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ABSTRACT 

RIHAN RANA A., Masters:January:2017, Masters of Science in Computing  

Title: Exploring Confidentiality and Privacy of Image in Cloud Computing 

Supervisor ofThesis: Khaled M. Khan. 

With the increasing popularity of cloud computing, clients are storing their data in 

cloud servers and are using “software as a service” for computing services. However, 

clients’ data may be sensitive, critical, and private, and processing such data with cloud 

servers may result in losing data privacy or compromising data confidentiality. Some cloud 

servers may be dishonest, while malicious entities may compromise others. In order to 

protect data privacy and confidentiality, clients need to be able to hide their actual data 

values and send the obfuscated values to cloud servers. 

This thesis deals with the outsourcing of computing to cloud servers, in which 

clients’ images can be computed and stored. This thesis proposes a technique that 

obfuscates images before sending them to servers, so these servers can perform 

computations on images without knowing the actual images. The proposed technique is 

expected to ensure data privacy and confidentiality. Servers will not be able to identify an 

individual whose images are stored and manipulated by the server. In addition, our 

approach employs an obfuscating technique to maintain the confidentiality of images, 

allowing cloud servers to compute obfuscated data accurately without knowing the actual 

data value, thus supporting privacy and confidentiality.     
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The proposed approach is based on the Rabin block cipher technique, which has 

some weaknesses, however. The main drawback is its decryption technique, which results 

in four values, and only one of these values represents the actual value of plain data. 

Another issue is that the blocking technique requires a private key for each block that 

requires a high-computing effort; requiring one private key for each block of data demands 

that a great number of keys be stored by the client. As a result, it decreases the robustness 

of the Rabin block cipher.    

This thesis proposes additional techniques to overcome some of the weaknesses of 

the Rabin block cipher by introducing some new features, such as tokenization, a digit 

counter, and a set of blocks. The new technique increases the privacy of data and decreases 

the computational complexity by requiring fewer private keys. The new features have been 

implemented in image processing in order to demonstrate their applicability. However, in 

order to apply our approach to images, we must first apply some preprocessing techniques 

on images to make them applicable to being obfuscated by our proposed obfuscating 

system.   
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ِ ٱبسِْمِ 
حْمٰنِ ٱ لّلٰ حِيمِ ٱ لرَّ  لرَّ

اب  ٱلنَّارِ ر   ذ  قنِ ا ع  ن ةٗ و  س  ةِ ح  فيِ ٱلۡۡٓخِر  ن ةٗ و  س  نۡي ا ح  اتنِ ا فيِ ٱلدُّ بَّن آ ء   

Allahumman fa’nee bi-maa ‘allam-ta-nee wa ‘allim-nee maa 

yanfa’u-nee war zuq-nee ‘ilman yanfa’u-nee 

“O, Allah, benefit me with what you have taught me, and teach me 

that which will benefit me, and grant me knowledge which will 

benefit me.” 
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CHAPTER 1: INTRODUCTION 

 

 Modern society is dealing, using, and connecting with the growing amount of 

digital data, of which some are sensitive, private, or personal in nature. Because the usage 

of digital information is growing, the need for outsourcing techniques of various 

functionalities is increasing as well. Consequently, a new way of outsourcing computation, 

referred to as cloud computing, has emerged [22]. Cloud computing has become an 

attractive option for organizations. This outsourcing approach provides highly dynamic 

computing services in which individuals as well as organizations have the choice to access 

hardware and software resources as their demands increase or decrease for such resources. 

Cloud computing offers services that are faster, more flexible, and cheaper than those of 

conventional IT centers. Virtualization and ultrabroadband connectivity provide this 

flexibility and scalability to achieve.  

 Cloud computing, in short, is the outsourcing of IT services to one or more third 

parties that have rich pools of resources to meet an organization’s computing needs easily 

and efficiently [34]. These include networking, hardware components, storage, and 

software applications. Cloud computing facilitates the computing usage to give users on-

demand access to computing resources in a “pay as you go” payment model, which is 

similar to other models that handle utilities such as electricity or water. 

Even though cloud computing offers a promising paradigm that can enable 

businesses to outsource their computations in an agile and cost-efficient manner, the means 

to guarantee secure outsourcing to cloud computing have not been established. Some cloud 

services might be untrustworthy or vulnerable to malicious entities. There is a possibility 
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that the outsourced private data of clients could be disclosed to unauthorized entities. 

Keeping information secure, private, and confidential on a cloud server is challenging; 

thus, the computation should be done in a privacy-preserving manner that does not reveal 

information about the sensitive and personal inputs and outputs throughout the 

computation. The challenge of ensuring secure outsourcing to cloud servers is receiving 

more attention from the research community, and the principal aim is to fully utilize the 

benefits of cloud computing while maintaining thorough security for clients’ private and 

sensitive data.  

In regard to the security issues related to cloud computing, data encryption seems 

to be a natural option to pursue. However, this potential recourse has a major problem: It 

is virtually impossible for cloud servers to compute encrypted data without using effort-

consuming techniques, such as a fully homomorphic encryption (FHE) [25]. If a cloud 

server cannot process a client’s data, storing data on the cloud would not seem attractive 

to clients because the cloud would only provide passive storage.  

Using a garbled circuit (GC) [46] is another approach that could secure data 

confidentiality and privacy. A GC would enable two or more parties to execute functions 

through their inputs without revealing anything to other parties. This option would provide 

a protocol for computing any function by using a Boolean circuit representation of the 

function. An unauthorized entity with access to a GC computation could not learn anything 

about the input data of the GC or its outputs. However, creating GCs is time consuming. 

Another serious problem is that they are not reusable. 

In this thesis, we attempt to develop an approach that could address some of the 

problems outlined earlier. The main aim of this research is to develop an efficient technique 
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that could secure outsourced images on cloud servers without requiring additional 

resources from the cloud servers themselves.   

1.1. Problem Statement  

In this research, we attempt to propose a secure-outsourcing technique that could 

allow clients to fully and securely utilize cloud resources and services for their images. The 

images are computed efficiently and accurately by cloud computing, without the images 

being revealed to cloud servers. We envision an approach that requires less computational 

complexities and less additional resources. The approach must ensure confidentiality and 

privacy of client images.  

The success of our approach can be measured by the answers to the following questions: 

a) Can a cloud server compute a client’s images correctly without knowing the actual 

images? 

b) Can the cloud server derive or extract actual images? 

c) Does a client need large amounts of additional resources to make his or her 

outsourced images secure? 

d) Does the cloud server require additional computations or overheads to keep images 

private and confidential? 

Let us provide a specific example of the research problem that we address in the 

research. A client captures various images of his or her employees and stores them on a 

cloud server. Each time the client sends an image, the server first checks if the new image 

has already been stored or not. In order to ensure this, the cloud server compares the input 

image with other images already stored. In this scenario, the client wants the server to know 

nothing about the actual images being received; this means that the server needs to store 
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and compare images without knowing the actual pixel values of the images. The 

comparison task performed by the cloud server should be reasonably accurate. In order to 

do this, the server does not need additional computing power or resources. We presume 

that all of the images the client may send will be similar in size, in regard to the number of 

pixels and resolution. Our research focuses on how to enter this scenario without using 

expensive techniques, such as public key infrastructure, FHE, or GC. 

1.2. Objective and Significance 

The main objective of this research is to find answers to the questions defined in 

the problem statement (Section 1.1). In our approach, we explore and investigate existing 

cipher and other encryption frameworks to develop, ultimately, an optimal technique. We 

will experiment with how we can secure images so that cloud servers would be unable to 

know a client’s actual images. Furthermore, we will search for new techniques that can 

keep clients’ images secure when their cloud servers or storage devices are compromised 

by malicious attackers.  

Clients of cloud computing need a lightweight approach that can keep their images 

private and allow cloud servers to compare images without being revealed to servers. 

Furthermore, this new approach should demand only a minimum of computational 

complexity and resources from the client.    

The main benefit of this approach is to ensure privacy and confidentiality of clients’ 

images when they use cloud services. Under this new approach, clients will not suffer under 

a plethora of requirements for computational complexity. In addition, we want to develop 

a flexible technique that can be applied to different types of data, a technique that will not 

devour client resources. 
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1.3. Main Contributions 

Our work will propose an optimal approach that can ensure data privacy and 

confidentiality when cloud computing, and this enhanced security will not need a public 

key infrastructure, expensive FHEs, or GCs. We concentrate on how to overcome the 

weaknesses of the existing techniques, and how to optimize the computational complexities 

of the client and the cloud server, so that our approach requires minimal resources. Our 

research is based on two strategies:  

(i) Exploring how to modify some of the well-established existing techniques, such 

as the Rabin block cipher, to address our research problems. 

(ii) Proposing some techniques and ideas to support the entire approach.  

Based on these two strategies, we develop an approach that uses our following 

specific contributions: 

 The first technique is the optimal creation of data blocks, which is an inspired 

technique from the block-cipher algorithm.  

 The second technique is the development of a digit counter, which assigns a digit 

for each item in the generated blocks of data.  

 The third technique is tokenization, which creates a token for each generated 

block.  

 The fourth technique is the identification of sets that group a random number of 

blocks into one single set.  

We also modify the Rabin cryptosystem, which requires two different types of keys: 

public keys and private keys [37]. In our approach, we explore how to use only private 
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keys instead of both types, without compromising security. We demonstrate the 

applicability of these techniques by using an image-processing application in a cloud 

server.  

1.4. Thesis Overview  

This document is structured as follows: 

Chapter 1: Introduction 

We outline the general background about the topic, the problem statement, the 

objective’s significance, and the main contributions.   

Chapter 2: Literature Review 

Here, we critically analyze other related approaches already proposed and 

accomplished in this field, to assess their strengths and weaknesses.  

Chapter 3: Methodology 

We describe how our research has been carried out. Techniques and 

methodologies we explored to address our research problems are included here.  

Chapter 4:  Data-Obfuscating Technique 

We present our main approach for securing data privacy and confidentiality in 

the context of image processing. 

Chapter 5: Implementation and Validation of the Approach 

We demonstrate the implemented algorithms and techniques of the proposed 

framework with running examples and show that the approach can work in practice. 



 
 

7 

 

Chapter 6: Discussion 

We present our research findings, various experimental results, and limitations 

of our approach. 

Chapter 7: Conclusion and Future Work 

We summarize the main contributions of our thesis and outline a list of future 

work.  
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CHAPTER 2: LITERATURE REVIEW  

 

Data confidentiality and privacy in cloud computing, in which data are sent to a 

cloud server in order to be either processed or stored or both, is an important and complex 

research area. This problem has been addressed by different approaches and from various 

perspectives. This chapter analyzes some of the proposed approaches in different areas, 

such as secure outsourcing, data obfuscations, and exponential ciphers. 

The proposed solutions, techniques, algorithms, and schemes to this problem can 

be categorized into two broad areas: secure-outsourcing computation (with an information 

theoretic approach) and encryption. The next section reviews the work primarily related to 

secure-outsourcing computation using an information theoretic, and Section 2.2 deals with 

past research related to encryptions—that is, exponential ciphers.    

2.1. Secure-Outsourcing Computation Using an Information Theoretic 

Secure-outsourcing computation is the scheme of transferring data from the client 

to cloud servers for secure computation and data storage. Many solutions, techniques, 

algorithms, and schemes have been presented and proposed for solving the security 

problems by using an information theoretic approach. However, all provided solutions and 

schemes in the literature can be categorized into the four following classes:  

1) Outsourcing to single cloud server  

2) Outsourcing to multiple noncolluding cloud servers 

3) Outsourcing to multiple colluding cloud servers  

4) Secure multiparty computation (MPC) scheme.  
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2.1.1. Outsourcing to a Single Cloud Server 

In this scheme, the client uses a single cloud server to outsource his or her 

computations. This scheme is the simpler scheme among the four described above, because 

by dealing with one server, the communication protocols of the client will be much simpler 

than if the client were to deal with multiple servers. Thus, using one server will allow the 

client to allocate and compute outsourced data more quickly and easily. However, 

outsourcing to only one server will restrict the client to a limited number of functionalities 

and to a limited amount of storage space. What is more, if the server breaks down, then the 

client will lose his or her stored outsourced data. Also, the FHE verification techniques 

seem to be inherently required, or the client should define a verification operation of the 

outsourced and computed results. And the verification operation should be done on the 

client’s side. 

This scheme was introduced in 1978 by Rivest, Adleman, and Dertouzos [38], who 

used a singular server with a privacy homomorphism. Their approach implies that clients 

should use an outsourcing agent to store financial data and to do computations on that same 

data. In their scheme, financial data or similar forms are stored and computed when they 

are encrypted, because their approach uses homomorphism encryptions, such as a modular 

exponential-encrypting technique. The client decrypts the data in order to obtain its original 

value. In 2001, another approach using a singular server was proposed by Atallah and 

Pantazopoulos [7]. Their proposed framework was broad, and could be applied to solving 

many diverse scientific problems. They proposed techniques that could outsource 

numerous computations, which would, in theory, secure the outsourced data at low costs. 

Their approach was used to secure their plain data, and it used multiple disguise techniques 
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rather than encryption techniques in order to reduce the required computational complexity 

of encryption techniques. However, using a single disguise technique is generally less 

secure than using a single encryption technique, so in [7] they used many disguise 

techniques, rather than only one, in order to increase their approach. However, their 

approach may leak private information, because it requires a master key that consists of 

many subkeys, with a property of discovering one of these subkeys. Note that this approach 

requires many subkeys because it uses many disguising techniques, and each of these 

techniques requires a key.  

In 2010, Gennaro, Gentry, and Parno [24], as well as Chung, Kalai, and Vadhan 

[15], proposed approaches for outsourced computation. Gennaro et al.’s [24] scheme 

combined the proposed GC evaluation [46] with the FHE scheme, which has been proposed 

[25]. Gennaro et al. [24] proposed that the GC is evaluated only on encrypted inputs. To 

evaluate a GC on two different inputs was shown to provide no appropriate privacy, 

because there was a small probability that information would be leaked in each parity, 

during the exchanges between the GC input and output labels. 

According to the approach in [24], the created GC for the required computations is 

stored in the server. Then the client encrypts his or her input data by using the private key 

of the FHE and sends the encrypted data to server in order to be evaluated by the stored 

circuit. After that, by using the homomorphic properties of the encryption scheme, a cloud 

server computes the function on the received data and sends the result to client. Finally, 

the client decrypts the received result in order to understand it. 

The approach by Gennaro et al. [24] seems to be more efficient than FHE 

techniques, because their approach does the verification operation only in O(m) operations. 
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However, their approach might increase its efficiency at the sacrifice of input privacy. 

There is one main disadvantage: If there are malformed responses from servers, then there 

is a small probability that a malicious entity already knows k-bit information about the GC, 

even before the client manages to detect and terminate that malformed response. Therefore, 

it would be hard for a malicious entity to break the full GC if the amount of k-bit 

information is sufficiently small. However, this argument cannot be proven.  

2.1.2. Outsourcing to Multiple Noncolluding Cloud Servers 

In this scheme, the client outsources his or her computations to multiple cloud 

servers, which do not interact with each other. Generally, the need of multiple servers is 

for ensuring the correctness of the results [9]. 

This scheme’s main advantage is the reduction in the required computational 

complexity needed for verifying the computational results of the previously used servers. 

Also, this scheme can be used to reduce the computational complexity needed for running 

the homomorphic encryption. On the other hand, the main disadvantage of this scheme is 

that communicating through these multiple servers overwhelms the client’s 

communication protocols.     

In 2008, Benjamin and Atallah [6] presented an example of this scheme. They 

showed how to fully exploit this approach, in which the expensive cryptographic operations 

are not required. Their proposed protocols enable a continuous chain of outsourcing data 

as these data are being outsourced safely. Their scheme allows the client to outsource large 

matrices to the first server in order to compute the multiplication. Then, to verify the first 

server computations, the client sends the results of the first server computation to the 

second server. In this approach, the client does do more than O(n2) work and can discover 
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any corrupted answers by the server.  

In 2012, Blanton, Atallah, Frikken, and Malluhi [10] proposed new techniques to 

enable the servers to carry out the computation obliviously by using only O(rnm) 

computation and communication complexity. Their solution was designed to work with 

noncolluding servers that have limited space, such as O(r (m + n)) space. Blanton et al.  

[10] completely avoided public key cryptography because they used GC evaluation 

techniques. Therefore, their solution is particularly practical, resulting in fast techniques 

for the edit-distance and edit-path computation in the privacy-preserving setting.  

2.1.3. Outsourcing to Multiple Colluding Cloud Servers 

In this protocol, the client outsources his or her computations to multiple cloud 

servers, and these servers do the work together. This scheme solves the weaknesses of the 

first scheme: It does not overwhelm the client’s communication protocols because it 

contacts multiple servers that are working together. Therefore, the client sends the 

outsourced data to the first server as it receives the final result from the last server. Also, 

this scheme does the verification work by using the servers. However, this scheme’s main 

disadvantage is that it is less secure than the other schemes, especially when the verification 

operation is done by one of the servers.  

In 2010, Roy, Setty, Kilzer, Shmatikov, and Witchel [40] proposed an approach of 

securing outsourced computations. Their scheme is a MapReduce-based computation [17]. 

Their approach proposes the Airavat system, which has been designed and implemented to 

incorporate the mandatory access-control features of SELinux to MapReduce. Airavat was 

equipped with measures to avoid the leakage of information through the output 

computations, and the system supports both trusted and untrusted MapReduce 
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computations of sensitive data. It ensures a comprehensive enforcement of data providers’ 

privacy policies because it prevents information leakage through system resources. Airavat 

runs on SELinux and adds SELinux-like mandatory access control to the MapReduce 

distributed file system. Furthermore, Airavat enforces differential privacy by applying 

some modifications to the Java Virtual Machine and the MapReduce framework, in order 

to prevent leaks through the output of the computation. In [40], Airavat proved to be 

accurate, but it slowed down the computation because it overwhelmed the system by 

enforcing differential privacy. 

2.1.4. Secure Multiparty Computation 

Secure multiparty computation is a protocol that allows parties to compute the same 

operations or functions to their input data cooperatively; however, each party’s inputs are 

kept private from the others [47]. 

This model was introduced in 1986 by Yao [47] and is known as the “millionaire 

problem”—that is, when two millionaires want to know who is richer than the other, but 

without knowing the actual value of each other’s wealth. This scheme allows two parties 

with individual and private inputs to jointly compute the same functions by entering them 

using a secure protocol for the same function f.  Moreover, the private protocol exposes 

only the deduced result of function f without revealing any additional information.  

Another multi-party model for secure outsourcing was proposed in 2001 by Du and 

Atallah [19]. One of the proposed models that relates to our work is for storing data 

securely in external servers after encrypting them, while the other one is for doing 

operations with encrypted data. Clients need to access and compute their data randomly 

without revealing themselves to external servers. However, the main drawback in Du and 
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Atallah’s model [19] is that the computed matrices must be the same size, or else they will 

not be computed or the computation results will be incorrect. This type of secure multiparty 

protocol was used in [46, 26, 33, 32, 29, 16] and was designed to efficiently compute and 

operate privately the same jointly used general functions by multi-parties. However, all of 

these previously proposed solutions have many drawbacks, most of which relate to the 

security of the multiparty computation protocols. This type of protocol imposes a joint 

party to compute the comparable burdens.   

The problems of securing multi-party computation protocols are defined and 

summarized in [20], in which the main problem of this scheme is finding a satisfactory 

vector for different linear systems of equations for each joint party. Another problem is one 

of matching: Sometimes one of the joint parties wants to know whether its input matches 

the elements of the entered data set, which has been entered by the other party. In this 

situation, the main risk is that none of the joint parties should have any knowledge of the 

others entered data, and the result of this operation may leak private information of both 

parties. Another problem may occur if the required computation operation requires joining 

data—that is, classification, clustering, union, and intersection operations are required to 

be computed with the joint parties’ data sets; however, the computing of these operations 

will leak the private information of the joint parties. Moreover, leakage will occur if the 

computation operations are only selecting, sorting, or even defining the shortest path. 

2.2. Exponential Cipher 

An exponential cipher is a cryptosystem based on exponential congruence, which 

is of the form 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑛). The exponential cipher encodes plain data by formula 𝐶 ≡

𝐴𝑥(𝑚𝑜𝑑 𝑛), in which A is the plain data block, C is the encrypted data block, and n is 
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prime integer number.  Exponential cryptosystems are quite difficult to crack than other 

types of cryptosystems, which has been shown in past research.  

Many cryptosystem strategies have been based on exponential ciphers, such as 

Diffie-Hellman and Pohlig-Hellman’s cipher, cipher feedback mode, ElGamal cipher, RSA 

cipher, and Rabin’s block cipher [12]. All these ciphers depend mainly on exponential 

congruence formulas for encryptions (there are some differences in using this formula 

among the different ciphers) and to set their factors. The next subsections review some of 

the main exponential cipher techniques.  

2.2.1. Diffie-Hellman key-exchange cryptosystem 

In 1976, Diffie and Hellman were the first to invent a public key scheme, which 

they did for their Diffie-Hellman key-exchange cryptosystem [18]. Their system shows 

how using a function with a public key can work as a solution for many cryptosystem 

strategies, including digitalized signatures. Their encryption function is 𝐶 ≡ 𝑔𝑥(𝑚𝑜𝑑 𝑝), 

where the public key consists of both g and p, while the exponent part x is the private key. 

The Diffie-Hellman cryptosystem has been shown to make it impossible for an 

eavesdropper to compute the private key when p is a large prime number, but if p is a low 

prime number, it becomes possible for an eavesdropper to break the private key’s seal [1]. 

Currently, there are no efficient ways to solve the discrete logarithm problems.     

2.2.2. RSA Cryptosystem 

The RSA cipher is a public key cryptosystem that was presented by Rivest, 

Adelman, and Shamir in 1978 [39]. Their cryptosystem is a one-way trap-door function. 

Their encryption function is 𝐶 ≡ 𝑃𝑒(𝑚𝑜𝑑 𝑁), in which N is a large prime number that is 

factorable into a product of two large prime numbers p and q. The RSA public key consists 
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of both N and e. In order to determine e, many calculation formulas must be done. To 

compute the private key, the user needs to compute 𝑑 ≡ 𝑒−1(𝑚𝑜𝑑 𝜑(𝑁)), in which the 

private key consists of d and N, and the decryption function is 𝑃 ≡ 𝐶𝑑(𝑚𝑜𝑑 𝑁). 

Rivest, Adelman, and Shamir’s [39] RSA cipher was among the first patent in 

public key cryptography, and they claimed that their patent included all forms of key 

cryptography [12].   

The RSA cipher’s one-way function has been shown to be most difficult to break, 

as hard as factorization, but cracking it can be easy in a certain situation. Another decoding 

algorithm that does not involve or imply factorization N can crack the one-way function 

[37]. RSA cipher’s main weakness is that the known public key can easily crack the cipher 

[44]. After comparing it with the Diffie-Hellman cipher, we find that it requires more 

computational processes than the Diffie-Hellman cipher requires; furthermore, the 

vulnerability of the RSA cipher is much higher than that of the Diffie-Hellman cipher.  

Shortly after presenting the RSA cipher, a modification of the RSA public key 

approach was presented by Williams in 1980 [44]. In his approach, he describes a 

modification of the RSA technique, a modification that makes cracking the RSA system as 

difficult as factoring the form of N, where N = pq, and both p and q are prime numbers of 

the form 𝑝≡3 (𝑚𝑜𝑑8), 𝑞≡7 (𝑚𝑜𝑑 8). Williams’ decryption method [44] is based on the 

Chinese remainder theorem, which creates four candidate roots of the encrypted data, and 

among all of these roots, only one is correct. To solve the decryption problem, Williams 

uses the Jacobi symbol methodology.  

The main weakness in Williams’ [44] approach is that the plain data must be 

restricted to a special form to make sure that all conditions of the encryption and decryption 
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process are met. In addition, the approach adds more computational complexity to the 

original RSA cipher; after incorporating Williams’ modification, an RSA scheme requires 

O(n3) for each encryption and decryption process. 

In 1988, Kurosawa, Itoh, and Takeuchi presented another modification for the RSA 

cipher [30]. Their modification is a public key cryptosystem that is very difficult to break, 

as hard as factoring the large prime of N (N = pq). Their approach suggests that the public 

key should consist of both N and C, such that (C/p) = (C/q) = -1, and the private key should 

be the two large prime numbers p and q. For the decryption method, they also use the 

Chinese reminder theorem, which causes the same problem that occurred for Williams 

[44]. The approach of Kurosawa et al. [30] uses an extra bit and the Jacobi symbol 

methodology to solve the four-root decryption problem, so the system can recognize the 

correct root of the plain data. 

Kurosawa et al. [30] reduce the computational complexity so that the encryption 

process requires O(n2) operations; however, the decryption process still needs O(n3) 

operations. This approach does not require a special form of plain data to be encrypted, 

which is a great advantage over Williams’ approach. 

Takagi [43] proposed another approach that speeds up the RSA cipher. His 

proposed cryptosystem is based on the RSA cryptosystem in the form 𝐶 ≡ 𝑀𝑒(𝑚𝑜𝑑 𝑁), 

where N = pkq. Using this form of N provides resistance to fast-factoring algorithms. Also, 

his decryption algorithm is three times faster than using the Chinese remainder theorem 

when decrypting the RSA cipher. In Takagi’s approach, the public key is the same as in 

the normal RSA cipher, while the private key consists of d, p, and q, and his encryption 

methodology is the same as that of the original RSA cipher. However, Takagi [43] 
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enhanced the decryption process by using his decryption methodology in [42]. He 

computes the modular multiplication of the encryption exponent and a greatest common 

divisor to decrypt blocks after the first block. The decryption time of the first block is the 

foremost one, because the first decrypted block is decrypted by using the formula 𝑃 ≡

𝐶𝑑(𝑚𝑜𝑑 𝑁); while for the remaining blocks, his cryptosystem decrypts them by solving 

the linear equation modulo N. Therefore, even if a message is several times longer than 

public key N, the encryption of the plain data will be fast without repeatedly using the 

secret key cryptosystem. The main weakness of Takagi’s approaches [42, 43] is that there 

is a small probability the decryption may fail. 

In 1995, Bellare and Rogaway [11] proposed a different methodology for 

modifying the RSA cryptosystem. Their approach focuses on padding data, which is 

referred to as optimal asymmetric encryption padding (OAEP), and it enhances the security 

of the RSA cryptosystem. Their method converts the RSA trapdoor permutation into a 

chosen secure system for cipher text, within the random oracle model. The first step of this 

approach is to hash the plain data unit by using the concatenation between both a generator 

formula and a hash function; then it encrypts the result of that concatenation by using the 

RSA’s encryption method. In order to decrypt the ciphered data, the data are first decrypted 

by using the normal RSA decryption methodology; then they use the inverse of their hash 

methodology to compute the original plain data. 

Bellare and Rogaway [11] proved that their OAEP methodology increases security 

of the RSA cipher. In addition, their padding methodology can be applied to any other 

cryptosystem, not only to the RSA cipher. However, their padding methodology is suitable 

for short-length data. In addition, their padding methodology demands more computational 
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complexity for encryption and decryption techniques. Despite that the output of their 

padding decryption technique is unique, the padding decryption has a small probability of 

failing [6, 11]. 

2.2.3. Rabin Cryptosystem 

In 1979, Rabin [37] presented another public key cryptosystem based on an 

exponential cipher, and it is actually a type of quadratic cipher. He calls his cryptosystem 

the Rabin cipher, and its encryption methodology comprises only a quadratic congruence 

modulo with a large prime number 𝐶 ≡ 𝑃2(𝑚𝑜𝑑 𝑁), in which P is the plain data block, C 

is the ciphered data block, and N is a large composite number that is factorable into a 

product of two large prime numbers, p and q. The public key of the Rabin cipher consists 

of only N, which increases its security over the RSA security. Its private key consists of 

the large prime numbers p and q. The decryption methodology of the Rabin cipher is based 

on solving the quadratic congruent by using the Chinese remainder theorem, which resulted 

four candidate roots, and only one of these roots represents the plain data block [37]. 

The main advantage of the Rabin cipher over the RSA is that the former is more 

secure than the latter; the Rabin cipher is as hard as factorization when it is being cracked. 

In addition, the Rabin cipher can be computed much more quickly than the RSA cipher. 

However, the main disadvantage of the Rabin cipher occurs in its decryption method, 

because the cryptosystem may fail to recognize the correct plain data block over all of the 

four roots during decryption. In addition, if public key N has been factored, the Rabin 

cipher can be cracked easily.   

In 2014, Hashim presented research [27] in which he developed the H-Rabin 

cryptosystem, a modification of the Rabin cryptosystem. Hashim’s approach enhances 
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security of the Rabin cryptosystem by increasing the difficulty of factoring the public key, 

N. Hashim designates N to be a large composite number that can be factored into a product 

of three large prime numbers (p, q, and r), rather than into only two prime numbers, as 

happens in the Rabin cipher. Therefore, the private key of the H-Rabin cryptosystem 

consists of three large prime numbers, and the encryption and decryption methods are the 

same as those of Rabin’s approach. However, the result of decryption consists of eight 

candidate roots of decrypted plain data blocks, because N is factorable into a product of 

three large prime numbers [27]. 

The main advantage of the H-Rabin cryptosystem is that it enhances the security of 

Rabin cipher; even if adversaries try to factor N, they will hardly consider that N is 

factorable into a product of three large prime numbers—not merely two. However, H-

Rabin’s decryption method is the main weakness. First, it demands more computational 

complexity because it has to compute all of the eight roots. Currently, there is not any 

feasible process that can be added to the H-Rabin cryptosystem to make it recognize the 

correct root of the plain data block among all of the eight roots.   

In 2001, Boneh presented another padding approach [13] similar to the OAEP 

technique [11]. Boneh’s method is much simpler than OAEP and introduces two simple 

padding schemes: Simple-OAEP (or SAEP) and SAEP+, and he applied both of his 

padding techniques to the Rabin and RSA cryptosystems. Both SAEP and SAEP+ schemes 

are used as preprocessing functions with the Rabin or RSA trapdoor functions. So, in order 

to encrypt plain text, first it is padded by using an SAEP or SAEP+ schema; then the result 

of the padding schema is encrypted normally by either the Rabin encryption function or 

the RSA encryption function. For the decryption, the encrypted message is first decrypted 
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by using the normal decryption technique of either the Rabin or the RSA cipher; then the 

padded message is decrypted to get the original structure [13].  

The main advantage of using either the SAEP or SAEP+ schemes is that they 

enhance the security of both the Rabin and RSA ciphers. In addition, SAEP and SAEP+ 

schemes are much simpler and demand less computational complexity than OAEP. 

However, using any of these padding schemes adds computational complexity to 

encryption and decryption processes in the Rabin and RSA ciphers. In addition, in order to 

apply these padding schemes, the size of the plain data is restricted; even when using 

SAEP+, the size of the plain message has to be smaller than it does within an OAEP 

scheme.  Furthermore, there is a small probability that the padding decryption may fail or 

give an inaccurate result of the plain data [6, 13].    

Another approach that helps recognize the correct decrypted root among the four 

roots created in the decryption stage was represented in [21]. The authors generated 

additional information to correctly recognize the proper root, and they can apply both 

Jacobi symbols and Dedekind sums as the last process in their decryption stage. The 

approach is based on three schemes, all of which solve the one-to-four mapping function 

precisely. The first scheme was the simplest one, and it exploits Jacobi symbols by using 

two extra bits that are generated in the encryption stage and later sent with the encryption 

message. Subsequently, in the decryption stage after computing the four roots, the system 

selects only two roots that have the same party bit by comparing them with the first bit that 

was earlier sent with the encryption message. In regard to these two selected roots, the 

system selects the root that corresponds to the number equal to the second bit that was sent 

with the encrypted message. In the second scheme, the extra information is represented by 
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a generated factor that is added to the public key. Therefore, in the decryption stage, the 

system computes two factors, which depend on that extra factor. After computing the four 

roots, the system selects only the root that corresponds to the two earlier computed factors. 

The third scheme proposed [21] is based on using both the Jacobi symbols and Dedekind 

sums to mimic the computational operations. In the third scheme, extra information is 

similar to the first scheme, which is represented by two extra bits that were sent with the 

encrypted message. However, in the last step of the decryption stage, it uses simpler 

operations to determine the correctly computed root.  

The main advantage of these three proposed techniques [21] is that the Rabin 

cryptosystem can identify the correct computed root among the four roots created in the 

decryption stage. However, the main disadvantage is that they keep computing all of the 

four roots and then select the appropriate one by adding two or more operations to the 

decryption stage. The additional operations in the encryption stage are used to generate 

extra information. For these reasons, the computational complexity increases for 

computing needless information, such as that of all four roots. These schemes could 

decrease the demand for computational complexity by half in the decryption stage if they 

were to check each generated root before generating the other remaining roots.  

Kurosawa, Ogata, Matsuo, and Makishima presented a new approach [31] for 

increasing security of the Rabin cipher, and their approach combines padding plain data to 

increase security and using Jacobi symbols in the decryption stage to solve the four-to-one 

mapping problem. Their approach enhances the security of the public key by using the 

indistinguishability under adaptive chosen cipher text attacks (IND-CCA) scheme, which 

is the strongest notion for a public key scheme. Kurosawa et al. [31] improve the IND-
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CCA scheme by making its security equivalent to factoring N = pq. The presented scheme 

adds an extra bit to the public key, in order to use Jacobi symbols in the decryption process, 

and solves the four-to-one mapping-function problem. In the encryption stage, the first step 

is to encrypt the plain text by using their proposed padding methodology; then the result of 

that is ciphered by the normal Rabin’s encryption method. The same process occurs in the 

decryption stage: In the first step, the encrypted message is decrypted by using the normal 

Rabin cipher decryption method. In the second step, Jacobi symbols are applied to find the 

correct root. In the final step, the padded message is decrypted to get the original data.  

The main advantages of this approach are the solving of the four-to-one mapping-

function problem of the Rabin cipher and the enhanced security. However, demand for 

computational complexity increases when these advantages are pursued. In addition, the 

final step of their decryption method has a small probability of failing. There are also some 

restrictions on the message size for padding.     

Another approach is reported in [5]. This approach aims to reduce the 

computational complexity of the Rabin decryption process, and it proposes a fast and 

efficient algorithm for reducing the running-time complexity of the current decryption 

operations of a primitive Rabin cryptosystem. It uses the Garner algorithm to solve the 

Chinese remainder theorem algorithm during the decryption process, cutting down the 

requirements of certain operations. For example, the multiplication operation requires 

about half of the numbers usually needed for the Chinese remainder theorem. The result of 

the decryption process also reduces to two roots rather than four roots. This approach also 

differs from the Rabin cryptosystem in the decryption method because using the Garner 

algorithm requires only one modular inversion and voids the need to conduct modular 
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reduction on large moduli. The approach adds a proposition condition in the decryption 

method in the last step to reduce the decryption outcomes to only two roots.  

This approach reduces the time complexity of the decryption process. It reduces the 

cost of decryption by approximately by 33.8%, especially because the decryption output 

has also been reduced to only two roots. However, this approach does not have any 

technique that can recognize the correct root between these two roots.   

Asbullah an Ariffin presented the Rabin-p cryptosystem approach [6], which 

mainly aims to reduce the computational complexity of the decryption process, as well as 

solving the four-to-one mapping-function problem. Of foremost importance, their 

decryption method results in a unique, correct root. In addition, Rabin-p increases the 

security of the Rabin cipher by increasing the difficulty of factoring the public key N. To 

do so, it proposes that N = p2q, rather than N = pq. According to this approach, the Rabin-

p public key is generated by selecting two distinct prime numbers, p and q, and it generates 

N that equals to p2q. Therefore, the public key consists of N, and the private key consists 

of only p. However, to encrypt the plain text, it must be restricted to some range of bits 

depending on N, where the plain text of m size, and N should be a coprime, such that  

gcd(m, N) = 1. The main difference between the Rabin-p and Rabin ciphers occurs in the 

decryption process. The Rabin-p decryption method is based on operating single modular 

exponentiation operations rather than computing the Chinese remainder theorem. The 

result of the Rabin-p decryption method is two roots rather than four.  

The Rabin-p cryptosystem has many advantages. First, Rabin-p reduces the 

computational complexity of the decryption method. Second, it solves the four-to-one 

mapping problem efficiently without any need for extra computational processes or extra 
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information. Third, Rabin-p increases the security of the Rabin cryptosystem. On the other 

hand, the cost of these advantages is that the plain text message must be restricted to some 

range of bits to make it applicable for being encrypted by Rabin-p.  

The proposed Rabin-RZ cryptosystem [48] has an efficient method for solving the 

four-to-one decryption failure in the Rabin cryptosystem. Furthermore, Rabin-RZ uses a 

stronger public key than the one used in the Rabin cipher, where its public key N = p2q, 

which is much harder to be factored than when N = pq. In order to generate the public key, 

both prime numbers p and q should be distinct and restricted to a defined n-bit strong prime 

number. Then the public key N is set to p2q, and the private key consists of p, q, and d, 

where d is equal to pq. In order to encrypt plain data in the Rabin-RZ cryptosystem, the 

plain data should be restricted to a specified n-bit interval that is much less than the normal 

Zpq domain in the Rabin cipher. The other processes of the Rabin-RZ encryption are the 

same as in the Rabin cipher. The main difference between the Rabin-RZ and Rabin 

cryptosystem occurs in the decryption stage. First, the Rabin-RZ decryption computes the 

congruence of the ciphered data modulo d, where d = pq. However, in order to recognize 

the correct root among the resulting four, Rabin-RZ computes another factor based on the 

ciphered data and the resulting root. Then a condition is applied on the last computed factor, 

and that condition succeeds by producing only one root, which is the correct root.  

The main advantage of the Rabin-RZ cryptosystem is that it solves the four-to-one 

mapping failure of decryption accurately. It does so without any possibility of failing, 

without any need for extra information, and without any additional demands for the 

computational complexity in the decryption process. In addition, Rabin-RZ enhances the 

security of the Rabin cryptosystem. However, the domain for the plain data is restricted to 
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a specified n-bit interval that is much less than the normal domain of the Rabin cipher. 

In our approach, we use the Rabin cipher to be our main encryption methodology. 

According to our previous analysis, the Rabin cipher is more secure than both the Diffie-

Hellman key exchange and the RSA cryptosystems. However, the Rabin cipher 

cryptosystem has some decryption problems when trying to recognize the root that 

represents the plain data, but this weakness can be solved by using many techniques (some 

of which are fast, while others are slow). The Diffie-Hellman approach is not applicable to 

our own because we are not going to exchange the key with server—that is, we do not 

incorporate a public key in our system. For this reason, Diffie-Hellman is not applicable in 

our approach.     
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CHAPTER 3: METHODOLOGY 

 

The main goal of our work is to provide a security system that addresses the 

problem statement outlined in Section 1.1. Therefore, we want to propose an approach that 

can secure the outsourced data in a form that allows the cloud-computing server to do the 

required computations on the data without knowing their actual values. However, the 

computation results must be reasonably accurate. Our proposed approach does not allow 

the cloud servers to extract the actual values of the outsourced data. Our approach must 

optimize client resources so that the client does not require additional resources to execute 

our approach. In our work, we can use additional operations in order to verify the server’s 

computational results. Because we want to save and optimize client resources so that clients 

will not do any operations or works that reach or exceed O(n3) operations, we use a 

lightweight cipher technique and add to it some obfuscation techniques to strengthen 

security.  

In this chapter, we review and present existing methodologies and techniques that 

have been previously used to solve the secure-outsourcing problem. We analyze features 

of these techniques to understand how we could address the research problem defined in 

this thesis. Our research methodology is primarily based on laboratory experiments using 

programmatic tools and techniques in an application context, namely, image processing. 

The next section describes our research methodology framework, with which we carry out 

our research activities in a systematic way. We also discuss introductory materials of key 

existing technology that we are going to explore, use, and modify if necessary, in order to 

formulate a viable solution to the research problem.   
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3.1. Methodology plan 

 

In order to achieve our research objective and address the research problem 

delineated in Chapter 1, we plan to use the research methodology framework depicted in 

Figure 3.1.  

Figure 3.1: Research Methodology Framework  

Our first stage of the methodology is to define a new obfuscating framework that 

can lay out a high-level solution of the problem.  This high-level overview of the solution 

will act as a guiding principle of the proposed solution. 

The second stage of our methodology is to examine some of the existing techniques 

that could allow us to reduce the size of images without losing vital information. Note that 

our application context in this research is image processing. A single image consists of 

thousands of pixels, and computing this huge number of pixels by the client is a 

computational-intensive task. In this stage, we will investigate how to minimize the data 

volume of the image in the approach using existing techniques.  
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The third stage of our methodology is to use one or more existing cryptosystems to 

optimize the obfuscation of images. We are going to experiment how we can encrypt our 

data without using a public key. To do so, we plan to examine the Rabin cipher.  

In the fourth stage, we explore how to devise an optimal decrypting technique that 

could help clients to decrypt data easily.  

Finally, we will test and verify our proposed solutions in terms of feasibility of the 

approach and the accuracy of the results.  

3.2. Obfuscation methodology 

As we have mentioned earlier in this chapter, the main aim of this work is to ensure 

the security of outsourced data, and to make it suitable for further computations by cloud 

servers without decryption, so that the server can compute the outsourced data correctly 

and accurately. Yet we do not want to use any technique that requires huge overheads, such 

as fully homomorphism encrypting. Therefore, we use a lightweight cipher technique, the 

Rabin cipher, because its difficulty in being cracked is as challenging as integer 

factorization [28]. The Rabin cipher is partially a homomorphic encrypting system—that 

is, it is homomorphic in some operations, such as multiplication operations, but it is not 

homomorphic in other operations, such as additional operations [45]. This cipher technique 

can be modified to suit our needs for developing an approach that does not allow any 

leakage of the client’s private information. By encrypting the client’s outsourced data by 

using the Rabin cipher technique, we can enable the cloud server to compute the encrypted 

outsourced data without any need for decryption.   

3.2.1. Rabin Cipher 

 

The main idea of Rabin cryptosystem is based on computing quadratic congruence 
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modulo a composite number. Where solving the quadratic congruence is simple when the 

factorization of the composite number is known, however, it will be very complex when 

the factorization of the composite number is unknown.  

 The encryption formula of Rabin cryptosystem is 

𝐶 ≡ 𝑃2(𝑚𝑜𝑑 𝑛)               (1) 

Where C is the cipher data, P is the plain data, n is the product of two distinct large primes, 

say p and q, and both are congruent to 3 modulo 4. As the public key will be n, and the 

private key is p and q. 

The decrypted methodology of the Rabin cipher is based on creating a system of 

linear congruencies, which consists of congruence formulas (2) and (3):  

𝐶𝑝  ≡  𝑃
𝑝+1

4  (𝑚𝑜𝑑 𝑝)         (2) 

𝐶𝑞  ≡  𝑃
𝑞+1

4  (𝑚𝑜𝑑 𝑞)           (3) 

 Then we use the Chinese remainder theorem and the quadratic congruence 

propositions in order to solve the created system of linear congruencies. Consider the 

following quadratic congruence propositions used to solve the system of linear 

congruencies.    

Proposition: 

Suppose integers 𝑎1 , 𝑎2, 𝑎3, … , 𝑎𝑛 are relatively prime pairwise. Then 

(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛)|𝑐 if and only if 𝑎1|𝑐, 𝑎2|𝑐, 𝑎3|𝑐,… , 𝑎𝑛|𝑐. 

Proposition:  

Let 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚1), 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚2), 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚3),… , 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚𝑛) , where 
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𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 are relatively prime pairwise. Then 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚1,𝑚2,𝑚3, … ,𝑚𝑛). 

Consider the Chinese remainder theorem, where it is used with these propositions 

for solving the system of linear congruencies.  

3.2.1.1. The Chinese Remainder Theorem 

 

Let 𝑛1, 𝑛2, . . . . , 𝑛𝑟 be positive integers, such that gcd (𝑛𝑖, 𝑛𝑗) = 1 for i ≠ j. Then the system 

of linear congruencies is  

𝑥 ≡  𝑐1 (𝑚𝑜𝑑 𝑛1); 𝑥 ≡  𝑐2 (𝑚𝑜𝑑 𝑛2);… . ; 𝑥 ≡  𝑐𝑟(𝑚𝑜𝑑 𝑛𝑟), , 𝑎 

and it has a simultaneous solution, which is a unique modulo 𝑛1𝑛2. . . 𝑛𝑟.  

Normally, the Chinese remainder theorem is solved by using Gauss’s algorithm, 

which is provided below.  

3.2.1.2. Gauss’s Algorithm 

Let N = 𝑛1𝑛2. . . 𝑛𝑟 then  

𝑥 ≡  𝑐1𝑁1𝑑1 + 𝑐2𝑁2𝑑2 +⋯+ 𝑐𝑟𝑁𝑟𝑑𝑟   (𝑚𝑜𝑑 𝑁) , 

Where 𝑁𝑖 =
𝑁
𝑛𝑖⁄  , 𝑎𝑛𝑑 𝑑𝑖  ≡ 𝑁𝑖

−1 (𝑚𝑜𝑑 𝑛𝑖).  

Therefore, decryption is normally done by using Gauss’s algorithm for solving the 

Chinese remainder theorem. Where both congruency formulas (2) and (3) are combined to 

obtain solutions for P. Hence, the solutions of P will be gotten by the formula  

𝑃 ≡  ±(𝑧𝑞𝑞𝑝
′ ± 𝑤𝑝𝑝𝑞

′)(𝑚𝑜𝑑 𝑛) 

Where 𝑧 =  𝐶(𝑝+1)/4, 𝑤 =  𝐶(𝑞+1)/4, 𝑞𝑝
′ is an inverse of q modulo p, and 𝑃𝑞

′ is an inverse 

of p modulo q, as the 𝑃𝑞
′ is calculated by the using the extended Euclidean algorithm.  
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Consider Gauss’s algorithm 3.1 for solving Chinese remainder theorem. 

Algorithm 3.1: Gauss’s Algorithm  

Input: integers p, q, and ciphered data C 

Output: integers  𝑋1, 𝑋2, 𝑋3, 𝑋4 

Steps:  

1- 𝐶𝑝  ←   𝑃
𝑝+1

4  (𝑚𝑜𝑑 𝑝) 

2- 𝐶𝑞  ←  𝑃
𝑞+1

4  (𝑚𝑜𝑑 𝑞)   

3 - 𝑀1  ←  𝑞
−1(𝑚𝑜𝑑 𝑝)  

4- 𝑀2  ←  𝑝
−1(𝑚𝑜𝑑 𝑞) 

5- 𝑋1  ←  𝐶𝑝𝑀1𝑞 + 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞)   

6- 𝑋2  ←  𝐶𝑝𝑀1𝑞 − 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞) 

7- 𝑋3  ←  −(𝐶𝑝𝑀1𝑞) + 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞) 

8- 𝑋4  ←  −(𝐶𝑝𝑀1𝑞) − 𝐶𝑞𝑀2𝑝 (𝑚𝑜𝑑 𝑝𝑞) 

9- return (𝑋1, 𝑋2, 𝑋3, 𝑋4) 

However, using Gauss’s algorithm for solving Chinese remainder theorem requires 

more computational complexities, because it requires computing two multiplicative 

inverses (i.e., step 1 and step 2). It also requires many numbers of the multiplicative, such 

as the ones used in steps 1, 2, 3, and 4.   

Another algorithm is used for solving the Chinese remainder theorem: Garner’s 

algorithm. The Garner algorithm is generally used for solving the Chinese remainder 



 
 

33 

 

theorem, where Garner’s algorithm sufficiently speeds up the Chinese remainder theorem 

computation.  

3.2.1.3. Garner Algorithm Definition 

Given the positive moduli 𝑚𝑖 ∈ 𝑍 (0 ≤ 𝑖 ≤ 𝑛), which are pairwise relatively 

prime and given corresponding residues 𝑢𝑖 ∈  𝑍𝑚𝑖  (0 ≤ 𝑖 ≤ 𝑛), then to compute the 

unique 𝑢 ∈  𝑍𝑚 (𝑤ℎ𝑒𝑟𝑒 𝑚 =  ∏ 𝑚𝑖
𝑛
𝑖=0 ) satisfies the system of congruence 

𝑢 ≡  𝑢𝑖 (𝑚𝑜𝑑 𝑚𝑖), 0 ≤ 𝑖 ≤ 𝑛 

The key to Garner’s algorithm is to express the solution 𝑢 ∈ 𝑍𝑚 in the mixed radix 

representation  

𝑢 =  𝑣0 + 𝑣1(𝑚0) + 𝑣2(𝑚0𝑚1) +⋯+ 𝑣𝑛(∏𝑚𝑖

𝑛−1

𝑖=0

) 

Where 𝑣𝑘 ∈  𝑍𝑚𝑘 𝑓𝑜𝑟 𝑘 = 0, 1, 2,… , 𝑛. 

Therefore, the first step in the decryption process is forming a system of linear 

congruencies, which consists of two congruence formulas, (2) and (3). Then the Garner’s 

algorithm is applied to solving the Chinese remainder theorem, which in turn solves the 

system of linear congruencies, (2) and (3).  

Consequently, consider decryption algorithm 3.2, which is the Garner’s algorithm 

for solving the Chinese remainder theorem, and is formed as follows:   

Algorithm 3.2: Garner’s algorithm 

Input: integers p, q  

Output: integers  𝑋1, 𝑋2, 𝑋3,  𝑋4 

Steps:  
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1- 𝐶𝑝  ←   𝑃
𝑝+1

4  (𝑚𝑜𝑑 𝑝) 

2- 𝐶𝑞  ←  𝑃
𝑞+1

4  (𝑚𝑜𝑑 𝑞)   

3- 𝑗 ←  𝑝−1 (𝑚𝑜𝑑 𝑞) 

4- ℎ1  ← (𝐶𝑞 − 𝐶𝑝)𝑗  (𝑚𝑜𝑑 𝑞) 

5- ℎ2  ← (−𝐶𝑞 − 𝐶𝑝)𝑗  (𝑚𝑜𝑑 𝑞) 

6- 𝑋1  ←  𝐶𝑝 + ℎ1𝑝 

7- 𝑋2  ←  𝐶𝑝 + ℎ2𝑝 

8- 𝑋3  ←  𝑝𝑞 − 𝑋2 

9- 𝑋4  ←  𝑝𝑞 − 𝑋1 

10 - return (𝑋1, 𝑋2, 𝑋3, 𝑋4) 

As has been noticed, Garner’s algorithm is almost more efficient than Gauss’s 

algorithm in regard to solving the Chinese remainder theorem. Because Garner’s algorithm 

only requires computing one modular inverse operation (i.e., step 3 in algorithm 3.2), it 

cuts the computational efforts in half. In addition, Garner’s algorithm reduces by half the 

number of multiplications needed for Gauss’s algorithm. For these reasons, the Garner 

algorithm has significant computational advantages when solving the Chinese remainder 

theorem.  

Consider that the hardness of Rabin ciphers increase when the composite number 

N is large, and it will be very simple to crack Rabin ciphers when the composite number N 

is small. Therefore, Rabin ciphers are highly secure when the plain data is represented as a 
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large integer number, while the amount of its security is reduced when the plain data is a 

small integer number. Thus, to solve this problem, almost all of the researchers that 

incorporate Rabin ciphers complement it with a blocking cipher technique, in order to 

increase the security of encrypting small integer numbers, and to make the Rabin cipher 

applicable for all integer numbers. 

3.2.2. Block Cipher Definition 

A block cipher is a parameterized, deterministic function that maps n-bit plaintext 

blocks into n-bit ciphertext blocks. The value n is called the block length. The cipher is 

essentially a simple substitution cipher with character set = {0, 1}n  [8].  

Although any size for blocks is acceptable, some aspects must be considered for 

selecting the size, in order to reach the maximum amount of security in the system. For 

example, the size of a block cannot be very small because small blocks are discovered more 

easily. On the other hand, block size should not be too large because the cipher will begin 

to operate inefficiently when the plain data is receiving extra padding before being 

encrypted. The need for larger amounts of padding makes the system inefficient. In 

addition, if the padding is always done with the same bits, the padding may reduce the 

degree of security at times [8]. 

By using the block cipher, the restriction of the Rabin cipher’s security for 

encrypting small integer numbers is solved. However, the main drawback of using the 

Rabin cipher occurs in its decryption algorithm, which results in four candidate blocks of 

the original plain text for each decrypted block cipher. The second weakness of the Rabin 

cryptosystem is that if it has a public key that can be factorized, then that will cause a 

breaking in the Rabin system. In addition, using a fixed size for blocks can provide hints 
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to potential attackers if they discover some of the plain text blocks corresponding to some 

previously sent cipher text blocks. Also, using different keys to encrypt each block 

consumes more of a client’s resources. The client needs to save all of these private keys. 

In addition, using only one key to encrypt all blocks poses a certain danger: If that key is 

discovered, then the whole system will be compromised.  

Thus, one of our main objectives in this thesis is to address the weaknesses of the 

Rabin cipher’s decryption techniques, to increase the difficulty of its integer factorizing. 

We also aim to provide techniques that could provide some flexibility in choosing block 

size, so that blocks can be encrypted and decrypted without causing any loss of original 

plain data. We also intend to discover some new methodology to minimize unnecessary 

consumption of client recourses.  

3.3. Testing and Evaluating Methodology  

In order to evaluate our proposed approach, all of the weaknesses mentioned earlier 

must be addressed and overcome.  Our proposed approach will be more useful if we can 

address all of these weaknesses. Our approach is based on techniques that address the 

following challenges: 

1. Computing the outsourced encrypted data accurately by the cloud server, without 

revealing the data’s original value 

2. Increase the security of data outsourcing  

3. Address the Rabin cipher’s decryption weaknesses 

4. Optimize client resources 

We are aiming to develop an approach by which clients can obfuscate their data 
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and send them to cloud servers, in order to be computed and stored. Then server can 

compute the obfuscated, outsourced data without knowing their original values, and can 

return the results to the client, along with the obfuscated data that the client earlier sent to 

the server. The client then can de-obfuscate the data to find if the server computed the 

correct data.  

We apply our techniques on image processing—namely, the comparison of images 

by the server—to find the similarity of the images.  In our framework (presented in Chapter 

4), an image is represented by an integer matrix, because the Rabin cipher is only applicable 

to integer numbers. The cloud server compares an image with the stored obfuscated images. 

The cloud server returns the comparison result to the client, whether it has found a similar 

image or not. The final step of the client is to de-obfuscate the received obfuscated image 

and to compare it with the saved one, in order to ensure the correctness of the input image 

to the server.  In Chapter 6, we are going to do some experiments to test and verify our 

framework. These tests are intended to confirm the accuracy of our cloud-computing 

results and the required time for implementing our framework.   

In this chapter we have presented and analyzed the techniques and methodologies 

that we are going to use to achieve our aim of proposing a secure outsourcing system. Our 

approach is applied on the following scenario: The client obfuscates his or her image by 

using the Rabin cipher, and the server computes and stores client data without having any 

knowledge of the original data. The server compares the input of the obfuscated image with 

the stored obfuscated images on the cloud. The server then sends comparison results, in 

terms of close similarity it has already found with the input of the obfuscated image. After 

receiving the obfuscated image from the server, the client has the choice to de-obfuscate 



 
 

38 

 

the ciphered image by using the Garner algorithm. Because the Rabin cipher is only 

applicable with integers, we map our plain data to integer numbers.  

In the next chapter, we introduce our approach in detail. In addition, we show and 

describe our contribution to solving the weaknesses of the previously established 

techniques, and we address the listed challenges as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

39 

 

CHAPTER 4: DATA-OBFUSCATING TECHNIQUE 

 

In this chapter, the main approach for data obfuscation suitable for processing by 

cloud servers is presented. One main objective of our approach is to obfuscate data in such 

a way that the cloud server or untrusted computers can process them without decrypting, 

most importantly without knowing the actual values of the outsourced data. The untrusted 

server must be able to compute the obfuscated data. The approach is flexible and applicable 

to any form or representation of data; it can be an integer matrix, double matrix, string 

matrix, and so forth. We use an image for the experiments of our research, which is a matrix 

of pixels as input to our obfuscating process. Consider that this approach can be used for 

applications that depend on equality and inequality operations, such as image and text 

comparison. 

The proposed framework consists of three main components: preprocessing, 

obfuscating, and de-obfuscating data. Preprocessing is the first component that transforms 

raw data, such as images, into plain data types, such as integers. The main purpose of 

preprocessing is to prepare data for the second component of the framework—that is, the 

obfuscating of data. We have proposed some new techniques and modified some existing 

ones in order to support an effective and efficient obfuscating of data for untrusted cloud 

servers. Our proposed framework is expected to reduce computational complexity and to 

ensure data privacy and security. The third component is the de-obfuscating technique, 

which is only needed when the users want to de-obfuscate their obfuscated data.  

Our specific contribution to this research is the proposed new techniques that 

include creating blocks, developing digit counts, tokenization, and identifying sets of 
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blocks. All these are developed to optimize the process and secure the data. Creating blocks 

is an inspired technique from the world of block ciphers. In addition, developing a digit 

counter is a technique that creates a digit for each content piece of the generated blocks. 

The tokenization technique creates a token for each generated block. The identifying-sets 

technique groups a random number of blocks in one set. Finally, we modify the Rabin 

cryptosystem, which is an asymmetric system that requires two different types of keys: the 

public and the private keys [37]. In our approach, we use only one type of keys that is the 

private key. The details of these new techniques and updated existing techniques are 

discussed in the latter sections. Figure 4.1 shows a high-level architecture of the 

framework. It has four major components:  

 Preprocessing  

 Obfuscating  

 De-obfuscating.  

 Verification.  
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Figure 4.1: High-Level Architecture of the Data-obfuscating Process 

4.1. The Proposed Framework  

According to our framework, the client prepares his or her data into a matrix of 

plain integer values. The matrix is then transformed into obfuscated data and sent it to the 

server to be compared with other obfuscated matrices already stored in the cloud server. 

The server then sends back the comparison result to the client, which can be either “Exist” 

if the server finds a matched matrix, or “Not Exist” if the server does not find any matching 

matrix. If the server result is “Exist” then it also sends the matched obfuscated matrix to 

the client. Then the client de-obfuscates the received matrix and compares it with the 

corresponding integer matrix it saved earlier to verify the server result.  
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4.2. Preprocessing 

The main purpose of the preprocessing is to process plain data and prepare them so 

that the obfuscating component can modify data easily without having any problems. This 

actually transforms data from one format to another depending on the data type needed by 

the next process, namely, obfuscating. This component is used and can be modified 

depending on the data type, so it differs from one type of data to another one.  

In our framework, we use an image as input data into the framework. The image is 

represented with a matrix of thousands of pixels. Our framework can only obfuscate the 

integer data type; therefore, it has two tasks: reduce the size of the matrix of the image and 

convert pixels of the image into integers. We first reduce the image size to improve 

efficiency and speed up the obfuscating process. Once the matrix is reduced into an optimal 

size, we transform this reduced image of pixels into a matrix of integers. The size reduction 

and conversion of the matrix values into integers serve two purposes: (1) Obfuscating 

becomes easier and faster because of the reduced size and integer values; (2) because data 

size is reduced, the cloud server can perform the comparison in relatively less time.   

In order to achieve these goals, the preprocessing component consists of four 

different techniques, as depicted in Figure 4.2:  

 Reducing image size 

 Converting colored images into gray images 

 Extracting pixel values  
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 Representing double into integers. 

Figure 4.2: Preprocessing Component 

The details of each of these four techniques are provided in the following 

subsections. 

4.2.1. Reducing Image Size 

Because the images each consist of thousands of pixels, we need to reduce them to 

a size that can be represented with less numbers of pixels, yet keep these images 

meaningful, accurate, and clear. The main benefit of this step is to reduce the client’s 

computational complexity by minimizing the size of the image matrix. Subsequently, rather 
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than computing a matrix of size 1000 * 600 pixels, the client ends up computing a matrix 

of 500 * 300 pixels or 250 * 150 pixels for the same image, which saves a significant 

amount of computational complexities.  

The image size is reduced into such a tolerable size that the information kept in the 

reduced size is still meaningful and does not lose much information for processing by the 

server. Reducing image size to an optimal level does not affect the comparison, but it 

significantly improves the obfuscating and comparison processes, because these processes 

will compute smaller matrices rather than larger ones, which saves computational 

complexity. Example of reducing an image size is shown in the Table 4.1.   

Table 4.1: Reducing Image Size: An example 

Image Dimensions: Image 

800 * 600 pixels 

(original dimensions) 
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Reduced to  

401 * 301 pixels 

 

Further reduction of size 

but still tolerable.  

202 * 152 pixels 

 

 

More reduction, but lost 

some information 

102 * 77 pixels 
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More reduction but lost a 

lot of information. 

52 * 40 pixels 

 

 

As shown in Table 4.1, reducing size significantly results in loss of information of 

the image after a certain size threshold. For this reason, there must be a tolerable reducing 

rate of the image so that it will not lose significant information.  For instance, in the 

example of reducing image size shown in Table 4.1, the most tolerable size for an image 

is 202 * 152 pixels, which allows it to keep all of its information. Note that in our 

framework, it is the user who determines the most tolerable size of image.   

4.2.2 Converting a colored image to gray  

In order to simplify the next processing, we need to convert a color image to gray 

to reduce the dimension, which significantly improves the obfuscating process, due to a 

smaller volume of data being manipulated. Note that the colored image is represented in a 

matrix of three dimensions. The color increases the computational complexity of data 

obfuscation and comparison in later stages. Therefore, we need to convert the colored 

image to gray one, because the gray image is represented in a two-dimensional matrix, 

which is much simpler to compute than a three-dimensional matrix. The conversion from 

color to gray does not affect the comparison because the gray image does not lose vital 

information needed for the comparison of images. An example of converting colored image 
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to gray image is shown in Table 4.2 below. 

Table 4.2: An example of converting colored image to gray image 

 

4.2.3. Extracting pixels values 

Because the data obfuscating and comparison processes can only be applied on 

integer values, we need to derive the pixels of images that are double numbers to convert 

them to integer numbers later. Note that each pixel is represented originally by an integer 

value that ranged from 0 to 251, but because we reduce the image size, we cause each pixel 

to be represented with a double value. In this step, we extract the original double 

representation of each pixel. Consequently, the final result of this step is a matrix of double 

values keeping the same size and dimensions of the image’s reduced size. This 

transformation significantly reduces the data volume of the original matrix of pixels of the 

color image. Figure 4.3 shows a sample of extracting pixel values.  

Colored image: Gray image: 
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Figure 4.3: Extracting pixels value 

4.2.4. Transforming decimals to integer values 

Our obfuscating technique can only be applied to integer values, so the final 

resulting matrix of double values from the previous stage must be converted into an integer 

matrix. And because the pixel value is accurately lying in the range from 0 to 251, then the 

integer value must be in the range from 0 to 251. In order to achieve this, we apply the 

following formula to each value of the resulting double matrix: 

⌊𝑑 ∗ 251⌋                            (1) 

Where d is the decimal value of the matrix. The final result of this step is an integer matrix 

of the same size and dimensions of the double matrix. An example of converting a double 

to an integer is: let d = 0.94208, then by applying (1)  

⌊0.94208 ∗ 251⌋ =  ⌊236.462⌋ = 236. 

By the end of this step, the data is modified and processed by the next data-

obfuscating technique. 
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4.3. Obfuscating  

The heart of our approach is the data obfuscating that must be uncompromising in 

regard to ensuring data confidentiality and privacy. The input to the obfuscating process is 

an integer matrix resulting from the preprocessing stage. The output of this process is the 

obfuscated version of the integer matrix called an obfuscated matrix. Note that the 

obfuscated matrix is a matrix of an object, and each of its object elements consists of two 

double numbers, where the first number is called encrypt, while the second number is 

called token. The encrypt number consists of two numbers: the result of encrypting block 

that lies in the integer part, and the hashed digit counter that lies in the decimal part of the 

encrypt number. For example, the objects of the encrypted matrix are (113.6, 18.3), then 

the encrypt number is 113.6. The result of the encrypting block is 113 and the hashed digit 

counter is 6, where the token is 18.3. In the next section, a brief explanation of the final 

resulting matrix is presented. 

Our obfuscating process uses the Rabin cryptosystem to encrypt data as in [37, 13, 

21, 27, 31, 6, 48, 5]. The main idea behind the Rabin cryptosystem is based on computing 

a composite number for the quadratic congruence modulo. Solving the quadratic 

congruence is simple when the factorization of the composite number is known, but doing 

so is very complex when the factorization of the composite number is unknown. Therefore, 

the Rabin cryptosystem is an asymmetric system that requires two different types of keys: 

a public key (which is the composite number) and a private key (which is the factorization 

of the composite number). The public key is needed to encrypt plain data, and the private 

key is needed to decrypt the encrypted data. Note that the public key is a distributed key to 

every user so that they can encrypt their data, while the private key is not distributed to any 
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users, and it must be unknown and hidden from other users, except the user who owns it. 

However, in our approach we use only the private key for both processes of obfuscating 

and de-obfuscating, and the public key is not needed. The main advantage of excluding the 

public key is that hackers have no idea about the composite number, so they will not have 

any knowledge about its factorization. The obfuscating approach without using the public 

key increases the hardness and security. Another advantage is that we do not need to pay 

much attention to how hardness is factoring the composite number as reported in [27, 31, 

4, 30]. Note that if the composite number is factorized, then there is a high chance that the 

obfuscated data can be compromised. 

In our approach, the obfuscating technique is not entirely based on the Rabin 

cryptosystem, because it has some drawbacks. Consequently, in order to boost and support 

the Rabin crypto system, we propose some new contributions that address the drawbacks 

of the Rabin cryptosystem and improve the confidentiality and the privacy of data. In 

addition, our new contributions decrease the computational complexity of the data-

obfuscating process.  

The proposed obfuscation process is based on six different techniques:  

1. Creating blocks  

2. Developing digit counts 

3. Tokenization 

4. Identifying sets  

5. Creating private keys  
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6. Obfuscating 

Figure 4.4: Depicts the Details and Purpose of Data-Obfuscating Techniques 

The data-obfuscating process is as follows:  

1- The input integer matrix is processed by two techniques: creating blocks (which 

produces the blocked matrix) and developing digits (which produces the hashed digit 

matrix). 

2- The blocked matrix is processed by the tokenization technique, which produces the 

token matrix. 

3- The blocked matrix is grouped into sets; the identifying-sets technique produces a 

sets array. 

4- The private key is created by the sets array. 
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5- The blocked matrix is obfuscated by the obfuscating technique that uses the hashed 

digit matrix, token matrix, and private key. 

The details and purpose of each of these six techniques are described in the 

following subsections. 

4.3.1 Creating blocks 

The block cipher is a cryptosystem that combines the plain data to create a fixed 

length of bits, called blocks [8]. In our approach, the technique for creating blocks has been 

inspired from the block cipher field. For our contribution, instead of providing a fixed 

length of bits in each block, we propose a length of the block without a fixed size, meaning 

that our approach supports a flexible length of blocks, as opposed to using the fixed block 

sizes in block cipher. The created blocks are not of fixed size, yet they are created from 

combining two columns of content of the matrix, but all of this content is not of the same 

size.  

Creating blocks of data is a technique used to combine the content of two columns 

of matrix together. As a result, each block contains two integer numbers combined 

horizontally, and both of them are represented as if they were only one number. The main 

purpose of our blocking technique is to reduce the size of actual data in the matrix by half 

without losing vital information, in order to minimize the computational complexity of our 

approach. The size of the resulting block matrix is equal to  

(
𝐶𝑜𝑙𝑢𝑚𝑛

2
) ∗ 𝑟𝑜𝑤               (2) 

Where the column is the number of column in the matrix, 2 is the size of each block, 

and row is the number of rows in the matrix.  Consider an example of creating blocks. Let 

M designate a matrix of size 6 * 6 = 36 as follows:  
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𝑀 = 

[
 
 
 
 
 
169 11 1
21 37 200
143 235 41

      
77 117 46
120 240 60
59 12 170

 

74 118 147
75 178 103
225 147 57

     
228 207 148
214 146 63
85 115 0 ]

 
 
 
 
 

 ⟹ 𝐵𝑀   

[
 
 
 
 
 
16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150 ]

 
 
 
 
 

     

 

Where BM is the resulting block matrix, and its size is = (6/2) * 6 = 18.  The size 

of the original matrix is reduced to half by using this blocking technique.   

4.3.2 Developing digit counts  

The digit count technique is applied during the creating of the block matrix. It is 

one of our contributions in this framework. We use two techniques: digit counter, and a 

digit hash map counter. Both of these techniques are briefly described in the next 

subsection in detail. The main objective of this technique is to save information about the 

matrix values, so that later when the obfuscated matrix is de-obfuscated, the resulting plain 

data will not lose any of its original form. If the block is decomposed into different numbers 

than the others that have formed it, then it will lose in the final information. For example, 

if the two numbers that form a block are 116 and 71, then the block is equal to 11671, so 

in order to break it the resulting two numbers must be 116 and 71—not 11 and 671—

because this would give wrong data that would cause a loss of the de-obfuscated 

information. 

Digit counter is a technique that counts the number of digits for each integer number 

of the matrix before it is combined in the block matrix.  On the other hand, the digit hash 

map counter is a hash map that contains all possible numbers of digits in each content of 

the matrix, which is used to set and identify the digit factor for the forthcoming encrypted 

matrix. Note that the number of entries in the digit hash map counter depends on both the 
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number of content in each block and the maximum number of digits of the content. For 

example, the size of the block in our approach is equal to 2, where the maximum number 

of digits for each content is equal to 3 digits because the integer number in the matrix is in 

the range 0 to 251. The number of entries in the digit hash map counter is defined by the 

formula 

(maximum number of digits)size of block        (3) 

Therefore, by applying (3), the number of the entries of the digit hash map counter 

in our approach is 32, that is, a total of 9 entries. The digit hash map counter of our approach 

is represented in Table 4.3. 

 Table 4.3: Digit hash map counter 

 

 

Key Digit counter Description 

0.1 11 Each piece of content in the block has one digit. 

0.2 12 
The first content of the block has 1 digit, while the other 

content has 2 digits. 

0.3 13 
The first content of the block has 1 digit, while the other 

content has 3 digits. 

0.4 21 
The first content of the block has 2 digits, while the 

other content has 1 digit. 

0.5 22 Each piece of content in the block has two digits. 

0.6 23 
The first content of the block has 2 digits, while the 

other content has 3 digits. 

0.7 31 
The first content of the block has 3 digits, while the 

other content has 1 digit. 

0.8 32 
The first content of the block has 3 digits, while the 

other content has 2 digits. 

0.9 33 Each piece content in the block has three digits. 
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Consider the example presented in Section 4.3.1 (creating blocks). The digit 

counter is defined by counting the digits of each block element, and after hashing the digit 

counter, the digit hash matrix, DH, is defined as follows:  

 𝐷𝑖𝑔𝑖𝑡 𝑏𝑙𝑜𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝐷𝐵𝑀 =

[
 
 
 
 
 
32 12 32
22 33 32
33 23 23
23 33 33
23 33 32
33 22 31]

 
 
 
 
 

 
𝐴𝑓𝑡𝑒𝑟 ℎ𝑎𝑠ℎ𝑖𝑛𝑔 𝑖𝑡 
⇒              𝐷𝐻 =  

[
 
 
 
 
 
0.8 0.2 0.8
0.5 0.9 0.8
0.9 0.5 0.6
0.6 0.9 0.9
0.6 0.9 0.8
0.9 0.5 0.7]

 
 
 
 
 

     

The digit block matrix DBM is a matrix of integer elements because it is of the 

same size of block matrix BM (see Section 4.2.1). The DBM content has been defined by 

counting the digits of plain matrix contents. For example M[0][0] = 169, and M[0][1] = 

11; then DBM [0][0] = 32 so the DH[0][0] = 0.8, because M[0][0] content consists of an 

integer number that has three digits, where M[0][1] content consists of an integer number 

that has two digits. Because the block size is two, the content of DBM matrix is for only 

two elements of matrix M.    

4.3.3. Tokenization  

One of the main drawbacks of the Rabin cryptosystem is that it is not a one-to-one 

function; whereas, the result of its decryption technique is four corrects roots, while one of 

these four resulting roots represents the correct value of plain data. In order to define the 

correct root in our approach, we need a different technique. We propose the following to 

address Rabin’s decryption problem with the purpose of de-obfuscating the obfuscated 

matrix accurately and without having any problem or confusion. Recall that we need the 

de-obfuscating stage to verify the result sent by the server.  

Our proposed idea is to first compute a token for each integer number in the block 

matrix. The token is computed by adding the content of the digits of integer numbers of 
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the block matrix BM element, and by counting the total number of these digits.  A token is 

a decimal number; its integer part is the result of adding the digits of elements of the block 

matrix BM, while its decimal part is the total number of digits. 

For each block, there is a token; then we need to have a matrix of the same size as 

the block matrix to save each block token. Consequently, in order to save space complexity 

and to add more flexibility to our obfuscating approach, we concatenate the token part as 

content of the obfuscated matrix, which is ultimately sent to the cloud server. By doing 

this, the only information that the client needs to save is the private keys that were used to 

obfuscate the data. The explanation of the obfuscated matrix and its content is provided in 

a later section. The usage of tokens is briefly described in the de-obfuscating section.   

Consider the previous example cited in Section 4.3.1 about creating blocks.   

𝐵𝑀 = 

[
 
 
 
 
 
16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150 ]

 
 
 
 
 

 

An example of defining the token is the following: 

The first block of BM is 16911 ⟹ token integer part = 1+6+9+1+1 = 18; the total number 

of digits = 5 ⟹ token = 18+ 0.5 = 18.5.  

The second block is 177 ⟹ token integer part = 1 + 7 + 7 = 15; the total number of digits 

= 3 ⟹ token = 15+ 0.3= 15.3. 

By computing the same operation for each block, the final resulting token matrix (TM) of 

BM is,  
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𝑡𝑜𝑘𝑒𝑛 𝑚𝑎𝑡𝑟𝑖𝑥(𝑇𝑀) = 

[
 
 
 
 
 
18.5 15.3 19.5
13.4 5.6 12.5
18.6 19.4 11.5
21.5 24.6 22.6
28.5 11.6 20.5
18.6 25.4 7.4 ]

 
 
 
 
 

 

4.3.4. Identifying sets  

Identifying sets are one of the contributions of our approach. The main advantage 

of using sets is to decrease the size of total private keys, so rather than having a private key 

for each block, we will have a private key for each set, which consists of several blocks. 

We increase the security rate by having more than one private key for obfuscating and de-

obfuscating all of the blocked matrix; thus, if hackers discover an element of a private key, 

they cannot de-obfuscate all of the obfuscated data. Furthermore, the random size of sets 

fixes the limitation of the fixed size of the block, because all blocks must be of the same 

size. So this technique increases the protection of the final obfuscated data and decreases 

the computational complexity of the obfuscating process by reducing the total number of 

generated and stored private keys.  

This technique is based on dividing the blocked matrix into sets, each with a 

different random size. The minimum size of a set is a single value, and the maximum size 

is half of the total size of the block matrix. However, the range of the set size can be 

modified depending on the user needs, so if the user wants to have more sets, the maximum 

bound of the set size can be decreased to one-third or one-fourth of the total size of the 

block. 

The number of total sets correlates with the data-security implications. Security is 

usually higher if more sets are created, but the overhead costs of processing would be 

higher as well. Subsequently, the total number of sets is directly proportional to security 



 
 

58 

 

implications. The number of sets is also directly proportional to the computational 

complexity. The increasing number of sets may require higher computational efforts 

because each set would have its own private key used to obfuscate the set, but the security 

would be better.  

We use a set array in order to capture the total number of sets. The length of the set 

array is equal to the total number of sets, while its content is the size of the set. For example, 

if a block matrix consists of five sets, then the set array has a length of five, and each value 

represents the size of each set.  

Consider the previous example cited in Section 4.3.1 about creating blocks 

𝐵𝑀 = 

[
 
 
 
 
 
16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150 ]

 
 
 
 
 

 

The range of set size is defined using the following equation: 

[1 , size of BM/2]  ⟹ [1,
18

2
]  ⟹ [1, 9] 

The smallest set will contain only one block, while the largest set will contain nine blocks. 

We then assign random numbers to set sizes, so that the total summation of them is equal to 

the size of BM. Assigning the random numbers can be done as shown below: 

S[0] size = 2, S[1] size  = 8, S[3] size = 8, ∵  ∑𝑆[𝑖]𝑠𝑖𝑧𝑒 = 18  ⟹

𝑤𝑒 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑜𝑛𝑙𝑦 3 𝑠𝑒𝑡𝑠,  

where S[i] represents the set number.  

The content of each set will be as follows: 
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S[0] = {16911, 177} 

S[1] = {11746, 2137, 200120, 24060, 143235, 4159, 12170, 74118} 

S[3] = {147228, 207148, 75178, 103214, 14663, 222147, 5785, 1150} 

4.3.5. Creating Private Keys 

One of the main objectives of creating sets is to specify the number of private keys, 

which is equal to the number of sets. For example, if we have three sets, then we will have 

three private keys—one key for each set. An array of private keys stores all keys, and its 

length is equal to the length of set array. The private key array consists of three main 

factors: PK (p, q, s). The first two factors, p and q, are the factorization of the composite 

number (as mentioned previously in the obfuscating section earlier), and the third factor, 

s, is the size of the set that uses that private key.   

Because the main obfuscating process is based on the Rabin crypto system, in order 

to obfuscate data we need a composite number that consists of two large prime numbers, p 

and q. These two prime numbers must be private. Otherwise, disclosing these will result in 

breaking of the Rabin cryptosystem. The third factor of the private key is necessary to 

identify the sets and to know which set should be obfuscated or de-obfuscated by these two 

prime numbers. Therefore, for each set, we will generate random large prime numbers. 

Note that in order to identify these two large prime numbers’ range, we must first consider 

what is the largest integer number of the data. For example, in our approach, the largest 

integer number from the integer matrix is 251, which means that the largest block is 

251251. Consequently, in order to define these two prime numbers, p and q, their range 

must start form larger number than 251. So in order to evaluate the quadratic congruence 

of each block, the composite number formed from p and q must be larger than 251251. The 
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composite number should not be too large so that when the block is encrypted by the 

quadratic formula, it will not change its actual value. For this reason, we discover a range 

of prime numbers for p and q, and the range should achieve the previously mentioned 

conditions. This range goes from 700 to 1500. For example, if both prime numbers are 700, 

then the composite number is 700 * 700 = 490000, which is larger than 251251. If both 

prime numbers are 1500, then the composite number is 1500 * 1500 = 2250000, so it can 

obfuscate blocks with small integer values.  

Consider the previous example discussed in Section 4.3.4 (identifying sets), in 

which the form of the set was   

S[0] size = 2, S[1] size  = 8, S[3] size = 8 

That means we have to randomly generate two different prime numbers for p and q, for 

each set, both in the range of [700, 1500]. Let the result of this calculation be as follows: 

for S[0] ⟹ p = 643, q = 691, where N = p * q = 444313  

for S[1] ⟹ p = 563, q = 683, where N = p * q = 384529 

for S[2] ⟹ p = 631, q = 743, where N = p * q = 468833 

Where N is the composite number.  

Finally, the resulted array of private key is as follows: 

𝑃𝐾 = [
643, 691, 2
563, 683, 8
631, 743, 8

] 
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4.3.6. Obfuscating process  

Because our obfuscating process is based on the Rabin cryptosystem to encrypt 

data, the formula of the Rabin cryptosystem is  

𝐶 ≡ 𝑃2(𝑚𝑜𝑑 𝑁)               (4) 

In this formula, C is the cipher data, P is the plain data, N is the composite number 

that is produced from multiplying the two distinct large primes, p and q. Note that the 

strength of the Rabin cryptosystem depends on the hardness of the factorization of the 

composite number.  

In our approach, obfuscating plain data is not the only part of the process; rather, 

after encrypting each block of the blocked matrix, we add a hashed digit counter from the 

digit hashed counter matrix to the encrypted data. In addition, we concatenate each 

encrypted block with its related token. The final result of all of these operations is a matrix 

of obfuscated data, which is in the form of enc(C.dh, t); here C is the encrypted data, dh is 

the digit counter data, and t is the token of that obfuscated  data. 

An example of the obfuscating process and the obfuscated matrix is shown as 

follows. 

Consider the previous example presented in Section 4.3.1 (the creating block), 

where the PK for BM matrices are 

𝐵𝑀 = 

[
 
 
 
 
 
16911 177 11746
2137 200120 24060
143235 4159 12170
74118 147228 207148
75178 103214 14663
222147 5785 1150 ]

 
 
 
 
 

 

𝑃𝐾 = [
643, 691, 2
563, 683, 8
631, 743, 8

] 
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Now we will encrypt BM matrix depending on PK, such that the first two blocks are 

encrypted by making p = 643, and q = 691 ⟹ N = 444313 

⟹ 𝐶 = (16911)2 (𝑚𝑜𝑑 444313) = 288662 

And the same operation is applied to the next block. 

Then the next eight blocks starting from BM[0][2] = 11746  to BM[3][0] = 74118 are 

encrypted by making p = 563, and q = 683 ⟹ N = 384529 

⟹ 𝐶 = (11746)2 (𝑚𝑜𝑑 384529) = 307134 

And the same operation is applied to the next remaining seven blocks. 

The next eight blocks starting from BM[3][1] = 147228 to BM[5][2] = 1150, are encrypted 

by making p = 631, and q = 743 ⟹ N = 468833 

⟹𝐶 = (147228 )2 (𝑚𝑜𝑑 468833) = 59062 

And the same operation is applied to the next remaining seven blocks. 

Then the final resulting encrypted matrix encBM is  

𝑒𝑛𝑐𝐵𝑀 = 

[
 
 
 
 
 
288662 31329 307134
336950 88108 167455
220937 378005 65235
96630 59062 353579
418702 306370 278055
396862 179082 384834]

 
 
 
 
 

 

By adding the DH matrix to the encBM matrix, we get the following obfuscated BM matrix:  
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𝐷𝐻 + 𝑒𝑛𝑐𝐵𝑀 = 

[
 
 
 
 
 
0.8 0.2 0.8
0.5 0.9 0.8
0.9 0.5 0.6
0.6 0.9 0.9
0.6 0.9 0.8
0.9 0.5 0.7]

 
 
 
 
 

+

[
 
 
 
 
 
288662 31329 307134
336950 88108 167455
220937 378005 65235
96630 59062 353579
418702 306370 278055
396862 179082 384834]

 
 
 
 
 

=  

[
 
 
 
 
 
288662.8 31329.2 307134.8
336950.5 88108.9 167455.8
220937.9 378005.5 65235.6
96630.6 59062.9 353579.9
418702.6 306370.9 278055.8
396862.9 179082.5 384834.7]

 
 
 
 
 

   

The final step is to concatenate the encBM matrix with the generated token matrix 

(which has already been described earlier in the tokenization Section 4.3.3 earlier in this 

chapter) to create the final obfuscated matrix. The final form of encBM matrix is  

𝑒𝑛𝑐𝐵𝑀 = 

[
 
 
 
 
 
288662.8, 18.5 31329.2, 15.3 307134.8, 19.5
336950.5, 13.4 88108.9,5.6 167455.8, 12.5
220937.9, 18.6 378005.5,19.4 65235.6, 11.5
96630.6,21.5 59062.9, 24.6 353579.9, 22.6
418702.6, 28.5 306370.9,11.6 278055.8, 20.5
396862.9, 18.6 179082.5,25.4 384834.7,7.4 ]

 
 
 
 
 

 

This is the final obfuscated matrix that is sent to the cloud server for further 

processing, such as comparison with similar data or storage depending on the user’s needs.  

4.4. De-obfuscating 

The de-obfuscating process is only needed when the client wants to verify the 

computational results of the server. The verification technique is done only when the server 

claims that the print image of the input finger was matched with one of the stored and 

obfuscated fingerprint images. In that case, the server returns a copy of the obfuscated 

matrix of the matched image, which allows the client to de-obfuscate it and compare it with 

the original integer matrix of the input fingerprint image stored by the client.  

As we explained earlier, our approach encrypts integer numbers by using a 
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quadratic congruence formula, which can be decrypted by using the Chinese remainder 

theorem. One of the algorithms used to solve the Chinese remainder theorem is the Garner 

algorithm [5]. In our approach, we use the Garner algorithm to decrypt encrypted data 

because it is the simplest algorithm that can solve the Chinese remainder theorem with less 

computational complexity, and it reduces by half the total multiplications needed for 

Gauss’s algorithm, which has been normally used to solve the Chinese remainder theorem.     

In order to correctly de-obfuscate the data matrix, we use every factor in both the 

private keys and obfuscated matrix, because every factor has a role to play in the de-

obfuscating process. Note that a private key object is built with three factors, and these 

factors are the large prime numbers p and q, and the set size factor. The set size factor 

allows us to know which set-to-be de-obfuscates with the specific p and q numbers.  Each 

value of the obfuscated matrix is an obfuscated object that consists of two double numbers. 

The first double number represents both the encrypted integer number that is replaced in 

the integer part and the digit counter, which is the double part. The second double number 

represents the token factor. Recall that the form of objects of obfuscated matrix encBM is 

enc(C.dh, t), where C is the cipher data, dh is the digit counter data, and t is the token of 

that obfuscated data.    

An example of de-obfuscation is presented with the previous data, where PK 

contains private keys, and encBM is the obfuscated matrix:  

𝑃𝐾 = [
643, 691, 2
563, 683, 8
631, 743, 8

] ,   𝑒𝑛𝑐𝐵𝑀 = 

[
 
 
 
 
 
288662.8,18.5 31329.2, 15.3 307134.8, 19.5
336950.5,13.4 88108.9, 5.6 167455.8, 12.5
220937.9,18.6 378005.5, 19.4 65235.6,11.5
96630.6, 21.5 59062.9, 24.6 353579.9, 22.6
418702.6,28.5 306370.9, 11.6 278055.8, 20.5
396862.9,18.6 179082.5, 25.4 384834.7, 7.4 ]

 
 
 
 
 

 

The first step of the de-obfuscating process is to extract the integer number from 
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the first double number in the encBM matrix:  

The obfuscated factor of encBM[0][0] = 288662.8  the integer part of the factor 

encBM[0][0] = 288662. 

Then the resulted integer number is decrypted by using PK[0], since encBM[0][0] 

belongs to the first set. The set size factor in PK[0] = 2, which means that the first two 

elements of the encBM matrix are decrypted using PK[0].  

By using the Garner algorithm and making p = 643 and q = 691, the results of de-obfuscation 

are these following four roots:  

Sol = {16911, 81211, 363102, 427402}. In order to identify the correct plain data of our 

obfuscated matrix, the token part is used, where encBM[0][0] token = 18.5. 

In order to do so, we will define the token for each defined root such as: 

16911 token = 18.5, because 1+6+9+1+1 = 18, and it consists of 5 digits 

81211 token = 13.5, because 8+1+2+1+1 = 13, and it consists of 5 digits 

363102 token = 15.6, because 3+6+3+1+0+2 = 15, and it consists of 6 digits 

427402 token = 19.6, because 4+2+7+4+0+2 = 19, and it consists of 6 digits  

 The correct plain data root is 16911 because its token is equal to the token part of 

encBM[0][0] 

The final step in de-obfuscating is to break the resulting block, which can be done 

by using the double part of the obfuscated number of encBM[0][0], which was 0.8. 

Consider the digit hash map counter in the developing digit-counts technique already 

discussed in Section 4.3.2. The value 0.8 in encBM[0][0] was the hashed key of the digit 

counter 32. This means that the first part of the block consists of a three-digit integer 
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number, while the second part of the block consists of a two-digit integer number. As a 

result, the 16911 blocked number is decomposed into 169 and 11. So the first two contents 

of the de-obfuscated matrix are dec[0][0] = 169 and dec[0][1] = 11.  

Then by repeating each of these steps for each encBM element, we get the following 

resulted dec matrix:  

𝑑𝑒𝑐 =  

[
 
 
 
 
 
169 11 1
21 37 200
143 235 41

      
77 117 46
120 240 60
59 12 170

 

74 118 147
75 178 103
225 147 57

     
228 207 148
214 146 63
85 115 0 ]

 
 
 
 
 

 

Note that dec matrix is exactly equal to the plain data M matrix that was shown as 

an example in the earlier section for creating blocks.  The elements of the M matrix are:  

𝑀 = 

[
 
 
 
 
 
169 11 1
21 37 200
143 235 41

      
77 117 46
120 240 60
59 12 170

 

74 118 147
75 178 103
225 147 57

     
228 207 148
214 146 63
85 115 0 ]

 
 
 
 
 

 

The main goals of this approach is to secure the client’s outsourced data without 

using public key infrastructure and to allow the cloud server to do the computations on the 

obfuscated data. The presented techniques in this chapter show how to achieve this goal. 

Some of the existing techniques have drawbacks, so we show how we modified some of 

them to overcome those drawbacks. The new techniques that we have introduced are the 

blocking technique, digit counter technique, creating sets of blocks technique, and 

tokenization technique.  In the next chapter, we present the implementation details of these 

processes and techniques of our framework.  
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CHAPTER 5: IMPLEMENTATION AND VALIDATION OF 

THE APPROACH 

 

In this chapter, we develop and use various algorithms and techniques to implement 

the proposed framework. The approach is flexible and can be applied to any form or 

representation of numerical data. In this thesis, we apply our approach to images to study 

its applicability. This chapter describes how we first process the images to make them 

suitable for being obfuscated by the obfuscating process. We also demonstrate how the 

images are obfuscated using our techniques discussed earlier. After obfuscating the images, 

they are sent to the server that processes images by storing and comparing the input images 

with the stored obfuscated images. The server finally returns the comparison result of 

obfuscated images along with a copy of the obfuscated image that was found matched with 

the input image.  

The proposed application presented in this chapter is an image-comparison 

application, which is a secure fingerprint checking system. This application captures the 

user’s fingerprint, obfuscates it, and sends it to the cloud server. The server stores all users’ 

obfuscated fingerprints if not already stored. For this purpose, it first compares the input 

fingerprint with the already stored obfuscated fingerprints. The comparison process starts 

when a user enters his or her fingerprint into the system to check it if it matches with any 

image stored in the server. The server checks if a similar fingerprint exists by comparing it 

with the stored fingerprints in the server. After checking and comparing the new image 

with the stored ones, the server returns the result to the client. The result is either “Exist” 

if the fingerprint matches with one of the stored ones, otherwise it returns “Not Exist.” 



 
 

68 

 

However, if the user is new, the first step is to compare his or her fingerprint with the stored 

fingerprints; if no match is found, the server stores the new fingerprint, so it can verify the 

fingerprint when the user enters his or her fingerprint the next time.  

This application can be used for checking the authenticity of a user accessing data, 

systems, activities, and so forth. It can also record employees’ attendance by using image 

recognition. This application is very useful in many areas.  

In order to implement the secure fingerprint comparison and storing system, the 

client must have image-processing software, in order to prepare and process images for 

making them applicable to be obfuscated. We use Java and Matlab for implementing our 

framework, because they offer many efficient functionalities that can optimize the client’s 

computational complexity and resources.   

The following sections present the algorithms and techniques for implementing 

secure fingerprint comparison and storing processes.  

5.1. Application Usage 

A secure fingerprint checking system consists of two main use-cases: fingerprint 

checking and storing obfuscated fingerprint image.  

The first use-case is the storing of the obfuscated fingerprint; the admin of the 

system collects the needed fingerprints form all of the users who are going to use the 

system, and obfuscates them by using the secure fingerprint checking system, in which the 

obfuscating process is done on the client’s side. Then all of the selected obfuscated 

fingerprint images are sent to the server in order to be stored on the cloud. 

The second use-case is fingerprint checking. The user enters his or her fingerprint 

into the system. The system obfuscates it and sends it to the server, which checks whether 
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the user is authorized or not. A user is considered authorized if his or her fingerprint is 

already stored in the server; an unauthorized user does not have his or her fingerprint stored 

in the system. The server checks if a similar fingerprint exists by comparing it with the 

stored fingerprints in the server. After checking and comparing the new image with those 

stored, the server returns the result to client. The result is either “Exist” if the fingerprint 

matches one of the stored ones; otherwise the server returns “Not Exist.” If the result is the 

former, then the server returns the stored obfuscated fingerprint, which matches the 

received one, to the client. After receiving the server’s comparison result, if the result is 

“Exist” the client de-obfuscates the received fingerprint image.  

Consider that this system has two main threats. The first is if the server claims that 

the entered fingerprint exists when it actually does not. Therefore, in order to verify the 

server’s result, we added a final verification process that is executed by the client.  

The second threat is the potential for malicious entities to compromise the server; 

for example, a malicious entity changes the stored and obfuscated data of the fingerprint. 

As a result of this hypothetical attack, the server results would be only “Not Exist!”—even 

for the authorized users. To prevent this threat, we allow the server to encrypt its stored 

data by a public key.  

Consider that this application can run on smart phones, tablets, laptops, and 

desktops. Therefore, optimizing clients’ resources is important in our application; we want 

to incorporate our application into all types of devices used by clients.  

5.2. Implementation of preprocessing  

 

As already mentioned earlier, this component’s main purpose is to prepare plain 

data to be ready and applicable for being processed in the next stage. Because our plain 
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data is images, image processing is needed for implementing the data-preparation process. 

Matlab offers a good number of image-processing methods. Therefore, we implement our 

preprocessing in Matlab. The next stage, which is obfuscating fingerprints, has been 

implemented in Java; the final stages of the data processing and the preparing process also 

have been implemented in Java.  

The preprocessing is used to reduce the image’s size so that the size of the final 

resulting matrix of the preprocessing is much less than the original size of the fingerprint 

image. Then the preprocessing converts each fingerprint image to a two-dimensional 

double matrix. Note that a fingerprint image is usually represented in a three-dimensional 

double matrix. Assume all entered fingerprint images are of the same size, because all 

fingerprints are recorded by the same fingerprint recorder. This assumption is important to 

note in this application. This process can handle any types of image, such as jpeg, png, 

bmp, and gif.   

The preprocessing has four stages, and each implements its own processes. 

Algorithm 5.1 shows how to perform the data-preparation process. 

Algorithm 5.1 Preprocessing of data 

Input: fingerprint image 

Output: 2D integer matrix M[1..m][1..n] 

 Steps:  

1. Select fingerprint image  

2. Reduce image size by using single-level discrete 2-D 
wavelet transform (dwt2) method. 

3. Convert reduced image from three-dimensional image to 
two-dimensional image by using convert RGB image or 
colormap to grayscale (rgb2gray) method 

4. Save 2d image into text file. 

5. Convert 2d double matrix to integer matrix. 
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This algorithm has been implemented with a combination of Matlab and Java 

applications. The four steps in Algorithm 5.1 have been implemented using Matlab because 

it requires only O(mn) time to  generate a 2d matrix from a fingerprint image.  Matlab has 

been used to implement four operations because it offers a good number of high-level 

image-processing operations. The single-level, discrete, 2-D wavelet-transform (dwt2) 

method reduces the image size to half of its original size by one single operation. In 

addition, the conversion of the RGB image or colormap to grayscale (rgb2gray) method 

converts the three-dimensional image to a two-dimensional image by using the operation 

“rgb2gray.” In addition, to convert image pixels to their original double values, Matlab 

does so when the image is saved as a text file, and it requires no other operations to 

complete the task. However, converting a two-dimensional double matrix to an integer-

matrix process has been generated by a Java program that requires O(mn) time, where m 

is the number of rows and n is the number of columns of the double matrix. The values of 

m and n remain the same in the final resulting integer matrix. Then the required time 

complexity for implementing this component is O(mn). The following section describes 

this algorithm in details. 

5.2.1. Technique for reducing image size 

A fingerprint image of dimensions 255 * 172 pixels, where the width is 172 pixels 

and the height is 255 pixels, is captured. First, the preprocessing component reduces its 

size by using the dwt2 method. In order to determine a suitable reduction limit of an image 

of dimensions 255 * 172 pixels, an experiment was performed. Note that during the process 

of reducing any image size, we must maintain its accuracy and visibility so that it will not 

lose any vital information, because the dwt2 method has an inverse relation with both 
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accuracy and visibility of images.  

The experiment reduced a fingerprint image by using several cycles of running 

dwt2 method. The main goal of this method is to reach the most-possible minimum size of 

the image with dimensions 255 * 172 pixels, without losing vital information of the image. 

The outcomes of that experiment is shown in table 5.1: 

Table 5.1: Image Reducing Experiment Results. 

Image 

Dimensions: Image Notes: 

255 * 172 pixels 

 

 

Original fingerprint image before 

any reductions. 

129 * 87 pixels 

 

The resulting image of the first 

cycle of reducing image size by 

dwt2 method. 
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66 * 45 pixels 

 

The resulting image of the second 

cycle of reducing image size by 

dwt2 method. 

34 * 24 pixels 

 

The resulting image of the third 

cycle of reducing image size by 

dwt2 method. 

 

We conclude from this experiment that the best optimal reduction result is achieved 

by the first cycle of reducing the fingerprint image dimensions. The dimensions of 129 * 

87 pixels are half of the original fingerprint image dimensions.  This is the most optimal 

size for image comparison. Although the reduced size from the second cycle looks 

reasonable, to get a more optimal size, we only reduce the fingerprint image by one cycle. 

5.2.2. Technique for converting a color image to gray 

In this stage, the color image of the fingerprint is transformed into a gray image. 

This is done by converting the RGB image or colormap to grayscale using rgb2gray 
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method. Doing so will not only result in a gray image, but this gray image is also 

automatically transformed from three dimensions to two. This transformation will not have 

any negative impact on the comparison process because the loss of information is minimal. 

Note that a fingerprint image contains only two colors, white and black. Therefore, losing 

the color will not have any impact on the comparison process performed by the cloud server 

later. 

An example of the resulting reduced image, from the previous stage, converted to 

a gray image is shown in Table 5.2: 

Table 5.2: Image Converted to a Gray Image 

Colored image: Gray image: 

Size =  129  *  87   *  3 

 

Size =  129  *  87 

From the images in Table 5.2, we conclude that converting the image to gray does 

not affect much of its size or appearance. The only factor that matters is the image-

dimensional factor, which transforms it from a three-dimensional image into two 

dimensions. Note that the colored image’s dimensions are 129 * 87 * 3—that is, the image 

has three dimensions. However, the size of the gray image is 129 * 87, which means that 

it has two dimensions.  
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5.2.3. Extracting double value form pixel 

In this stage of the implementation, the gray image from the previous stage is 

extracted to a double matrix that has two dimensions. This can be done simply in Matlab 

by saving the image as a text file. The resulting text file includes the two-dimensional 

matrix representing the image, in which each pixel in the original image is represented by 

an integer number that ranges from 0 to 251. However, because we reduce the image size, 

the reduction has an impact on the actual value of the pixel. We transform it from an integer 

to a double value. We provide a screenshot of transforming the image into a double matrix, 

as an example. However, only one segment of the double matrix is shown in Figure 5.1, 

because the actual one too large to be shown in one figure. 

Figure 5.1: A segment of a 2D double matrix. 

5.2.4. Method to transform double to integer 

This stage is implemented in Java. By the end of this stage, data are ready for the 

obfuscation, so that they will not require any additional processes. Therefore, to simplify 
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both the preprocessing and the obfuscating processes, this transformation has been 

implemented in Java. Note that the obfuscating process has also been implemented in Java.  

The main objective of this transformation is to convert the previously saved double 

matrix to integer values ranging from 0 to 251. The purpose of converting the double matrix 

into an integer matrix of the same size and dimensions of the double matrix is that our 

approach obfuscates integer values. Consider Algorithm 5.2 for this transformation:  

 

 

This algorithm is mainly dependent on the number of rows and columns of double 

matrix, where m is the number of row and n is the number of column of the double matrix. 

The time complexity of this algorithm is O(mn). 

A screenshot has been taken as an example of transforming the double matrix into 

Algorithm 5.2 Convert Double Matrix to Integer Matrix  

Input: text file contain double matrix D[1..m][1..n] 

Output: integer matrix M[1..m][1..n] 

Steps:  

1. Open text file.  

2. Row  number of rows 

3. Column  number of column.   

4. Create both double matrix d [1..row][1..column] 

5. Create integer matrix M[1..row][1..column]. 

6. Load double matrix from text file into created double 
matrix d[1..row][1..column]. 

7. For r  0 to row -1  

8. For c  0 to column-1 

9. M[r][c] =   

10. End for 

11. End for 
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integers. However, only a segment of the resulting integer matrix is shown in Figure 5.2, 

because the actual one too large to be shown in one figure. 

 

Figure 5.2: A segment of the 2D integer matrix. 

At the end of this transformation, the final resulting integer matrix is fed to the 

obfuscating process, which starts running automatically once it gets the data. 

5.3. Obfuscating-Process Implementation 

In this section, the algorithms and techniques for implementing the obfuscating 

process are presented and described in detail. The main purposes of this process are to 

obfuscate fingerprint images and send them to the server for comparison with the stored 

images with the same size. In order to simplify the implementing processes, the computing 

environment must optimize and compute the obfuscation stage efficiently, without 

consuming excessive amounts of the client’s resources. This process has been implemented 



 
 

78 

 

in Java. Our Java implementation is expected to save both time and space complexity.     

This process obfuscates the fingerprint image that has been previously processed 

and represented as a two-dimensional integer matrix. Recall the proposed obfuscating 

process in Chapter 4, which consists of six different techniques, each of them has it specific 

tasks to perform. However, all of these six techniques have been fully implemented. Figure 

5.3 shows the abstraction of six techniques into two bigger processes—namely, blocking 

stage and obfuscating stage. 

Figure 5.3: Data-Obfuscating Process. 

Algorithm 5.3 depicts the main steps involved in the obfuscating process: 
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 This algorithm handles two techniques for obfuscating: creating block matrix and 

obfuscate block matrix. The following section describes these two, and shows how these 

work in details. 

5.3.1. Blocking stage 

The main aim of this stage is to create a blocking matrix from the integer matrix to 

minimize the encryption process. Each block in the block matrix has the size of two 

contents of the integer matrix that are concatenated horizontally. This technique reduces 

the number of columns to half in the block matrix; thus, the obfuscating process is required 

to use fewer numbers of private keys. 

Another goal of this stage is to generate a digit counter that is a hashed digit matrix 

Algorithm 5.3 Obfuscating process  

Input: integer matrix M [1..m][1..n]. 

Output: obfuscated matrix encBM[1..m][1..n/2], prepared ciphered 
matrix  DencBM[1..m][1..n/2] of double elements. 

Steps: 

1. create block matrix BM[1..m][1..n/2]. 

2. if there exist private key 

3. then encrypt block matrix by the exist private 
key.  

4. else  

5. create private key.  

6. obfuscate block matrix. 

7. save obfuscated matrix encBM[1..m][1..n/2].  

8. send both encrypted matrix to server. 
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(Chapter 4, Section 4.3.2, discusses the digit counter and hashed digit matrix). When each 

block is created, its digits counter is recorded, hashed, and saved into a hashed digit matrix. 

So in this stage, two components (blocks and the digit counter) are generated to save time 

complexity. 

Consider Algorithm 5.4, which shows how blocks are generated using a digit 

counter and hashed digit matrix: 

 

This algorithm is mainly dependent on the number of rows and columns, where m 

is the number of row and n is the number of column of M matrix (the input integer matrix 

Algorithm 5.4 Blocking Stage  

Input: integer matrix M[1..m][1..n] 

Output: block matrix BM[1..m][1..n/2], and hashed digit matrix 
DHBM[1..m][1..n/2]. 

Steps:  

1. create integer matrix BM[1..m][1..n/2]. 

2. create double matrix DHBM [1..m][1..n/2]. 

3. c  0 

4. for i  0 to m-1 

5.  for j  0 to (n/2)-1 

6. digit counter  the number of the M[i][j*2] 
digits and concatenating it with the total number 
of digits of M[i][(j*2)+1]. 

7. DHBM[i][c]  hash digit counter 

8. BM[i][c] concatenating both M[i][ j*2] with 
M[i][( j*2)+1].  

9. increment c. 

10. end  for. 

11. c  0. 

12. end for. 
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M), where M is the resulted integer matrix from the preprocessing. The complexity of this 

algorithm is O(m(n/2)). 

A screenshot has been taken as an example of the blocking-stage result. However, 

only a segment of the BM (block) matrix is shown in Figure 5.4, because the actual one is 

too large to be shown in one figure. Only a part of the DHBM (hashed digit) matrix is 

shown in Figure 5.5.  

Figure 5.4: A segment of the block matrix (BM) 
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Figure 5.5: A segment of the DHBM matrix. 

5.3.2. Obfuscating stage 

This is the main stage of the obfuscating process. This stage uses four techniques 

of the obfuscating process—tokenization, generating sets, creating a private key, and 

obfuscating. The new private key is not created unless one does not already exist. Similarly, 

no new sets are created unless needed.  Note that creating a private key is related to creating 

sets. If one is to be generated, then the other one needs to be created as well. If there exists 

no private key, new sets and the corresponding private keys need are created. Note that all 

fingerprints of a client are obfuscated using the same set of private keys. Recall that a 

private key consists of an array of private keys because a matrix is divided into various 

sizes of sets and each set has its own private key. Consider Algorithm 5.5, which shows 

how obfuscating is done when no private key exists: 
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Algorithm 5.5 Obfuscating Stage Case A  

Input: block matrix BM[1..m][1..n], and hashed digit matrix 
DHBM[1..m][1..n]. 

Output: obfuscated matrix encBM[1..m][1..n] of obfuscated 
objects, and private key PK[1..x] of private key objects. 

Steps: 

1. Generate sets by creating sets array sets[1..x]. 

2. Create encBM[1..m][1..n] matrix of obfuscated object. 

3. Create private key PK[1..x] array of private key object. 

4. Counter  0. 

5. Sets counter  0. 

6. For i 0 to m 

7.      For j  to n  

8.         if counter = 0 and sets counter = 0 then  

9.                 Counter = sets[0]. 

10.              Generate p & q. 

11. PK[sets counter]  new private key 
object has p, q and sets[sets counter]. 

12. End if  

13. token  generate token for BM[i][j]. 

14.         enc  encrypt BM[i][j] 

15.         denc  enc + DHBM[i][j] 

16. encBM[i][j]  new obfuscated object has denc 
and token. 

17.         decrement counter 

18.         if counter = 0 then  

19.              increment sets counter 

20.              counter  sets [sets counter] 

21.              generate new p & q. 

22. PK[sets counter]  new private key 
object has p, q and sets[sets counter]. 
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This algorithm depends mainly on the number of rows and columns of the BM 

matrix; it also depends on the length of the generated set array. Thus if m is the number of 

rows and n is the number of columns and x is the lengths of the generated sets array, then 

time complexity of this algorithm is O(x) + O(mn).  

This algorithm implements four techniques—generating sets, creating a private 

key, tokenization, and obfuscating. Executing all of these techniques together saves space 

complexity and time complexity. Consider that required time complexity for the 

tokenization technique alone is O(mn).The time complexity for the technique of creating a 

private key array alone requires O(x). Thus, the total amount of saved time complexity is 

O(mn) + O(x), where m is the row of the BM matrix, n is the column of BM, and x is the 

length of the sets array. The total amount of generating space complexity is O(mn), because 

the size of token matrix is equal to the size of the BM matrix. 

A screenshot has been taken as an example of the obfuscating stage. However, only 

part of the encBM matrix is shown in Figure 5.6, because the actual one is too large to be 

shown in one figure. Figure 5.7 shows the created private key. 

 

 

 

 

23.        end if  

24.     end for 

25. end for 
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Figure 5.6: A segment of the 2D encBM matrix 

 

Figure 5.7: Private key array 

The created private key array in Figure 5.7 has a length of six, which is used to 

encrypt the block matrix BM[129][84] of size 129 * 84. The generating-sets process places 

1815 blocks of BM matrix in the first set, 1002 blocks in the second set, 172 blocks in the 

third set, 223 blocks in the fourth set, 1163 blocks in the fifth set, and 1172 blocks in the 

final set. Each set of blocks has been encrypted by its own prime factors p and q. 

Consider Algorithm 5.6, which shows how the private key is generated, if there 

exists a private key: 
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This algorithm depends mainly on the number of rows and columns of the BM 

matrix. Thus, if m is the number of rows and n is the number of columns, then the time 

complexity of this algorithm is O(mn).  

This algorithm implements two techniques: tokenization and encrypting. By 

Algorithm 5.6 Obfuscating Stage Case B 

Input: block matrix BM[1..m][1..n], and hashed digit matrix 
DHBM[1..m][1..n]. 

Output: obfuscated matrix encBM[1..m][1..n] of obfuscated 
object. 

Steps: 

1. Create encBM[1..m][1..n] matrix of obfuscate object. 

2. ns  set size content of PK[0]. 

3. ipk  0. 

4. for i 0 to m 

5.      for j  to n  

6.         token  generate token for BM[i][j]. 

7.         enc  encrypt BM[i][j] 

8.         denc  enc + DHBM[i][j] 

9.         encBM[i][j]  new obfuscated object has denc 
and token. 

10.         decrement ns 

11.         if ns = 0 then  

12.              increment ipk 

13.              ns  sets contents of PK[ipk] 

14.              p  p content of PK[ipk] 

15.              q  q content of PK[ipk] 

16.        end if  

17.     end for 

18. end for 
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implementing these techniques together, we save space complexity and time complexity of 

the tokenization technique alone, which requires O(mn). Then the total amount of saving 

both space and time complexity is O(mn), where m is the row of the BM matrix, and n is 

the column of BM, because the size of the token matrix is equal to the size of the BM 

matrix. 

5.4. Comparison-process implementation 

In this section, the algorithms and techniques for implementing the comparison of 

two images is presented and described in detail. We need this operation on the server side, 

in which the comparison function is installed. Its main purpose is to compare the obfuscated 

fingerprint images with the stored obfuscated ones. The server sends the result of 

comparison to the client. This comparison process has been implemented with Matlab. The 

main comparison function is a Matlab method for comparing images. One of the Matlab 

methods does the comparisons by drawing a histogram for each image and comparing 

between these histograms. 

5.4.1. Comparison Stage 

The main goal of this stage is to compare the obfuscated fingerprint with the stored 

ones to check if the fingerprint already exists or not. 

Consider Algorithm 5.7, which shows how the comparison is done. 
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This algorithm depends mainly on the total number of stored obfuscated 

fingerprints in the server. Thus, if T is the total number of stored obfuscated fingerprints, 

the time complexity of this algorithm is O(T(mn)), where m is the row of the encBM 

matrix, and n is the column of encBM. 

An example of two cases of the comparison process is shown to demonstrate its 

validity. In the first case, the client sends an obfuscated fingerprint matrix to the server, 

which compares it with the obfuscated images already stored in the server. Consider the 

actual two fingerprints—fingerprint1 and fingerprint2—shown in Figure 5.8.  

Algorithm 5.7 Comparing Stage  

Input: encrypted matrix encBM[1..m][1..n] of obfuscated 
objects. 

Output: “Exist” or “Not Exist”  

Steps: 

1. hn1  draw histogram for encMatrix 

2. c  0 

3. for i  1 to total number of obfuscated stored 
fingerprints 

4. hn2  draw histogram for encrypted fingerprint [i] 

5. f  result of comparing between hn1 and hn2 

6. if f < = 0.000009, then increment c 

7. end for 

8. if c > 1,  

9. then send “Exist” 

10. else send “Not Exist” 

11. end if      
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Figure 5.8: Actual fingerprints  

A screenshot has been taken of the comparison results between these two 

obfuscated fingerprints, as an example. The DencBM1 is the obfuscated matrix of 

fingerprint1, and the DencBM2 is the obfuscated matrix of fingerprint2. Thus, the result of 

comparison is 0.0563, which is greater than 0.000009, and this is our threshold in the 

comparison process that has been defined for our experiment. Therefore, the result of 

comparing these two fingerprints is not matched. Consider Figure 5.9. 
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Figure 5.9: Result of comparing between two different obfuscated fingerprints. 

The second case compares the obfuscated fingerprint1 with the same image stored 

in its obfuscated form. The DencBM1 is the obfuscated matrix of fingerprint1 and the 

DencBM01 is the obfuscated matrix of the previously stored fingerprint1. The result of this 

comparison is shown in Figure 5.10. 

Note that the server does not only do the comparison, it also stores each obfuscated 

fingerprint. The server stores a data set of all obfuscated fingerprint matrices to compare 

between them and the input one. The server returns the comparison results as “Exist” if the 

input obfuscated fingerprint matches with one of the stored obfuscated fingerprints. 

Otherwise the result will be “Not Exist.” 

If the result is “Exist,” the server returns the histograms of the matching obfuscated 

fingerprints along with a copy of the obfuscated matched matrix already stored. The client 

has a choice to verify if the result is correct. In this case, the client needs to spend extra 

resources for the comparison between two matrices. In this case, the clients de-obfuscates 

the matrix received from the server. 
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Figure 5.10: Result of comparing between two obfuscated fingerprints 

5.5. Implementing de-obfuscating process 

After receiving the matched obfuscated matrix from the server, the client de-

obfuscates it and compares it with the original integer matrix of the fingerprint. The client 

keeps the original integer matrix generated from the current input fingerprint during the 

preprocessing stage, until it receives the final result from the server, and compares that 

result with its temporary saved matrix.    

The client de-obfuscates the received obfuscated matrix of the fingerprint that the 

server claims it has matched with the input matrix, in order to compare it with the original 

matrix of the input fingerprint.  

In this section, the algorithms and techniques for implementing the de-obfuscating 

process is presented and described in detail. In the de-obfuscating process, we use some 

mathematical operations. This process has been implemented with Java, because Java 

provides many mathematical operations that simplify the implementation of these 

techniques. These operations save both time complexity and space complexity of the de-
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obfuscating process. 

Consider Algorithm 5.9, which shows how the de-obfuscating process works.  

 

This algorithm is mainly dependent on the number of rows and columns of encBM 

matrix. Thus, if m is the number of rows and n is the number of columns, then time 

complexity of this algorithm is O(mn). 

Algorithm 5.9 De-Obfuscating Stage  

Input: obfuscated matrix encBM[1..m][1..n] of obfuscated 
objects, private key PK[1..x] 

Output: de-obfuscated matrix d[1..m][1..2n] of integer 
elements. 

Steps: 

1. dc  0 

2. for r  0 to m-1 

3. for c 0 to n-1 

4. dec  result of de-obfuscated integer value of 
obfuscated content of encBM[r][c] 

5. break dec block into two integer number by using 
hashed digit counter content in encBM[r][c].  

6. d[r][dc]  first resulted integer number of 
breaking block dec 

7. Increment dc 

8. d[r][dc]  second resulted integer number of 
breaking block dec 

9. Increment dc 

10. end for  

11. dc  0 

12. end for 
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A screenshot has been taken of the result of the de-obfuscating process. However, 

only a segment of the dm matrix is shown in Figure 5.11. 

Figure 5.11: A part of the 2D dm matrix 

Then a small comparison is done by using the Matlab environment, because it can 

easily and simply compare between two matrices in linear time. We use the histogram-

comparison method to do so. Consider Figure 5.12, which shows an example of the 

comparison results between the input fingerprint’s original integer matrix and the de-

obfuscated fingerprint, which has been converted into its original integer matrix form. 
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Figure 5.12: Result of comparing original integer matrices 

Figure 5.12 shows the histogram test between the integer matrix of the input 

fingerprint (H1), and the received de-obfuscated matrix (H2). The result of the comparison 

is equal to zero, which means that the server computation result is correct. 

In this chapter, we have presented the implementation of our proposed framework. 

We have demonstrated that the result of obfuscating data using our framework is 

reasonably acceptable, meaning that our proposed framework can be used to hide actual 

data from the cloud server without affecting the comparing process of the server. We have 

also reduced the computation by using sets of blocks with fewer private keys, which 

positively impacts the computational complexity. In the next chapter, we will present the 

result of testing and compare it with other similar approaches. 
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CHAPTER 6: DISCUSSION AND EVALUATION 

 

This chapter presents a critical examination of our findings and discusses what has 

been learned from our research. In order to test the effectiveness of the proposed 

framework, two experiments are conducted.  In the first experiment, we are going to show 

the effects of reducing the image size on both time and accuracy of the final results. While 

in the second experiment, we are going to show the effects of various amounts of used sets 

for grouping the obfuscated matrix elements. In addition, in this chapter we outline, with 

impartiality, the advantages and the disadvantages of our approach. We also compare our 

proposed approach with other similar techniques, in regard to used techniques, speed, and 

security.  

6.1 Image-reduction experiment 

In this experiment, we test how both the obfuscation time and the comparison 

accuracy are affected by reducing the image size. A comparison between six fingerprint 

images is done in their original form and on their obfuscated form. The reduction criterion 

we used is the number of pixels of the image size. As we reduce image size by three turns—

that is, in turn 1—we reduce the size into half of the original size; in turn 2, we further 

reduce the image by half, which is equivalent to one-fourth of the original image size; and 

the reduction continues in that manner. Note that each image’s original dimension is 172 * 

255 pixels.  In turn 1, the image is reduced to 86 * 129 pixels. In the second reduction turn, 

the reduced size resulting from turn 1 is further reduced to 44 * 66 pixels. In the last turn, 

it is reduced to 22 * 34 pixels.  

Consider Table 6.1, which shows the comparison results of each reduction turn and 
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the average error and the percentage error of each reduction turn. After each reduction turn, 

we compare the reduced image size of the fingerprint with the first fingerprint image 

(denoted as Fing1), which also has been reduced by using the same reduction process. 

Therefore, we first compare each fingerprint image with the first fingerprint image (Fing1) 

before reducing them, and their original size is 177 * 255 pixels. The value of comparing 

these fingerprints represents the accurate comparison value. Then all of the fingerprint 

images are reduced to their halved size, and each of these reduced images is compared with 

the reduced fingerprint 1 (Fing1). We do the reduction turn three times, and each time, we 

compare each of these reduced images with the first fingerprint, which is also being 

reduced by the same reduction rate. After collecting all of these comparison values, we 

calculate the average error for each turn and compare it with the average error of the 

comparing images before reducing them. The experiment scenario is the following:  

1. Compare each fingerprint image with the first (Fing1); in this step all fingerprint 

images are in their original size, 177 * 255 pixels.     

2. Obfuscate each fingerprint image and compare each fingerprint image with the first 

obfuscated fingerprint image (enc (Fing1)).  

3. Defined the required time for obfuscating each fingerprint image.  

4. Reduce each fingerprint image to its half size. 

5. Compare each reduced fingerprint image with the first one reduced (Fing1).     

6. Obfuscate each reduced fingerprint image and compare each reduced fingerprint 

image with the first obfuscated and reduced fingerprint image (enc (Fing1)).  

7. Define the required time for obfuscating each reduced fingerprint image.  
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8. Repeat step 4 to do the calculation for the second reduction turn.   

9. Repeat step 4 to do the calculation for the third reduction turn.   

After collecting the result of each step, we count the average error and the 

percentage error of each reduction turn, and the standard comparison result is the result of 

comparing each image in its original form without reducing its size. 

 

Table 6.1: Reduction Test: Comparing Results 

 

 

Size Original Size 

T0 

172 * 255 

Reduction 

Turn 

T1 

86 * 129 

Reduction 

Turn 

T2 

44 * 66 

Reduction 

Turn 

T3 

24 * 34 

Fing1 0 0 0 0 

enc(Fing1) 0 0 0 0 

Fing2 0.0059 0.008937 0.0032 0.0378 

enc(Fing2) 0.0057 0.0082 0.0028 1.0069 

Fing3 0.0347 0.057069 0.0013 0.0345 

enc(Fing3) 0.028 0.031 0.0014 0.0925 

Fing4 0.0128 0.0071 0.0092 0.0513 

enc(Fing4) 0.0116 0.0023 0.0075 0.0057 

Fing5 0.00066327 0.00048757 0.0015 0.0162 

enc(Fing5) 0.00065335 0.0033 0.0021 0.009131 

Fing6 0.0147 0.0123 0.0155 0.053 

enc(Fing6) 0.0241 0.0038 0.0167 0.079514 

Image comp  

Avg error  

0.011460545 0.014315595 0.005116667 0.032133333 

Enc image 

comp Avg 

error  

0.011675558 0.0081 0.005083333 0.1989575 

Image comp 

Percentage 

error 

0 24.91199153 55.35407202 180.38 

Enc image 

comp 

Percentage 

error enc 

1.8761179 29.32273291 55.64492497 1636.02128 
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Table 6.1 shows that the error rate is directly proportional with image reduction, 

which means that the image-compression accuracy is inversely proportional with image 

reduction. However, there is a small rate of errors when the image is obfuscated, which 

means that obfuscating the image does not have a significant effect on the image-

compression accuracy. Consider Figure 6.1, which shows the effect of image reduction on 

the accuracy of the process.  

Figure 6.1: Reduction Test: Comparison Results  

 

Consider Table 6.2, which records the required time to obfuscate each image in 

each reduction turn.     

Table 6.2: Reduction Test: Obfuscation Time Test 

Size 

Original Size 

T0 

172 * 255 

Reduction 

Turn 

T1 

86 * 129 

Reduction 

Turn 

T2 

44 * 66 

Reduction 

Turn 

T3 

24 * 34 

encTime(Fing1) 4.921 1.784 0.524 0.2 

encTime(Fing2) 4.549 1.621 0.54 0.21 

encTime(Fing3) 4.946 1.691 0.52 0.2 

encTime(Fing4) 4.865 1.662 0.5 0.2 
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encTime(Fing5) 4.698 1.603 0.78 0.46 

encTime(Fing6) 4.918 1.532 0.52 0.19 

Time 

Obfuscation 

Avg 

4.816166667 1.648833333 0.564 0.243333333 

 

Table 6.2 shows that the obfuscation time is directly proportional to the image 

reduction, because as much as the image is reduced, the required time to obfuscate is also 

reduced accordingly. Figure 6.2 shows the effect of image reduction on the obfuscation 

time. 

Figure 6.2: Reduction Test: Obfuscation Time Test 

 

The presented results of the image-reduction tests suggest that the accuracy of the 

image comparison is affected by reducing image size. However, the required time to 

obfuscate the image is significantly decreased if the image size is reduced, yet we must 

choose an appropriate reduction size. As our experiment shows, the turn 1 reduction (86 * 

129) is the most optimal because it does not significantly impact or vary in the comparison 

result. At the same time, turn 1 significantly reduces the required time for the obfuscated 

image. On the other hand, in order to solve the error rate of the comparison result, we can 

decrease the image-comparison threshold. For example, if the threshold is equal to 0.003 
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and if the result of comparing two images is less than or equal to that threshold, we 

reasonably conclude that these two images are nearly the same. However, this threshold 

can be decreased further to get a more accurate comparison result. Note that the threshold 

value is defined only for our experiment purposes.    

6.2 Sets experiment 

In this experiment we test how both the obfuscation time and the comparison 

accuracy are affected by the total number of sets used in each fingerprint image. A 

comparison between six fingerprint images is done in their obfuscated form. The changing 

parameter is the total number of sets used. We first group all obfuscated matrix elements 

into only one set. Then we distribute the obfuscated matrix elements into five sets, then 

into ten sets, and so on, until we have thirty sets. In each distributing cycle we compare 

each fingerprint image with the first fingerprint image (Fing1), and the size of each 

fingerprint is reduced from 172 * 255 elements to 86 * 129 elements. The experiment 

scenario is the following:  

1. Obfuscate each fingerprint image by using only one set. 

2. Compute the required time for obfuscating each fingerprint image. 

3. Compare each obfuscated fingerprint image with the first image obfuscated 

(Fing1).     

4. Obfuscate each fingerprint image by using five sets. 

5. Compute the required time for obfuscating each fingerprint image. 

6. Compare each obfuscated fingerprint image with the first obfuscated (Fing1).     

We repeat step 4 by increasing the total number of sets by five, until we reach thirty 

sets. 
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After collecting the result of each step, we count the average and the percentage 

errors of each grouping cycle, and the standard comparison result is the result of comparing 

each obfuscated image by using only one set. Consider Table 6.3, which shows the 

comparison results of each grouping cycle and the average and the percentage errors of 

each grouping cycle.    

Table 6.3: Set Test: Comparison Results 

Sets 0 5 10 15 20 25 30 

Fing1 0 0 0 0 0 0 0 

Fing2 0.0082 0.009 0.0143 0.01231 0.0169 0.0109 0.01511 

Fing3 0.031 0.0079 0.0127 0.0196 0.0113 0.0381 0.0378 

Fing4 0.0023 0.0065 0.0141 0.01222 0.0113 0.01044 0.01488 

Fing5 0.0033 0.0121 0.0146 0.00184 0.018 0.00533 0.00409 

Fing6 0.0038 0.0077 0.0035 0.0182 0.0094 0.0037 0.00364 

Error enc 

Avg 
0.0081 0.0072 0.009867 0.010695 0.01115 0.011412 0.012587 

Percentage 

Error enc 
0 11.1111 21.8107 32.03703704 37.65432 40.88477 55.39095 

 

Table 6.3 shows that the error rate is directly proportional to the total amount of 

sets used, which means that the image-compression accuracy is inversely proportional to 

the total amount of sets used. Figure 6.3 below shows the impact of the total number of 

sets used to obfuscate the image on the image-compression accuracy. The experiment 

clearly demonstrates that when a greater number of sets are used, the error rates gradually 

increase. For example, the error rate for ten sets is around 21. This increased to 32 for 15 

sets. However, it slightly increases to 38 for 20 sets, and it keeps on increasing as more sets 

are used to obfuscate the image.  
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Figure 6.3: Set Test: Comparison Results 

   

Table 6.4: Set Test: Obfuscation Time Test 

 

Consider Table 6.4. It records the required time to obfuscate each image in each 

grouping cycle.  Table 6.4 shows that the obfuscation time does change steadily with the 

total number of sets used, because in each grouping cycle, the required time for obfuscating 

keeps on increasing. We can conclude that the total number of sets used to obfuscate an 

image does not have a significant impact on the required time for obfuscating, because 

Sets 0 5 10 15 20 25 30 

encTime 

(Fing1) 
1.1611 1.523 1.784 1.611 1.944 1.688 1.781 

encTime 

(Fing2) 
1.921 1.592 1.621 1.881 1.611 1.617 2.001 

encTime 

(Fing3) 
1.621 1.623 1.691 1.599 1.941 2.073 1.571 

encTime 

(Fing4) 
1.581 1.623 1.662 1.611 1.6 1.691 1.733 

encTime 

(Fing5) 
1.612 1.901 1.603 1.631 1.571 1.782 1.894 

encTime 

(Fing6) 
1.73 1.572 1.532 1.931 1.601 1.651 1.601 

Time 

Obfuscation 

Avg 

1.60435 1.639 1.64883 1.71067 1.71133 1.75033 1.7635 
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none of the presented grouping cycles requires more than two seconds in order to be 

obfuscated. Consider Figure 6.4, which shows the total required obfuscated time using 

different set sizes.  

Figure 6.4: Set Test: Obfuscation Time Test  

 

With these results of the set test, we conclude that the total number of sets used for 

obfuscating an image impacts the comparison time. The required time for obfuscating 

image is increased as the number of the required for encrypting blocks that belong to each 

set. Note that in our approach the total number of sets is defined randomly by the program; 

however, in this experiment we have controlled that size and the total number of used sets.   

In order to solve the error rate of the comparison result, we can decrease the image-

comparison threshold. For example, if the threshold is equal to 0.003, and the result of 

comparing two images is less than or equal to this threshold, we can conclude that the two 

images are nearly the same. However, after obfuscating the image by any number of sets, 

we can decrease the threshold in order to get an accurate comparison result. Note that the 

threshold value is defined for the experiment purposes.     
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6.3 Discussion 

In general, our framework first reduces the image size to an appropriate size and 

converts it from a colored image to gray to reduce the number of dimensions of the 

matrix—that is, the image is changed from three to two dimensions. These steps, size 

reduction and changing dimensions, are essential for saving computational complexity in 

the obfuscating stage as shown in Table 6.2. Our experiments show the direct impact of 

reducing image size on the obfuscation time. Note that if the image is not converted to 

gray, then the obfuscation will take O(n3); whereas after converting the image to gray, the 

obfuscation work requires O(n2), which is the same as reported in [9]. However, the 

obfuscation operations in our framework require less computation than required for the 

approach in [24], which are O(n3) operations in the obfuscation stage.    

Our framework is based on a single server system. Therefore, our approach, to 

verify the server’s results, must be an FHE system, or we must incorporate some operations 

done on the client’s side to verify the server’s final results. Therefore, our verification 

operation is done only if the server’s final result is “Exist!!” Once the server claims that 

there is a match between the input image and one of the stored images, it returns the 

obfuscated matched image to the client, so the client can decrypt it and compare it with the 

input image that was sent to the server. All of these operations require O(n2) work, which 

is the same verification requirement in [9]. However, in [24] the verification operations 

require less work because it only needs O(n) work. Nevertheless, our framework does not 

leak any private information as reported in the [25] approach.   

Our approach uses the tough-to-crack Rabin cipher, which is highly secure because 

of its resistance to factorization. However, if its public key is factorized into the correct 
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two prime numbers that it consists of, then this secure technique will likely be cracked. 

Therefore, in our framework we omit the public key and choose to use only the private key; 

this approach leaves no clues that malicious entities could use to crack the cipher. Using 

our new techniques, we encrypt our plain data by using multiple keys for multiple sets. 

Therefore, our approach is vastly more secure than the approach in [27] because our 

framework requires less computational complexity. Because our public key is factorized 

into three large prime numbers, rather than the two in the decryption technique in [27], the 

result of decryption is equal to eight candidate roots rather than two, as there isn’t any 

technique to identify the correct root. In our approach, we keep using two large prime 

numbers without using a public key, and our decryption technique results in only four 

candidate roots using our tokenization technique, which helps us to find the correct root 

among these four roots. In our approach, once it recognizes the correct root, it stops 

computing the other roots.  

In our framework, we use the Garner algorithm [5] in the decryption technique, 

because it reduces the multiplication operations used for solving the Chinese remainder 

theorem by half. In [5], the approach reduces the resulting four roots to two; however, it 

does not use any technique to discover the correct one. In our approach, the decryption 

technique still produces four roots, but we can recognize the correct root among these four 

by using our tokenization technique.  

In order to obfuscate a matrix, the existing approaches provide two choices to 

encrypt the elements in the matrix: One is to encrypt the entire matrix using only one 

private key, and this saves the client excessive computational efforts. The other choice is 

to encrypt each element of the matrix with different private keys, resulting in the client 
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having to save a large number of keys. In the first choice, there is a high risk that all 

elements will be disclosed if the key is compromised. In the second approach, although the 

computational overhead is high, compromising one key reveals only one element.  Both 

approaches have their own advantages and disadvantages. We address the disadvantages 

of both approaches by grouping matrix elements into sets of different sizes, and each 

element in a set is encrypted by the same private key of the set, where each set has its own 

private key to encrypt its elements. The client needs to generate and save an array of private 

keys, and the size of that array should be equal to the number of sets used to group matrix 

elements. This approach is a compromise between the two existing approaches.  

 However, our proposed framework has a few limitations. The first weakness is that 

all outsourced data, in order to be computed correctly by the server, must be encrypted with 

the same array of private keys. This is because all obfuscated images are of the same size 

and the elements of each matrix must be grouped in the same order of sets with the same 

variances in size. 

The second weakness of our approach is that when the client sends an image to be 

computed by the server, the client must save the original integer matrix of the input image, 

because our de-obfuscation technique only returns the original integer matrix of the image. 

Therefore, in order to check the results sent by the server, the client must keep the original 

integer matrix so that he or she can compare it with the de-obfuscated integer matrix 

received from the server. This problem can be addressed by adding an additional tool to 

the de-obfuscation technique. The new tool can transform the integer matrix to a matrix of 

pixels. However, this issue is outside the scope of this research. 

The third weakness is that we noticed that our decryption techniques sometimes 
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confuse and wrongly recognize an incorrect root among all of the four resulting roots. This 

problem occurs only if two of the four resulting roots have the same token value. However, 

this problem rarely occurs when we decrypt a matrix of size 86 * 129.  

6.3.1. Comparative Analysis  

In this section, we provide a comparison that considers the complexity order, 

advantages, and disadvantages of the Rabin and RSA improvements in our approach. We 

also provide another comparison that considers the complexity order, advantages, and 

disadvantages of the proposed systems in [9] and [24] with our system.  

Consider Table 6.5 below, which shows the comparison of the complexity order, 

advantages, and disadvantages of each Rabin improvement in our approach. 

Table 6.5: Comparative Analysis between Rabin’s and RSA Algorithms. 

Algorithm 
Encryption 

Speed 

Decryption 

Speed 
Advantages Disadvantages 

[48] O(n2) O(n3) 

Overcomes Rabin 

decryption failure. 

No extra computation is 

required during 

decryption. 

Plain text domain 
is restricted. 

[30] O(n2) O(n3) 
Overcomes decryption 

failure of solving CRT. 

Requires more 

computational 

complexity in 
both encryption 

and decryption 

processes than the 

normal RSA 

technique. 
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[44] O(n2) O(n3) 
Overcomes decryption 

failure of solving CRT. 

Requires more 

computational 

complexity in 

both encryption 

and decryption 

processes than the 

normal RSA 

technique. 

[37] O(n2) O(n3) 
Security is higher than 

RSA 

Decryption 

failure. 

our 

approach 
O(n2) O(n2) 

Overcomes decryption 

failure of solving CRT. 

High security.  

Decryption 

methodology is faster 

than the normal Rabin 

decryption 

methodology. 

Decryption has 

small probability 
of failing. 

 

 

Table 6.6: Comparative Analysis between Our System and Other Provided Systems. 

System 
Encryption 

Speed 

Decryption 

Speed 
Advantages Disadvantages 

[9] O(n2) O(n2) High security 

Decryption system 
may lack, if a 

failure happened in 

the verification 

server 

[24] O(n3) O(n3) 

Higher decryption 

speed than the other 

systems 

Leak of privacy 

information 
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Our 

approach 
O(n2) O(n2) 

Overcomes decryption 

failure of solving 

CRT. 

High security.  

Decryption 

methodology is faster 

than the normal Rabin 
decryption 

methodology. 

All outsourced 
data must be 

decrypted with the 

same array of 

private keys. 

Decryption has 

small probability 

of failing. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

 

The main goal of this research was to develop an approach that can secure clients’ 

outsourced data and can ensure privacy of these data while being processed by or stored in 

the cloud severs or any external agent. The client uses cloud computing mainly to do the 

complex computations on the outsourced data, in order to eventually save these data on the 

cloud server. The secure outsourcing would not be effective if the client uses effort-

consuming and complex techniques, such as an FHE technique. The client needs to use a 

lightweight approach that can secure outsourced data and allow the cloud servers to 

compute on these data correctly without knowing the data’s actual value. To achieve this 

multifaceted approach, this thesis has proposed techniques that not only address clients’ 

security and privacy needs, but also allow cloud servers to compute on the outsourced data 

accurately without knowing the data’s actual value or form. An added benefit to our 

approach is that if the cloud server or storage were compromised by unauthorized entities, 

the privacy of the obfuscated image would remain intact.  

Our specific contributions in this thesis are: 

 The proposed obfuscating technique uses a modified Rabin cipher without a 

public key.  

 Our approach ensures that the possibility of guessing the two large prime 

numbers (private key) is very weak.  

 We have introduced a new block technique, which builds blocks of different 

lengths, yet each block contains a fixed number of elements.  
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  We have decreased computational complexity by requiring fewer numbers of 

private keys, a strategy that is based on our new technique of creating a random 

number of sets with varied size.  

 We have addressed the drawback of the Rabin cipher’s decryption technique 

by introducing tokenization and a digit counter, both of which support the de-

obfuscation operations.  

The limitations identified in the previous chapter are to be addressed in future 

research.  

 We could develop a new technique that could convert the integer matrix back 

to its image from.  

 We aim to research further how we could use classification techniques that 

compare between images by using the features of images. 

  We could explore how optimal garbled computing could efficiently be used 

to outsource images to cloud.     
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