
QATAR UNIVERSITY

 COLLEGE OF ENGINEERING

EXPLORING CONFIDENTIALITY AND PRIVACY OF IMAGE IN CLOUD

COMPUTING

BY

RANA ADNAN RIHAN

A Thesis Submitted to the Faculty of

the College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computing

 January 2017

© 2017 Rana A. Rihan. All Rights Reserved.

II

COMMITTEE PAGE

The members of the Committee approve the Thesis of Rana A. Rihan

defended on 25/05/2016.

Dr. Khaled Mohammed Khan

 Thesis/Dissertation Supervisor

Dr. Mohammad Zulkernine

 Committee Member

Dr. Aiman Erbad

Committee Member

Dr. Qutaibah Malluhi

Committee Member

Approved:

Khalifa Al-Khalifa, Dean, College of Engineering

III

ABSTRACT

RIHAN RANA A., Masters:January:2017, Masters of Science in Computing

Title: Exploring Confidentiality and Privacy of Image in Cloud Computing

Supervisor ofThesis: Khaled M. Khan.

With the increasing popularity of cloud computing, clients are storing their data in

cloud servers and are using “software as a service” for computing services. However,

clients’ data may be sensitive, critical, and private, and processing such data with cloud

servers may result in losing data privacy or compromising data confidentiality. Some cloud

servers may be dishonest, while malicious entities may compromise others. In order to

protect data privacy and confidentiality, clients need to be able to hide their actual data

values and send the obfuscated values to cloud servers.

This thesis deals with the outsourcing of computing to cloud servers, in which

clients’ images can be computed and stored. This thesis proposes a technique that

obfuscates images before sending them to servers, so these servers can perform

computations on images without knowing the actual images. The proposed technique is

expected to ensure data privacy and confidentiality. Servers will not be able to identify an

individual whose images are stored and manipulated by the server. In addition, our

approach employs an obfuscating technique to maintain the confidentiality of images,

allowing cloud servers to compute obfuscated data accurately without knowing the actual

data value, thus supporting privacy and confidentiality.

IV

The proposed approach is based on the Rabin block cipher technique, which has

some weaknesses, however. The main drawback is its decryption technique, which results

in four values, and only one of these values represents the actual value of plain data.

Another issue is that the blocking technique requires a private key for each block that

requires a high-computing effort; requiring one private key for each block of data demands

that a great number of keys be stored by the client. As a result, it decreases the robustness

of the Rabin block cipher.

This thesis proposes additional techniques to overcome some of the weaknesses of

the Rabin block cipher by introducing some new features, such as tokenization, a digit

counter, and a set of blocks. The new technique increases the privacy of data and decreases

the computational complexity by requiring fewer private keys. The new features have been

implemented in image processing in order to demonstrate their applicability. However, in

order to apply our approach to images, we must first apply some preprocessing techniques

on images to make them applicable to being obfuscated by our proposed obfuscating

system.

V

DEDICATION

This thesis is dedicated to my family.

For their endless love, support, and encouragement throughout the years.

VI

ACKNOWLEDGMENTS

 “All the praises and thanks be to Allah, Who has guided us to this, and never could

we have found guidance, were it not that Allah had guided us!” I would like to thank all

my family and friends for their help and support they offered throughout the entire process,

both by keeping me harmonious and helping me put the pieces together. I would like to

express my gratitude to my supervisor Dr. Khaled Khan for his guidance and support, as

well as his useful comments, remarks, and engagement throughout the learning and

working process of this master thesis. Furthermore, I would like to thank Professor Ali

Jaoua for his help and support through all of the years I spent in pursuit of my master

degree; without his guidance, I would not have reached this stage. I would like to thank all

of the doctors who taught me during both my master and bachelor coursework. Last, but

not least, I would like to extend my thanks to all of my teachers who taught me during the

years of the study.

VII

TABLE OF CONTENTS

DEDICATION .. V

ACKNOWLEDGMENTS ... VI

LIST OF TABLES ... X

LIST OF FIGURES .. XI

CHAPTER 1: INTRODUCTION .. 1

1.1. Problem Statement ... 3

1.2. Objective and Significance ... 4

1.3. Main Contributions ... 5

1.4. Thesis Overview ... 6

CHAPTER 2: LITERATURE REVIEW ... 8

2.1. Secure-Outsourcing Computation Using an Information Theoretic 8

2.1.1. Outsourcing to a Single Cloud Server ... 9

2.1.2. Outsourcing to Multiple Noncolluding Cloud Servers 11

2.1.3. Outsourcing to Multiple Colluding Cloud Servers 12

2.1.4. Secure Multiparty Computation.. 13

2.2. Exponential Cipher ... 14

2.2.1. Diffie-Hellman key-exchange cryptosystem ... 15

2.2.2. RSA Cryptosystem .. 15

2.2.3. Rabin Cryptosystem... 19

CHAPTER 3: METHODOLOGY ... 27

3.1. Methodology plan... 28

3.2. Obfuscation methodology ... 29

3.2.1. Rabin Cipher ... 29

3.2.1.1. The Chinese Remainder Theorem .. 31

3.2.1.2. Gauss’s Algorithm .. 31

3.2.1.3. Garner Algorithm Definition ... 33

VIII

3.2.2. Block Cipher Definition ... 35

3.3. Testing and Evaluating Methodology .. 36

CHAPTER 4: DATA-OBFUSCATING TECHNIQUE .. 39

4.1. The Proposed Framework ... 41

4.2. Preprocessing ... 42

4.2.1. Reducing Image Size ... 43

4.2.2 Converting a colored image to gray ... 46

4.2.3. Extracting pixels values ... 47

4.2.4. Transforming decimals to integer values... 48

4.3. Obfuscating .. 49

4.3.1 Creating blocks... 52

4.3.2 Developing digit counts .. 53

4.3.3. Tokenization.. 55

4.3.4. Identifying sets .. 57

4.3.5. Creating Private Keys .. 59

4.3.6. Obfuscating process ... 61

4.4. De-obfuscating ... 63

CHAPTER 5: IMPLEMENTATION AND VALIDATION OF THE APPROACH... 67

5.1. Application Usage .. 68

5.2. Implementation of preprocessing .. 69

5.2.1. Technique for reducing image size ... 71

5.2.2. Technique for converting a color image to gray .. 73

5.2.3. Extracting double value form pixel ... 75

5.2.4. Method to transform double to integer .. 75

5.3. Obfuscating-Process Implementation .. 77

5.3.1. Blocking stage ... 79

5.3.2. Obfuscating stage .. 82

5.4. Comparison-process implementation ... 87

IX

5.4.1. Comparison Stage .. 87

5.5. Implementing de-obfuscating process.. 91

CHAPTER 6: DISCUSSION AND EVALUATION .. 95

6.1 Image-reduction experiment .. 95

6.2 Sets experiment ... 100

6.3 Discussion ... 104

6.3.1. Comparative Analysis .. 107

CHAPTER 7: CONCLUSION AND FUTURE WORK ... 110

REFERENCES ... 112

X

LIST OF TABLES

Table 4.1: Reducing Image Size: An example .. 44

Table 4.2: An example of converting colored image to gray image 47

Table 4.3: Digit hash map counter ... 54

Table 5.1: Image Reducing Experiment Results. .. 72

Table 5.2: Convert Image to Gray Image ... 74

Table 6.1: Reduction Test: Comparaing Results ... 97

Table 6.2: Reduction Test: Obfuscation Time Test ... 98

Table 6.3: Set Test: Comparison Results.. 101

Table 6.4: Set Test: Obfuscation Time Test ... 102

Table 6.5: Comparative Analysis between Rabin’s and RSA Algorithms 107

Table 6.6: Comparative Analysis between Our System and Other Provided Systems .. 108

XI

LIST OF FIGURES

Figure 3.1: Main Approach Methodology ……………… .. 28

Figure 4.1: High Level Architecture of the Data Obfuscating Process……………… ... 41

Figure 4.2: Processing Component .. 43

Figure 4.3: Extracting pixels value .. 48

Figure 4.4: Depicts the Details and Purpose of Data Obfuscating Techniques 51

Figure 5.1: A segment of a 2D double matrix. .. 75

Figure 5.2: A segment of the 2D integer matrix ... 77

Figure 5.3: Data Obfuscating Process. ... 78

Figure 5.4: A segment of the block matrix BM .. 81

Figure 5.5: A segment of the DHBM matrix. ... 82

Figure 5.6: A segment of the 2D encBM matrix ... 85

Figure 5.7: Private key array .. 85

Figure 5.8: Actual fingerprints .. 89

Figure 5.9: Result of comparing between two different obfuscated fingerprints............. 90

Figure 5.10: Result of comparing between two obfuscated fingerprints......................... 91

Figure 5.11: A part of 2D dm matrix ... 93

Figure 5.12: Result of comparing original integer matrices ... 94

Figure 6.1: Reduction Test: Comparison Results. ... 98

Figure 6.2: Reduction Test: Obfuscation Time Test ... 99

Figure 6.3: Set Test: Comparison Results. ... 102

Figure 6.4: Set Test: Obfuscation Time Test .. 103

file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_updated.docx%23_Toc407102134
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_updated.docx%23_Toc407102134
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926638
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926653
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926654
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926655
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926656
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926657
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926660
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926661
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926662
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926663
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926664
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926653
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926654
file:///d:/Users/sm14965/Desktop/Conceptual%20Data%20Reduction%20Application%20Thesis-Souad%20Mecheter_FinalUpdatedThesis.docx%23_Toc411926656

XII

ِ ٱبسِْمِ
حْمٰنِ ٱ لّلٰ حِيمِ ٱ لرَّ لرَّ

اب ٱلنَّارِ ر ذ قنِ ا ع ن ةٗ و س ةِ ح فيِ ٱلۡۡٓخِر ن ةٗ و س نۡي ا ح اتنِ ا فيِ ٱلدُّ بَّن آ ء

Allahumman fa’nee bi-maa ‘allam-ta-nee wa ‘allim-nee maa

yanfa’u-nee war zuq-nee ‘ilman yanfa’u-nee

“O, Allah, benefit me with what you have taught me, and teach me

that which will benefit me, and grant me knowledge which will

benefit me.”

1

CHAPTER 1: INTRODUCTION

 Modern society is dealing, using, and connecting with the growing amount of

digital data, of which some are sensitive, private, or personal in nature. Because the usage

of digital information is growing, the need for outsourcing techniques of various

functionalities is increasing as well. Consequently, a new way of outsourcing computation,

referred to as cloud computing, has emerged [22]. Cloud computing has become an

attractive option for organizations. This outsourcing approach provides highly dynamic

computing services in which individuals as well as organizations have the choice to access

hardware and software resources as their demands increase or decrease for such resources.

Cloud computing offers services that are faster, more flexible, and cheaper than those of

conventional IT centers. Virtualization and ultrabroadband connectivity provide this

flexibility and scalability to achieve.

 Cloud computing, in short, is the outsourcing of IT services to one or more third

parties that have rich pools of resources to meet an organization’s computing needs easily

and efficiently [34]. These include networking, hardware components, storage, and

software applications. Cloud computing facilitates the computing usage to give users on-

demand access to computing resources in a “pay as you go” payment model, which is

similar to other models that handle utilities such as electricity or water.

Even though cloud computing offers a promising paradigm that can enable

businesses to outsource their computations in an agile and cost-efficient manner, the means

to guarantee secure outsourcing to cloud computing have not been established. Some cloud

services might be untrustworthy or vulnerable to malicious entities. There is a possibility

2

that the outsourced private data of clients could be disclosed to unauthorized entities.

Keeping information secure, private, and confidential on a cloud server is challenging;

thus, the computation should be done in a privacy-preserving manner that does not reveal

information about the sensitive and personal inputs and outputs throughout the

computation. The challenge of ensuring secure outsourcing to cloud servers is receiving

more attention from the research community, and the principal aim is to fully utilize the

benefits of cloud computing while maintaining thorough security for clients’ private and

sensitive data.

In regard to the security issues related to cloud computing, data encryption seems

to be a natural option to pursue. However, this potential recourse has a major problem: It

is virtually impossible for cloud servers to compute encrypted data without using effort-

consuming techniques, such as a fully homomorphic encryption (FHE) [25]. If a cloud

server cannot process a client’s data, storing data on the cloud would not seem attractive

to clients because the cloud would only provide passive storage.

Using a garbled circuit (GC) [46] is another approach that could secure data

confidentiality and privacy. A GC would enable two or more parties to execute functions

through their inputs without revealing anything to other parties. This option would provide

a protocol for computing any function by using a Boolean circuit representation of the

function. An unauthorized entity with access to a GC computation could not learn anything

about the input data of the GC or its outputs. However, creating GCs is time consuming.

Another serious problem is that they are not reusable.

In this thesis, we attempt to develop an approach that could address some of the

problems outlined earlier. The main aim of this research is to develop an efficient technique

3

that could secure outsourced images on cloud servers without requiring additional

resources from the cloud servers themselves.

1.1. Problem Statement

In this research, we attempt to propose a secure-outsourcing technique that could

allow clients to fully and securely utilize cloud resources and services for their images. The

images are computed efficiently and accurately by cloud computing, without the images

being revealed to cloud servers. We envision an approach that requires less computational

complexities and less additional resources. The approach must ensure confidentiality and

privacy of client images.

The success of our approach can be measured by the answers to the following questions:

a) Can a cloud server compute a client’s images correctly without knowing the actual

images?

b) Can the cloud server derive or extract actual images?

c) Does a client need large amounts of additional resources to make his or her

outsourced images secure?

d) Does the cloud server require additional computations or overheads to keep images

private and confidential?

Let us provide a specific example of the research problem that we address in the

research. A client captures various images of his or her employees and stores them on a

cloud server. Each time the client sends an image, the server first checks if the new image

has already been stored or not. In order to ensure this, the cloud server compares the input

image with other images already stored. In this scenario, the client wants the server to know

nothing about the actual images being received; this means that the server needs to store

4

and compare images without knowing the actual pixel values of the images. The

comparison task performed by the cloud server should be reasonably accurate. In order to

do this, the server does not need additional computing power or resources. We presume

that all of the images the client may send will be similar in size, in regard to the number of

pixels and resolution. Our research focuses on how to enter this scenario without using

expensive techniques, such as public key infrastructure, FHE, or GC.

1.2. Objective and Significance

The main objective of this research is to find answers to the questions defined in

the problem statement (Section 1.1). In our approach, we explore and investigate existing

cipher and other encryption frameworks to develop, ultimately, an optimal technique. We

will experiment with how we can secure images so that cloud servers would be unable to

know a client’s actual images. Furthermore, we will search for new techniques that can

keep clients’ images secure when their cloud servers or storage devices are compromised

by malicious attackers.

Clients of cloud computing need a lightweight approach that can keep their images

private and allow cloud servers to compare images without being revealed to servers.

Furthermore, this new approach should demand only a minimum of computational

complexity and resources from the client.

The main benefit of this approach is to ensure privacy and confidentiality of clients’

images when they use cloud services. Under this new approach, clients will not suffer under

a plethora of requirements for computational complexity. In addition, we want to develop

a flexible technique that can be applied to different types of data, a technique that will not

devour client resources.

5

1.3. Main Contributions

Our work will propose an optimal approach that can ensure data privacy and

confidentiality when cloud computing, and this enhanced security will not need a public

key infrastructure, expensive FHEs, or GCs. We concentrate on how to overcome the

weaknesses of the existing techniques, and how to optimize the computational complexities

of the client and the cloud server, so that our approach requires minimal resources. Our

research is based on two strategies:

(i) Exploring how to modify some of the well-established existing techniques, such

as the Rabin block cipher, to address our research problems.

(ii) Proposing some techniques and ideas to support the entire approach.

Based on these two strategies, we develop an approach that uses our following

specific contributions:

 The first technique is the optimal creation of data blocks, which is an inspired

technique from the block-cipher algorithm.

 The second technique is the development of a digit counter, which assigns a digit

for each item in the generated blocks of data.

 The third technique is tokenization, which creates a token for each generated

block.

 The fourth technique is the identification of sets that group a random number of

blocks into one single set.

We also modify the Rabin cryptosystem, which requires two different types of keys:

public keys and private keys [37]. In our approach, we explore how to use only private

6

keys instead of both types, without compromising security. We demonstrate the

applicability of these techniques by using an image-processing application in a cloud

server.

1.4. Thesis Overview

This document is structured as follows:

Chapter 1: Introduction

We outline the general background about the topic, the problem statement, the

objective’s significance, and the main contributions.

Chapter 2: Literature Review

Here, we critically analyze other related approaches already proposed and

accomplished in this field, to assess their strengths and weaknesses.

Chapter 3: Methodology

We describe how our research has been carried out. Techniques and

methodologies we explored to address our research problems are included here.

Chapter 4: Data-Obfuscating Technique

We present our main approach for securing data privacy and confidentiality in

the context of image processing.

Chapter 5: Implementation and Validation of the Approach

We demonstrate the implemented algorithms and techniques of the proposed

framework with running examples and show that the approach can work in practice.

7

Chapter 6: Discussion

We present our research findings, various experimental results, and limitations

of our approach.

Chapter 7: Conclusion and Future Work

We summarize the main contributions of our thesis and outline a list of future

work.

8

CHAPTER 2: LITERATURE REVIEW

Data confidentiality and privacy in cloud computing, in which data are sent to a

cloud server in order to be either processed or stored or both, is an important and complex

research area. This problem has been addressed by different approaches and from various

perspectives. This chapter analyzes some of the proposed approaches in different areas,

such as secure outsourcing, data obfuscations, and exponential ciphers.

The proposed solutions, techniques, algorithms, and schemes to this problem can

be categorized into two broad areas: secure-outsourcing computation (with an information

theoretic approach) and encryption. The next section reviews the work primarily related to

secure-outsourcing computation using an information theoretic, and Section 2.2 deals with

past research related to encryptions—that is, exponential ciphers.

2.1. Secure-Outsourcing Computation Using an Information Theoretic

Secure-outsourcing computation is the scheme of transferring data from the client

to cloud servers for secure computation and data storage. Many solutions, techniques,

algorithms, and schemes have been presented and proposed for solving the security

problems by using an information theoretic approach. However, all provided solutions and

schemes in the literature can be categorized into the four following classes:

1) Outsourcing to single cloud server

2) Outsourcing to multiple noncolluding cloud servers

3) Outsourcing to multiple colluding cloud servers

4) Secure multiparty computation (MPC) scheme.

9

2.1.1. Outsourcing to a Single Cloud Server

In this scheme, the client uses a single cloud server to outsource his or her

computations. This scheme is the simpler scheme among the four described above, because

by dealing with one server, the communication protocols of the client will be much simpler

than if the client were to deal with multiple servers. Thus, using one server will allow the

client to allocate and compute outsourced data more quickly and easily. However,

outsourcing to only one server will restrict the client to a limited number of functionalities

and to a limited amount of storage space. What is more, if the server breaks down, then the

client will lose his or her stored outsourced data. Also, the FHE verification techniques

seem to be inherently required, or the client should define a verification operation of the

outsourced and computed results. And the verification operation should be done on the

client’s side.

This scheme was introduced in 1978 by Rivest, Adleman, and Dertouzos [38], who

used a singular server with a privacy homomorphism. Their approach implies that clients

should use an outsourcing agent to store financial data and to do computations on that same

data. In their scheme, financial data or similar forms are stored and computed when they

are encrypted, because their approach uses homomorphism encryptions, such as a modular

exponential-encrypting technique. The client decrypts the data in order to obtain its original

value. In 2001, another approach using a singular server was proposed by Atallah and

Pantazopoulos [7]. Their proposed framework was broad, and could be applied to solving

many diverse scientific problems. They proposed techniques that could outsource

numerous computations, which would, in theory, secure the outsourced data at low costs.

Their approach was used to secure their plain data, and it used multiple disguise techniques

10

rather than encryption techniques in order to reduce the required computational complexity

of encryption techniques. However, using a single disguise technique is generally less

secure than using a single encryption technique, so in [7] they used many disguise

techniques, rather than only one, in order to increase their approach. However, their

approach may leak private information, because it requires a master key that consists of

many subkeys, with a property of discovering one of these subkeys. Note that this approach

requires many subkeys because it uses many disguising techniques, and each of these

techniques requires a key.

In 2010, Gennaro, Gentry, and Parno [24], as well as Chung, Kalai, and Vadhan

[15], proposed approaches for outsourced computation. Gennaro et al.’s [24] scheme

combined the proposed GC evaluation [46] with the FHE scheme, which has been proposed

[25]. Gennaro et al. [24] proposed that the GC is evaluated only on encrypted inputs. To

evaluate a GC on two different inputs was shown to provide no appropriate privacy,

because there was a small probability that information would be leaked in each parity,

during the exchanges between the GC input and output labels.

According to the approach in [24], the created GC for the required computations is

stored in the server. Then the client encrypts his or her input data by using the private key

of the FHE and sends the encrypted data to server in order to be evaluated by the stored

circuit. After that, by using the homomorphic properties of the encryption scheme, a cloud

server computes the function on the received data and sends the result to client. Finally,

the client decrypts the received result in order to understand it.

The approach by Gennaro et al. [24] seems to be more efficient than FHE

techniques, because their approach does the verification operation only in O(m) operations.

11

However, their approach might increase its efficiency at the sacrifice of input privacy.

There is one main disadvantage: If there are malformed responses from servers, then there

is a small probability that a malicious entity already knows k-bit information about the GC,

even before the client manages to detect and terminate that malformed response. Therefore,

it would be hard for a malicious entity to break the full GC if the amount of k-bit

information is sufficiently small. However, this argument cannot be proven.

2.1.2. Outsourcing to Multiple Noncolluding Cloud Servers

In this scheme, the client outsources his or her computations to multiple cloud

servers, which do not interact with each other. Generally, the need of multiple servers is

for ensuring the correctness of the results [9].

This scheme’s main advantage is the reduction in the required computational

complexity needed for verifying the computational results of the previously used servers.

Also, this scheme can be used to reduce the computational complexity needed for running

the homomorphic encryption. On the other hand, the main disadvantage of this scheme is

that communicating through these multiple servers overwhelms the client’s

communication protocols.

In 2008, Benjamin and Atallah [6] presented an example of this scheme. They

showed how to fully exploit this approach, in which the expensive cryptographic operations

are not required. Their proposed protocols enable a continuous chain of outsourcing data

as these data are being outsourced safely. Their scheme allows the client to outsource large

matrices to the first server in order to compute the multiplication. Then, to verify the first

server computations, the client sends the results of the first server computation to the

second server. In this approach, the client does do more than O(n2) work and can discover

12

any corrupted answers by the server.

In 2012, Blanton, Atallah, Frikken, and Malluhi [10] proposed new techniques to

enable the servers to carry out the computation obliviously by using only O(rnm)

computation and communication complexity. Their solution was designed to work with

noncolluding servers that have limited space, such as O(r (m + n)) space. Blanton et al.

[10] completely avoided public key cryptography because they used GC evaluation

techniques. Therefore, their solution is particularly practical, resulting in fast techniques

for the edit-distance and edit-path computation in the privacy-preserving setting.

2.1.3. Outsourcing to Multiple Colluding Cloud Servers

In this protocol, the client outsources his or her computations to multiple cloud

servers, and these servers do the work together. This scheme solves the weaknesses of the

first scheme: It does not overwhelm the client’s communication protocols because it

contacts multiple servers that are working together. Therefore, the client sends the

outsourced data to the first server as it receives the final result from the last server. Also,

this scheme does the verification work by using the servers. However, this scheme’s main

disadvantage is that it is less secure than the other schemes, especially when the verification

operation is done by one of the servers.

In 2010, Roy, Setty, Kilzer, Shmatikov, and Witchel [40] proposed an approach of

securing outsourced computations. Their scheme is a MapReduce-based computation [17].

Their approach proposes the Airavat system, which has been designed and implemented to

incorporate the mandatory access-control features of SELinux to MapReduce. Airavat was

equipped with measures to avoid the leakage of information through the output

computations, and the system supports both trusted and untrusted MapReduce

13

computations of sensitive data. It ensures a comprehensive enforcement of data providers’

privacy policies because it prevents information leakage through system resources. Airavat

runs on SELinux and adds SELinux-like mandatory access control to the MapReduce

distributed file system. Furthermore, Airavat enforces differential privacy by applying

some modifications to the Java Virtual Machine and the MapReduce framework, in order

to prevent leaks through the output of the computation. In [40], Airavat proved to be

accurate, but it slowed down the computation because it overwhelmed the system by

enforcing differential privacy.

2.1.4. Secure Multiparty Computation

Secure multiparty computation is a protocol that allows parties to compute the same

operations or functions to their input data cooperatively; however, each party’s inputs are

kept private from the others [47].

This model was introduced in 1986 by Yao [47] and is known as the “millionaire

problem”—that is, when two millionaires want to know who is richer than the other, but

without knowing the actual value of each other’s wealth. This scheme allows two parties

with individual and private inputs to jointly compute the same functions by entering them

using a secure protocol for the same function f. Moreover, the private protocol exposes

only the deduced result of function f without revealing any additional information.

Another multi-party model for secure outsourcing was proposed in 2001 by Du and

Atallah [19]. One of the proposed models that relates to our work is for storing data

securely in external servers after encrypting them, while the other one is for doing

operations with encrypted data. Clients need to access and compute their data randomly

without revealing themselves to external servers. However, the main drawback in Du and

14

Atallah’s model [19] is that the computed matrices must be the same size, or else they will

not be computed or the computation results will be incorrect. This type of secure multiparty

protocol was used in [46, 26, 33, 32, 29, 16] and was designed to efficiently compute and

operate privately the same jointly used general functions by multi-parties. However, all of

these previously proposed solutions have many drawbacks, most of which relate to the

security of the multiparty computation protocols. This type of protocol imposes a joint

party to compute the comparable burdens.

The problems of securing multi-party computation protocols are defined and

summarized in [20], in which the main problem of this scheme is finding a satisfactory

vector for different linear systems of equations for each joint party. Another problem is one

of matching: Sometimes one of the joint parties wants to know whether its input matches

the elements of the entered data set, which has been entered by the other party. In this

situation, the main risk is that none of the joint parties should have any knowledge of the

others entered data, and the result of this operation may leak private information of both

parties. Another problem may occur if the required computation operation requires joining

data—that is, classification, clustering, union, and intersection operations are required to

be computed with the joint parties’ data sets; however, the computing of these operations

will leak the private information of the joint parties. Moreover, leakage will occur if the

computation operations are only selecting, sorting, or even defining the shortest path.

2.2. Exponential Cipher

An exponential cipher is a cryptosystem based on exponential congruence, which

is of the form 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑛). The exponential cipher encodes plain data by formula 𝐶 ≡

𝐴𝑥(𝑚𝑜𝑑 𝑛), in which A is the plain data block, C is the encrypted data block, and n is

15

prime integer number. Exponential cryptosystems are quite difficult to crack than other

types of cryptosystems, which has been shown in past research.

Many cryptosystem strategies have been based on exponential ciphers, such as

Diffie-Hellman and Pohlig-Hellman’s cipher, cipher feedback mode, ElGamal cipher, RSA

cipher, and Rabin’s block cipher [12]. All these ciphers depend mainly on exponential

congruence formulas for encryptions (there are some differences in using this formula

among the different ciphers) and to set their factors. The next subsections review some of

the main exponential cipher techniques.

2.2.1. Diffie-Hellman key-exchange cryptosystem

In 1976, Diffie and Hellman were the first to invent a public key scheme, which

they did for their Diffie-Hellman key-exchange cryptosystem [18]. Their system shows

how using a function with a public key can work as a solution for many cryptosystem

strategies, including digitalized signatures. Their encryption function is 𝐶 ≡ 𝑔𝑥(𝑚𝑜𝑑 𝑝),

where the public key consists of both g and p, while the exponent part x is the private key.

The Diffie-Hellman cryptosystem has been shown to make it impossible for an

eavesdropper to compute the private key when p is a large prime number, but if p is a low

prime number, it becomes possible for an eavesdropper to break the private key’s seal [1].

Currently, there are no efficient ways to solve the discrete logarithm problems.

2.2.2. RSA Cryptosystem

The RSA cipher is a public key cryptosystem that was presented by Rivest,

Adelman, and Shamir in 1978 [39]. Their cryptosystem is a one-way trap-door function.

Their encryption function is 𝐶 ≡ 𝑃𝑒(𝑚𝑜𝑑 𝑁), in which N is a large prime number that is

factorable into a product of two large prime numbers p and q. The RSA public key consists

16

of both N and e. In order to determine e, many calculation formulas must be done. To

compute the private key, the user needs to compute 𝑑 ≡ 𝑒−1(𝑚𝑜𝑑 𝜑(𝑁)), in which the

private key consists of d and N, and the decryption function is 𝑃 ≡ 𝐶𝑑(𝑚𝑜𝑑 𝑁).

Rivest, Adelman, and Shamir’s [39] RSA cipher was among the first patent in

public key cryptography, and they claimed that their patent included all forms of key

cryptography [12].

The RSA cipher’s one-way function has been shown to be most difficult to break,

as hard as factorization, but cracking it can be easy in a certain situation. Another decoding

algorithm that does not involve or imply factorization N can crack the one-way function

[37]. RSA cipher’s main weakness is that the known public key can easily crack the cipher

[44]. After comparing it with the Diffie-Hellman cipher, we find that it requires more

computational processes than the Diffie-Hellman cipher requires; furthermore, the

vulnerability of the RSA cipher is much higher than that of the Diffie-Hellman cipher.

Shortly after presenting the RSA cipher, a modification of the RSA public key

approach was presented by Williams in 1980 [44]. In his approach, he describes a

modification of the RSA technique, a modification that makes cracking the RSA system as

difficult as factoring the form of N, where N = pq, and both p and q are prime numbers of

the form 𝑝≡3 (𝑚𝑜𝑑8), 𝑞≡7 (𝑚𝑜𝑑 8). Williams’ decryption method [44] is based on the

Chinese remainder theorem, which creates four candidate roots of the encrypted data, and

among all of these roots, only one is correct. To solve the decryption problem, Williams

uses the Jacobi symbol methodology.

The main weakness in Williams’ [44] approach is that the plain data must be

restricted to a special form to make sure that all conditions of the encryption and decryption

17

process are met. In addition, the approach adds more computational complexity to the

original RSA cipher; after incorporating Williams’ modification, an RSA scheme requires

O(n3) for each encryption and decryption process.

In 1988, Kurosawa, Itoh, and Takeuchi presented another modification for the RSA

cipher [30]. Their modification is a public key cryptosystem that is very difficult to break,

as hard as factoring the large prime of N (N = pq). Their approach suggests that the public

key should consist of both N and C, such that (C/p) = (C/q) = -1, and the private key should

be the two large prime numbers p and q. For the decryption method, they also use the

Chinese reminder theorem, which causes the same problem that occurred for Williams

[44]. The approach of Kurosawa et al. [30] uses an extra bit and the Jacobi symbol

methodology to solve the four-root decryption problem, so the system can recognize the

correct root of the plain data.

Kurosawa et al. [30] reduce the computational complexity so that the encryption

process requires O(n2) operations; however, the decryption process still needs O(n3)

operations. This approach does not require a special form of plain data to be encrypted,

which is a great advantage over Williams’ approach.

Takagi [43] proposed another approach that speeds up the RSA cipher. His

proposed cryptosystem is based on the RSA cryptosystem in the form 𝐶 ≡ 𝑀𝑒(𝑚𝑜𝑑 𝑁),

where N = pkq. Using this form of N provides resistance to fast-factoring algorithms. Also,

his decryption algorithm is three times faster than using the Chinese remainder theorem

when decrypting the RSA cipher. In Takagi’s approach, the public key is the same as in

the normal RSA cipher, while the private key consists of d, p, and q, and his encryption

methodology is the same as that of the original RSA cipher. However, Takagi [43]

18

enhanced the decryption process by using his decryption methodology in [42]. He

computes the modular multiplication of the encryption exponent and a greatest common

divisor to decrypt blocks after the first block. The decryption time of the first block is the

foremost one, because the first decrypted block is decrypted by using the formula 𝑃 ≡

𝐶𝑑(𝑚𝑜𝑑 𝑁); while for the remaining blocks, his cryptosystem decrypts them by solving

the linear equation modulo N. Therefore, even if a message is several times longer than

public key N, the encryption of the plain data will be fast without repeatedly using the

secret key cryptosystem. The main weakness of Takagi’s approaches [42, 43] is that there

is a small probability the decryption may fail.

In 1995, Bellare and Rogaway [11] proposed a different methodology for

modifying the RSA cryptosystem. Their approach focuses on padding data, which is

referred to as optimal asymmetric encryption padding (OAEP), and it enhances the security

of the RSA cryptosystem. Their method converts the RSA trapdoor permutation into a

chosen secure system for cipher text, within the random oracle model. The first step of this

approach is to hash the plain data unit by using the concatenation between both a generator

formula and a hash function; then it encrypts the result of that concatenation by using the

RSA’s encryption method. In order to decrypt the ciphered data, the data are first decrypted

by using the normal RSA decryption methodology; then they use the inverse of their hash

methodology to compute the original plain data.

Bellare and Rogaway [11] proved that their OAEP methodology increases security

of the RSA cipher. In addition, their padding methodology can be applied to any other

cryptosystem, not only to the RSA cipher. However, their padding methodology is suitable

for short-length data. In addition, their padding methodology demands more computational

19

complexity for encryption and decryption techniques. Despite that the output of their

padding decryption technique is unique, the padding decryption has a small probability of

failing [6, 11].

2.2.3. Rabin Cryptosystem

In 1979, Rabin [37] presented another public key cryptosystem based on an

exponential cipher, and it is actually a type of quadratic cipher. He calls his cryptosystem

the Rabin cipher, and its encryption methodology comprises only a quadratic congruence

modulo with a large prime number 𝐶 ≡ 𝑃2(𝑚𝑜𝑑 𝑁), in which P is the plain data block, C

is the ciphered data block, and N is a large composite number that is factorable into a

product of two large prime numbers, p and q. The public key of the Rabin cipher consists

of only N, which increases its security over the RSA security. Its private key consists of

the large prime numbers p and q. The decryption methodology of the Rabin cipher is based

on solving the quadratic congruent by using the Chinese remainder theorem, which resulted

four candidate roots, and only one of these roots represents the plain data block [37].

The main advantage of the Rabin cipher over the RSA is that the former is more

secure than the latter; the Rabin cipher is as hard as factorization when it is being cracked.

In addition, the Rabin cipher can be computed much more quickly than the RSA cipher.

However, the main disadvantage of the Rabin cipher occurs in its decryption method,

because the cryptosystem may fail to recognize the correct plain data block over all of the

four roots during decryption. In addition, if public key N has been factored, the Rabin

cipher can be cracked easily.

In 2014, Hashim presented research [27] in which he developed the H-Rabin

cryptosystem, a modification of the Rabin cryptosystem. Hashim’s approach enhances

20

security of the Rabin cryptosystem by increasing the difficulty of factoring the public key,

N. Hashim designates N to be a large composite number that can be factored into a product

of three large prime numbers (p, q, and r), rather than into only two prime numbers, as

happens in the Rabin cipher. Therefore, the private key of the H-Rabin cryptosystem

consists of three large prime numbers, and the encryption and decryption methods are the

same as those of Rabin’s approach. However, the result of decryption consists of eight

candidate roots of decrypted plain data blocks, because N is factorable into a product of

three large prime numbers [27].

The main advantage of the H-Rabin cryptosystem is that it enhances the security of

Rabin cipher; even if adversaries try to factor N, they will hardly consider that N is

factorable into a product of three large prime numbers—not merely two. However, H-

Rabin’s decryption method is the main weakness. First, it demands more computational

complexity because it has to compute all of the eight roots. Currently, there is not any

feasible process that can be added to the H-Rabin cryptosystem to make it recognize the

correct root of the plain data block among all of the eight roots.

In 2001, Boneh presented another padding approach [13] similar to the OAEP

technique [11]. Boneh’s method is much simpler than OAEP and introduces two simple

padding schemes: Simple-OAEP (or SAEP) and SAEP+, and he applied both of his

padding techniques to the Rabin and RSA cryptosystems. Both SAEP and SAEP+ schemes

are used as preprocessing functions with the Rabin or RSA trapdoor functions. So, in order

to encrypt plain text, first it is padded by using an SAEP or SAEP+ schema; then the result

of the padding schema is encrypted normally by either the Rabin encryption function or

the RSA encryption function. For the decryption, the encrypted message is first decrypted

21

by using the normal decryption technique of either the Rabin or the RSA cipher; then the

padded message is decrypted to get the original structure [13].

The main advantage of using either the SAEP or SAEP+ schemes is that they

enhance the security of both the Rabin and RSA ciphers. In addition, SAEP and SAEP+

schemes are much simpler and demand less computational complexity than OAEP.

However, using any of these padding schemes adds computational complexity to

encryption and decryption processes in the Rabin and RSA ciphers. In addition, in order to

apply these padding schemes, the size of the plain data is restricted; even when using

SAEP+, the size of the plain message has to be smaller than it does within an OAEP

scheme. Furthermore, there is a small probability that the padding decryption may fail or

give an inaccurate result of the plain data [6, 13].

Another approach that helps recognize the correct decrypted root among the four

roots created in the decryption stage was represented in [21]. The authors generated

additional information to correctly recognize the proper root, and they can apply both

Jacobi symbols and Dedekind sums as the last process in their decryption stage. The

approach is based on three schemes, all of which solve the one-to-four mapping function

precisely. The first scheme was the simplest one, and it exploits Jacobi symbols by using

two extra bits that are generated in the encryption stage and later sent with the encryption

message. Subsequently, in the decryption stage after computing the four roots, the system

selects only two roots that have the same party bit by comparing them with the first bit that

was earlier sent with the encryption message. In regard to these two selected roots, the

system selects the root that corresponds to the number equal to the second bit that was sent

with the encrypted message. In the second scheme, the extra information is represented by

22

a generated factor that is added to the public key. Therefore, in the decryption stage, the

system computes two factors, which depend on that extra factor. After computing the four

roots, the system selects only the root that corresponds to the two earlier computed factors.

The third scheme proposed [21] is based on using both the Jacobi symbols and Dedekind

sums to mimic the computational operations. In the third scheme, extra information is

similar to the first scheme, which is represented by two extra bits that were sent with the

encrypted message. However, in the last step of the decryption stage, it uses simpler

operations to determine the correctly computed root.

The main advantage of these three proposed techniques [21] is that the Rabin

cryptosystem can identify the correct computed root among the four roots created in the

decryption stage. However, the main disadvantage is that they keep computing all of the

four roots and then select the appropriate one by adding two or more operations to the

decryption stage. The additional operations in the encryption stage are used to generate

extra information. For these reasons, the computational complexity increases for

computing needless information, such as that of all four roots. These schemes could

decrease the demand for computational complexity by half in the decryption stage if they

were to check each generated root before generating the other remaining roots.

Kurosawa, Ogata, Matsuo, and Makishima presented a new approach [31] for

increasing security of the Rabin cipher, and their approach combines padding plain data to

increase security and using Jacobi symbols in the decryption stage to solve the four-to-one

mapping problem. Their approach enhances the security of the public key by using the

indistinguishability under adaptive chosen cipher text attacks (IND-CCA) scheme, which

is the strongest notion for a public key scheme. Kurosawa et al. [31] improve the IND-

23

CCA scheme by making its security equivalent to factoring N = pq. The presented scheme

adds an extra bit to the public key, in order to use Jacobi symbols in the decryption process,

and solves the four-to-one mapping-function problem. In the encryption stage, the first step

is to encrypt the plain text by using their proposed padding methodology; then the result of

that is ciphered by the normal Rabin’s encryption method. The same process occurs in the

decryption stage: In the first step, the encrypted message is decrypted by using the normal

Rabin cipher decryption method. In the second step, Jacobi symbols are applied to find the

correct root. In the final step, the padded message is decrypted to get the original data.

The main advantages of this approach are the solving of the four-to-one mapping-

function problem of the Rabin cipher and the enhanced security. However, demand for

computational complexity increases when these advantages are pursued. In addition, the

final step of their decryption method has a small probability of failing. There are also some

restrictions on the message size for padding.

Another approach is reported in [5]. This approach aims to reduce the

computational complexity of the Rabin decryption process, and it proposes a fast and

efficient algorithm for reducing the running-time complexity of the current decryption

operations of a primitive Rabin cryptosystem. It uses the Garner algorithm to solve the

Chinese remainder theorem algorithm during the decryption process, cutting down the

requirements of certain operations. For example, the multiplication operation requires

about half of the numbers usually needed for the Chinese remainder theorem. The result of

the decryption process also reduces to two roots rather than four roots. This approach also

differs from the Rabin cryptosystem in the decryption method because using the Garner

algorithm requires only one modular inversion and voids the need to conduct modular

24

reduction on large moduli. The approach adds a proposition condition in the decryption

method in the last step to reduce the decryption outcomes to only two roots.

This approach reduces the time complexity of the decryption process. It reduces the

cost of decryption by approximately by 33.8%, especially because the decryption output

has also been reduced to only two roots. However, this approach does not have any

technique that can recognize the correct root between these two roots.

Asbullah an Ariffin presented the Rabin-p cryptosystem approach [6], which

mainly aims to reduce the computational complexity of the decryption process, as well as

solving the four-to-one mapping-function problem. Of foremost importance, their

decryption method results in a unique, correct root. In addition, Rabin-p increases the

security of the Rabin cipher by increasing the difficulty of factoring the public key N. To

do so, it proposes that N = p2q, rather than N = pq. According to this approach, the Rabin-

p public key is generated by selecting two distinct prime numbers, p and q, and it generates

N that equals to p2q. Therefore, the public key consists of N, and the private key consists

of only p. However, to encrypt the plain text, it must be restricted to some range of bits

depending on N, where the plain text of m size, and N should be a coprime, such that

gcd(m, N) = 1. The main difference between the Rabin-p and Rabin ciphers occurs in the

decryption process. The Rabin-p decryption method is based on operating single modular

exponentiation operations rather than computing the Chinese remainder theorem. The

result of the Rabin-p decryption method is two roots rather than four.

The Rabin-p cryptosystem has many advantages. First, Rabin-p reduces the

computational complexity of the decryption method. Second, it solves the four-to-one

mapping problem efficiently without any need for extra computational processes or extra

25

information. Third, Rabin-p increases the security of the Rabin cryptosystem. On the other

hand, the cost of these advantages is that the plain text message must be restricted to some

range of bits to make it applicable for being encrypted by Rabin-p.

The proposed Rabin-RZ cryptosystem [48] has an efficient method for solving the

four-to-one decryption failure in the Rabin cryptosystem. Furthermore, Rabin-RZ uses a

stronger public key than the one used in the Rabin cipher, where its public key N = p2q,

which is much harder to be factored than when N = pq. In order to generate the public key,

both prime numbers p and q should be distinct and restricted to a defined n-bit strong prime

number. Then the public key N is set to p2q, and the private key consists of p, q, and d,

where d is equal to pq. In order to encrypt plain data in the Rabin-RZ cryptosystem, the

plain data should be restricted to a specified n-bit interval that is much less than the normal

Zpq domain in the Rabin cipher. The other processes of the Rabin-RZ encryption are the

same as in the Rabin cipher. The main difference between the Rabin-RZ and Rabin

cryptosystem occurs in the decryption stage. First, the Rabin-RZ decryption computes the

congruence of the ciphered data modulo d, where d = pq. However, in order to recognize

the correct root among the resulting four, Rabin-RZ computes another factor based on the

ciphered data and the resulting root. Then a condition is applied on the last computed factor,

and that condition succeeds by producing only one root, which is the correct root.

The main advantage of the Rabin-RZ cryptosystem is that it solves the four-to-one

mapping failure of decryption accurately. It does so without any possibility of failing,

without any need for extra information, and without any additional demands for the

computational complexity in the decryption process. In addition, Rabin-RZ enhances the

security of the Rabin cryptosystem. However, the domain for the plain data is restricted to

26

a specified n-bit interval that is much less than the normal domain of the Rabin cipher.

In our approach, we use the Rabin cipher to be our main encryption methodology.

According to our previous analysis, the Rabin cipher is more secure than both the Diffie-

Hellman key exchange and the RSA cryptosystems. However, the Rabin cipher

cryptosystem has some decryption problems when trying to recognize the root that

represents the plain data, but this weakness can be solved by using many techniques (some

of which are fast, while others are slow). The Diffie-Hellman approach is not applicable to

our own because we are not going to exchange the key with server—that is, we do not

incorporate a public key in our system. For this reason, Diffie-Hellman is not applicable in

our approach.

27

CHAPTER 3: METHODOLOGY

The main goal of our work is to provide a security system that addresses the

problem statement outlined in Section 1.1. Therefore, we want to propose an approach that

can secure the outsourced data in a form that allows the cloud-computing server to do the

required computations on the data without knowing their actual values. However, the

computation results must be reasonably accurate. Our proposed approach does not allow

the cloud servers to extract the actual values of the outsourced data. Our approach must

optimize client resources so that the client does not require additional resources to execute

our approach. In our work, we can use additional operations in order to verify the server’s

computational results. Because we want to save and optimize client resources so that clients

will not do any operations or works that reach or exceed O(n3) operations, we use a

lightweight cipher technique and add to it some obfuscation techniques to strengthen

security.

In this chapter, we review and present existing methodologies and techniques that

have been previously used to solve the secure-outsourcing problem. We analyze features

of these techniques to understand how we could address the research problem defined in

this thesis. Our research methodology is primarily based on laboratory experiments using

programmatic tools and techniques in an application context, namely, image processing.

The next section describes our research methodology framework, with which we carry out

our research activities in a systematic way. We also discuss introductory materials of key

existing technology that we are going to explore, use, and modify if necessary, in order to

formulate a viable solution to the research problem.

28

3.1. Methodology plan

In order to achieve our research objective and address the research problem

delineated in Chapter 1, we plan to use the research methodology framework depicted in

Figure 3.1.

Figure 3.1: Research Methodology Framework

Our first stage of the methodology is to define a new obfuscating framework that

can lay out a high-level solution of the problem. This high-level overview of the solution

will act as a guiding principle of the proposed solution.

The second stage of our methodology is to examine some of the existing techniques

that could allow us to reduce the size of images without losing vital information. Note that

our application context in this research is image processing. A single image consists of

thousands of pixels, and computing this huge number of pixels by the client is a

computational-intensive task. In this stage, we will investigate how to minimize the data

volume of the image in the approach using existing techniques.

29

The third stage of our methodology is to use one or more existing cryptosystems to

optimize the obfuscation of images. We are going to experiment how we can encrypt our

data without using a public key. To do so, we plan to examine the Rabin cipher.

In the fourth stage, we explore how to devise an optimal decrypting technique that

could help clients to decrypt data easily.

Finally, we will test and verify our proposed solutions in terms of feasibility of the

approach and the accuracy of the results.

3.2. Obfuscation methodology

As we have mentioned earlier in this chapter, the main aim of this work is to ensure

the security of outsourced data, and to make it suitable for further computations by cloud

servers without decryption, so that the server can compute the outsourced data correctly

and accurately. Yet we do not want to use any technique that requires huge overheads, such

as fully homomorphism encrypting. Therefore, we use a lightweight cipher technique, the

Rabin cipher, because its difficulty in being cracked is as challenging as integer

factorization [28]. The Rabin cipher is partially a homomorphic encrypting system—that

is, it is homomorphic in some operations, such as multiplication operations, but it is not

homomorphic in other operations, such as additional operations [45]. This cipher technique

can be modified to suit our needs for developing an approach that does not allow any

leakage of the client’s private information. By encrypting the client’s outsourced data by

using the Rabin cipher technique, we can enable the cloud server to compute the encrypted

outsourced data without any need for decryption.

3.2.1. Rabin Cipher

The main idea of Rabin cryptosystem is based on computing quadratic congruence

30

modulo a composite number. Where solving the quadratic congruence is simple when the

factorization of the composite number is known, however, it will be very complex when

the factorization of the composite number is unknown.

 The encryption formula of Rabin cryptosystem is

𝐶 ≡ 𝑃2(𝑚𝑜𝑑 𝑛) (1)

Where C is the cipher data, P is the plain data, n is the product of two distinct large primes,

say p and q, and both are congruent to 3 modulo 4. As the public key will be n, and the

private key is p and q.

The decrypted methodology of the Rabin cipher is based on creating a system of

linear congruencies, which consists of congruence formulas (2) and (3):

𝐶𝑝 ≡ 𝑃
𝑝+1

4 (𝑚𝑜𝑑 𝑝) (2)

𝐶𝑞 ≡ 𝑃
𝑞+1

4 (𝑚𝑜𝑑 𝑞) (3)

 Then we use the Chinese remainder theorem and the quadratic congruence

propositions in order to solve the created system of linear congruencies. Consider the

following quadratic congruence propositions used to solve the system of linear

congruencies.

Proposition:

Suppose integers 𝑎1 , 𝑎2, 𝑎3, … , 𝑎𝑛 are relatively prime pairwise. Then

(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛)|𝑐 if and only if 𝑎1|𝑐, 𝑎2|𝑐, 𝑎3|𝑐,… , 𝑎𝑛|𝑐.

Proposition:

Let 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚1), 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚2), 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚3),… , 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚𝑛) , where

31

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 are relatively prime pairwise. Then

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚1,𝑚2,𝑚3, … ,𝑚𝑛).

Consider the Chinese remainder theorem, where it is used with these propositions

for solving the system of linear congruencies.

3.2.1.1. The Chinese Remainder Theorem

Let 𝑛1, 𝑛2, , 𝑛𝑟 be positive integers, such that gcd (𝑛𝑖, 𝑛𝑗) = 1 for i ≠ j. Then the system

of linear congruencies is

𝑥 ≡ 𝑐1 (𝑚𝑜𝑑 𝑛1); 𝑥 ≡ 𝑐2 (𝑚𝑜𝑑 𝑛2);… . ; 𝑥 ≡ 𝑐𝑟(𝑚𝑜𝑑 𝑛𝑟), , 𝑎

and it has a simultaneous solution, which is a unique modulo 𝑛1𝑛2. . . 𝑛𝑟.

Normally, the Chinese remainder theorem is solved by using Gauss’s algorithm,

which is provided below.

3.2.1.2. Gauss’s Algorithm

Let N = 𝑛1𝑛2. . . 𝑛𝑟 then

𝑥 ≡ 𝑐1𝑁1𝑑1 + 𝑐2𝑁2𝑑2 +⋯+ 𝑐𝑟𝑁𝑟𝑑𝑟 (𝑚𝑜𝑑 𝑁) ,

Where 𝑁𝑖 =
𝑁
𝑛𝑖⁄ , 𝑎𝑛𝑑 𝑑𝑖 ≡ 𝑁𝑖

−1 (𝑚𝑜𝑑 𝑛𝑖).

Therefore, decryption is normally done by using Gauss’s algorithm for solving the

Chinese remainder theorem. Where both congruency formulas (2) and (3) are combined to

obtain solutions for P. Hence, the solutions of P will be gotten by the formula

𝑃 ≡ ±(𝑧𝑞𝑞𝑝
′ ± 𝑤𝑝𝑝𝑞

′)(𝑚𝑜𝑑 𝑛)

Where 𝑧 = 𝐶(𝑝+1)/4, 𝑤 = 𝐶(𝑞+1)/4, 𝑞𝑝
′ is an inverse of q modulo p, and 𝑃𝑞

′ is an inverse

of p modulo q, as the 𝑃𝑞
′ is calculated by the using the extended Euclidean algorithm.

32

Consider Gauss’s algorithm 3.1 for solving Chinese remainder theorem.

Algorithm 3.1: Gauss’s Algorithm

Input: integers p, q, and ciphered data C

Output: integers 𝑋1, 𝑋2, 𝑋3, 𝑋4

Steps:

1- 𝐶𝑝 ← 𝑃
𝑝+1

4 (𝑚𝑜𝑑 𝑝)

2- 𝐶𝑞 ← 𝑃
𝑞+1

4 (𝑚𝑜𝑑 𝑞)

3 - 𝑀1 ← 𝑞
−1(𝑚𝑜𝑑 𝑝)

4- 𝑀2 ← 𝑝
−1(𝑚𝑜𝑑 𝑞)

5- 𝑋1 ← 𝐶𝑝𝑀1𝑞 + 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞)

6- 𝑋2 ← 𝐶𝑝𝑀1𝑞 − 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞)

7- 𝑋3 ← −(𝐶𝑝𝑀1𝑞) + 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞)

8- 𝑋4 ← −(𝐶𝑝𝑀1𝑞) − 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞)

9- return (𝑋1, 𝑋2, 𝑋3, 𝑋4)

However, using Gauss’s algorithm for solving Chinese remainder theorem requires

more computational complexities, because it requires computing two multiplicative

inverses (i.e., step 1 and step 2). It also requires many numbers of the multiplicative, such

as the ones used in steps 1, 2, 3, and 4.

Another algorithm is used for solving the Chinese remainder theorem: Garner’s

algorithm. The Garner algorithm is generally used for solving the Chinese remainder

33

theorem, where Garner’s algorithm sufficiently speeds up the Chinese remainder theorem

computation.

3.2.1.3. Garner Algorithm Definition

Given the positive moduli 𝑚𝑖 ∈ 𝑍 (0 ≤ 𝑖 ≤ 𝑛), which are pairwise relatively

prime and given corresponding residues 𝑢𝑖 ∈ 𝑍𝑚𝑖 (0 ≤ 𝑖 ≤ 𝑛), then to compute the

unique 𝑢 ∈ 𝑍𝑚 (𝑤ℎ𝑒𝑟𝑒 𝑚 = ∏ 𝑚𝑖
𝑛
𝑖=0) satisfies the system of congruence

𝑢 ≡ 𝑢𝑖 (𝑚𝑜𝑑 𝑚𝑖), 0 ≤ 𝑖 ≤ 𝑛

The key to Garner’s algorithm is to express the solution 𝑢 ∈ 𝑍𝑚 in the mixed radix

representation

𝑢 = 𝑣0 + 𝑣1(𝑚0) + 𝑣2(𝑚0𝑚1) +⋯+ 𝑣𝑛(∏𝑚𝑖

𝑛−1

𝑖=0

)

Where 𝑣𝑘 ∈ 𝑍𝑚𝑘 𝑓𝑜𝑟 𝑘 = 0, 1, 2,… , 𝑛.

Therefore, the first step in the decryption process is forming a system of linear

congruencies, which consists of two congruence formulas, (2) and (3). Then the Garner’s

algorithm is applied to solving the Chinese remainder theorem, which in turn solves the

system of linear congruencies, (2) and (3).

Consequently, consider decryption algorithm 3.2, which is the Garner’s algorithm

for solving the Chinese remainder theorem, and is formed as follows:

Algorithm 3.2: Garner’s algorithm

Input: integers p, q

Output: integers 𝑋1, 𝑋2, 𝑋3, 𝑋4

Steps:

34

1- 𝐶𝑝 ← 𝑃
𝑝+1

4 (𝑚𝑜𝑑 𝑝)

2- 𝐶𝑞 ← 𝑃
𝑞+1

4 (𝑚𝑜𝑑 𝑞)

3- 𝑗 ← 𝑝−1 (𝑚𝑜𝑑 𝑞)

4- ℎ1 ← (𝐶𝑞 − 𝐶𝑝)𝑗 (𝑚𝑜𝑑 𝑞)

5- ℎ2 ← (−𝐶𝑞 − 𝐶𝑝)𝑗 (𝑚𝑜𝑑 𝑞)

6- 𝑋1 ← 𝐶𝑝 + ℎ1𝑝

7- 𝑋2 ← 𝐶𝑝 + ℎ2𝑝

8- 𝑋3 ← 𝑝𝑞 − 𝑋2

9- 𝑋4 ← 𝑝𝑞 − 𝑋1

10 - return (𝑋1, 𝑋2, 𝑋3, 𝑋4)

As has been noticed, Garner’s algorithm is almost more efficient than Gauss’s

algorithm in regard to solving the Chinese remainder theorem. Because Garner’s algorithm

only requires computing one modular inverse operation (i.e., step 3 in algorithm 3.2), it

cuts the computational efforts in half. In addition, Garner’s algorithm reduces by half the

number of multiplications needed for Gauss’s algorithm. For these reasons, the Garner

algorithm has significant computational advantages when solving the Chinese remainder

theorem.

Consider that the hardness of Rabin ciphers increase when the composite number

N is large, and it will be very simple to crack Rabin ciphers when the composite number N

is small. Therefore, Rabin ciphers are highly secure when the plain data is represented as a

35

large integer number, while the amount of its security is reduced when the plain data is a

small integer number. Thus, to solve this problem, almost all of the researchers that

incorporate Rabin ciphers complement it with a blocking cipher technique, in order to

increase the security of encrypting small integer numbers, and to make the Rabin cipher

applicable for all integer numbers.

3.2.2. Block Cipher Definition

A block cipher is a parameterized, deterministic function that maps n-bit plaintext

blocks into n-bit ciphertext blocks. The value n is called the block length. The cipher is

essentially a simple substitution cipher with character set = {0, 1}n [8].

Although any size for blocks is acceptable, some aspects must be considered for

selecting the size, in order to reach the maximum amount of security in the system. For

example, the size of a block cannot be very small because small blocks are discovered more

easily. On the other hand, block size should not be too large because the cipher will begin

to operate inefficiently when the plain data is receiving extra padding before being

encrypted. The need for larger amounts of padding makes the system inefficient. In

addition, if the padding is always done with the same bits, the padding may reduce the

degree of security at times [8].

By using the block cipher, the restriction of the Rabin cipher’s security for

encrypting small integer numbers is solved. However, the main drawback of using the

Rabin cipher occurs in its decryption algorithm, which results in four candidate blocks of

the original plain text for each decrypted block cipher. The second weakness of the Rabin

cryptosystem is that if it has a public key that can be factorized, then that will cause a

breaking in the Rabin system. In addition, using a fixed size for blocks can provide hints

36

to potential attackers if they discover some of the plain text blocks corresponding to some

previously sent cipher text blocks. Also, using different keys to encrypt each block

consumes more of a client’s resources. The client needs to save all of these private keys.

In addition, using only one key to encrypt all blocks poses a certain danger: If that key is

discovered, then the whole system will be compromised.

Thus, one of our main objectives in this thesis is to address the weaknesses of the

Rabin cipher’s decryption techniques, to increase the difficulty of its integer factorizing.

We also aim to provide techniques that could provide some flexibility in choosing block

size, so that blocks can be encrypted and decrypted without causing any loss of original

plain data. We also intend to discover some new methodology to minimize unnecessary

consumption of client recourses.

3.3. Testing and Evaluating Methodology

In order to evaluate our proposed approach, all of the weaknesses mentioned earlier

must be addressed and overcome. Our proposed approach will be more useful if we can

address all of these weaknesses. Our approach is based on techniques that address the

following challenges:

1. Computing the outsourced encrypted data accurately by the cloud server, without

revealing the data’s original value

2. Increase the security of data outsourcing

3. Address the Rabin cipher’s decryption weaknesses

4. Optimize client resources

We are aiming to develop an approach by which clients can obfuscate their data

37

and send them to cloud servers, in order to be computed and stored. Then server can

compute the obfuscated, outsourced data without knowing their original values, and can

return the results to the client, along with the obfuscated data that the client earlier sent to

the server. The client then can de-obfuscate the data to find if the server computed the

correct data.

We apply our techniques on image processing—namely, the comparison of images

by the server—to find the similarity of the images. In our framework (presented in Chapter

4), an image is represented by an integer matrix, because the Rabin cipher is only applicable

to integer numbers. The cloud server compares an image with the stored obfuscated images.

The cloud server returns the comparison result to the client, whether it has found a similar

image or not. The final step of the client is to de-obfuscate the received obfuscated image

and to compare it with the saved one, in order to ensure the correctness of the input image

to the server. In Chapter 6, we are going to do some experiments to test and verify our

framework. These tests are intended to confirm the accuracy of our cloud-computing

results and the required time for implementing our framework.

In this chapter we have presented and analyzed the techniques and methodologies

that we are going to use to achieve our aim of proposing a secure outsourcing system. Our

approach is applied on the following scenario: The client obfuscates his or her image by

using the Rabin cipher, and the server computes and stores client data without having any

knowledge of the original data. The server compares the input of the obfuscated image with

the stored obfuscated images on the cloud. The server then sends comparison results, in

terms of close similarity it has already found with the input of the obfuscated image. After

receiving the obfuscated image from the server, the client has the choice to de-obfuscate

38

the ciphered image by using the Garner algorithm. Because the Rabin cipher is only

applicable with integers, we map our plain data to integer numbers.

In the next chapter, we introduce our approach in detail. In addition, we show and

describe our contribution to solving the weaknesses of the previously established

techniques, and we address the listed challenges as well.

39

CHAPTER 4: DATA-OBFUSCATING TECHNIQUE

In this chapter, the main approach for data obfuscation suitable for processing by

cloud servers is presented. One main objective of our approach is to obfuscate data in such

a way that the cloud server or untrusted computers can process them without decrypting,

most importantly without knowing the actual values of the outsourced data. The untrusted

server must be able to compute the obfuscated data. The approach is flexible and applicable

to any form or representation of data; it can be an integer matrix, double matrix, string

matrix, and so forth. We use an image for the experiments of our research, which is a matrix

of pixels as input to our obfuscating process. Consider that this approach can be used for

applications that depend on equality and inequality operations, such as image and text

comparison.

The proposed framework consists of three main components: preprocessing,

obfuscating, and de-obfuscating data. Preprocessing is the first component that transforms

raw data, such as images, into plain data types, such as integers. The main purpose of

preprocessing is to prepare data for the second component of the framework—that is, the

obfuscating of data. We have proposed some new techniques and modified some existing

ones in order to support an effective and efficient obfuscating of data for untrusted cloud

servers. Our proposed framework is expected to reduce computational complexity and to

ensure data privacy and security. The third component is the de-obfuscating technique,

which is only needed when the users want to de-obfuscate their obfuscated data.

Our specific contribution to this research is the proposed new techniques that

include creating blocks, developing digit counts, tokenization, and identifying sets of

40

blocks. All these are developed to optimize the process and secure the data. Creating blocks

is an inspired technique from the world of block ciphers. In addition, developing a digit

counter is a technique that creates a digit for each content piece of the generated blocks.

The tokenization technique creates a token for each generated block. The identifying-sets

technique groups a random number of blocks in one set. Finally, we modify the Rabin

cryptosystem, which is an asymmetric system that requires two different types of keys: the

public and the private keys [37]. In our approach, we use only one type of keys that is the

private key. The details of these new techniques and updated existing techniques are

discussed in the latter sections. Figure 4.1 shows a high-level architecture of the

framework. It has four major components:

 Preprocessing

 Obfuscating

 De-obfuscating.

 Verification.

41

Figure 4.1: High-Level Architecture of the Data-obfuscating Process

4.1. The Proposed Framework

According to our framework, the client prepares his or her data into a matrix of

plain integer values. The matrix is then transformed into obfuscated data and sent it to the

server to be compared with other obfuscated matrices already stored in the cloud server.

The server then sends back the comparison result to the client, which can be either “Exist”

if the server finds a matched matrix, or “Not Exist” if the server does not find any matching

matrix. If the server result is “Exist” then it also sends the matched obfuscated matrix to

the client. Then the client de-obfuscates the received matrix and compares it with the

corresponding integer matrix it saved earlier to verify the server result.

42

4.2. Preprocessing

The main purpose of the preprocessing is to process plain data and prepare them so

that the obfuscating component can modify data easily without having any problems. This

actually transforms data from one format to another depending on the data type needed by

the next process, namely, obfuscating. This component is used and can be modified

depending on the data type, so it differs from one type of data to another one.

In our framework, we use an image as input data into the framework. The image is

represented with a matrix of thousands of pixels. Our framework can only obfuscate the

integer data type; therefore, it has two tasks: reduce the size of the matrix of the image and

convert pixels of the image into integers. We first reduce the image size to improve

efficiency and speed up the obfuscating process. Once the matrix is reduced into an optimal

size, we transform this reduced image of pixels into a matrix of integers. The size reduction

and conversion of the matrix values into integers serve two purposes: (1) Obfuscating

becomes easier and faster because of the reduced size and integer values; (2) because data

size is reduced, the cloud server can perform the comparison in relatively less time.

In order to achieve these goals, the preprocessing component consists of four

different techniques, as depicted in Figure 4.2:

 Reducing image size

 Converting colored images into gray images

 Extracting pixel values

43

 Representing double into integers.

Figure 4.2: Preprocessing Component

The details of each of these four techniques are provided in the following

subsections.

4.2.1. Reducing Image Size

Because the images each consist of thousands of pixels, we need to reduce them to

a size that can be represented with less numbers of pixels, yet keep these images

meaningful, accurate, and clear. The main benefit of this step is to reduce the client’s

computational complexity by minimizing the size of the image matrix. Subsequently, rather

44

than computing a matrix of size 1000 * 600 pixels, the client ends up computing a matrix

of 500 * 300 pixels or 250 * 150 pixels for the same image, which saves a significant

amount of computational complexities.

The image size is reduced into such a tolerable size that the information kept in the

reduced size is still meaningful and does not lose much information for processing by the

server. Reducing image size to an optimal level does not affect the comparison, but it

significantly improves the obfuscating and comparison processes, because these processes

will compute smaller matrices rather than larger ones, which saves computational

complexity. Example of reducing an image size is shown in the Table 4.1.

Table 4.1: Reducing Image Size: An example

Image Dimensions: Image

800 * 600 pixels

(original dimensions)

45

Reduced to

401 * 301 pixels

Further reduction of size

but still tolerable.

202 * 152 pixels

More reduction, but lost

some information

102 * 77 pixels

46

More reduction but lost a

lot of information.

52 * 40 pixels

As shown in Table 4.1, reducing size significantly results in loss of information of

the image after a certain size threshold. For this reason, there must be a tolerable reducing

rate of the image so that it will not lose significant information. For instance, in the

example of reducing image size shown in Table 4.1, the most tolerable size for an image

is 202 * 152 pixels, which allows it to keep all of its information. Note that in our

framework, it is the user who determines the most tolerable size of image.

4.2.2 Converting a colored image to gray

In order to simplify the next processing, we need to convert a color image to gray

to reduce the dimension, which significantly improves the obfuscating process, due to a

smaller volume of data being manipulated. Note that the colored image is represented in a

matrix of three dimensions. The color increases the computational complexity of data

obfuscation and comparison in later stages. Therefore, we need to convert the colored

image to gray one, because the gray image is represented in a two-dimensional matrix,

which is much simpler to compute than a three-dimensional matrix. The conversion from

color to gray does not affect the comparison because the gray image does not lose vital

information needed for the comparison of images. An example of converting colored image

47

to gray image is shown in Table 4.2 below.

Table 4.2: An example of converting colored image to gray image

4.2.3. Extracting pixels values

Because the data obfuscating and comparison processes can only be applied on

integer values, we need to derive the pixels of images that are double numbers to convert

them to integer numbers later. Note that each pixel is represented originally by an integer

value that ranged from 0 to 251, but because we reduce the image size, we cause each pixel

to be represented with a double value. In this step, we extract the original double

representation of each pixel. Consequently, the final result of this step is a matrix of double

values keeping the same size and dimensions of the image’s reduced size. This

transformation significantly reduces the data volume of the original matrix of pixels of the

color image. Figure 4.3 shows a sample of extracting pixel values.

Colored image: Gray image:

48

Figure 4.3: Extracting pixels value

4.2.4. Transforming decimals to integer values

Our obfuscating technique can only be applied to integer values, so the final

resulting matrix of double values from the previous stage must be converted into an integer

matrix. And because the pixel value is accurately lying in the range from 0 to 251, then the

integer value must be in the range from 0 to 251. In order to achieve this, we apply the

following formula to each value of the resulting double matrix:

⌊𝑑 ∗ 251⌋ (1)

Where d is the decimal value of the matrix. The final result of this step is an integer matrix

of the same size and dimensions of the double matrix. An example of converting a double

to an integer is: let d = 0.94208, then by applying (1)

⌊0.94208 ∗ 251⌋ = ⌊236.462⌋ = 236.

By the end of this step, the data is modified and processed by the next data-

obfuscating technique.

49

4.3. Obfuscating

The heart of our approach is the data obfuscating that must be uncompromising in

regard to ensuring data confidentiality and privacy. The input to the obfuscating process is

an integer matrix resulting from the preprocessing stage. The output of this process is the

obfuscated version of the integer matrix called an obfuscated matrix. Note that the

obfuscated matrix is a matrix of an object, and each of its object elements consists of two

double numbers, where the first number is called encrypt, while the second number is

called token. The encrypt number consists of two numbers: the result of encrypting block

that lies in the integer part, and the hashed digit counter that lies in the decimal part of the

encrypt number. For example, the objects of the encrypted matrix are (113.6, 18.3), then

the encrypt number is 113.6. The result of the encrypting block is 113 and the hashed digit

counter is 6, where the token is 18.3. In the next section, a brief explanation of the final

resulting matrix is presented.

Our obfuscating process uses the Rabin cryptosystem to encrypt data as in [37, 13,

21, 27, 31, 6, 48, 5]. The main idea behind the Rabin cryptosystem is based on computing

a composite number for the quadratic congruence modulo. Solving the quadratic

congruence is simple when the factorization of the composite number is known, but doing

so is very complex when the factorization of the composite number is unknown. Therefore,

the Rabin cryptosystem is an asymmetric system that requires two different types of keys:

a public key (which is the composite number) and a private key (which is the factorization

of the composite number). The public key is needed to encrypt plain data, and the private

key is needed to decrypt the encrypted data. Note that the public key is a distributed key to

every user so that they can encrypt their data, while the private key is not distributed to any

50

users, and it must be unknown and hidden from other users, except the user who owns it.

However, in our approach we use only the private key for both processes of obfuscating

and de-obfuscating, and the public key is not needed. The main advantage of excluding the

public key is that hackers have no idea about the composite number, so they will not have

any knowledge about its factorization. The obfuscating approach without using the public

key increases the hardness and security. Another advantage is that we do not need to pay

much attention to how hardness is factoring the composite number as reported in [27, 31,

4, 30]. Note that if the composite number is factorized, then there is a high chance that the

obfuscated data can be compromised.

In our approach, the obfuscating technique is not entirely based on the Rabin

cryptosystem, because it has some drawbacks. Consequently, in order to boost and support

the Rabin crypto system, we propose some new contributions that address the drawbacks

of the Rabin cryptosystem and improve the confidentiality and the privacy of data. In

addition, our new contributions decrease the computational complexity of the data-

obfuscating process.

The proposed obfuscation process is based on six different techniques:

1. Creating blocks

2. Developing digit counts

3. Tokenization

4. Identifying sets

5. Creating private keys

51

6. Obfuscating

Figure 4.4: Depicts the Details and Purpose of Data-Obfuscating Techniques

The data-obfuscating process is as follows:

1- The input integer matrix is processed by two techniques: creating blocks (which

produces the blocked matrix) and developing digits (which produces the hashed digit

matrix).

2- The blocked matrix is processed by the tokenization technique, which produces the

token matrix.

3- The blocked matrix is grouped into sets; the identifying-sets technique produces a

sets array.

4- The private key is created by the sets array.

52

5- The blocked matrix is obfuscated by the obfuscating technique that uses the hashed

digit matrix, token matrix, and private key.

The details and purpose of each of these six techniques are described in the

following subsections.

4.3.1 Creating blocks

The block cipher is a cryptosystem that combines the plain data to create a fixed

length of bits, called blocks [8]. In our approach, the technique for creating blocks has been

inspired from the block cipher field. For our contribution, instead of providing a fixed

length of bits in each block, we propose a length of the block without a fixed size, meaning

that our approach supports a flexible length of blocks, as opposed to using the fixed block

sizes in block cipher. The created blocks are not of fixed size, yet they are created from

combining two columns of content of the matrix, but all of this content is not of the same

size.

Creating blocks of data is a technique used to combine the content of two columns

of matrix together. As a result, each block contains two integer numbers combined

horizontally, and both of them are represented as if they were only one number. The main

purpose of our blocking technique is to reduce the size of actual data in the matrix by half

without losing vital information, in order to minimize the computational complexity of our

approach. The size of the resulting block matrix is equal to

(
𝐶𝑜𝑙𝑢𝑚𝑛

2
) ∗ 𝑟𝑜𝑤 (2)

Where the column is the number of column in the matrix, 2 is the size of each block,

and row is the number of rows in the matrix. Consider an example of creating blocks. Let

M designate a matrix of size 6 * 6 = 36 as follows:

53

𝑀 =

[

169 11 1
21 37 200
143 235 41

77 117 46
120 240 60
59 12 170

74 118 147
75 178 103
225 147 57

228 207 148
214 146 63
85 115 0]

 ⟹ 𝐵𝑀

[

16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150]

Where BM is the resulting block matrix, and its size is = (6/2) * 6 = 18. The size

of the original matrix is reduced to half by using this blocking technique.

4.3.2 Developing digit counts

The digit count technique is applied during the creating of the block matrix. It is

one of our contributions in this framework. We use two techniques: digit counter, and a

digit hash map counter. Both of these techniques are briefly described in the next

subsection in detail. The main objective of this technique is to save information about the

matrix values, so that later when the obfuscated matrix is de-obfuscated, the resulting plain

data will not lose any of its original form. If the block is decomposed into different numbers

than the others that have formed it, then it will lose in the final information. For example,

if the two numbers that form a block are 116 and 71, then the block is equal to 11671, so

in order to break it the resulting two numbers must be 116 and 71—not 11 and 671—

because this would give wrong data that would cause a loss of the de-obfuscated

information.

Digit counter is a technique that counts the number of digits for each integer number

of the matrix before it is combined in the block matrix. On the other hand, the digit hash

map counter is a hash map that contains all possible numbers of digits in each content of

the matrix, which is used to set and identify the digit factor for the forthcoming encrypted

matrix. Note that the number of entries in the digit hash map counter depends on both the

54

number of content in each block and the maximum number of digits of the content. For

example, the size of the block in our approach is equal to 2, where the maximum number

of digits for each content is equal to 3 digits because the integer number in the matrix is in

the range 0 to 251. The number of entries in the digit hash map counter is defined by the

formula

(maximum number of digits)size of block (3)

Therefore, by applying (3), the number of the entries of the digit hash map counter

in our approach is 32, that is, a total of 9 entries. The digit hash map counter of our approach

is represented in Table 4.3.

 Table 4.3: Digit hash map counter

Key Digit counter Description

0.1 11 Each piece of content in the block has one digit.

0.2 12
The first content of the block has 1 digit, while the other

content has 2 digits.

0.3 13
The first content of the block has 1 digit, while the other

content has 3 digits.

0.4 21
The first content of the block has 2 digits, while the

other content has 1 digit.

0.5 22 Each piece of content in the block has two digits.

0.6 23
The first content of the block has 2 digits, while the

other content has 3 digits.

0.7 31
The first content of the block has 3 digits, while the

other content has 1 digit.

0.8 32
The first content of the block has 3 digits, while the

other content has 2 digits.

0.9 33 Each piece content in the block has three digits.

55

Consider the example presented in Section 4.3.1 (creating blocks). The digit

counter is defined by counting the digits of each block element, and after hashing the digit

counter, the digit hash matrix, DH, is defined as follows:

 𝐷𝑖𝑔𝑖𝑡 𝑏𝑙𝑜𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝐷𝐵𝑀 =

[

32 12 32
22 33 32
33 23 23
23 33 33
23 33 32
33 22 31]

𝐴𝑓𝑡𝑒𝑟 ℎ𝑎𝑠ℎ𝑖𝑛𝑔 𝑖𝑡
⇒ 𝐷𝐻 =

[

0.8 0.2 0.8
0.5 0.9 0.8
0.9 0.5 0.6
0.6 0.9 0.9
0.6 0.9 0.8
0.9 0.5 0.7]

The digit block matrix DBM is a matrix of integer elements because it is of the

same size of block matrix BM (see Section 4.2.1). The DBM content has been defined by

counting the digits of plain matrix contents. For example M[0][0] = 169, and M[0][1] =

11; then DBM [0][0] = 32 so the DH[0][0] = 0.8, because M[0][0] content consists of an

integer number that has three digits, where M[0][1] content consists of an integer number

that has two digits. Because the block size is two, the content of DBM matrix is for only

two elements of matrix M.

4.3.3. Tokenization

One of the main drawbacks of the Rabin cryptosystem is that it is not a one-to-one

function; whereas, the result of its decryption technique is four corrects roots, while one of

these four resulting roots represents the correct value of plain data. In order to define the

correct root in our approach, we need a different technique. We propose the following to

address Rabin’s decryption problem with the purpose of de-obfuscating the obfuscated

matrix accurately and without having any problem or confusion. Recall that we need the

de-obfuscating stage to verify the result sent by the server.

Our proposed idea is to first compute a token for each integer number in the block

matrix. The token is computed by adding the content of the digits of integer numbers of

56

the block matrix BM element, and by counting the total number of these digits. A token is

a decimal number; its integer part is the result of adding the digits of elements of the block

matrix BM, while its decimal part is the total number of digits.

For each block, there is a token; then we need to have a matrix of the same size as

the block matrix to save each block token. Consequently, in order to save space complexity

and to add more flexibility to our obfuscating approach, we concatenate the token part as

content of the obfuscated matrix, which is ultimately sent to the cloud server. By doing

this, the only information that the client needs to save is the private keys that were used to

obfuscate the data. The explanation of the obfuscated matrix and its content is provided in

a later section. The usage of tokens is briefly described in the de-obfuscating section.

Consider the previous example cited in Section 4.3.1 about creating blocks.

𝐵𝑀 =

[

16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150]

An example of defining the token is the following:

The first block of BM is 16911 ⟹ token integer part = 1+6+9+1+1 = 18; the total number

of digits = 5 ⟹ token = 18+ 0.5 = 18.5.

The second block is 177 ⟹ token integer part = 1 + 7 + 7 = 15; the total number of digits

= 3 ⟹ token = 15+ 0.3= 15.3.

By computing the same operation for each block, the final resulting token matrix (TM) of

BM is,

57

𝑡𝑜𝑘𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥(𝑇𝑀) =

[

18.5 15.3 19.5
13.4 5.6 12.5
18.6 19.4 11.5
21.5 24.6 22.6
28.5 11.6 20.5
18.6 25.4 7.4]

4.3.4. Identifying sets

Identifying sets are one of the contributions of our approach. The main advantage

of using sets is to decrease the size of total private keys, so rather than having a private key

for each block, we will have a private key for each set, which consists of several blocks.

We increase the security rate by having more than one private key for obfuscating and de-

obfuscating all of the blocked matrix; thus, if hackers discover an element of a private key,

they cannot de-obfuscate all of the obfuscated data. Furthermore, the random size of sets

fixes the limitation of the fixed size of the block, because all blocks must be of the same

size. So this technique increases the protection of the final obfuscated data and decreases

the computational complexity of the obfuscating process by reducing the total number of

generated and stored private keys.

This technique is based on dividing the blocked matrix into sets, each with a

different random size. The minimum size of a set is a single value, and the maximum size

is half of the total size of the block matrix. However, the range of the set size can be

modified depending on the user needs, so if the user wants to have more sets, the maximum

bound of the set size can be decreased to one-third or one-fourth of the total size of the

block.

The number of total sets correlates with the data-security implications. Security is

usually higher if more sets are created, but the overhead costs of processing would be

higher as well. Subsequently, the total number of sets is directly proportional to security

58

implications. The number of sets is also directly proportional to the computational

complexity. The increasing number of sets may require higher computational efforts

because each set would have its own private key used to obfuscate the set, but the security

would be better.

We use a set array in order to capture the total number of sets. The length of the set

array is equal to the total number of sets, while its content is the size of the set. For example,

if a block matrix consists of five sets, then the set array has a length of five, and each value

represents the size of each set.

Consider the previous example cited in Section 4.3.1 about creating blocks

𝐵𝑀 =

[

16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150]

The range of set size is defined using the following equation:

[1 , size of BM/2] ⟹ [1,
18

2
] ⟹ [1, 9]

The smallest set will contain only one block, while the largest set will contain nine blocks.

We then assign random numbers to set sizes, so that the total summation of them is equal to

the size of BM. Assigning the random numbers can be done as shown below:

S[0] size = 2, S[1] size = 8, S[3] size = 8, ∵ ∑𝑆[𝑖]𝑠𝑖𝑧𝑒 = 18 ⟹

𝑤𝑒 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑜𝑛𝑙𝑦 3 𝑠𝑒𝑡𝑠,

where S[i] represents the set number.

The content of each set will be as follows:

59

S[0] = {16911, 177}

S[1] = {11746, 2137, 200120, 24060, 143235, 4159, 12170, 74118}

S[3] = {147228, 207148, 75178, 103214, 14663, 222147, 5785, 1150}

4.3.5. Creating Private Keys

One of the main objectives of creating sets is to specify the number of private keys,

which is equal to the number of sets. For example, if we have three sets, then we will have

three private keys—one key for each set. An array of private keys stores all keys, and its

length is equal to the length of set array. The private key array consists of three main

factors: PK (p, q, s). The first two factors, p and q, are the factorization of the composite

number (as mentioned previously in the obfuscating section earlier), and the third factor,

s, is the size of the set that uses that private key.

Because the main obfuscating process is based on the Rabin crypto system, in order

to obfuscate data we need a composite number that consists of two large prime numbers, p

and q. These two prime numbers must be private. Otherwise, disclosing these will result in

breaking of the Rabin cryptosystem. The third factor of the private key is necessary to

identify the sets and to know which set should be obfuscated or de-obfuscated by these two

prime numbers. Therefore, for each set, we will generate random large prime numbers.

Note that in order to identify these two large prime numbers’ range, we must first consider

what is the largest integer number of the data. For example, in our approach, the largest

integer number from the integer matrix is 251, which means that the largest block is

251251. Consequently, in order to define these two prime numbers, p and q, their range

must start form larger number than 251. So in order to evaluate the quadratic congruence

of each block, the composite number formed from p and q must be larger than 251251. The

60

composite number should not be too large so that when the block is encrypted by the

quadratic formula, it will not change its actual value. For this reason, we discover a range

of prime numbers for p and q, and the range should achieve the previously mentioned

conditions. This range goes from 700 to 1500. For example, if both prime numbers are 700,

then the composite number is 700 * 700 = 490000, which is larger than 251251. If both

prime numbers are 1500, then the composite number is 1500 * 1500 = 2250000, so it can

obfuscate blocks with small integer values.

Consider the previous example discussed in Section 4.3.4 (identifying sets), in

which the form of the set was

S[0] size = 2, S[1] size = 8, S[3] size = 8

That means we have to randomly generate two different prime numbers for p and q, for

each set, both in the range of [700, 1500]. Let the result of this calculation be as follows:

for S[0] ⟹ p = 643, q = 691, where N = p * q = 444313

for S[1] ⟹ p = 563, q = 683, where N = p * q = 384529

for S[2] ⟹ p = 631, q = 743, where N = p * q = 468833

Where N is the composite number.

Finally, the resulted array of private key is as follows:

𝑃𝐾 = [
643, 691, 2
563, 683, 8
631, 743, 8

]

61

4.3.6. Obfuscating process

Because our obfuscating process is based on the Rabin cryptosystem to encrypt

data, the formula of the Rabin cryptosystem is

𝐶 ≡ 𝑃2(𝑚𝑜𝑑 𝑁) (4)

In this formula, C is the cipher data, P is the plain data, N is the composite number

that is produced from multiplying the two distinct large primes, p and q. Note that the

strength of the Rabin cryptosystem depends on the hardness of the factorization of the

composite number.

In our approach, obfuscating plain data is not the only part of the process; rather,

after encrypting each block of the blocked matrix, we add a hashed digit counter from the

digit hashed counter matrix to the encrypted data. In addition, we concatenate each

encrypted block with its related token. The final result of all of these operations is a matrix

of obfuscated data, which is in the form of enc(C.dh, t); here C is the encrypted data, dh is

the digit counter data, and t is the token of that obfuscated data.

An example of the obfuscating process and the obfuscated matrix is shown as

follows.

Consider the previous example presented in Section 4.3.1 (the creating block),

where the PK for BM matrices are

𝐵𝑀 =

[

16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150]

𝑃𝐾 = [
643, 691, 2
563, 683, 8
631, 743, 8

]

62

Now we will encrypt BM matrix depending on PK, such that the first two blocks are

encrypted by making p = 643, and q = 691 ⟹ N = 444313

⟹ 𝐶 = (16911)2 (𝑚𝑜𝑑 444313) = 288662

And the same operation is applied to the next block.

Then the next eight blocks starting from BM[0][2] = 11746 to BM[3][0] = 74118 are

encrypted by making p = 563, and q = 683 ⟹ N = 384529

⟹ 𝐶 = (11746)2 (𝑚𝑜𝑑 384529) = 307134

And the same operation is applied to the next remaining seven blocks.

The next eight blocks starting from BM[3][1] = 147228 to BM[5][2] = 1150, are encrypted

by making p = 631, and q = 743 ⟹ N = 468833

⟹𝐶 = (147228)2 (𝑚𝑜𝑑 468833) = 59062

And the same operation is applied to the next remaining seven blocks.

Then the final resulting encrypted matrix encBM is

𝑒𝑛𝑐𝐵𝑀 =

[

288662 31329 307134
336950 88108 167455
220937 378005 65235
96630 59062 353579
418702 306370 278055
396862 179082 384834]

By adding the DH matrix to the encBM matrix, we get the following obfuscated BM matrix:

63

𝐷𝐻 + 𝑒𝑛𝑐𝐵𝑀 =

[

0.8 0.2 0.8
0.5 0.9 0.8
0.9 0.5 0.6
0.6 0.9 0.9
0.6 0.9 0.8
0.9 0.5 0.7]

+

[

288662 31329 307134
336950 88108 167455
220937 378005 65235
96630 59062 353579
418702 306370 278055
396862 179082 384834]

=

[

288662.8 31329.2 307134.8
336950.5 88108.9 167455.8
220937.9 378005.5 65235.6
96630.6 59062.9 353579.9
418702.6 306370.9 278055.8
396862.9 179082.5 384834.7]

The final step is to concatenate the encBM matrix with the generated token matrix

(which has already been described earlier in the tokenization Section 4.3.3 earlier in this

chapter) to create the final obfuscated matrix. The final form of encBM matrix is

𝑒𝑛𝑐𝐵𝑀 =

[

288662.8, 18.5 31329.2, 15.3 307134.8, 19.5
336950.5, 13.4 88108.9,5.6 167455.8, 12.5
220937.9, 18.6 378005.5,19.4 65235.6, 11.5
96630.6,21.5 59062.9, 24.6 353579.9, 22.6
418702.6, 28.5 306370.9,11.6 278055.8, 20.5
396862.9, 18.6 179082.5,25.4 384834.7,7.4]

This is the final obfuscated matrix that is sent to the cloud server for further

processing, such as comparison with similar data or storage depending on the user’s needs.

4.4. De-obfuscating

The de-obfuscating process is only needed when the client wants to verify the

computational results of the server. The verification technique is done only when the server

claims that the print image of the input finger was matched with one of the stored and

obfuscated fingerprint images. In that case, the server returns a copy of the obfuscated

matrix of the matched image, which allows the client to de-obfuscate it and compare it with

the original integer matrix of the input fingerprint image stored by the client.

As we explained earlier, our approach encrypts integer numbers by using a

64

quadratic congruence formula, which can be decrypted by using the Chinese remainder

theorem. One of the algorithms used to solve the Chinese remainder theorem is the Garner

algorithm [5]. In our approach, we use the Garner algorithm to decrypt encrypted data

because it is the simplest algorithm that can solve the Chinese remainder theorem with less

computational complexity, and it reduces by half the total multiplications needed for

Gauss’s algorithm, which has been normally used to solve the Chinese remainder theorem.

In order to correctly de-obfuscate the data matrix, we use every factor in both the

private keys and obfuscated matrix, because every factor has a role to play in the de-

obfuscating process. Note that a private key object is built with three factors, and these

factors are the large prime numbers p and q, and the set size factor. The set size factor

allows us to know which set-to-be de-obfuscates with the specific p and q numbers. Each

value of the obfuscated matrix is an obfuscated object that consists of two double numbers.

The first double number represents both the encrypted integer number that is replaced in

the integer part and the digit counter, which is the double part. The second double number

represents the token factor. Recall that the form of objects of obfuscated matrix encBM is

enc(C.dh, t), where C is the cipher data, dh is the digit counter data, and t is the token of

that obfuscated data.

An example of de-obfuscation is presented with the previous data, where PK

contains private keys, and encBM is the obfuscated matrix:

𝑃𝐾 = [
643, 691, 2
563, 683, 8
631, 743, 8

] , 𝑒𝑛𝑐𝐵𝑀 =

[

288662.8,18.5 31329.2, 15.3 307134.8, 19.5
336950.5,13.4 88108.9, 5.6 167455.8, 12.5
220937.9,18.6 378005.5, 19.4 65235.6,11.5
96630.6, 21.5 59062.9, 24.6 353579.9, 22.6
418702.6,28.5 306370.9, 11.6 278055.8, 20.5
396862.9,18.6 179082.5, 25.4 384834.7, 7.4]

The first step of the de-obfuscating process is to extract the integer number from

65

the first double number in the encBM matrix:

The obfuscated factor of encBM[0][0] = 288662.8  the integer part of the factor

encBM[0][0] = 288662.

Then the resulted integer number is decrypted by using PK[0], since encBM[0][0]

belongs to the first set. The set size factor in PK[0] = 2, which means that the first two

elements of the encBM matrix are decrypted using PK[0].

By using the Garner algorithm and making p = 643 and q = 691, the results of de-obfuscation

are these following four roots:

Sol = {16911, 81211, 363102, 427402}. In order to identify the correct plain data of our

obfuscated matrix, the token part is used, where encBM[0][0] token = 18.5.

In order to do so, we will define the token for each defined root such as:

16911 token = 18.5, because 1+6+9+1+1 = 18, and it consists of 5 digits

81211 token = 13.5, because 8+1+2+1+1 = 13, and it consists of 5 digits

363102 token = 15.6, because 3+6+3+1+0+2 = 15, and it consists of 6 digits

427402 token = 19.6, because 4+2+7+4+0+2 = 19, and it consists of 6 digits

 The correct plain data root is 16911 because its token is equal to the token part of

encBM[0][0]

The final step in de-obfuscating is to break the resulting block, which can be done

by using the double part of the obfuscated number of encBM[0][0], which was 0.8.

Consider the digit hash map counter in the developing digit-counts technique already

discussed in Section 4.3.2. The value 0.8 in encBM[0][0] was the hashed key of the digit

counter 32. This means that the first part of the block consists of a three-digit integer

66

number, while the second part of the block consists of a two-digit integer number. As a

result, the 16911 blocked number is decomposed into 169 and 11. So the first two contents

of the de-obfuscated matrix are dec[0][0] = 169 and dec[0][1] = 11.

Then by repeating each of these steps for each encBM element, we get the following

resulted dec matrix:

𝑑𝑒𝑐 =

[

169 11 1
21 37 200
143 235 41

77 117 46
120 240 60
59 12 170

74 118 147
75 178 103
225 147 57

228 207 148
214 146 63
85 115 0]

Note that dec matrix is exactly equal to the plain data M matrix that was shown as

an example in the earlier section for creating blocks. The elements of the M matrix are:

𝑀 =

[

169 11 1
21 37 200
143 235 41

77 117 46
120 240 60
59 12 170

74 118 147
75 178 103
225 147 57

228 207 148
214 146 63
85 115 0]

The main goals of this approach is to secure the client’s outsourced data without

using public key infrastructure and to allow the cloud server to do the computations on the

obfuscated data. The presented techniques in this chapter show how to achieve this goal.

Some of the existing techniques have drawbacks, so we show how we modified some of

them to overcome those drawbacks. The new techniques that we have introduced are the

blocking technique, digit counter technique, creating sets of blocks technique, and

tokenization technique. In the next chapter, we present the implementation details of these

processes and techniques of our framework.

67

CHAPTER 5: IMPLEMENTATION AND VALIDATION OF

THE APPROACH

In this chapter, we develop and use various algorithms and techniques to implement

the proposed framework. The approach is flexible and can be applied to any form or

representation of numerical data. In this thesis, we apply our approach to images to study

its applicability. This chapter describes how we first process the images to make them

suitable for being obfuscated by the obfuscating process. We also demonstrate how the

images are obfuscated using our techniques discussed earlier. After obfuscating the images,

they are sent to the server that processes images by storing and comparing the input images

with the stored obfuscated images. The server finally returns the comparison result of

obfuscated images along with a copy of the obfuscated image that was found matched with

the input image.

The proposed application presented in this chapter is an image-comparison

application, which is a secure fingerprint checking system. This application captures the

user’s fingerprint, obfuscates it, and sends it to the cloud server. The server stores all users’

obfuscated fingerprints if not already stored. For this purpose, it first compares the input

fingerprint with the already stored obfuscated fingerprints. The comparison process starts

when a user enters his or her fingerprint into the system to check it if it matches with any

image stored in the server. The server checks if a similar fingerprint exists by comparing it

with the stored fingerprints in the server. After checking and comparing the new image

with the stored ones, the server returns the result to the client. The result is either “Exist”

if the fingerprint matches with one of the stored ones, otherwise it returns “Not Exist.”

68

However, if the user is new, the first step is to compare his or her fingerprint with the stored

fingerprints; if no match is found, the server stores the new fingerprint, so it can verify the

fingerprint when the user enters his or her fingerprint the next time.

This application can be used for checking the authenticity of a user accessing data,

systems, activities, and so forth. It can also record employees’ attendance by using image

recognition. This application is very useful in many areas.

In order to implement the secure fingerprint comparison and storing system, the

client must have image-processing software, in order to prepare and process images for

making them applicable to be obfuscated. We use Java and Matlab for implementing our

framework, because they offer many efficient functionalities that can optimize the client’s

computational complexity and resources.

The following sections present the algorithms and techniques for implementing

secure fingerprint comparison and storing processes.

5.1. Application Usage

A secure fingerprint checking system consists of two main use-cases: fingerprint

checking and storing obfuscated fingerprint image.

The first use-case is the storing of the obfuscated fingerprint; the admin of the

system collects the needed fingerprints form all of the users who are going to use the

system, and obfuscates them by using the secure fingerprint checking system, in which the

obfuscating process is done on the client’s side. Then all of the selected obfuscated

fingerprint images are sent to the server in order to be stored on the cloud.

The second use-case is fingerprint checking. The user enters his or her fingerprint

into the system. The system obfuscates it and sends it to the server, which checks whether

69

the user is authorized or not. A user is considered authorized if his or her fingerprint is

already stored in the server; an unauthorized user does not have his or her fingerprint stored

in the system. The server checks if a similar fingerprint exists by comparing it with the

stored fingerprints in the server. After checking and comparing the new image with those

stored, the server returns the result to client. The result is either “Exist” if the fingerprint

matches one of the stored ones; otherwise the server returns “Not Exist.” If the result is the

former, then the server returns the stored obfuscated fingerprint, which matches the

received one, to the client. After receiving the server’s comparison result, if the result is

“Exist” the client de-obfuscates the received fingerprint image.

Consider that this system has two main threats. The first is if the server claims that

the entered fingerprint exists when it actually does not. Therefore, in order to verify the

server’s result, we added a final verification process that is executed by the client.

The second threat is the potential for malicious entities to compromise the server;

for example, a malicious entity changes the stored and obfuscated data of the fingerprint.

As a result of this hypothetical attack, the server results would be only “Not Exist!”—even

for the authorized users. To prevent this threat, we allow the server to encrypt its stored

data by a public key.

Consider that this application can run on smart phones, tablets, laptops, and

desktops. Therefore, optimizing clients’ resources is important in our application; we want

to incorporate our application into all types of devices used by clients.

5.2. Implementation of preprocessing

As already mentioned earlier, this component’s main purpose is to prepare plain

data to be ready and applicable for being processed in the next stage. Because our plain

70

data is images, image processing is needed for implementing the data-preparation process.

Matlab offers a good number of image-processing methods. Therefore, we implement our

preprocessing in Matlab. The next stage, which is obfuscating fingerprints, has been

implemented in Java; the final stages of the data processing and the preparing process also

have been implemented in Java.

The preprocessing is used to reduce the image’s size so that the size of the final

resulting matrix of the preprocessing is much less than the original size of the fingerprint

image. Then the preprocessing converts each fingerprint image to a two-dimensional

double matrix. Note that a fingerprint image is usually represented in a three-dimensional

double matrix. Assume all entered fingerprint images are of the same size, because all

fingerprints are recorded by the same fingerprint recorder. This assumption is important to

note in this application. This process can handle any types of image, such as jpeg, png,

bmp, and gif.

The preprocessing has four stages, and each implements its own processes.

Algorithm 5.1 shows how to perform the data-preparation process.

Algorithm 5.1 Preprocessing of data

Input: fingerprint image

Output: 2D integer matrix M[1..m][1..n]

 Steps:

1. Select fingerprint image

2. Reduce image size by using single-level discrete 2-D
wavelet transform (dwt2) method.

3. Convert reduced image from three-dimensional image to
two-dimensional image by using convert RGB image or
colormap to grayscale (rgb2gray) method

4. Save 2d image into text file.

5. Convert 2d double matrix to integer matrix.

71

This algorithm has been implemented with a combination of Matlab and Java

applications. The four steps in Algorithm 5.1 have been implemented using Matlab because

it requires only O(mn) time to generate a 2d matrix from a fingerprint image. Matlab has

been used to implement four operations because it offers a good number of high-level

image-processing operations. The single-level, discrete, 2-D wavelet-transform (dwt2)

method reduces the image size to half of its original size by one single operation. In

addition, the conversion of the RGB image or colormap to grayscale (rgb2gray) method

converts the three-dimensional image to a two-dimensional image by using the operation

“rgb2gray.” In addition, to convert image pixels to their original double values, Matlab

does so when the image is saved as a text file, and it requires no other operations to

complete the task. However, converting a two-dimensional double matrix to an integer-

matrix process has been generated by a Java program that requires O(mn) time, where m

is the number of rows and n is the number of columns of the double matrix. The values of

m and n remain the same in the final resulting integer matrix. Then the required time

complexity for implementing this component is O(mn). The following section describes

this algorithm in details.

5.2.1. Technique for reducing image size

A fingerprint image of dimensions 255 * 172 pixels, where the width is 172 pixels

and the height is 255 pixels, is captured. First, the preprocessing component reduces its

size by using the dwt2 method. In order to determine a suitable reduction limit of an image

of dimensions 255 * 172 pixels, an experiment was performed. Note that during the process

of reducing any image size, we must maintain its accuracy and visibility so that it will not

lose any vital information, because the dwt2 method has an inverse relation with both

72

accuracy and visibility of images.

The experiment reduced a fingerprint image by using several cycles of running

dwt2 method. The main goal of this method is to reach the most-possible minimum size of

the image with dimensions 255 * 172 pixels, without losing vital information of the image.

The outcomes of that experiment is shown in table 5.1:

Table 5.1: Image Reducing Experiment Results.

Image

Dimensions: Image Notes:

255 * 172 pixels

Original fingerprint image before

any reductions.

129 * 87 pixels

The resulting image of the first

cycle of reducing image size by

dwt2 method.

73

66 * 45 pixels

The resulting image of the second

cycle of reducing image size by

dwt2 method.

34 * 24 pixels

The resulting image of the third

cycle of reducing image size by

dwt2 method.

We conclude from this experiment that the best optimal reduction result is achieved

by the first cycle of reducing the fingerprint image dimensions. The dimensions of 129 *

87 pixels are half of the original fingerprint image dimensions. This is the most optimal

size for image comparison. Although the reduced size from the second cycle looks

reasonable, to get a more optimal size, we only reduce the fingerprint image by one cycle.

5.2.2. Technique for converting a color image to gray

In this stage, the color image of the fingerprint is transformed into a gray image.

This is done by converting the RGB image or colormap to grayscale using rgb2gray

74

method. Doing so will not only result in a gray image, but this gray image is also

automatically transformed from three dimensions to two. This transformation will not have

any negative impact on the comparison process because the loss of information is minimal.

Note that a fingerprint image contains only two colors, white and black. Therefore, losing

the color will not have any impact on the comparison process performed by the cloud server

later.

An example of the resulting reduced image, from the previous stage, converted to

a gray image is shown in Table 5.2:

Table 5.2: Image Converted to a Gray Image

Colored image: Gray image:

Size = 129 * 87 * 3

Size = 129 * 87

From the images in Table 5.2, we conclude that converting the image to gray does

not affect much of its size or appearance. The only factor that matters is the image-

dimensional factor, which transforms it from a three-dimensional image into two

dimensions. Note that the colored image’s dimensions are 129 * 87 * 3—that is, the image

has three dimensions. However, the size of the gray image is 129 * 87, which means that

it has two dimensions.

75

5.2.3. Extracting double value form pixel

In this stage of the implementation, the gray image from the previous stage is

extracted to a double matrix that has two dimensions. This can be done simply in Matlab

by saving the image as a text file. The resulting text file includes the two-dimensional

matrix representing the image, in which each pixel in the original image is represented by

an integer number that ranges from 0 to 251. However, because we reduce the image size,

the reduction has an impact on the actual value of the pixel. We transform it from an integer

to a double value. We provide a screenshot of transforming the image into a double matrix,

as an example. However, only one segment of the double matrix is shown in Figure 5.1,

because the actual one too large to be shown in one figure.

Figure 5.1: A segment of a 2D double matrix.

5.2.4. Method to transform double to integer

This stage is implemented in Java. By the end of this stage, data are ready for the

obfuscation, so that they will not require any additional processes. Therefore, to simplify

76

both the preprocessing and the obfuscating processes, this transformation has been

implemented in Java. Note that the obfuscating process has also been implemented in Java.

The main objective of this transformation is to convert the previously saved double

matrix to integer values ranging from 0 to 251. The purpose of converting the double matrix

into an integer matrix of the same size and dimensions of the double matrix is that our

approach obfuscates integer values. Consider Algorithm 5.2 for this transformation:

This algorithm is mainly dependent on the number of rows and columns of double

matrix, where m is the number of row and n is the number of column of the double matrix.

The time complexity of this algorithm is O(mn).

A screenshot has been taken as an example of transforming the double matrix into

Algorithm 5.2 Convert Double Matrix to Integer Matrix

Input: text file contain double matrix D[1..m][1..n]

Output: integer matrix M[1..m][1..n]

Steps:

1. Open text file.

2. Row  number of rows

3. Column  number of column.

4. Create both double matrix d [1..row][1..column]

5. Create integer matrix M[1..row][1..column].

6. Load double matrix from text file into created double
matrix d[1..row][1..column].

7. For r  0 to row -1

8. For c  0 to column-1

9. M[r][c] =

10. End for

11. End for

77

integers. However, only a segment of the resulting integer matrix is shown in Figure 5.2,

because the actual one too large to be shown in one figure.

Figure 5.2: A segment of the 2D integer matrix.

At the end of this transformation, the final resulting integer matrix is fed to the

obfuscating process, which starts running automatically once it gets the data.

5.3. Obfuscating-Process Implementation

In this section, the algorithms and techniques for implementing the obfuscating

process are presented and described in detail. The main purposes of this process are to

obfuscate fingerprint images and send them to the server for comparison with the stored

images with the same size. In order to simplify the implementing processes, the computing

environment must optimize and compute the obfuscation stage efficiently, without

consuming excessive amounts of the client’s resources. This process has been implemented

78

in Java. Our Java implementation is expected to save both time and space complexity.

This process obfuscates the fingerprint image that has been previously processed

and represented as a two-dimensional integer matrix. Recall the proposed obfuscating

process in Chapter 4, which consists of six different techniques, each of them has it specific

tasks to perform. However, all of these six techniques have been fully implemented. Figure

5.3 shows the abstraction of six techniques into two bigger processes—namely, blocking

stage and obfuscating stage.

Figure 5.3: Data-Obfuscating Process.

Algorithm 5.3 depicts the main steps involved in the obfuscating process:

79

 This algorithm handles two techniques for obfuscating: creating block matrix and

obfuscate block matrix. The following section describes these two, and shows how these

work in details.

5.3.1. Blocking stage

The main aim of this stage is to create a blocking matrix from the integer matrix to

minimize the encryption process. Each block in the block matrix has the size of two

contents of the integer matrix that are concatenated horizontally. This technique reduces

the number of columns to half in the block matrix; thus, the obfuscating process is required

to use fewer numbers of private keys.

Another goal of this stage is to generate a digit counter that is a hashed digit matrix

Algorithm 5.3 Obfuscating process

Input: integer matrix M [1..m][1..n].

Output: obfuscated matrix encBM[1..m][1..n/2], prepared ciphered
matrix DencBM[1..m][1..n/2] of double elements.

Steps:

1. create block matrix BM[1..m][1..n/2].

2. if there exist private key

3. then encrypt block matrix by the exist private
key.

4. else

5. create private key.

6. obfuscate block matrix.

7. save obfuscated matrix encBM[1..m][1..n/2].

8. send both encrypted matrix to server.

80

(Chapter 4, Section 4.3.2, discusses the digit counter and hashed digit matrix). When each

block is created, its digits counter is recorded, hashed, and saved into a hashed digit matrix.

So in this stage, two components (blocks and the digit counter) are generated to save time

complexity.

Consider Algorithm 5.4, which shows how blocks are generated using a digit

counter and hashed digit matrix:

This algorithm is mainly dependent on the number of rows and columns, where m

is the number of row and n is the number of column of M matrix (the input integer matrix

Algorithm 5.4 Blocking Stage

Input: integer matrix M[1..m][1..n]

Output: block matrix BM[1..m][1..n/2], and hashed digit matrix
DHBM[1..m][1..n/2].

Steps:

1. create integer matrix BM[1..m][1..n/2].

2. create double matrix DHBM [1..m][1..n/2].

3. c  0

4. for i  0 to m-1

5. for j  0 to (n/2)-1

6. digit counter  the number of the M[i][j*2]
digits and concatenating it with the total number
of digits of M[i][(j*2)+1].

7. DHBM[i][c]  hash digit counter

8. BM[i][c] concatenating both M[i][j*2] with
M[i][(j*2)+1].

9. increment c.

10. end for.

11. c  0.

12. end for.

81

M), where M is the resulted integer matrix from the preprocessing. The complexity of this

algorithm is O(m(n/2)).

A screenshot has been taken as an example of the blocking-stage result. However,

only a segment of the BM (block) matrix is shown in Figure 5.4, because the actual one is

too large to be shown in one figure. Only a part of the DHBM (hashed digit) matrix is

shown in Figure 5.5.

Figure 5.4: A segment of the block matrix (BM)

82

Figure 5.5: A segment of the DHBM matrix.

5.3.2. Obfuscating stage

This is the main stage of the obfuscating process. This stage uses four techniques

of the obfuscating process—tokenization, generating sets, creating a private key, and

obfuscating. The new private key is not created unless one does not already exist. Similarly,

no new sets are created unless needed. Note that creating a private key is related to creating

sets. If one is to be generated, then the other one needs to be created as well. If there exists

no private key, new sets and the corresponding private keys need are created. Note that all

fingerprints of a client are obfuscated using the same set of private keys. Recall that a

private key consists of an array of private keys because a matrix is divided into various

sizes of sets and each set has its own private key. Consider Algorithm 5.5, which shows

how obfuscating is done when no private key exists:

83

Algorithm 5.5 Obfuscating Stage Case A

Input: block matrix BM[1..m][1..n], and hashed digit matrix
DHBM[1..m][1..n].

Output: obfuscated matrix encBM[1..m][1..n] of obfuscated
objects, and private key PK[1..x] of private key objects.

Steps:

1. Generate sets by creating sets array sets[1..x].

2. Create encBM[1..m][1..n] matrix of obfuscated object.

3. Create private key PK[1..x] array of private key object.

4. Counter  0.

5. Sets counter  0.

6. For i 0 to m

7. For j  to n

8. if counter = 0 and sets counter = 0 then

9. Counter = sets[0].

10. Generate p & q.

11. PK[sets counter]  new private key
object has p, q and sets[sets counter].

12. End if

13. token  generate token for BM[i][j].

14. enc  encrypt BM[i][j]

15. denc  enc + DHBM[i][j]

16. encBM[i][j]  new obfuscated object has denc
and token.

17. decrement counter

18. if counter = 0 then

19. increment sets counter

20. counter  sets [sets counter]

21. generate new p & q.

22. PK[sets counter]  new private key
object has p, q and sets[sets counter].

84

This algorithm depends mainly on the number of rows and columns of the BM

matrix; it also depends on the length of the generated set array. Thus if m is the number of

rows and n is the number of columns and x is the lengths of the generated sets array, then

time complexity of this algorithm is O(x) + O(mn).

This algorithm implements four techniques—generating sets, creating a private

key, tokenization, and obfuscating. Executing all of these techniques together saves space

complexity and time complexity. Consider that required time complexity for the

tokenization technique alone is O(mn).The time complexity for the technique of creating a

private key array alone requires O(x). Thus, the total amount of saved time complexity is

O(mn) + O(x), where m is the row of the BM matrix, n is the column of BM, and x is the

length of the sets array. The total amount of generating space complexity is O(mn), because

the size of token matrix is equal to the size of the BM matrix.

A screenshot has been taken as an example of the obfuscating stage. However, only

part of the encBM matrix is shown in Figure 5.6, because the actual one is too large to be

shown in one figure. Figure 5.7 shows the created private key.

23. end if

24. end for

25. end for

85

Figure 5.6: A segment of the 2D encBM matrix

Figure 5.7: Private key array

The created private key array in Figure 5.7 has a length of six, which is used to

encrypt the block matrix BM[129][84] of size 129 * 84. The generating-sets process places

1815 blocks of BM matrix in the first set, 1002 blocks in the second set, 172 blocks in the

third set, 223 blocks in the fourth set, 1163 blocks in the fifth set, and 1172 blocks in the

final set. Each set of blocks has been encrypted by its own prime factors p and q.

Consider Algorithm 5.6, which shows how the private key is generated, if there

exists a private key:

86

This algorithm depends mainly on the number of rows and columns of the BM

matrix. Thus, if m is the number of rows and n is the number of columns, then the time

complexity of this algorithm is O(mn).

This algorithm implements two techniques: tokenization and encrypting. By

Algorithm 5.6 Obfuscating Stage Case B

Input: block matrix BM[1..m][1..n], and hashed digit matrix
DHBM[1..m][1..n].

Output: obfuscated matrix encBM[1..m][1..n] of obfuscated
object.

Steps:

1. Create encBM[1..m][1..n] matrix of obfuscate object.

2. ns  set size content of PK[0].

3. ipk  0.

4. for i 0 to m

5. for j  to n

6. token  generate token for BM[i][j].

7. enc  encrypt BM[i][j]

8. denc  enc + DHBM[i][j]

9. encBM[i][j]  new obfuscated object has denc
and token.

10. decrement ns

11. if ns = 0 then

12. increment ipk

13. ns  sets contents of PK[ipk]

14. p  p content of PK[ipk]

15. q  q content of PK[ipk]

16. end if

17. end for

18. end for

87

implementing these techniques together, we save space complexity and time complexity of

the tokenization technique alone, which requires O(mn). Then the total amount of saving

both space and time complexity is O(mn), where m is the row of the BM matrix, and n is

the column of BM, because the size of the token matrix is equal to the size of the BM

matrix.

5.4. Comparison-process implementation

In this section, the algorithms and techniques for implementing the comparison of

two images is presented and described in detail. We need this operation on the server side,

in which the comparison function is installed. Its main purpose is to compare the obfuscated

fingerprint images with the stored obfuscated ones. The server sends the result of

comparison to the client. This comparison process has been implemented with Matlab. The

main comparison function is a Matlab method for comparing images. One of the Matlab

methods does the comparisons by drawing a histogram for each image and comparing

between these histograms.

5.4.1. Comparison Stage

The main goal of this stage is to compare the obfuscated fingerprint with the stored

ones to check if the fingerprint already exists or not.

Consider Algorithm 5.7, which shows how the comparison is done.

88

This algorithm depends mainly on the total number of stored obfuscated

fingerprints in the server. Thus, if T is the total number of stored obfuscated fingerprints,

the time complexity of this algorithm is O(T(mn)), where m is the row of the encBM

matrix, and n is the column of encBM.

An example of two cases of the comparison process is shown to demonstrate its

validity. In the first case, the client sends an obfuscated fingerprint matrix to the server,

which compares it with the obfuscated images already stored in the server. Consider the

actual two fingerprints—fingerprint1 and fingerprint2—shown in Figure 5.8.

Algorithm 5.7 Comparing Stage

Input: encrypted matrix encBM[1..m][1..n] of obfuscated
objects.

Output: “Exist” or “Not Exist”

Steps:

1. hn1  draw histogram for encMatrix

2. c  0

3. for i  1 to total number of obfuscated stored
fingerprints

4. hn2  draw histogram for encrypted fingerprint [i]

5. f  result of comparing between hn1 and hn2

6. if f < = 0.000009, then increment c

7. end for

8. if c > 1,

9. then send “Exist”

10. else send “Not Exist”

11. end if

89

Figure 5.8: Actual fingerprints

A screenshot has been taken of the comparison results between these two

obfuscated fingerprints, as an example. The DencBM1 is the obfuscated matrix of

fingerprint1, and the DencBM2 is the obfuscated matrix of fingerprint2. Thus, the result of

comparison is 0.0563, which is greater than 0.000009, and this is our threshold in the

comparison process that has been defined for our experiment. Therefore, the result of

comparing these two fingerprints is not matched. Consider Figure 5.9.

90

Figure 5.9: Result of comparing between two different obfuscated fingerprints.

The second case compares the obfuscated fingerprint1 with the same image stored

in its obfuscated form. The DencBM1 is the obfuscated matrix of fingerprint1 and the

DencBM01 is the obfuscated matrix of the previously stored fingerprint1. The result of this

comparison is shown in Figure 5.10.

Note that the server does not only do the comparison, it also stores each obfuscated

fingerprint. The server stores a data set of all obfuscated fingerprint matrices to compare

between them and the input one. The server returns the comparison results as “Exist” if the

input obfuscated fingerprint matches with one of the stored obfuscated fingerprints.

Otherwise the result will be “Not Exist.”

If the result is “Exist,” the server returns the histograms of the matching obfuscated

fingerprints along with a copy of the obfuscated matched matrix already stored. The client

has a choice to verify if the result is correct. In this case, the client needs to spend extra

resources for the comparison between two matrices. In this case, the clients de-obfuscates

the matrix received from the server.

91

Figure 5.10: Result of comparing between two obfuscated fingerprints

5.5. Implementing de-obfuscating process

After receiving the matched obfuscated matrix from the server, the client de-

obfuscates it and compares it with the original integer matrix of the fingerprint. The client

keeps the original integer matrix generated from the current input fingerprint during the

preprocessing stage, until it receives the final result from the server, and compares that

result with its temporary saved matrix.

The client de-obfuscates the received obfuscated matrix of the fingerprint that the

server claims it has matched with the input matrix, in order to compare it with the original

matrix of the input fingerprint.

In this section, the algorithms and techniques for implementing the de-obfuscating

process is presented and described in detail. In the de-obfuscating process, we use some

mathematical operations. This process has been implemented with Java, because Java

provides many mathematical operations that simplify the implementation of these

techniques. These operations save both time complexity and space complexity of the de-

92

obfuscating process.

Consider Algorithm 5.9, which shows how the de-obfuscating process works.

This algorithm is mainly dependent on the number of rows and columns of encBM

matrix. Thus, if m is the number of rows and n is the number of columns, then time

complexity of this algorithm is O(mn).

Algorithm 5.9 De-Obfuscating Stage

Input: obfuscated matrix encBM[1..m][1..n] of obfuscated
objects, private key PK[1..x]

Output: de-obfuscated matrix d[1..m][1..2n] of integer
elements.

Steps:

1. dc  0

2. for r  0 to m-1

3. for c 0 to n-1

4. dec  result of de-obfuscated integer value of
obfuscated content of encBM[r][c]

5. break dec block into two integer number by using
hashed digit counter content in encBM[r][c].

6. d[r][dc]  first resulted integer number of
breaking block dec

7. Increment dc

8. d[r][dc]  second resulted integer number of
breaking block dec

9. Increment dc

10. end for

11. dc  0

12. end for

93

A screenshot has been taken of the result of the de-obfuscating process. However,

only a segment of the dm matrix is shown in Figure 5.11.

Figure 5.11: A part of the 2D dm matrix

Then a small comparison is done by using the Matlab environment, because it can

easily and simply compare between two matrices in linear time. We use the histogram-

comparison method to do so. Consider Figure 5.12, which shows an example of the

comparison results between the input fingerprint’s original integer matrix and the de-

obfuscated fingerprint, which has been converted into its original integer matrix form.

94

Figure 5.12: Result of comparing original integer matrices

Figure 5.12 shows the histogram test between the integer matrix of the input

fingerprint (H1), and the received de-obfuscated matrix (H2). The result of the comparison

is equal to zero, which means that the server computation result is correct.

In this chapter, we have presented the implementation of our proposed framework.

We have demonstrated that the result of obfuscating data using our framework is

reasonably acceptable, meaning that our proposed framework can be used to hide actual

data from the cloud server without affecting the comparing process of the server. We have

also reduced the computation by using sets of blocks with fewer private keys, which

positively impacts the computational complexity. In the next chapter, we will present the

result of testing and compare it with other similar approaches.

95

CHAPTER 6: DISCUSSION AND EVALUATION

This chapter presents a critical examination of our findings and discusses what has

been learned from our research. In order to test the effectiveness of the proposed

framework, two experiments are conducted. In the first experiment, we are going to show

the effects of reducing the image size on both time and accuracy of the final results. While

in the second experiment, we are going to show the effects of various amounts of used sets

for grouping the obfuscated matrix elements. In addition, in this chapter we outline, with

impartiality, the advantages and the disadvantages of our approach. We also compare our

proposed approach with other similar techniques, in regard to used techniques, speed, and

security.

6.1 Image-reduction experiment

In this experiment, we test how both the obfuscation time and the comparison

accuracy are affected by reducing the image size. A comparison between six fingerprint

images is done in their original form and on their obfuscated form. The reduction criterion

we used is the number of pixels of the image size. As we reduce image size by three turns—

that is, in turn 1—we reduce the size into half of the original size; in turn 2, we further

reduce the image by half, which is equivalent to one-fourth of the original image size; and

the reduction continues in that manner. Note that each image’s original dimension is 172 *

255 pixels. In turn 1, the image is reduced to 86 * 129 pixels. In the second reduction turn,

the reduced size resulting from turn 1 is further reduced to 44 * 66 pixels. In the last turn,

it is reduced to 22 * 34 pixels.

Consider Table 6.1, which shows the comparison results of each reduction turn and

96

the average error and the percentage error of each reduction turn. After each reduction turn,

we compare the reduced image size of the fingerprint with the first fingerprint image

(denoted as Fing1), which also has been reduced by using the same reduction process.

Therefore, we first compare each fingerprint image with the first fingerprint image (Fing1)

before reducing them, and their original size is 177 * 255 pixels. The value of comparing

these fingerprints represents the accurate comparison value. Then all of the fingerprint

images are reduced to their halved size, and each of these reduced images is compared with

the reduced fingerprint 1 (Fing1). We do the reduction turn three times, and each time, we

compare each of these reduced images with the first fingerprint, which is also being

reduced by the same reduction rate. After collecting all of these comparison values, we

calculate the average error for each turn and compare it with the average error of the

comparing images before reducing them. The experiment scenario is the following:

1. Compare each fingerprint image with the first (Fing1); in this step all fingerprint

images are in their original size, 177 * 255 pixels.

2. Obfuscate each fingerprint image and compare each fingerprint image with the first

obfuscated fingerprint image (enc (Fing1)).

3. Defined the required time for obfuscating each fingerprint image.

4. Reduce each fingerprint image to its half size.

5. Compare each reduced fingerprint image with the first one reduced (Fing1).

6. Obfuscate each reduced fingerprint image and compare each reduced fingerprint

image with the first obfuscated and reduced fingerprint image (enc (Fing1)).

7. Define the required time for obfuscating each reduced fingerprint image.

97

8. Repeat step 4 to do the calculation for the second reduction turn.

9. Repeat step 4 to do the calculation for the third reduction turn.

After collecting the result of each step, we count the average error and the

percentage error of each reduction turn, and the standard comparison result is the result of

comparing each image in its original form without reducing its size.

Table 6.1: Reduction Test: Comparing Results

Size Original Size

T0

172 * 255

Reduction

Turn

T1

86 * 129

Reduction

Turn

T2

44 * 66

Reduction

Turn

T3

24 * 34

Fing1 0 0 0 0

enc(Fing1) 0 0 0 0

Fing2 0.0059 0.008937 0.0032 0.0378

enc(Fing2) 0.0057 0.0082 0.0028 1.0069

Fing3 0.0347 0.057069 0.0013 0.0345

enc(Fing3) 0.028 0.031 0.0014 0.0925

Fing4 0.0128 0.0071 0.0092 0.0513

enc(Fing4) 0.0116 0.0023 0.0075 0.0057

Fing5 0.00066327 0.00048757 0.0015 0.0162

enc(Fing5) 0.00065335 0.0033 0.0021 0.009131

Fing6 0.0147 0.0123 0.0155 0.053

enc(Fing6) 0.0241 0.0038 0.0167 0.079514

Image comp

Avg error

0.011460545 0.014315595 0.005116667 0.032133333

Enc image

comp Avg

error

0.011675558 0.0081 0.005083333 0.1989575

Image comp

Percentage

error

0 24.91199153 55.35407202 180.38

Enc image

comp

Percentage

error enc

1.8761179 29.32273291 55.64492497 1636.02128

98

Table 6.1 shows that the error rate is directly proportional with image reduction,

which means that the image-compression accuracy is inversely proportional with image

reduction. However, there is a small rate of errors when the image is obfuscated, which

means that obfuscating the image does not have a significant effect on the image-

compression accuracy. Consider Figure 6.1, which shows the effect of image reduction on

the accuracy of the process.

Figure 6.1: Reduction Test: Comparison Results

Consider Table 6.2, which records the required time to obfuscate each image in

each reduction turn.

Table 6.2: Reduction Test: Obfuscation Time Test

Size

Original Size

T0

172 * 255

Reduction

Turn

T1

86 * 129

Reduction

Turn

T2

44 * 66

Reduction

Turn

T3

24 * 34

encTime(Fing1) 4.921 1.784 0.524 0.2

encTime(Fing2) 4.549 1.621 0.54 0.21

encTime(Fing3) 4.946 1.691 0.52 0.2

encTime(Fing4) 4.865 1.662 0.5 0.2

0

20

40

60

80

100

120

140

160

180

0 1 2 3

P
e

rc
e

n
ta

ge
 E

rr
o

r

Reduction Turn

Accuracy Test

Plain Imag Obfuscated Image

99

encTime(Fing5) 4.698 1.603 0.78 0.46

encTime(Fing6) 4.918 1.532 0.52 0.19

Time

Obfuscation

Avg

4.816166667 1.648833333 0.564 0.243333333

Table 6.2 shows that the obfuscation time is directly proportional to the image

reduction, because as much as the image is reduced, the required time to obfuscate is also

reduced accordingly. Figure 6.2 shows the effect of image reduction on the obfuscation

time.

Figure 6.2: Reduction Test: Obfuscation Time Test

The presented results of the image-reduction tests suggest that the accuracy of the

image comparison is affected by reducing image size. However, the required time to

obfuscate the image is significantly decreased if the image size is reduced, yet we must

choose an appropriate reduction size. As our experiment shows, the turn 1 reduction (86 *

129) is the most optimal because it does not significantly impact or vary in the comparison

result. At the same time, turn 1 significantly reduces the required time for the obfuscated

image. On the other hand, in order to solve the error rate of the comparison result, we can

decrease the image-comparison threshold. For example, if the threshold is equal to 0.003

0

1

2

3

4

5

6

0 1 2 3 4

Ti
m

e

Reduction Turn

Time Complexity Test

100

and if the result of comparing two images is less than or equal to that threshold, we

reasonably conclude that these two images are nearly the same. However, this threshold

can be decreased further to get a more accurate comparison result. Note that the threshold

value is defined only for our experiment purposes.

6.2 Sets experiment

In this experiment we test how both the obfuscation time and the comparison

accuracy are affected by the total number of sets used in each fingerprint image. A

comparison between six fingerprint images is done in their obfuscated form. The changing

parameter is the total number of sets used. We first group all obfuscated matrix elements

into only one set. Then we distribute the obfuscated matrix elements into five sets, then

into ten sets, and so on, until we have thirty sets. In each distributing cycle we compare

each fingerprint image with the first fingerprint image (Fing1), and the size of each

fingerprint is reduced from 172 * 255 elements to 86 * 129 elements. The experiment

scenario is the following:

1. Obfuscate each fingerprint image by using only one set.

2. Compute the required time for obfuscating each fingerprint image.

3. Compare each obfuscated fingerprint image with the first image obfuscated

(Fing1).

4. Obfuscate each fingerprint image by using five sets.

5. Compute the required time for obfuscating each fingerprint image.

6. Compare each obfuscated fingerprint image with the first obfuscated (Fing1).

We repeat step 4 by increasing the total number of sets by five, until we reach thirty

sets.

101

After collecting the result of each step, we count the average and the percentage

errors of each grouping cycle, and the standard comparison result is the result of comparing

each obfuscated image by using only one set. Consider Table 6.3, which shows the

comparison results of each grouping cycle and the average and the percentage errors of

each grouping cycle.

Table 6.3: Set Test: Comparison Results

Sets 0 5 10 15 20 25 30

Fing1 0 0 0 0 0 0 0

Fing2 0.0082 0.009 0.0143 0.01231 0.0169 0.0109 0.01511

Fing3 0.031 0.0079 0.0127 0.0196 0.0113 0.0381 0.0378

Fing4 0.0023 0.0065 0.0141 0.01222 0.0113 0.01044 0.01488

Fing5 0.0033 0.0121 0.0146 0.00184 0.018 0.00533 0.00409

Fing6 0.0038 0.0077 0.0035 0.0182 0.0094 0.0037 0.00364

Error enc

Avg
0.0081 0.0072 0.009867 0.010695 0.01115 0.011412 0.012587

Percentage

Error enc
0 11.1111 21.8107 32.03703704 37.65432 40.88477 55.39095

Table 6.3 shows that the error rate is directly proportional to the total amount of

sets used, which means that the image-compression accuracy is inversely proportional to

the total amount of sets used. Figure 6.3 below shows the impact of the total number of

sets used to obfuscate the image on the image-compression accuracy. The experiment

clearly demonstrates that when a greater number of sets are used, the error rates gradually

increase. For example, the error rate for ten sets is around 21. This increased to 32 for 15

sets. However, it slightly increases to 38 for 20 sets, and it keeps on increasing as more sets

are used to obfuscate the image.

102

Figure 6.3: Set Test: Comparison Results

Table 6.4: Set Test: Obfuscation Time Test

Consider Table 6.4. It records the required time to obfuscate each image in each

grouping cycle. Table 6.4 shows that the obfuscation time does change steadily with the

total number of sets used, because in each grouping cycle, the required time for obfuscating

keeps on increasing. We can conclude that the total number of sets used to obfuscate an

image does not have a significant impact on the required time for obfuscating, because

Sets 0 5 10 15 20 25 30

encTime

(Fing1)
1.1611 1.523 1.784 1.611 1.944 1.688 1.781

encTime

(Fing2)
1.921 1.592 1.621 1.881 1.611 1.617 2.001

encTime

(Fing3)
1.621 1.623 1.691 1.599 1.941 2.073 1.571

encTime

(Fing4)
1.581 1.623 1.662 1.611 1.6 1.691 1.733

encTime

(Fing5)
1.612 1.901 1.603 1.631 1.571 1.782 1.894

encTime

(Fing6)
1.73 1.572 1.532 1.931 1.601 1.651 1.601

Time

Obfuscation

Avg

1.60435 1.639 1.64883 1.71067 1.71133 1.75033 1.7635

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

P
er

ce
n

ta
ge

 E
rr

o
r

Set Size

Accuracy Test

103

none of the presented grouping cycles requires more than two seconds in order to be

obfuscated. Consider Figure 6.4, which shows the total required obfuscated time using

different set sizes.

Figure 6.4: Set Test: Obfuscation Time Test

With these results of the set test, we conclude that the total number of sets used for

obfuscating an image impacts the comparison time. The required time for obfuscating

image is increased as the number of the required for encrypting blocks that belong to each

set. Note that in our approach the total number of sets is defined randomly by the program;

however, in this experiment we have controlled that size and the total number of used sets.

In order to solve the error rate of the comparison result, we can decrease the image-

comparison threshold. For example, if the threshold is equal to 0.003, and the result of

comparing two images is less than or equal to this threshold, we can conclude that the two

images are nearly the same. However, after obfuscating the image by any number of sets,

we can decrease the threshold in order to get an accurate comparison result. Note that the

threshold value is defined for the experiment purposes.

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

0 5 10 15 20 25 30 35

Ti
m

e

Set Size

Time Complexity Test

104

6.3 Discussion

In general, our framework first reduces the image size to an appropriate size and

converts it from a colored image to gray to reduce the number of dimensions of the

matrix—that is, the image is changed from three to two dimensions. These steps, size

reduction and changing dimensions, are essential for saving computational complexity in

the obfuscating stage as shown in Table 6.2. Our experiments show the direct impact of

reducing image size on the obfuscation time. Note that if the image is not converted to

gray, then the obfuscation will take O(n3); whereas after converting the image to gray, the

obfuscation work requires O(n2), which is the same as reported in [9]. However, the

obfuscation operations in our framework require less computation than required for the

approach in [24], which are O(n3) operations in the obfuscation stage.

Our framework is based on a single server system. Therefore, our approach, to

verify the server’s results, must be an FHE system, or we must incorporate some operations

done on the client’s side to verify the server’s final results. Therefore, our verification

operation is done only if the server’s final result is “Exist!!” Once the server claims that

there is a match between the input image and one of the stored images, it returns the

obfuscated matched image to the client, so the client can decrypt it and compare it with the

input image that was sent to the server. All of these operations require O(n2) work, which

is the same verification requirement in [9]. However, in [24] the verification operations

require less work because it only needs O(n) work. Nevertheless, our framework does not

leak any private information as reported in the [25] approach.

Our approach uses the tough-to-crack Rabin cipher, which is highly secure because

of its resistance to factorization. However, if its public key is factorized into the correct

105

two prime numbers that it consists of, then this secure technique will likely be cracked.

Therefore, in our framework we omit the public key and choose to use only the private key;

this approach leaves no clues that malicious entities could use to crack the cipher. Using

our new techniques, we encrypt our plain data by using multiple keys for multiple sets.

Therefore, our approach is vastly more secure than the approach in [27] because our

framework requires less computational complexity. Because our public key is factorized

into three large prime numbers, rather than the two in the decryption technique in [27], the

result of decryption is equal to eight candidate roots rather than two, as there isn’t any

technique to identify the correct root. In our approach, we keep using two large prime

numbers without using a public key, and our decryption technique results in only four

candidate roots using our tokenization technique, which helps us to find the correct root

among these four roots. In our approach, once it recognizes the correct root, it stops

computing the other roots.

In our framework, we use the Garner algorithm [5] in the decryption technique,

because it reduces the multiplication operations used for solving the Chinese remainder

theorem by half. In [5], the approach reduces the resulting four roots to two; however, it

does not use any technique to discover the correct one. In our approach, the decryption

technique still produces four roots, but we can recognize the correct root among these four

by using our tokenization technique.

In order to obfuscate a matrix, the existing approaches provide two choices to

encrypt the elements in the matrix: One is to encrypt the entire matrix using only one

private key, and this saves the client excessive computational efforts. The other choice is

to encrypt each element of the matrix with different private keys, resulting in the client

106

having to save a large number of keys. In the first choice, there is a high risk that all

elements will be disclosed if the key is compromised. In the second approach, although the

computational overhead is high, compromising one key reveals only one element. Both

approaches have their own advantages and disadvantages. We address the disadvantages

of both approaches by grouping matrix elements into sets of different sizes, and each

element in a set is encrypted by the same private key of the set, where each set has its own

private key to encrypt its elements. The client needs to generate and save an array of private

keys, and the size of that array should be equal to the number of sets used to group matrix

elements. This approach is a compromise between the two existing approaches.

 However, our proposed framework has a few limitations. The first weakness is that

all outsourced data, in order to be computed correctly by the server, must be encrypted with

the same array of private keys. This is because all obfuscated images are of the same size

and the elements of each matrix must be grouped in the same order of sets with the same

variances in size.

The second weakness of our approach is that when the client sends an image to be

computed by the server, the client must save the original integer matrix of the input image,

because our de-obfuscation technique only returns the original integer matrix of the image.

Therefore, in order to check the results sent by the server, the client must keep the original

integer matrix so that he or she can compare it with the de-obfuscated integer matrix

received from the server. This problem can be addressed by adding an additional tool to

the de-obfuscation technique. The new tool can transform the integer matrix to a matrix of

pixels. However, this issue is outside the scope of this research.

The third weakness is that we noticed that our decryption techniques sometimes

107

confuse and wrongly recognize an incorrect root among all of the four resulting roots. This

problem occurs only if two of the four resulting roots have the same token value. However,

this problem rarely occurs when we decrypt a matrix of size 86 * 129.

6.3.1. Comparative Analysis

In this section, we provide a comparison that considers the complexity order,

advantages, and disadvantages of the Rabin and RSA improvements in our approach. We

also provide another comparison that considers the complexity order, advantages, and

disadvantages of the proposed systems in [9] and [24] with our system.

Consider Table 6.5 below, which shows the comparison of the complexity order,

advantages, and disadvantages of each Rabin improvement in our approach.

Table 6.5: Comparative Analysis between Rabin’s and RSA Algorithms.

Algorithm
Encryption

Speed

Decryption

Speed
Advantages Disadvantages

[48] O(n2) O(n3)

Overcomes Rabin

decryption failure.

No extra computation is

required during

decryption.

Plain text domain
is restricted.

[30] O(n2) O(n3)
Overcomes decryption

failure of solving CRT.

Requires more

computational

complexity in
both encryption

and decryption

processes than the

normal RSA

technique.

108

[44] O(n2) O(n3)
Overcomes decryption

failure of solving CRT.

Requires more

computational

complexity in

both encryption

and decryption

processes than the

normal RSA

technique.

[37] O(n2) O(n3)
Security is higher than

RSA

Decryption

failure.

our

approach
O(n2) O(n2)

Overcomes decryption

failure of solving CRT.

High security.

Decryption

methodology is faster

than the normal Rabin

decryption

methodology.

Decryption has

small probability
of failing.

Table 6.6: Comparative Analysis between Our System and Other Provided Systems.

System
Encryption

Speed

Decryption

Speed
Advantages Disadvantages

[9] O(n2) O(n2) High security

Decryption system
may lack, if a

failure happened in

the verification

server

[24] O(n3) O(n3)

Higher decryption

speed than the other

systems

Leak of privacy

information

109

Our

approach
O(n2) O(n2)

Overcomes decryption

failure of solving

CRT.

High security.

Decryption

methodology is faster

than the normal Rabin
decryption

methodology.

All outsourced
data must be

decrypted with the

same array of

private keys.

Decryption has

small probability

of failing.

110

CHAPTER 7: CONCLUSION AND FUTURE WORK

The main goal of this research was to develop an approach that can secure clients’

outsourced data and can ensure privacy of these data while being processed by or stored in

the cloud severs or any external agent. The client uses cloud computing mainly to do the

complex computations on the outsourced data, in order to eventually save these data on the

cloud server. The secure outsourcing would not be effective if the client uses effort-

consuming and complex techniques, such as an FHE technique. The client needs to use a

lightweight approach that can secure outsourced data and allow the cloud servers to

compute on these data correctly without knowing the data’s actual value. To achieve this

multifaceted approach, this thesis has proposed techniques that not only address clients’

security and privacy needs, but also allow cloud servers to compute on the outsourced data

accurately without knowing the data’s actual value or form. An added benefit to our

approach is that if the cloud server or storage were compromised by unauthorized entities,

the privacy of the obfuscated image would remain intact.

Our specific contributions in this thesis are:

 The proposed obfuscating technique uses a modified Rabin cipher without a

public key.

 Our approach ensures that the possibility of guessing the two large prime

numbers (private key) is very weak.

 We have introduced a new block technique, which builds blocks of different

lengths, yet each block contains a fixed number of elements.

111

 We have decreased computational complexity by requiring fewer numbers of

private keys, a strategy that is based on our new technique of creating a random

number of sets with varied size.

 We have addressed the drawback of the Rabin cipher’s decryption technique

by introducing tokenization and a digit counter, both of which support the de-

obfuscation operations.

The limitations identified in the previous chapter are to be addressed in future

research.

 We could develop a new technique that could convert the integer matrix back

to its image from.

 We aim to research further how we could use classification techniques that

compare between images by using the features of images.

 We could explore how optimal garbled computing could efficiently be used

to outsource images to cloud.

112

REFERENCES

[1] Adrian, David, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger et al. "Imperfect forward

secrecy: How Diffie-Hellman fails in practice." In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pp. 5-17. ACM,

2015.

[2] Ananth, Prabhanjan, Nishanth Chandran, Vipul Goyal, Bhavana Kanukurthi, and

Rafail Ostrovsky. "Achieving privacy in verifiable computation with multiple
servers–without FHE and without preprocessing." In Public-Key Cryptography–

PKC 2014, pp. 149-166. Springer Berlin Heidelberg, 2014.

[3] Ariffin, Muhammad Rezal Kamel, M. A. Asbullah, and Nor Azman Abu. "A new

efficient asymmetric cryptosystem based on the square root problem." arXiv

preprint arXiv:1207.1157 (2012).

[4] Ariffin, Muhammad Rezal Kamel, Muhammad Asyraf Asbullah, Nur Azman Abu,

and Zahari Mahad. "A new efficient asymmetric cryptosystem based on the integer
factorization problem of N= p2q." Malaysian Journal of Mathematical Sciences 7,

no. S (2013): 19-37.

[5] Asbullah, Muhammad Asyraf, and Muhammad Rezal Kamel Ariffin. "Fast

decryption method for a Rabin primitive-based cryptosystem." International
Journal of Advancements in Computing Technology 6, no. 1 (2014): 56.

[6] Asbullah, Muhammad Asyraf, and Muhammad Rezal Kamel Ariffin. "Rabin-$ p $

cryptosystem: Practical and efficient method for Rabin based encryption

scheme." arXiv preprint arXiv:1411.4398 (2014).

[7] Atallah, Mikhail J., Konstantinos N. Pantazopoulos, John R. Rice, and Eugene E.

Spafford. "Secure outsourcing of scientific computations." Advances in

Computers 54 (2002): 215-272.

[8] Bellare, Mihir, and Phillip Rogaway. "Introduction to modern cryptography." UCSD

CSE 207 (2005): 207.

[9] Benjamin, David, and Mikhail J. Atallah. "Private and cheating-free outsourcing of

algebraic computations." In Privacy, Security and Trust, 2008. PST'08. Sixth Annual

113

Conference on, pp. 240-245. IEEE, 2008.

[10] Blanton, Marina, Mikhail J. Atallah, Keith B. Frikken, and Qutaibah Malluhi.

"Secure and efficient outsourcing of sequence comparisons." In Computer Security–

ESORICS 2012, pp. 505-522. Springer Berlin Heidelberg, 2012.

[11] Bellare, M., and P. Rogaway. (1994). "Optimal asymmetric encryption." In

Advances in Cryptology—EUROCRYPT'94 (pp. 92-111). Springer Berlin

Heidelberg.

[12] Bishop, David. Introduction to Cryptography with java Applets. Jones & Bartlett

Learning, 2003.

[13] Boneh, Dan. "Simplified OAEP for the RSA and Rabin functions." In Advances in

Cryptology—CRYPTO 2001, pp. 275-291. Springer Berlin Heidelberg, 2001.

[14] Castagnos, Guilhem, Antoine Joux, Fabien Laguillaumie, and Phong Q. Nguyen.

"Factoring pq 2 with quadratic forms: nice cryptanalyses." In Advances in
Cryptology–ASIACRYPT 2009, pp. 469-486. Springer Berlin Heidelberg, 2009.

[15] Chung, Kai-Min, Yael Kalai, and Salil Vadhan. "Improved delegation of

computation using fully homomorphic encryption." In Advances in Cryptology–

CRYPTO 2010, pp. 483-501. Springer Berlin Heidelberg, 2010.

[16] Damgård, Ivan, and Yuval Ishai. "Constant-round multiparty computation using a

black-box pseudorandom generator." In Advances in Cryptology–CRYPTO 2005,

pp. 378-394. Springer Berlin Heidelberg, 2005.

[17] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on

large clusters." Communications of the ACM 51, no. 1 (2008): 107-113.

[18] Diffie, Whitfield, and Martin E. Hellman. "New directions in

cryptography."Information Theory, IEEE Transactions on 22, no. 6 (1976): 644-

654.

[19] Du, Wenliang, and Mikhail J. Atallah. "Privacy-preserving cooperative statistical

analysis." In Computer Security Applications Conference, 2001. ACSAC 2001.

Proceedings 17th Annual, pp. 102-110. IEEE, 2001.

114

[20] Du, Wenliang, and Mikhail J. Atallah. "Secure multiparty computation problems

and their applications: a review and open problems." InProceedings of the 2001

workshop on New security paradigms, pp. 13-22. ACM, 2001.

[21] Elia, Michele, Matteo Piva, and Davide Schipani. "The Rabin cryptosystem

revisited." arXiv preprint arXiv:1108.5935 (2011).

[22] Fox, Armando, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,

Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica. "Above the clouds: A

Berkeley view of cloud computing." Dept. Electrical Eng. and Comput. Sciences,

University of California, Berkeley, Rep. UCB/EECS 28, no. 13 (2009): 2009.

[23] Galindo, David, Sebastiá Martýn, Paz Morillo, and Jorge L. Villar. "A practical

public key cryptosystem from Paillier and Rabin schemes." InPublic Key

Cryptography—PKC 2003, pp. 279-291. Springer Berlin Heidelberg, 2003.

[24] Gennaro, Rosario, Craig Gentry, and Bryan Parno. "Non-interactive verifiable
computing: Outsourcing computation to untrusted workers." In Advances in

Cryptology–CRYPTO 2010, pp. 465-482. Springer Berlin Heidelberg, 2010.

[25] Gentry, Craig. "Fully homomorphic encryption using ideal lattices." In STOC, vol.

9, pp. 169-178. 2009

[26] Goldreich, Oded, Silvio Micali, and Avi Wigderson. "How to play any mental

game." In Proceedings of the nineteenth annual ACM symposium on Theory of

computing, pp. 218-229. ACM, 1987.

[27] Hashim, Hayder Raheem. "H-RABIN CRYPTOSYSTEM." Journal of Mathematics

and Statistics 10, no. 3 (2014): 304.

[28] Haraty, Ramzi A., A. N. El-Kassar, and Bilal Shibaro. "A comparative study of rsa

based digital signature algorithms." Journal of Mathematics and Statistics 2, no. 1

(2006): 354-359.

[29] Katz, Jonathan, and Rafail Ostrovsky. "Round-optimal secure two-party

computation." In Advances in Cryptology–CRYPTO 2004, pp. 335-354. Springer
Berlin Heidelberg, 2004.

[30] Kurosawa, Kaoru, Toshiya Ito, and Masashi Takeuchi. "Public key cryptosystem

115

using a reciprocal number with the same intractability as factoring a large

number." Cryptologia 12, no. 4 (1988): 225-233.

[31] Kurosawa, Kaoru, Wakaha Ogata, Toshihiko Matsuo, and Shuichi Makishima.

"IND-CCA public key schemes equivalent to factoring n= pq." In Public Key

Cryptography, pp. 36-47. Springer Berlin Heidelberg, 2001.

[32] Lindell, Yehuda. "Parallel coin-tossing and constant-round secure two-party

computation." Journal of Cryptology 16, no. 3 (2003): 143-184.

[33] Malkhi, Dahlia, Noam Nisan, Benny Pinkas, and Yaron Sella. "Fairplay-Secure

Two-Party Computation System." In USENIX Security Symposium, vol. 4. 2004.

[34] Motahari-Nezhad, Hamid R., Bryan Stephenson, and Sharad Singhal. "Outsourcing

business to cloud computing services: Opportunities and challenges." IEEE Internet

Computing 10 (2009).

[35] Neto, Paulo. "Demystifying cloud computing." In Proceeding of Doctoral

Symposium on Informatics Engineering, 2011.

[36] Okamoto, Tatsuaki, and Shigenori Uchiyama. "A new public-key cryptosystem as

secure as factoring." In Advances in Cryptology—EUROCRYPT'98, pp. 308-318.

Springer Berlin Heidelberg, 1998.

[37] Rabin, Michael O. Digitalized signatures and public-key functions as intractable as

factorization. No. MIT/LCS/TR-212. MASSACHUSETTS INST OF TECH

CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1979.

[38] Rivest, Ronald L., Len Adleman, and Michael L. Dertouzos. "On data banks and
privacy homomorphisms." Foundations of secure computation 4, no. 11 (1978):

169-180.

[39] Rivest, Ronald L., Adi Shamir, and Len Adleman. "A method for obtaining digital

signatures and public-key cryptosystems." Communications of the ACM 21, no. 2

(1978): 120-126.

[40] Roy, Indrajit, Srinath TV Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.

"Airavat: Security and Privacy for MapReduce." In NSDI, vol. 10, pp. 297-312.

2010.

116

[41] Schmidt-Samoa, Katja. "A new rabin-type trapdoor permutation equivalent to

factoring." Electronic Notes in Theoretical Computer Science 157, no. 3 (2006): 79-

94.

[42] Takagi, T. (1997). Fast RSA-type cryptosystems using n-adic expansion.

InAdvances in Cryptology—CRYPTO'97 (pp. 372-384). Springer Berlin Heidelberg.

[43] Takagi, Tsuyoshi. "Fast RSA-type cryptosystem modulo p k q." In Advances in

Cryptology—CRYPTO'98, pp. 318-326. Springer Berlin Heidelberg, 1998.

[44] Williams, H. (1980). A modification of the RSA public-key encryption procedure

(Corresp.). Information Theory, IEEE Transactions on, 26(6), 726-729.

[45] Xiao, Liangliang, Osbert Bastani, and I-Ling Yen. "An Efficient Homomorphic

Encryption Protocol for Multi-User Systems." IACR Cryptology ePrint

Archive 2012 (2012): 193.

[46] Yao, Andrew. "How to generate and exchange secrets." In Foundations of Computer

Science, 1986, 27th Annual Symposium on, pp. 162-167. IEEE, 1986.

[47] Yao, Andrew C. "Protocols for secure computations." In Foundations of Computer

Science, 1982. SFCS'08. 23rd Annual Symposium on, pp. 160-164. IEEE, 1982.

[48] Zahari Mahad, and Muhammad Rezal Kamel Ariffin. " Rabin-RZ: A New Efficient

Method to Overcome Rabin Cryptosystem Decryption Failure
Problem" International Journal of Cryptology Research 5, no. 1 (2015): 11-20.

