by the
system being more flexible at Node 1 than at Node 2.

3.7. Effects of Changing the Coupling Type. *e effects of
changing the flexible coupling type were investigated for
systems with parallel and angular misalignments.

3.7.1. Effects of Coupling Type on a System with Imbalance
and Parallel Misalignment. *e effects of changing the
coupling type on the model response for combined im-
balance and parallel misalignment of 1mm were examined
at a rotational speed of 1200 rpm. *e results in the radial
directions x1 and x2 are shown in Figure 23, and the results
in the radial directions y1 and y2 are shown in Figure 24.

Based on the time response graphs, one can see that the
amplitudes were higher for the white coupling, which was
stiffer and was therefore unable to accommodate the defor-
mations as in the case of the black one. In the frequency
domain, the peaks located at 1X did not show a perceptible
variation (a difference of only 2.4%). However, for the peaks
located at 2X, the amplitudes for white coupling were 60%
higher because of the difference in the stiffness.

3.7.2. Effects of Coupling Type on a System with Imbalance
and Angular Misalignment. *e effects of swapping the
white coupling for the black one were analyzed for a system
with imbalance and 1° of angular misalignment, at a

Disk 1
Disk 2 Disk 3

Rotor 1 Rotor 2

Figure 26: Wang and Gong‘s model [25].

Table 10: Data of the numerical model of Wang and Gong [25].

Rotor 1
Diameter (mm) Length (mm) Mass (kg)
30 880 24.8
Rotor 2
Diameter (m) Length (mm) Mass (kg)
40 400 5.92
Disks
Iz1 (kg/m2) Ix1 (kg/m2) Iy1 (kg/m2)
0.05 0.025 0.025
Material properties of the rotor and disks
Young’s modulus (N/m2) Poisson’s ratio Density (kg/m3)
2.1E+ 11 0.3 7800
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rotational speed of 1200 rpm. Figure 25 presents the sim-
ulation results for this particular case.

Figure 25 shows that changing the coupling type did not
produce a noticeable difference in the vibration spectrum
recorded in the θ direction. We expected the black coupling to
absorb more vibrations, which would result in reduced am-
plitudes. However, the moments of inertia in the two couplings
were small, and the difference between them was only minor,
meaning that no effect of changing the coupling could be seen.

3.8. Validation of the Numerical Model. To verify our pro-
posed model, the simulation presented here was compared
with a similar study by Wang and Gong [25] that provided a
numerical simulation of a system that included parallel
misalignment. *is particular model was chosen because the
authors provided enough data to allow a comparison of the
two models. Wang and Gong simulated the vertical and
horizontal displacement response at the coupling location.
Some of the parameters had to be assumed, as the authors
had not supplied them, and we drew on our prior expertise
to make these assumptions. Figure 26 illustrates the simu-
lated model of Wang and Gong [25].

Before we can compare the models, we needed to clarify
several assumptions so we could implement the model with
the available data. Each system was divided into two sub-
systems (with a specific mass, stiffness, and damping values)
and analyzed with 12 DOF, as was the case for our model.
*e stiffness in the axial direction was assumed to be 10
times higher than the bending stiffness; the angular stiffness
was assumed to be 1/1000 of the radial stiffness. *ese were
the ratios obtained here for a flexible coupling (Section 2.3).
Table 10 presents the data provided by Wang and Gong.

Wang and Gong [25] provided data on the vertical and
horizontal radial vibrations of the rotating system at Node 1.
*eir system was tested with 1mm of parallel misalignment
at a rotation speed of 3800 rpm.We used our model with the
parameters provided by Wang and Gong to obtain the re-
sponse, displayed in Figure 27, in the time and frequency
domains.

Similarly, for both studies, the amplitudes in the hori-
zontal direction were higher than those in the vertical di-
rection. *is aligned with our expectations because the
bearings were fixed to the ground, preventing vertical
movement. Table 11 compares the amplitudes of our model
against that of Wang and Gong.

0 20 40 60 80 100 120 140 160 180 200

8

6

4

2

0D
isp

la
ce

m
en

t (
m

)

Frequency (Hz)

×10–6

1X

2X

(a)

8

6

4

2

0D
isp

la
ce

m
en

t (
m

)

0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)

×10–7

1X 2X

(b)

Figure 27: Response to the effects of imbalance and parallel misalignment based on Wang and Gong’s parameters. (a) Frequency response
of x1. (b) Frequency response of x2.

Table 11: Comparison of our model versus that of Wang and Gong [25].

Model Amplitudes (µm)
Horizontal direction Vertical direction

@1 × rpm Current Model 7.25 0.63
Wang and Gong 6.66 0.92

@2 × rpm Current Model 2.51 0.64
Wang and Gong 2.22 0.33
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*e two sets of results agree fairly close to each other.*e
minor differences may well have arisen from the assump-
tions about the mass, damping, and stiffness parameter,
which were not provided by Wang and Gong.

4. Conclusion

In this paper, a model was developed to investigate the
dynamic behaviors and vibration characteristics of a rotating
system with imbalance and misalignment faults in the
coupling. *e simulated system consisted of an assembly of
two shafts interconnected by a flexible coupling. In total, the
system’s motion is described by a set of 12 DOF. *e vi-
bration characteristics in the radial (horizontal and vertical)
and angular direction were revealed by numerical analysis by
using Matlab and Simulink, giving rise to several
conclusions:

(i) *e effect of pure imbalance made the system os-
cillate in a harmonic way that manifested as a pure
sine wave in the time domain and a single peak in
the frequency domain. However, the combined
effects of imbalance and misalignment produced a
nonharmonic response. Besides the fundamental
frequency components of the rotating assembly
(1X), one can see the existence of new components,
with frequencies that were multiples of the funda-
mental one (2X and 4X).

(ii) In the simulation of the coupled effect of imbalance and
parallel misalignment, the following could be observed:

(1) Varying the parallel misalignment had practi-
cally no influence on the amplitudes of the 1X
peaks in all radial directions

(2) *e amplitudes of the 2X peaks were found to
increase linearly with an increase in the parallel
misalignment

(iii) In the simulation of the combined effect of im-
balance and angular misalignment faults, the fol-
lowing could be observed:

(1) *e impact on the amplitude of the second
harmonic of speed (2X) of adding 1° of mis-
alignment was significant

(2) Remarkable peaks at 1X, 2X, and 4X can be
observed in the vibration spectra, with the 2X
component being the strongest

(iv) In the simulation of the effect of varying the angular
misalignment, the following could be observed:

(1) Varying the angular misalignment had almost
no effect on the 1X amplitudes

(2) *e amplitudes of 2X and 4X increased with an
increase in the angular misalignment

(3) In particular, the 2X component was the most
sensitive, which confirms the findings of pre-
vious researchers and practitioners

(v) In a simulation of the effect of rotational speed, the
following could be observed:

(1) For a system with imbalance and parallel mis-
alignment, the response amplitudes in the radial
directions at 1X significantly increased with
faster rotational speeds.

(2) For a system with imbalance and angular mis-
alignment, all peaks for 1X and its harmonics
were sensitive to speed variations but to dif-
ferent degrees. In particular, the 2X and 4X
amplitudes were found to be the most re-
sponsive to speed variation.
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