
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023 15887

Collaborative Byzantine Resilient
Federated Learning

A. Gouissem, K. Abualsaud , Senior Member, IEEE, E. Yaacoub , Senior Member, IEEE,
T. Khattab , Senior Member, IEEE, and M. Guizani , Fellow, IEEE

Abstract—Federated learning (FL) enables an effective and
private distributed learning process. However, it is vulnerable
against several types of attacks, such as Byzantine behaviors.
The first purpose of this work is to demonstrate mathemati-
cally that the traditional arithmetic-averaging model-combining
approach will ultimately diverge to an unstable solution in the
presence of Byzantine agents. This article also proposes a low-
complexity, decentralized Byzantine resilient training mechanism.
The proposed technique identifies and isolates hostile nodes
rather than just mitigating their impact on the global model. In
addition, the suggested approach may be used alone or in con-
junction with other protection techniques to provide an additional
layer of security in the event of misdetection. The suggested solu-
tion is decentralized, allowing all participating nodes to jointly
identify harmful individuals using a novel cross check mecha-
nism. To prevent biased assessments, the identification procedure
is done blindly and is incorporated into the regular training
process. A smart activation mechanism based on flag activation
is also proposed to reduce the network overhead. Finally, gen-
eral mathematical proofs combined with extensive experimental
results applied in a healthcare electrocardiogram (ECG) monitor-
ing scenario show that the proposed techniques are very efficient
at accurately predicting heart problems.

Index Terms—Byzantine attacks, convergence analysis, dis-
tributed learning, E-health, federated learning (FL).

I. INTRODUCTION

FEDERATED Learning (FL) is a recent technique that has
been proposed just five years ago in [1]. However, it has

attracted a lot of attention in just few years thanks to its ability
to enable efficient machine learning (ML) prediction models
training while preserving the privacy of users’ data [2]. FL
can be very useful in several applications where the data is
private and decentralized [3], [4], [5]. In particular, health-
care Internet of Things (IoT) networks constitute a major

Manuscript received 13 November 2022; revised 28 January 2023; accepted
25 March 2023. Date of publication 11 April 2023; date of current ver-
sion 7 September 2023. This work was supported by NPRP Award from the
Qatar National Research Fund (a member of The Qatar Foundation) under
Grant NPRP13S-0205-200270. The statements made herein are solely the
responsibility of the authors. (Corresponding author: K. Abualsaud.)

A. Gouissem is with the College of Computing and Information
Technology, University of Doha for Science and Technology, Doha, Qatar
(e-mail: ala.gouissem@ieee.org).

K. Abualsaud and E. Yaacoub are with the Department of
Computer Science and Engineering, Qatar University, Doha, Qatar
(e-mail: k.abualsaud@ieee.org; eliasy@ieee.org).

T. Khattab is with the Department of Electrical Engineering, Qatar
University, Doha, Qatar (e-mail: tkhattab@ieee.org).

M. Guizani is with the Machine Learning Department, Mohamed Bin
Zayed University of Artificial Intelligence, Abu Dhabi, UAE (e-mail:
mguizani@ieee.org).

Digital Object Identifier 10.1109/JIOT.2023.3266347

application domain for potential application domain for FL
due to the widespread and heterogeneity of IoT networks
in addition to the sensitivity of the private health-related
data [6], [7], [8], [9].

However, the data privacy preservation in FL comes at the
cost of a decreased level of transparency in model updates
which makes it vulnerable to several types of attacks, includ-
ing but not limited to, poisoning attacks, exploratory attacks,
and evasion attacks [10]. In particular, the poisoning attacks
are among the most common attacks in FL as they can use
limited resources to degrade the performance of the training.
Such attacks can be initiated by malicious users control-
ling one or multiple data owners in order to falsify the data
or model updates. These users may inject falsified report
updates [11], [12], data, labels, or even data sizes during the
training phase [11], [13], [14], [15]. This allows malicious
users to exploit the linearity of model aggregation to alter
the classification decision into a specific target [11], [16]. To
prevent the FL network vulnerabilities to Byzantine (adver-
sarial) attacks, several strategies have been presented in the
literature. These techniques can isolate malicious nodes and
reports based on norm and weight control or distance-based
analysis. They can even be detected using performance-based
metrics and encryption mechanisms.

These methods may isolate malicious reports using weight
or norm control. In particular, Portnoy et al. [13] proposed
a model balancing approach based on data size truncation in
order to combat a specific type of poisoning attack related to
reporting large data volumes that could bias the aggregated
model. Norm bounding is also used in [17] to truncate reports
with unusually high norms. However, in FL networks, where
the attackers’ strength and weights are already constrained,
such approaches could be ineffective.

A comparison of reports’ distance may also be effective in
identifying dishonest nodes. In particular, instead of the tradi-
tional arithmetic averaging, a stable variation of the gradient
descent is presented to conduct model aggregation based on
the geometric median in [15]. Another solution was proposed
in [16] based on cross distance norm minimization to design an
aggregation scheme named Krum that can be robust against a
preset specific number of Byzantine attackers. In [18], a robust
set of techniques is designed based on median and trimmed
mean operations to provide order-optimal statistical error rates
for highly convex losses and protect the FL training. The dis-
tance between the legitimate and poisoned reports is analyzed
in [19] using autoencoders to learn the general training model

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6693-3386
https://orcid.org/0000-0002-3318-0621
https://orcid.org/0000-0003-2347-9555
https://orcid.org/0000-0002-8972-8094

15888 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

trend in order to identify Byzantine nodes in an iteratively
distributed fashion. Performance comparison methods present
other strategies that can protect against poisoning attacks by
using a centralized validation data set that is publicly acces-
sible. For example, the malicious nodes’ reports are weighted
based on a ReLU-clipped cosine similarity trust score com-
puted in FLTrust [20] with reference to a centralized validation
data set. However, such methods make use of a centralized
validation data set or make impractical assumptions on the
perfect knowledge of legitimate node reports. Additionally, a
number of strategies in the literature make use of detection
that requires complex iterations.

The protection from Byzantine attackers can also be per-
formed by modifying the training algorithm itself. For exam-
ple, Li et al. [14] proposed a robust decentralized algorithm
that can combat Byzantine data falsification by using a modi-
fied version of the alternating direction method of multipliers
(ADMMs) algorithm. Some other techniques make use of key
sharing and encryption mechanisms to protect FL. For exam-
ple, So et al. [21] used a key sharing and participants selection
mechanisms based on private pairwise distance calculations.
However, such approaches might be challenging to implement
in resource-constrained networks.

The key concern when evaluating and combating the threat
from Byzantine attackers in [16] is based on the linearity of the
FL model aggregation and the assumption that the hostile nodes
can perfectly eavesdrop the other users’ reported updates. This
allows malicious nodes to report specific updates that cause
the model to converge to a false target. In addition, most of
the above Byzantine combating techniques aim to design an
aggregation mechanism or criteria (e.g., geometric mean or
Krum) that tries to minimize the effect of the falsified reports
on the global model without actually identifying the hostile
node. Furthermore, because data set volumes are growing at an
exponential rate, effective prediction, and classification models
often require a high number of layers and neurons. Therefore,
since most of these techniques are based on the computation and
processing of the cross-distance weight norm between all the
participating data owners, the centralized protection mechanism
becomes a heavy computational process, particularly when the
involvement of different agents is large.

We show in this article that even if a single Byzantine
attacker is unaware of the collaborative updates and sends
random reports, the entire model can diverge to extreme
nonuseful values. A low-complexity decentralized Byzantine
robust training mechanism is proposed thereafter. First, the
proposed mechanism aims to identify the malicious nodes
instead of alleviating their effect on the global model. This
can give the network administrators enough information to
exclude such participants from the FL network when neces-
sary. The proposed scheme can be applied either separately or
in conjunction with traditional Byzantine combating schemes
to add an extra layer of protection in case of misdetection. The
proposed approach is decentralized and allows all the partic-
ipating nodes to collaboratively identify malicious users. To
avoid biased evaluations, the identification process is incor-
porated into the standard training process, causing all the
nodes to blindly participate in the collaborative evaluations.
To reduce network overhead caused by the cross-evaluation, a

smart activation mechanism is designed based on specific flags
that indicate the potential appearance of Byzantine nodes in
the network.

The main contributions of this work are summarized as
follows.

1) Investigate the effect of blind Byzantine attack on FL
model convergence.

2) Design a low complexity, decentralized Byzantine
resilient FL training mechanism.

3) Design a collaborative blind cross evaluation mechanism
that allows the identification of malicious users.

4) Propose a smart activation mechanism to reduce the
evaluation network overhead.

5) Validate the efficiency of the proposed scheme with a
convergence mathematical proof.

6) Validate the accuracy of the proposed scheme in
predicting heart diseases with experimental simula-
tions in a healthcare monitoring scenario using the
Physikalisch-Technische Bundesanstalt database electro-
cardiogram (PTBDB ECG) data set.

The remainder of this article is organized as follows.
Section II presents the adopted system model. The conver-
gence of the federated averaging scheme in the presence of
blind Byzantine attackers is investigated in Section III. The
proposed collaborative cross-check mechanism is then detailed
in Section IV. The numerical results are presented in Section V
to evaluate the performance of the proposed scheme. Finally,
Section VI concludes the article.

II. SYSTEM MODEL

As depicted in Fig. 1, the adopted system model consists of
a set of NU healthcare facilities denoted by N1, . . . , NNU . A
private data set related to patients’ electrocardiogram (ECG)
readings is assumed to be locally stored in each of these facil-
ities. The objective in the sequel is to exploit the available
data to design an automated artificial neural network (ANN)
model that can efficiently predict whether a patient has a
heart disease based on his/her ECG readings. Each hospital
or healthcare facility can train a local model based on its own
data. However, such an approach would lack prediction accu-
racy due to the limited number of available data entries at each
facility. Consequently, FL is used to let all the nodes collabo-
rate in designing a global prediction model without having to
share the patient’s private data.

The satisfaction of the privacy constraints during the model
training process comes at the cost of a raised vulnerability
to several potential attacks, such as poisoning and Byzantine
attacks. NB nodes are assumed to be compromised and trying
to mislead the global model by sending falsified model updates
to the server.

Each data owner Ni aims to train an ANN model that mini-
mizes its cross entropy loss function Li(.) [22], [23] computed
based on its locally stored data set Di. For an ANN model with
weights w, the combined loss function L(w) is defined as

L(w) =
NU∑

i=1

σiLi(w) (1)

GOUISSEM et al.: COLLABORATIVE BYZANTINE RESILIENT FEDERATED LEARNING 15889

Fig. 1. System model.

where σi denotes the ratio of the data set Di size compared to
the cumulative size of all data sets of the participating agents
(
∑NU

i=1 σi = 1).
The convergence of the model training when using the syn-

chronous distributed gradient descent learning algorithm, also
referred to as FedSGD [22], [24], [25] is investigated in the
presence of Byzantine nodes. A blind crosscheck mechanism is
also proposed to enable the different nodes to blindly identify
the malicious node and protect the model design.

III. LIMITATIONS OF FEDERATED AVERAGING

UNDER BYZANTINE ATTACKS

A. Model Update Process

The server begins the learning by constructing a random
baseline ANN model with weights w0

G. This model is shared
with all NU data owners, who utilize it to retrain the ANN
model by making use of the locally stored data. Using the
FedSGD [25] with a stepsize μ, each data owner Ni generates
its weights vector wt

i. These weights are computed to min-
imize the local loss while using the received global model
wt−1

G as [22], [24], [25]

wt
i = wt−1

G − μ∇Li

(
wt−1

G

)
(2)

where ∇f (.) denotes the gradient of the function f (.).
In the Byzantine free case, the models received by the server

at time t are combined into a global model wt
G as follows:

wt
G =

NU∑

i=1

σiwt
i. (3)

When the network is under Byzantine attack from NB mali-
cious nodes, the model update is done as follows:

wt
G =

NU∑

i=1

σ̂iwt
i +

NB∑

i=1

σBi w
t
Bi

(4)

where wt
Bi

(i = 1 . . . NB) denotes the falsified report shared
by the Byzantine node Bi. Also, σ ′i denotes the ratio of the
data set Di size compared to the cumulative reported data

set sizes of both legitimate and malicious users. Similarly,
σBi corresponds to the ratio of the reported size by Bi, relative
to the cumulative legit and malicious data set sizes.

B. Convergence Proofs and Analysis

In this section, we show that even a single Byzantine node
unaware of the FL model updates and just sending random
reports would cause the whole FL model to diverge. In fact,
we prove in the sequel that the global model will not only be
nonaccurate, but it will totally diverge to nonuseful solutions.

Theorem 1: The federated averaging model under Byzantine
attacks will diverge independently from the number of attackers,
the number of legit nodes, and their report powers, even if the
Byzantine node just sends a random message.

Proof: The proof is done by contradiction. In particular,
we assume that the FL model is close to convergence
(i.e., ∇Li(w

t−1
G) ≈ 0 ∀i = 1 · · ·NU). and we prove that the

model will diverge to nonuseful values.
From (2), it follows that when the FL model is close to

convergence, the different local models become stable, i.e.,

wt
i = wt−1

G − μ∇Li

(
wt−1

G

)
≈ wt−1

G . (5)

By aggregating the stable local models, the global model at
time t can be approximated by

wt
G =

wt
L︷ ︸︸ ︷(NU∑

i=1

σ ′i

)
wt−1

G +
wt

M︷ ︸︸ ︷
σBwt−1

B , where
NU∑

i=1

σ ′i + σB = 1. (6)

Depending on the power of the reports, the global model
can be interpreted differently for the below three cases.

1) Case 1:
∥∥wt

M

∥∥ <<
∥∥wt

L

∥∥.

2) Case 2:
∥∥wt

M

∥∥ >>
∥∥wt

L

∥∥.

3) Case 3:
∥∥wt

M

∥∥ ≈ ∥∥wt
L

∥∥.

1) Case 1 (Small Malicious Contribution): When
∥∥wt

M

∥∥
<<

∥∥wt
L

∥∥, the malicious reports’ weights can be neglected
and (6) can be approximated as follows:

wt
G ≈

NU∑

i=1

σiw
t−1
G . (7)

Consequently, after n iterations, the global weights would
become

wt+n
G ≈

(NU∑

i=1

σi

)n

wt−1
G . (8)

Since (
∑NU

i=1 σi) = 1 − σM < 1, it follows that after a large
number of iterations, W∞G becomes

W∞G = lim
n→∞

⎛

⎝
(NU∑

i=1

σi

)n

Wt−1
G

⎞

⎠ = 0. (9)

This proves first that the global model diverges when the mali-
cious reported weights are very small compared to the legit
ones (case 1). It also shows that if the global model gets
close to the optimal solution then a Byzantine node with small
weights appears, the global model will eventually diverge to 0.

15890 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

2) Case 2 (Small Legit Contribution): When
∥∥wt

M

∥∥ >>∥∥wt
L

∥∥, it follows from (6) that:

wt
G = σBwt−1

B . (10)

This shows that the malicious node has full control over the
global model and that the global weight would converge to the
random model suggested by the malicious node.

3) Case 3: When
∥∥Wt

M

∥∥ ≈
∥∥∥Wt−1

G

∥∥∥, no term can be
ignored in comparison to the other.

Assume that wt
Gi

and wt
Bi

are the weights of the global and
Byzantine models, respectively, at time t. This section analyzes
the variance of wt

Gi
variation during the distributed training

process to determine the model convergence status. Due to the
independence of the Byzantine model from the global model,
the individual weights variance update can be expressed as
follows:

vt+1
i = σ 2

L vt
i + σ 2

Bbt
i (11)

where

vt
i = E

(
wt

Gi

)
, bt

i = E
(
wt

Bi

)
, σL =

NU∑

i=1

σ ′i . (12)

Proposition 1: By assuming that the statistical properties
of the random Byzantine reports do not change over time, the
variance of the global model weights will converge, i.e.,

∀i If ∀t, bt+1
i = bt

i, ∃ṽi, s.t. lim
t→∞

(
vt

i

) = ṽi. (13)

Proof: See Appendix A
Assuming dt+1

i = vt+1
i − vt

i, we demonstrate that ṽi corre-
sponds to the extreme zero model by evaluating the various
probable convergence spots. In particular, when the expression
of dt+1

i is analyzed as a function of vt
i, it can be proven that

⎧
⎨

⎩

dt+1
i < 0, if vt

i > v̄i

dt+1
i > 0, if vt

i < v̄i

dt+1
i = 0, if vt

i = v̄i

(14)

where

v̄i = bt
iσB

σL + 1
. (15)

According to (14), if vt
i > v̄i, vt

i will continue to decrease
until it reaches v̄i. Furthermore, if vt

i < v̄i, vt
i will continue

to grow continuously until it reaches v̄i. Additionally, the last
term in (14) indicates that the only value that could maintain
the stability of vt

i (vt+1
i = vt

i) is vt
i = v̄i. This indicates that

if vt
i converges, it will converge to v̄i. When combining this

result with Proposition 1, it follows that:

lim
t→∞

(
vt

i

) = bt
iσB

σL + 1
. (16)

Note that (16) reveals an interesting fact which is that
the variance of the weight after convergence (vt

i) is linearly
dependent on the variance of the Byzantine model (bt

i). This
indicates that the Byzantine node has full control over the
final model weights variance. For example, just by sending
very high reports, the model will diverge to infinity. Similarly,
if the Byzantine reports very small weights, the global model

will converge to zero. Such behavior can be easily detected
with weight norm checking. However, what is more important
here is that even if the Byzantine node sends weights in the
normal range, the limit of vt

i is, generally, very close to zero.
In fact, the limit expression in (16) is proportional to the ratio
of the Byzantine data size (σB) to the full data size added to
all the legitimate data sizes combined (1+ σL). For instance,
if ten nodes, including one malicious agent, are involved in
the distributed training, and if all the nodes have almost the
same reported data size, then the variance vt

i would converge
to just 5% of the original bt

i. As a result

lim
t→∞

(
vt

i

) ≈ 0. (17)

This concludes the proof of Theorem 1 and confirms that
when only one malicious node is present in the FL network,
using the traditional weights averaging would result in a model
with weights that are most of the time equal to zero, or just
random values reported by the malicious node in some extreme
scenarios. In all cases, the FL can never converge to any useful
model.

IV. PROPOSED BYZANTINE RESILIENT MECHANISM

A. Motivation

A low-complexity cooperative aggregation scheme is
proposed to identify the malicious nodes in this article. The
identification process is done in a blind decentralized way that
allows all the nodes to participate in the identification process
with less complexity and without actually knowing that they
are evaluating each other’s trustworthiness. This technique
can also be used in conjunction with the schemes existing
in the literature to combat Byzantine attacks in the event of a
misdetection.

B. Trustworthiness

To identify malicious/Byzantine nodes, mutual trustworthi-
ness Ti,j is defined between each couple of nodes Ni and Nj.
In particular, Ti,j is a computed expectation of the contribu-
tion of Nj on the global model loss according to node Ni.
Equivalently, Ti,j reflects how much node Ni trusts node Nj.
Mathematically speaking, the trustworthiness Ti,j at time t is
defined as follows:

Tt
i,j = Li

(
wt−1

G

)
− Li

(
wt

j

)
. (18)

Since the global objective of FL is to minimize the loss func-
tion, a higher value of Ti,j corresponds to a high level of trust.
The cooperative global trust of a node Nj is defined as the aver-
age trust level of the node Nj according to all the remaining
nodes in the network

Tt
i =

1

N − 1

N∑

i=1,i 	=j

Ti,j

≈ L
(

wt−1
Gj

)
− L

(
wt

j

)
. (19)

By evaluating the trustworthiness of each node, Byzantine
nodes can be identified and isolated to improve the global

GOUISSEM et al.: COLLABORATIVE BYZANTINE RESILIENT FEDERATED LEARNING 15891

Fig. 2. Model training operation mode.

Algorithm 1 Data_Owner_Training(wG)

1: Loss← Li(wG)

2: Train the ANN model using the local data Di starting from
wG

3: wi ← Updated model
4: Send wi and Loss to the server

model. However, the computation of this trust level is challeng-
ing because the data that would be used to evaluate a model
of another node is only available locally. Also, if a bunch of
malicious nodes realize that they are actually evaluating the
performance of the other nodes, they can simply report high
trust levels to the other Byzantine devices. Therefore, a secure
effective and blind trustworthiness cross evaluation mechanism
is proposed in the sequel.

C. Cross-Evaluation Mechanism

In order for the cross-check mechanism to be blind, a node
should not be able to recognize whether it is actually evalu-
ating another node’s performance or not. In particular, similar
to a standard FL model, each device should receive a global
model, try to improve it using the local data and then send
it back to the server. Therefore, the blind cross-check should
be incorporated in this standard FL model training process
without any extra steps that would make the Byzantine nodes
suspicious.

The evaluation is done by defining two possible operation
modes for the FL network, namely:

1) model training mode;
2) malicious nodes identification mode.
As detailed in Fig. 2, during the model training mode, the

server sends the up-to-date global model to the data owners.
Each node updates the received model based on its own local
data and sends it back to the server. The server combines all
the locally trained models to a single global model.

To keep track of the training progress, and as detailed in
Algorithm 1 each node reports the computed loss of the global
model before training it. This allows the server to evaluate the
global model loss and to stop the training when a maximum
loss threshold is reached.

Algorithm 2 presents the regular update at each iteration at
the server side when the system is operating in the model train-
ing mode. The regular update uses as inputs all the collected

Algorithm 2 Regular_Update()
1: if LoadMdl then
2: wG ←∑

i∈SL
σiwBest

i
3: else
4: wG ←∑

i∈SL
σiwi

5: L←∑
i∈SL

σiLi

6: end if
7: if L < Lmax or k > kmax then
8: break
9: end if

10: if Not(LoadMdl) & L ≤ Lbest then
11: Lbest ← L
12: wBest

i ← wi ∀ 1 ≤ i ≤ NU

13: end if

Fig. 3. Malicious nodes identification operation mode.

models wi from all the data owners as well as an input vari-
able denoted by LoadMdl that indicates that the server should
go back and load the best-reported model so far.

The LoadMdl variable will be mainly used in the second
operation mode after the end of the identifications. However,
in the first mode, the server simply aggregates all the collected
models (line 4) and all the reported losses (line 5). If the
computed loss is below the preset threshold (Lmax) or if
the number of iterations exceeds kmax, the training stop and
the best reported model is shared with the data owners.
Otherwise, the lowest combined loss and its corresponding
models are stored at Lbest (line 11) and wBest

i (line 12), respec-
tively. The computed global model is then shared with the data
owners for further updates. In the next rounds, the updates will
be based only on the computed set of legitimate users (SL)

as it will be detailed in the sequel.
Fig. 3 details the identification process in the second opera-

tion mode. In particular, assume that the last computed global
model at time t − 1 before switching to malicious nodes iden-
tification operation mode is equal to wt−1

G , i.e., at time t − 1,
wt−1

G is sent to all the participating nodes to retrain it using
their local data. As detailed above, each data owner Ni com-
putes the loss of the reported global model based on its own
data Li(w

t−1
G), retrain it to a new local model wt−1

i and reports
both to the server. By the end of time slot t − 1, the server
would have collected the evaluation of all the nodes to the
global model (Li(w

t−1
G), i = 1 · · ·N).

15892 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

Algorithm 3 Init()
1: wG ← BaselineModel()
2: Count← 0
3: SL ← 1..NU

4: SB ← ∅
5: postchek← 0
6: T← 0
7: k0 ← 1

As detailed in Fig. 3, when the network is switched to iden-
tification mode, instead of updating the global model and
sending the up-to-date version to all the nodes, at time t,
each node Ni receives the local model wt−1

j of another random
node Nj. By thinking that it is just a new global model, the
node Ni computes the loss of the jth node model at time t− 1
(wt−1

j) based on its own local data. This local loss is then
reported with the updated model to the server. Consequently,
by the end of time slot t, the server collects the computed
losses Li(wt

rt
i
), i = 1 · · ·N, where rt

i denotes the index of
the random node that has its model sent to node Ni at time t.

The server can then compute the cross trustworthiness of
node Nrt

i
based on node Ni data as

Tt
i,rt

i
= Li

(
wt−1

G

)
− Li

(
wt

rt
i

)
. (20)

In particular, node Nrt
i

retrained the model from wt−1
G to wt

rt
i
.

Since the losses of these two models computed based on the
local data of node Ni are available to the server, it can com-
pute the contribution of Nrt

i
on the global model improvement

according to Ni. All this is done without any node knowing that
it is actually evaluating another device’s performance. Since
∪N

i=1(r
t
i) = {1 . . . N}, each device will get a random evaluation

from one other node at each cross checking process.

D. Periodic and Smart Activation Mechanisms

Switching between the two operation modes is controlled
by the server without any knowledge of the data owners. Two
switching mechanisms are proposed in this article to activate
the Byzantine nodes identification mode.

1) Periodic Cross Check: When the periodic cross check
(PCS) activation mechanism is adopted, the network keeps
operating in the normal learning mode for NP iterations. In
particular, Algorithm 3 describes the process at the server
that initializes the baseline global model and all the required
variables.

In Algorithm 4, the server uses the collected models from
the data owners and keeps training the model till the stopping
criterion detailed above in the regular update algorithm (see
Algorithm 2) is reached.

The server update process operates differently in three
scenarios, namely, regular update, check, and post-check sce-
narios. First, check scenario is activated periodically after each
Period iterations starting from k0 (See line 4) and indicates
the starting of the Malicious nodes identification mode by
setting the variable Chk to true. The post-check scenario is
activated using the variable PstCheck after collecting all the

Algorithm 4 PCS_Server_Update()
1: Init()
2: while true do
3: LoadMdl← 0
4: Chk← (mod(k − k0, Period) == 0 & k ≥ k0)

5: RegUpdt← Not(Chk or PstChk)
6: if RegUpdt then
7: Regular_Update()
8: end if
9: if PstChk then

10: Post_Check()
11: end if
12: if Chk then
13: RU← Random_Order(1 : NU)

14: wi
G ← wRU(i), ∀1 ≤ i ≤ NU

15: L
prev
i ← Li

16: else
17: wi

G ← wG, ∀1 ≤ i ≤ NU

18: end if
19: Send(wi

G) to Ni ∀1 ≤ i ≤ NU

20: Receive(Li, wi) from Ni ∀1 ≤ i ≤ NU

21: PstChk← Chk
22: k← k + 1
23: end while
24: Send(wG) to Ni ∀i, 1 ≤ i ≤ NU

models when the system is back to the model training mode.
Equivalently, PstCheck is set true for the next iteration when-
ever Chk is set to true (see line 21). This allows the processing
of the collected cross evaluation metrics. If neither PstCheck
nor Chk are set to true, a regular update is performed by
activating RegUpdt.

When RegUpdt is enabled (line 7 of Algorithm 4), the
server performs regular model aggregation update as detailed
in Algorithm 2. When Chk is activated, the cross-check eval-
uation is performed first by creating a vector RU that contains
the indices of all the participating users in a random order.1

Instead of reporting a unique global model to all users, the
global model for user Ni is defined as the reported local model
for NRU(i) (wRU(i)). This allows each data owner to compute
the loss of another user’s model based on its local data. The
reported loss from each user is then stored to evaluate its evo-
lution in the next iteration. After receiving the updated models
from the data owners related to the crafted global models
(line 20), the PstChk phase is activated.

As detailed in Algorithm 5, the post-check process is per-
formed by computing a new trust level for each user Ni defied
as Tnew(RU(i)) defined as the contribution of the user Ni in the
loss of random user NRU(i). Because the trust level can vary
when computed by one user or another, and to avoid sudden
fluctuations of the trust level, the final trust level considered
in the identification of malicious nodes is computed by taking
into consideration all the previous evaluations in a decreasing

1The function Random_Order is defined so that to make sure an index
cannot remain in the same position, i.e., a user cannot be assigned to take the
model from himself.

GOUISSEM et al.: COLLABORATIVE BYZANTINE RESILIENT FEDERATED LEARNING 15893

Algorithm 5 Post_Check()
1: for i = 1..NU do
2: Tnew(RU(i))← L

prev
i − Li

3: end for
4: T← αTnew + (1− α)T
5: SL ← find(T > 0)

6: SB ← find(T < 0)

7: LoadMdl← 1

Fig. 4. PCS collaborative training.

factor (line 4). Any user with a positive trust level is then
considered as legitimate (line 5) and the remaining ones are
considered as malicious nodes (line 6). The computed sets of
legitimate (SL) and malicious (SB) users are then used in the
model aggregation to include only legit model updates. Fig. 4
summarizes the PCS collaboration and flag update process
detailed in Algorithms 1–5.

2) Smart Cross Check: The second activation mechanism
denoted by smart cross check (SCS) avoids wasting the
network time in identifying Byzantine nodes when the FL
model is operating normally. The identification mode is acti-
vated using specific flags that detect suspicious behavior. In
particular, as proven in Section III, when FedAvg is used to
combine the received reports, the FL training process becomes
very sensitive to Byzantine attacks and diverges even in the
presence of a single malicious device. Also, as proven in
Section III, the divergence in such scenarios occurs mainly
because of the extreme evolution of the model weights norm
most probably to zero. Therefore, two flags are defined to
detect potential existence of Byzantine nodes. The first flag is
denoted by weight fluctuation flag (WFF) and detects sudden
extreme fluctuations of the model weights norm. The second
flag is denoted by the loss fluctuation flag (LFF) and detects
sudden deterioration of the model loss.

The model update process when SCS is adopted is per-
formed in a similar way to PCS but by replacing line 4 of
Algorithm 4 with Algorithm 6 to activate the variable chk
using the above-mentioned flags. In particular, the WFF and

Algorithm 6 SCS_StatusChk()
1: if k > k0 then
2: WFF← Not

(
(1− γth) ≤ ‖w0‖/wG ≤ (1+ γth)

)

3: LFF← L/Lbest > (1+ γth)

4: if WFF or LFF then
5: chk← 1
6: k← 0
7: k0 ← kSCS

min
8: else
9: chk← 0

10: end if
11: else
12: chk← 0
13: end if

LFF flags are activated when the norm of the global model
and loss are not within a normal fluctuation range controlled
by the parameter γth (line 2). In addition, to have accurate
decisions, the algorithm is allowed to activate the cross-check
only if at least kSCS

min iterations have passed. Such mechanism
avoid inaccurate decisions that might follow the post-check
phase where the global model may vary a lot by isolating the
Byzantine nodes and moving back to the best reported model.

E. Convergence Analysis

This section provides a proof that the proposed cross-check
mechanism enables a model train process that converges to the
optimal solution. This is done first by analyzing the monotony
and the convergence of the loss function assuming successful
Byzantine detection. The efficiency of the trust computation in
differentiating the malicious from the legitimate nodes is then
investigated. Finally, a mathematical proof is presented to val-
idate the sensitivity of the defined flags to Byzantine attacks.
The convergence analysis is performed under the assumptions
that the loss function is smooth and convex as detailed below.

Assumption 1: A realistic and widely adopted assumption
in the literature consists of having the loss function L(.) β

smooth, i.e.,

‖∇L(y)−∇L(x)‖ ≤ β‖y− x‖ ∀ x, y ∈ R
NANN . (21)

As stated in [24], this assumption is also equivalent to

L(y) ≤ L(x)+ < ∇L(x), y− x > +β

2
‖y− x‖2 x, y ∈ R

NANN .

(22)

Assumption 2: If the loss function is differentiable, assum-
ing that it is convex is equivalent to the following inequality:

L(y) ≥ L(x)+ 〈∇L(x), y− x〉. (23)

Proposition 2: If all the Byzantine nodes are identified, and
there is at least one identified legitimate user, there exists a
stepsize μ that guarantees

if
(
SB ⊂ ŜB ⇐⇒ ŜL ⊂ SL

)
and ŜL 	= ∅

L̂
(
wt

G

)− L̂
(

wt−1
G

)
≤ −μ

2

∥∥∥∇L̂
(

wt−1
G

)∥∥∥
2

(24)

15894 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

where L̂ denotes the loss computed based on the data of iden-
tified legitimate users, and L̂ satisfies Assumptions 1 and 2.
The sets ŜL and ŜB denote the set of legitimate and Byzantine
nodes, respectively.

Proof: See Appendix B.
Theorem 2: Under Assumptions 1 and 2, if all the

Byzantine nodes are identified, and there is at least one iden-
tified legitimate user, the FL model will eventually converge
to the optimal solution, i.e.,

if
(
SB ⊂ ŜB ⇐⇒ ŜL ⊂ SL

)
and ŜL 	= ∅,

lim
t→+∞

(
L̂
(
wt

G

)) = L̂
(
ŵ∗
)

(25)

where ŵ∗ is the optimal solution that corresponds to the lowest
loss L̂.

Proof: See Appendix C.
Note that Theorem 2 guarantees that if all the Byzantine nodes

are detected, the model will converge to the optimal solution
in terms of L̂ and not in terms of L. Equivalently, the obtained
solution is the optimal based only on the data of the nodes
identified as legitimate. In addition, the convergence proof in
Theorem 2 is performed under the condition of perfect detection
of all the Byzantine nodes. Therefore, Theorems 3 and 4
investigate the ability of the proposed approach to differentiate
between the legitimate and malicious nodes.

Theorem 3: Under Assumption 3 and in the presence of
at least one Byzantine node, there exists a stepsize μ that
guarantees the perfect distinction between all the Byzantine
and legitimate nodes, i.e.,

Ti,j ≥ 0, if j ∈ SL (26)

Ti,j ≤ 0, if j ∈ SM. (27)

Assumption 3: Similar to [26], we assume in this section
that the gradient norm is bounded

∃γG > 0, such that,
∥∥L
(
wt

G

)∥∥ ≤ γG ∀t ≥ 0.

Proof: See Appendix D.
Theorem 3 confirms that there exists a stepsize that guar-

antees not only the perfect detection of all Byzantine nodes,
but also all the perfect detection of all legitimate nodes.

In the absence of Byzantine nodes, Theorem 2 confirms that
any selected nodes will eventually drive the model to conver-
gence. Theorem 4 investigates in the sequel the ability of the
model to detect the absence of Byzantine nodes and the ability
to identify all the nodes as legitimate.

Theorem 4: When the network is Byzantine free or when
all the Byzantine nodes are isolated, there exists a stepsize μ

and a small positive number ε that guarantee the following:

Ti,j ≥ −ε, if j ∈ SL. (28)

Proof: See Appendix E.
Theorems 3 and 42 confirm that with the adequate choice of

stepsize, all the Byzantine node can be detected. Also, when
the network is Byzantine free or when all the malicious nodes

2Note that Theorem 4 is not necessary to prove the convergence of the
model and is used just to confirm that the model can operate with low false
alarm probabilities in the absence of malicious nodes.

are already detected and isolated, there is small risk of false
alarm when the model gets close to convergence. However, as
proven Theorem 2, small chances of false alarm do not stop the
convergence as long as there is no misdetection (SB ⊂ ŜB).

Since the cross check is done periodically for PCS,
Theorem 3 confirms that all the Byzantine nodes will be
detected if the stepsize is well selected. Therefore, Theorem 2
confirms that PCS will make the FL model converge to the
optimal solution.

However, for SCS, the cross check is activated by specific
flags. Therefore, it is necessary to prove that these flags are
efficient and at least one of them will raise in the presence of
a Byzantine node.

Corollary 1: In the event of appearance of a Byzantine
node, the SCS norm fluctuation flag will be eventually acti-
vated to detect the malicious presence.

Proof: According to Theorem 1, depending on the FL
model and Byzantine nodes characteristics, the FL will eventu-
ally diverge in the presence of any number of Byzantine nodes.
Also, the model can diverge in any of the three following ways:

a : lim
t→+∞

∥∥wt
G

∥∥ = 0, or (29)

b : lim
t→+∞wt

G = wt
M. (30)

First, the divergence of the FL to the Byzantine nodes model
wt

M (divergence of type a) occurs only when the norm of the
malicious combined reports is much bigger than the norm of
the legitimate data owners. Such type of attack can be easily
overcome by truncating the reported data sizes as in [13] or by
eliminating suspicious models with very high values compared
to other reported values. Also, such scenario would result in
the loss function to converge to a very high number (loss of
the byzantine model), therefore, it can be eventually detected
using the LFF.

By definition of the norm limit to zero, it follows that:

lim
t→+∞

∥∥wt
G

∥∥ = 0 ⇐⇒
∀x > 0, ∃t1 > 0 such that

∥∥wt
G

∥∥ < x ∀t > t1. (31)

In particular, let x = ∥∥wt0
G

∥∥(1− γth), therefore

∃t1 > 0 such that

∥∥wt
G

∥∥
∥∥wt0

G

∥∥ < (1− γth) ∀t > t1. (32)

This confirms that if the Byzantine nodes are causing a diver-
gence of type b, the norm fluctuation flag will eventually be
activated.

In addition, concerning the LFF, there is no guarantee that it
will actually detect the presence of malicious nodes. However,
if the FL model diverges to zero, it will eventually go far
from the optimal solution and the loss would most probably
increase to high values. Therefore, the loss fluctuations flag is
used in conjunction with the weights norm fluctuation flag to
accelerate the detection of the Byzantine nodes.

GOUISSEM et al.: COLLABORATIVE BYZANTINE RESILIENT FEDERATED LEARNING 15895

(a) (b) (c)

Fig. 5. Prediction accuracy using FL under Byzantine attack. (a) Byzantine-
free. (b) One Byzantine node. (c) Five Byzantine nodes.

V. NUMERICAL RESULTS USING THE PTBDB
ECG DATA SET

The ability of PCS and SCS in diagnosing cardiac diseases
based on ECG recordings is examined in this part to eval-
uate and confirm the effectiveness of the designed Byzantine
robust training mechanism. The simulations are done using the
PTBDB ECG data set [27] that includes 14 552 samples with
16-lead ECGs. The PTBDB ECG data set includes a variety of
cardiac abnormalities, such as cardiomyopathy, heart failure,
bundle branch block, dysrhythmia, myocardial hypertrophy,
valvular heart disease, and myocarditis. To mimic the expe-
rience of collaborative training, the data is split into N = 10
equal parts, one for each user. Following this, 75% of the
data is used to train the model, while the remaining 25% is
utilized to evaluate the performance of the trained models.
Python Tensorflow and Keras libraries are used to implement
the FL process using Anaconda Spyder platform.

The performances of SCS and PCS are compared in this
section with the following techniques.

1) FedAvg [25], where the aggregation is performed using
a standard arithmetic averaging mechanism.

2) Geometric mean (GeoMean), where the aggregation
is done using a geometric mean cross distance
minimization scheme as detailed in [15].

3) Krum-k, which refers to the aggregation approach
described in [16], where the Krum metric is used to
eliminate k possibly Byzantine reports after comparing
the cross weight distance among all the node pairs.

4) FLTrust [20], where a centralized data set is assumed
to be known by the server and used to compute a
trustworthiness score with cosine similarity and ReLU
operations.

Fig. 5 illustrates the evolution of the global model accuracy
in detecting cardiac illnesses over time using the PCS, SCS,
FedAvg, GeoMean, Krum-2, Krum-4, Krum-6, and FLTrust
aggregation mechanisms. First, 5(a) investigates the Byzantine
free scenario. In such case, the best accuracy is obtained by
performing arithmetic aggregation of all the models. As a
result, FedAvg outperforms all other investigated approaches,
which suffer from a slight loss of accuracy for attempting
to combat nonexistent hostile nodes. In fact, by assuming
the existence of malicious agents, the GeoMean and Krum
approaches impose an additional inaccuracy throughout the
aggregation process. However, FLTrust, is able provide the
same performance of FedAvg since it isolates nodes based on

(a) (b) (c)

Fig. 6. Prediction accuracy using FL when Byzantine nodes join the network
during the training. (a) Byzantine-free. (b) One Byzantine node. (c) Five
Byzantine nodes.

trustworthiness score computed using a centralized data set
available at the server. Note also that by detecting the absence
of malicious behavior in the network using the designed
flags, SCS provides a very close performance to FedAvg. The
proposed PCS also provides a close-optimal accuracy but with
a slower convergence rate. In particular, PCS loses some of
its iterations to evaluate the trustworthiness of the nodes and
make sure that the training network is Byzantine free. That is
why PCS-5 turns out to be slower than PCS-10 for example.

Fig. 5(b) demonstrates that, as shown in Section III, even
when a single-blind Byzantine node is attacking the FL
training, FedAvg diverges and produces a model with very
poor accuracy in comparison to Byzantine robust approaches.
Fig. 5(b) shows also that all the investigate Byzantine robust
aggregation schemes succeed in maintaining an efficient train-
ing with a loss of one to two percent when 10% of the agents
are malicious. Note also, that SCS provides the highest accu-
racy compared to GeoMean and Krum techniques since the
proposed scheme eliminates the causes of the problem by iso-
lating malicious nodes instead of reducing their effects using
mathematical metrics. Although PCS-5 and PCS-10 succeed
in identifying malicious nodes after the activation of the cross-
check mode, they lag behind as they lose many iterations
in redetecting the same hostile nodes. When five Byzantine
nodes (50%) are participating in the training, after 100 iter-
ations, GeoMean provides a better performance than SCS as
the flags of SCS fail to detect the performance deterioration
before ten iterations. In fact, since 50% malicious nodes are
present at the beginning of the simulation, the training starts
with a very bad performance at the first few iterations, which
makes it slightly challenging for the WFF and LFF to per-
form detection. However, once the hostile nodes are detected,
the accuracy of SCS starts increasing at a higher rate by
eliminating and isolating the malicious reports.

Fig. 6 analyzes the effect of Byzantine attacks when the
malicious nodes start their hostile behavior during the training
process. In particular, no attacker is assumed to be present
in the network till iteration 22. In such a scenario, it can
be seen that PCS loses a lot of iterations before detecting
the threat. GeoMean and Krum however remain robust and
SCS can almost instantly detect the malicious behavior
and continue the training unaffected. Additionally, Fig. 6(b)
and (c) demonstrate how fragile the FedAvg is. For instance,
FedAvg’s performance fell immediately with the appearance of

15896 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

Fig. 7. Effect of the number of Byzantine agents on the prediction accuracy.

(a)

(b)

Fig. 8. Weight norm evolution. (a) One Byzantine node. (b) Five Byzantine
nodes.

the Byzantine agent. Although this behavior has a significant
impact on the training efficiency of FedAvg, it is very
important for the SCS flags to quickly detect the malicious
behaviors. Note that SCS can provide the same accuracy of
FLTrust while outperforming it in terms of data requirements.
In particular, to reach high accuracy levels, FLTrust assumes
the existence of a centralized data set on the server that is
publicly available, which might be challenging in practical
scenarios.

Fig. 7 reveals the effect of the number of Byzantine agents
in the FL network on the accuracy of the global model. First,
it can be seen that by isolating the source of the malicious
reports, SCS holds the best performance compared to Krum
and GeoMean that only aim to minimize the effect of the
introduced error with a specific aggregation process. It can
be seen also that because of the long time spent in the cross
check, PCS would require more time to converge.

According to the proof of Theorem 1, the primary cause of
FedAvg divergence is global weight norm fluctuation. To cor-
roborate this trend, Fig. 8 examines the global weight norm
fluctuation as shown in Theorem 1, after the Byzantine node
began acting maliciously at iteration 22, the weights norm
began diverging toward zero. This result is in accordance with
the accuracy behavior shown in Fig. 5. In addition, Fig. 8

(a) (b)

(d)(c)

Fig. 9. Effect of Byzantine attacks on misdetection probability. (a) Byzantine
node from iteration 0. (b) Five Byzantine nodes from iteration 0.
(c) One Byzantine node from iteration 22. (d) Five Byzantine nodes from
iteration 22.

shows that if PCS spends a lot of time before detecting the
Byzantine node, the model weight norm starts dropping similar
to FedAvg.3

Fig. 9 presents the misdetection probability evolution over
time for PCS-5, PCS-10, and SCS. First, it can be seen that the
three techniques fail to detect the Byzantine node at the exact
time when they joined. In particular, the detection for PCS-5
and PCS-10 require up to five and ten iterations, respectively.
The SCS requires only one iteration after the cross check acti-
vation to isolate the Byzantine. Interestingly, Fig. 9(d) shows
that when the number of Byzatine nodes is equal to 5 out of
10, PCS-10 has a high chance of misdetecting some of them.
In particular, the global model would have started to diverge
and it might be too late for the cross-check to differentiate
between legit and malicious nodes.

VI. CONCLUSION

In conclusion, this article investigates the effect of blind
Byzantine attacks on FL model convergence and designs a
number of solutions to address this issue. Specifically, we
prove that the traditional arithmetic averaging approach is sus-
ceptible to diverge due to Byzantine behaviors, even when
malicious agents provide random reports. Simulation find-
ings demonstrate that in the presence of compromised nodes,
this approach’s performance will deteriorate significantly. To
address this issue, we propose the use of FedAvg only when
the network administrator is sure about the nodes’ identi-
ties. Additionally, we design a low complexity, decentralized
Byzantine resilient FL training mechanism and a collaborative
blind cross-evaluation mechanism that allows for the identifi-
cation of malicious users. Furthermore, we propose a smart
activation mechanism to reduce the evaluation network over-
head. Our theoretical proofs and simulation results, using the
PTBDB ECG data set, confirm the ability of the proposed

3Note that the best model loading is not activated in this figure.

GOUISSEM et al.: COLLABORATIVE BYZANTINE RESILIENT FEDERATED LEARNING 15897

cross-check approaches to converge to optimal or suboptimal
solutions even in the presence of Byzantine nodes, mak-
ing it a suitable method for healthcare monitoring scenarios.
In summary, we believe that the findings of this article
make significant contributions to the field of FL security
by investigating the effect of blind Byzantine attacks on FL
model convergence, designing a low complexity, decentralized
Byzantine resilient FL training mechanism, designing a col-
laborative blind cross-evaluation mechanism that allows the
identification of malicious users, proposing a smart activa-
tion mechanism to reduce the evaluation network overhead,
and validating the efficiency of the proposed scheme with a
convergence mathematical proof and experimental simulations
in a healthcare monitoring scenario using the PTBDB ECG
data set.

APPENDIX A

Let dt+1
i = vt+1

i −vt
i, it follows from (11) that at any instant

time t0:

dt+2
i =

(
σ 2

L − 1
)(

σ 2
L vt

i + σ 2
Bbt

i

)
+ σ 2

Bbt
i = σ 2n

L dt0
i . (33)

The factor σL is by definition smaller than one. Therefore,
when n goes to infinity, dt

i will also tend to zero, i.e.,

lim
t→∞

(
dt

i

) = lim
n→∞

(
dt0+n

i

)
= lim

n→∞
(
σ 2n

L dt0
i

)
= 0. (34)

This suggests that in the presence of Byzantine agents, the
variance of the model weights will eventually stabilize and
converge to a fixed value, i.e.,

∃ ṽi, s.t. lim
t→∞

(
vt

i

) = ṽi. (35)

This concludes the proof of Proposition 1.

APPENDIX B

Let the identified set of legitimate (ŜL) and Byzantine users
(ŜB) guarantee

(
SB ⊂ ŜB ⇐⇒ ŜL ⊂ SL

)
and ŜL 	= ∅.

Once all the Byzantine nodes are identified, they can be
isolated and the model update would be computed based on
the reported models of ŜL ⊂ SL

wt
G =

∑

i∈ŜL

σ̂iwt
i = wt−1

G − μ∇L̂
(

wt−1
G

)
(36)

where σ̂i denotes the ratio of the data size for node Ni

compared to all the nodes in ŜL that satisfies
∑

i∈ŜL

σ̂i = 1, L̂(w) =∑i∈ŜL
σ̂iLi(w). (37)

By assuming that the loss function Li is β smooth, it fol-
lows that L̂ is also β smooth. Consequently, by applying the
smoothness property between wt

G and wt−1
G , it follows that:

L̂
(
wt

G

)− L̂
(

wt−1
G

)
≤ β

2

∥∥∥wt
G − wt−1

G

∥∥∥
2

+
〈
∇L̂

(
wt−1

G

)
, wt

G − wt−1
G

〉

≤
(

βμ2

2
− μ

)∥∥∥∇L̂
(

wt−1
G

)∥∥∥
2
. (38)

Therefore, any stepsize μ smaller than (1/β) guarantees a
strictly monotonically decreasing loss evolution, i.e.,

L̂
(
wt

G

)− L̂
(

wt−1
G

)
≤ −δ

∥∥∥∇L̂
(

wt−1
G

)∥∥∥
2

≤ −μ

2

∥∥∥∇L̂
(

wt−1
G

)∥∥∥
2

(39)

where

δ = μ− βμ2

2
>

μ

2
. (40)

This concludes the proof of Proposition 2.

APPENDIX C

Let ŵ∗ denote the optimal solution that minimizes L̂, i.e.,

L̂
(
ŵ∗
) ≤ L̂(w) ∀ w. (41)

By applying the convexity inequality (Assumption 2) between
the two weights wt−1

G and ŵ∗, it follows that:

L̂
(
ŵ∗
) ≥ L̂

(
wt−1

G

)
+
〈
∇L̂

(
wt−1

G

)
, ŵ∗ − wt−1

G

〉
. (42)

Consequently

L̂
(

wt−1
G

)
− ˆL(w∗) ≤

〈
∇L̂

(
wt−1

G

)
, wt−1

G − ŵ∗
〉
. (43)

By combining the results of Proposition 2 and (43), it
follows that:

L̂
(

Ŵt
G

)
− L̂

(
ŵ∗
) = L̂

(
Ŵt

G

)
− L̂

(
Wt−1

G

)
+ L̂

(
wt−1

G

)
− L̂

(
ŵ∗
)

≤
〈
∇L̂

(
wt−1

G

)
, wt−1

G − ŵ∗
〉
− δ

2

∥∥∥∇L̂
(

Wt−1
G

)∥∥∥
2

≤
〈
∇L̂

(
wt−1

G

)
, wt−1

G − ŵ∗
〉
− μ̄

2

∥∥∥∇L̂
(

Wt−1
G

)∥∥∥
2

1

2μ̄

(∥∥∥wt−1
G − ŵ∗

∥∥∥
2 −

∥∥∥wt−1
G − μ̄∇L̂

(
Wt−1

G

)
− ŵ∗

∥∥∥
2
)

1

2μ̄

(∥∥∥wt−1
G − ŵ∗

∥∥∥
2 − ∥∥wt

G − ŵ∗
∥∥2
)

. (44)

By summing (44) from t = 1 to t = tN , the inequality
becomes

NT∑

t=1

(
L̂
(

Ŵt
G

)
− L̂

(
ŵ∗
)) ≤ 1

2μ̄

(∥∥∥w0
G − ŵ∗

∥∥∥
2 − ∥∥wtN

G − ŵ∗
∥∥2
)

≤ 1

2μ̄

(∥∥∥w0
G − ŵ∗

∥∥∥
2
)

. (45)

Since L̂ is a monotonically decreasing function, it follows that:

L̂
(

ŴtN
G

)
− L̂

(
ŵ∗
) ≤

∥∥w0
G − ŵ∗

∥∥2

2μ̄tN
. (46)

Since ŵ∗ is defined as the optimal solution, then it follows
that:

L̂
(

ŴtN
G

)
− L̂

(
ŵ∗
) ≥ 0. (47)

Consequently

lim
tN→+∞

(
L̂
(
ŵtN

G

)) = L̂
(
ŵ∗
)
. (48)

This concludes the proof of Theorem 2 and confirms that
after a large number of iterations, the loss function will
eventually reach its global minimum.

15898 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023

APPENDIX D

By considering the training of the ANN model by the data
owner Ni at time t, the model is transformed from wt−1

G to
wt

i using gradient descent. Therefore, the updated data owner
model is expressed by

wt
i = wt−1

G − μ∇ t−1
i (49)

where ∇ t−1
i = Li(w

t−1
G) denotes the loss function of the global

model at time t computed based on the local data of node Ni.
By assuming that Lj is a β smooth function, it follows that:

∃β > 0, such that

Lj
(
wt

i

)− Lj

(
wt−1

G

)
≤ β

2

∥∥∥wt
i − wt−1

G

∥∥∥
2 +

〈
∇Lj

(
wt−1

G

)
, wt

i − wt−1
G

〉
. (50)

By combining (49) and (50), it follows that:

Lj
(
wt

i

)− Lj

(
wt−1

G

)
≤ β

2
μ2
∥∥∥∇ t−1

i

∥∥∥
2 − μ

∥∥∥∇ t−1
i

∥∥∥
∥∥∥∇ t−1

j

∥∥∥

≤ μ

∥∥∥∇ t−1
i

∥∥∥
(

β

2
μ

∥∥∥∇ t−1
i

∥∥∥−
∥∥∥∇ t−1

j

∥∥∥
)

. (51)

Consequently, the upperbound of the loss function differ-
ence becomes negative if the stepsize is chosen to satisfy the
following condition:

μ ≤
2
∥∥∥∇ t−1

j

∥∥∥

β

∥∥∥∇ t−1
i

∥∥∥
. (52)

Having
∥∥∥∇ t−1

j

∥∥∥ equal to zero is equivalent to having ∇ t−1
j

equal to 0, which means that the FL model converges.
However, as proven in Theorem 1, this cannot happen because
an FL model cannot converge in the presence of a Byzantine
node that is not yet isolated. Therefore, it follows that:

∃ γ G
mj

> 0 such that
∥∥∥∇ t−1

j

∥∥∥ ≥ γ G
mj
∀t ≥ 1. (53)

By using Assumption 3, the gradient is bounded by γG and
using (53), it follows that:

∃γ G
mj

, γG > 0 such that
2
∥∥∥∇ t−1

j

∥∥∥

β

∥∥∥∇ t−1
i

∥∥∥
≥ 2γ G

mj

βγG
. (54)

Consequently, one possible stepsize that guarantees a strictly
negative loss function difference for a data owner Ni is
given be

μi =
γ G

mi

βγG
. (55)

To make this property correct for all the nodes, the stepsize
can be set as

μ̂ = 1

βγG
min
i∈SL

(
γ G

mi

)
. (56)

Consequently, when the stepsize is equal or smaller than μ̂,
the computed trustworthiness of a legitimate node Nj based on
the local data of any node Ni is always positive, i.e.,

Ti,j ≥ 0, if j ∈ SL. (57)

When the trustworthiness is computed for a Byzantine node
Ni by another node Nj, i.e., j ∈ SM , it follows by definition
that:

Lj
(
wt

i

) ≥ Lj

(
wt−1

G

)
. (58)

In fact, a Byzantine node is by definition a “lazy” or mali-
cious node that sends random or falsified model weights to
the server. Therefore, it is extremely rare for a Byzantine node
to reduce the loss since its objective is exactly the opposite.
Even if such rare event occurred and a randomly generated
Byzantine model reduced the loss, it can be considered as ben-
eficial to the global model training at least for that particular
iteration. Consequently

Ti,j ≤ 0, if j ∈ SM. (59)

This concludes the proof of Theorem 4.

APPENDIX E

When no Byzantine nodes are present in the network or
when the malicious nodes are already identified and iso-
lated, the model can eventually converge. Therefore, there is
no guarantee to have a lower bound on the gradient norm.
Consequently, (53) is no longer valid. At a particular time t,
if the global model wt

G corresponds to a zero loss according
to the data in node Nj (‖∇ t

j‖ = 0), there exists no positive
stepsize μ that provides a negative loss evolution unless the
loss is also equal to zero at node Ni (‖∇ t

i‖ = 0). To solve
this issue, the loss evolution is investigated before and after
convergence separately.

Let ε denote a small convergence gradient norm threshold.
When ‖∇ t

j‖ ≥ ε, the loss upperbound in (51) becomes

Lj
(
wt

i

)− Lj

(
wt−1

G

)
≤ μ

∥∥∥∇ t−1
i

∥∥∥
(

β

2
μγG − ε

)
. (60)

Consequently, there exists a stepsize that guarantees a negative
loss evolution (positive trustworthiness) defined as

μi = ε

βγG
. (61)

When ‖∇ t
j‖ ≤ ε, i.e., the network converged according to

the data of node Nj, the model should also be at least close to
the convergence point for the other nodes, i.e.,

∃εC > 0 such that if
∥∥∥∇ t

j

∥∥∥ ≤ ε, Then,
∥∥∇ t

i

∥∥ ≤ εC ∀i ∈ SL.

In practice, γC denotes the highest gradient norm a node can
get when another data owner reaches convergence. Note that
if the data sizes and properties are similar, εC should be very
small. Therefore, the loss upperbound in (51) becomes

Lj
(
wt

i

)− Lj

(
wt−1

G

)
≤ β

2
μ2ε2

C. (62)

In this case, there is no guarantee that the computed trustwor-
thiness is positive for the legitimate users. However, there is a
guarantee that it is bigger than a negative number with a very
small magnitude. This means that there is a small chance of
getting false alarms when the model is close to convergence.

GOUISSEM et al.: COLLABORATIVE BYZANTINE RESILIENT FEDERATED LEARNING 15899

However, if the model already converged, it would either con-
sider the obtained model or remain in the convergence state
since the adopted mechanism should theoretically not have
misdetection for an adequate stepsize choice.

ACKNOWLEDGMENT

Open Access funding provided by the Qatar National
Library.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. 20th Int. Conf. Artif. Intell. Stat., Apr. 2017,
pp. 1273–1282.

[2] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Comput. Surveys, vol. 54, no. 6, pp. 1–36, 2021.

[3] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A sur-
vey on federated learning,” Knowl.-Based Syst., vol. 216, Mar. 2021,
Art. no. 106775.

[4] Z. Jiehan et al., “A survey on federated learning and its applications for
accelerating Industrial Internet of Things,” 2021, arXiv:2104.10501.

[5] S. Prathiba, G. Raja, S. Anbalagan, S. Gurumoorthy, N. Kumar, and
M. Guizani, “Cybertwin-driven federated learning based personalized
service provision for 6G-V2X,” IEEE Trans. Veh. Technol., vol. 71,
no. 5, pp. 4632–4641, May 2022.

[6] K. Abualsaud, A. Mohamed, T. Khattab, E. Yaacoub, M. Hasna, and
M. Guizani, “Classification for imperfect EEG epileptic seizure in IoT
applications: A comparative study,” in Proc. 14th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), 2018, pp. 364–369.

[7] A. B. Said, A. Mohamed, T. Elfouly, K. Abualsaud, and K. Harras,
“Deep learning and low rank dictionary model for mHealth data clas-
sification,” in Proc. 14th Int. Wireless Commun. Mobile Comput. Conf.
(IWCMC), 2018, pp. 358–363.

[8] A. Gouissem, K. Abualsaud, E. Yaacoub, T. Khattab, and M. Guizani,
“Game theory for anti-jamming strategy in multichannel slow fading IoT
networks,” IEEE Internet Things J., vol. 8, no. 23, pp. 16880–16893,
Dec. 2021.

[9] A. Gouissem, K. Abualsaud, E. Yaacoub, T. Khattab, and M. Guizani,
“IoT anti-jamming strategy using game theory and neural network,”
in Proc. Int. Wireless Commun. Mobile Comput. (IWCMC), 2020,
pp. 770–776.

[10] E. M. El Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulner-
ability of distributed learning in Byzantium,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 3521–3530.

[11] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing fed-
erated learning through an adversarial lens,” in Proc. 36th Int. Conf.
Mach. Learn., Jun. 2019, pp. 634–643.

[12] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in Proc. IEEE Symp. Security Privacy (SP),
2018, pp. 19–35.

[13] A. Portnoy, Y. Tirosh, and D. Hendler, “Towards realistic Byzantine-
robust federated learning,” 2020, arXiv:2004.04986.

[14] Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, and P. K. Varshney, “Robust
federated learning using ADMM in the presence of data falsifying
Byzantines,” 2017, arXiv:1710.05241.

[15] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 1, no. 2, pp. 1–25, 2017.

[16] P. Blanchard, E. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 118–128.

[17] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” 2019, arXiv:1911.07963.

[18] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. 35th Int.
Conf. Mach. Learn., vol. 80, 2018, pp. 5650–5659.

[19] J. Schneible and A. Lu, “Anomaly detection on the edge,” in Proc. IEEE
Military Commun. Conf. (MILCOM), 2017, pp. 678–682.

[20] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” 2020, arXiv:2012.13995.

[21] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7,
pp. 2168–2181, Jul. 2021.

[22] A. A. Abdellatif et al., “Communication-efficient hierarchical
federated learning for IoT heterogeneous systems with imbal-
anced data,” Future Gener. Comput. Syst., vol. 128, pp. 406–419,
Mar. 2022.

[23] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” 2018, arXiv:1806.00582.

[24] A. Khaled, K. Mishchenko, and P. Richtárik, “First analysis of local GD
on heterogeneous data,” 2019, arXiv:1909.04715.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Stat., 2017, pp. 1273–1282.

[26] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for SVM,” Math. Program., vol. 127, no. 1,
pp. 3–30, 2011.

[27] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physio-
logic signals,” Circulation, vol. 101, no. 23, pp. e215–e220,
2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

