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According to UNESCO’s Atlas of the World’s Languages in Danger, 40% of the languages today are counted as 
endangered in the future. Indigenous languages are endangered because of the less availability of interactive 
learning mediums for those languages. Thus this paper proposes an interactive deep learning method for 
Handwritten Character Recognition of the indigenous language “Chakma.” The method comprises dataset 
creation using a mobile app named “EthnicData.” It reports the first “Handwriting Character Dataset” of Chakma 
containing 47,000 images of 47 characters of Chakma language using the app. A novel SelfONN-based deep 
learning model, Self-ChakmaNet, is proposed in this research for Chakma Handwritten character recognition. The 
Self-ChakmaNet achieved 99.84% for overall accuracy, precision, recall, F1 score, and sensitivity. The proposed 
model with high accuracy can be implemented in mobile devices for handwritten character recognition as the 
model has less number of parameters and a faster processing speed.
1. Introduction

Using own mother tongue in daily life communication is a repre-
sentation of freedom. However, freedom is often compromised if that 
individual or the individual’s community resides in a country of people 
belonging to different linguistic communities. Several linguistic com-
munities coexist inside a country as a result of migration, historical/po-
litical land division, and indigenous people that have lived there for 
millennia [1]. As a result, some communities have switched from their 
native languages to the dominant language [1]. Around 6500 languages 
are being spoken all over the world [16]. Within the next 40 years, at 
least one language will be lost per month [10]. To prevent the extinction 
of around or more than 1,500 languages by the end of the twenty-first 
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century, urgent investments in language documentation, bilingual edu-
cation, and other community-based programs are required [10].

Chakma language is spoken in Bangladesh and India. Currently, 
320,000 people in southeast Bangladesh in the Chittagong Hill Tracts 
and another 230,000 in India speak the Chakma language. Chakma 
is written using the Chakma alphabet, also known as Ajhā pāt.hath, 
Ojhopath, or Aaojhapath. Fig. 1 illustrates the 8 consonants, 5 vowel 
and diacritics, and 10 numerals. The Bengali culture and language are 
having a significant impact on the Chakma population. As a result, peo-
ple are increasingly converting to Bangla language, endangering the 
ethnic language. In this digital world indigenous languages need to be 
digitally usable and recognizable by digital systems. This paper pro-
poses a method of using AI for Handwritten Character Recognition of 
indigenous language “Chakma”. Owing to the unique patterns, strokes, 
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Fig. 1. Chakma language basic character set.
and number of characters in each script, the difficulty of handwritten 
character recognition varies. We proposed a novel architectural hand-
written character recognition module for future use in learning Chakma 
characters’ handwriting using a mobile app.

The paper proposes the use of Self-Organised operational Neural 
Network (SelfONN) for digitally recognizing the handwriting charac-
ters. SelfONN is conceptualized on Generalized Operational Perceptrons 
(GOPs) which mimics the functions of biological neuron [48]. Self-
ONN proposed “generative neurons” to counteract the homogeneous 
network topology of Multi-Layer Perceptrons (MLPs) and its descen-
dants, Convolutional Neural Networks (CNNs) [22]. Self-ONN models 
have recently been developed for severe image restoration [24], image 
denoising [25], image super-resolution applications [19], and image 
compression [51], surpassing CNN architectures. Given that previous 
study on the light weight Self-ONN model has shown that it can out-
match a deep CNN counterpart, the potential investigation must be 
explored for the handwritten character recognition.

The availability of Chakma Handwritten Character dataset is one of 
the key issues in Chakma Handwritten Character recognition. By ad-
dressing the issues of the Chakma Handwritten Character recognition, 
the contributions of this research are following:

• An image data collecting APP “EthnicData” is presented in order to 
collect data from various subjects in a simple and quick manner.

• The first “Handwriting Character Dataset” for the indigenous com-
munities (Chakma) in Bangladesh is created using “EthnicData”.

• A novel and lightweight SelfONN based handwritten character 
recognition module is proposed which performed similar to a state-
of-the-art architecture MobileNet_V2.

2. Literature review

Mobile Assisted Language Learning (MALL) enables quick access for 
every learner regardless of location or time restrictions [14]. There are 
many existing AI based learning app, such as, Duolingo [27], Hello En-
glish [11], Babbel [13], Memrise [28], and Busuu [29]. These apps 
provide learning facilities on some popular languages such as English, 
French, Spanish, Estonian, German, and Russian. But there is no such 
app for indigenous languages such as Chakma, Marma, Saotal etc. in 
Bangladesh. A digital learning platform is needed to preserve this lan-
guage. AI can be implemented for enhancing the reading, writing, 
speaking and listening skills.

Deep learning based solutions are gaining attention to solve various 
problems such as sign language recognition [32,33,31], COVID-19 de-
tection systems [37,47], and Autonomous driving [9]. Automatic hand-
writing recognition is one of the most popular interest of academic and 
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researchers. There are few handwritten character recognition in lan-
guage such as Japanese [53], Chinese [50], and Greek [18]. The chal-
lenges in automatic handwriting recognition are variety of handwriting 
styles, different complex writing scripts consist of different form of writ-
ing words. These challenges are already mentioned by different research 
groups in the field of natural language processing [12,26,44]. Hand-
written Bangla Character recognition has been done using different 
pre-trained convolutional neural networks such as VGG Net, ResNET, 
FractalNet, and DenseNet [2]. In [3], researchers applied deep learning 
method in 10 Bangla numeric digit recognition and achieved 98.8% 
accuracy. Another deep learning approach proposed by [34] for 80 
handwritten characters. A combination of Multi Layer Perceptron and 
Adaboost is also used in offline handwritten numeral recognition [17]. 
In [7], researchers used such combination and delivered a comparison 
between Devanagari, Bangla and Oriya offline handwritten character 
recognition.

There is no such research on indigenous language learning by hand-
writing recognition. The handwriting recognition of indigenous lan-
guages in Bangladesh still needs to be explored. This is a big motivation 
for this research as well.

3. Proposed methodology

In this research, many steps were followed to build the overall sys-
tem. The steps and components of the system are discussed as below:

3.1. Dataset

The study was approved by the local ethical committee of Qatar Uni-
versity. We have collected data from 50 subjects from the crowd, where 
the subjects shared their data using the mobile application and there 
was no identity related information was asked in the acquisition pro-
cess. Each subject needs to read the consent form and sign the form and 
upload before proceeding to data recording. Each Chakma Handwritten 
character was saved as RGB image. This dataset contains 47 Chakma 
characters, including vowels, consonants, and numbers. All the dataset 
details are given in Table 1 and Fig. 2 represents the overview of the 
dataset.

The proposed architecture for Bangla Handwritten Character recog-
nition was subjected to comparative analysis using five additional 
datasets, namely CMATERdb 3.1.1, BanglaLekha Numerals [8], ISI Nu-
merals [6], CMATERdb 3.1.2, and Ekush [35]. Datasets comprising 
CMATERdb 3.1.1, BanglaLekha Numerals, and ISI Numerals were gath-
ered to represent 10 distinct Bangla numeral characters. Additionally, 
CMATERdb 3.1.2 and Ekush datasets were collected to represent 50 dis-

tinct Bangla basic characters.
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Table 1

Details of Indigenous Handwritten Character Dataset-
Chakma.

Dataset information Details
Image size 3×224×224
Total class 47
Images per class 1,000
Total number of images 47,000
Mean [R,G,B] [0.9640, 0.9827, 0.9640]
Standard deviation [R,G,B] [0.1380, 0.0627, 0.1379]

Fig. 2. Example of Indigenous Handwritten Character Dataset - Chakma.

3.2. Basic architecture of system

Language learning can be done by four techniques such as read-
ing, writing, listening and speaking. Writing is a necessary strategy for 
language learning since it promotes the growth of critical thinking abil-
ities, facilitates collaboration, and enables an individual to focus on 
and reevaluate his or her ideas later [23]. Currently, in this research 
we focused on indigenous language learning by achieving writing skill 
on “Chakma” language. Such system is illustrated in Fig. 3. Four main 
modules of such system are:

1. Data Collection Module: “EthnicData App”: Handwritten char-
acters of Chakma language was collected from users using this 
module.

2. Data Processing Module: Collected data is labeled and validated 
in this module.

3. “Handwritten Character Recognition” Training Module: Using 
data from “EthnicData App”, a model was trained and this trained 
model was used for handwritten character recognition.

4. Ethnic Handwriting Learning Module: “Swakkhor App”: User 
learn indigenous handwritten character by deep learning based 
3

character recognition process.
Egyptian Informatics Journal 24 (2023) 100413

3.2.1. Data collection module: “EthnicData App”

This module was used for data collection for indigenous language 
learning. Fig. 3 block (a) represents the “EthnicData App” module. 
This module has two elements, including a handwriting canvas and a 
voice recording. The handwritten “Chakma” language characters were 
gathered using a handwriting canvas. There is a blank canvas in the 
Handwriting Canvas where users can draw any letter in accordance 
with the reference alphabet. When the user has completed sketching, 
the app saves the vector along with the strokes that have been analyzed 
and saves it to a Firebase database. Data from the Firebase database is 
gathered for the data processing module’s use. The important parts of 
the “EthnicData” app are described below:

Canvas This canvas is intended for open and free sketching. Any al-
phabet may be drawn by the user freehand. In essence, it captures the 
stroke and makes it visible in a certain color. With the appropriate but-
tons, the user may manage the drawing further. The user may draw any 
letter freehand on the completely responsive canvas; but, to save the 
drawing to the database, they must hit the “NEXT” button once they 
have finished drawing.

Reference alphabet It is a guide that the user may refer to determine 
which character to draw on the canvas. It serves as a guide to assist the 
user in determining which alphabet to draw.

Buttons The canvas painting is controlled by the buttons. Five buttons 
on the handwritten canvas are designated for carrying out particular 
tasks. These are described below:

1. “UNDO” Button: The last drawing line on the canvas is undone 
using the undo button. If any lines are drawn incorrectly while 
drawing an alphabet on a canvas, the user can undo the preceding 
line to correct the error.

2. “REDO” Button: This button redo’s the last drawing line. When 
users redo some lines or delete the previous line, user can choose 
to redo or execute the previous line to get it back.

3. “CLEAR” Button: It clears the canvas and make the canvas empty. 
If user click clear button, it clears the whole canvas to redraw the 
alphabet.

4. “REPEAT” Button: It repeats the current character for every time 
it is pressed. If there is a need to draw the same character for a 
specific time, the repeat button can make it happen.

5. “NEXT” Button: Basically it does 2 functions. (i) Save: It saves the 
complete alphabet’s vector in Firebase Database, (ii) It clears the 
canvas and then loads the next alphabet reference to draw.

When a user clicks the “NEXT” button, the whole contents of the can-
vas are recorded in a vector format, including the coordinates of each 
stroke, in the firebase database. Each distinct character drawing was 
saved in a corresponding folder. Though the voice recording compo-
nent was not used in this research but it collects the corresponding voice 
recording of alphabets which can be later used for speech recognition 
in speaking skill development for an ethnic language. Fig. 4 represents 
the details and layout of “EthnicData” APP.

3.2.2. Data processing module

The purpose of this module is to label, clean, validate the stored 
dataset. Fig. 3 block B represents the data processing module. Because 
all data is gathered by crowd sourcing, there is a risk of junk and er-
roneous data being entered into the database. Validation necessitates 
retaining valid data while discarding erroneous data. The database was 
evaluated in order to create a reliable source of dataset for training a 
Handwriting Training Module.

3.2.3. “Handwritten character recognition” module

This research’s goal in establishing written skills on “Indigenous 

Language Learning” is to assist users in learning “Chakma” alphabets 
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Fig. 3. System overview of “Ethnic Language Learning: Handwriting recognition” system.

Fig. 4. Layout and details of EthnicData App.
by providing details on how accurate they are writing these alphabets. 
For that a handwritten character recognition module is needed. The ex-
istence of handwritten character recognition module can be found in 
Fig. 3 block B. Fig. 6 illustrated the flowchart of this module. Data col-
lected from “EthnicData App” database is in image format. To avoid 
overfitting problem of deep learning models, on-the-fly image augmen-
tation was used, where augmented images were fed into the network 
at each epoch rather than utilizing the same images in training at each 
epoch. Image augmentation techniques employed in this study included 
image resizing, rotation, and perspective. Fig. 5 describes the two out 
of three on-the-fly augmentation techniques used in this study.

According to Fig. 5, the image was rotated in the 𝑡ℎ𝑒𝑡𝑎 angle range 
of positive 20 degrees to negative 20 degrees, and the 𝐵𝑖 − 𝐶𝑢𝑏𝑖𝑐

interpolation mode was used. Random perspective is another augmen-
tation used in this study, which distorted the image within scale of 0.6 
to 1 with creating 𝛼, 𝛽, 𝛾, 𝜓 angles distortion around the sides using 
𝐵𝑖 − 𝑙𝑖𝑛𝑒𝑎𝑟 interpolation. Also, the scaled down image was filled with 
0 or 𝑞 value. Along with the on-the-fly augmentations, all the models 
4

were trained from scratch. The selected models are described in Fig. 6.
MobileNet_V2 MobileNet_V2 is a CNN which performs efficiently on 
mobile devices [39]. This state-of-the-art CNN model is developed on 
inverted residual block where the residual connection was implemented 
between the bottleneck layers. The whole architecture contains ini-
tial convolutional layer with 32 filters and following that 19 inverted 
residual bottleneck layers. MobileNet_V2’s superiority over other CNN 
architectures is due to its depth-wise separable convolutions and bottle-
necks. The bottlenecks of MobileNet_V2 encode the intermediate inputs 
and outputs. Furthermore, the model’s inner layer improves the model’s 
capacity to convert from a low-level concept to a higher-level descrip-
tor [4,46]. Fig. 7 illustrates building block of MobileNet_V2. Mainly, 
the features are point-wise convoluted at the beginning and end of the 
block, while depth-wise separable convolution is done at the middle. 
Shortcuts allow for faster training and improved accuracy using con-
ventional residual connections.

Self-ChakmaNet In this research, SelfONN based a new architecture is 
proposed for Chakma Handwritten Character recognition. SelfONN is a 

variant of Operational Neural Network (ONN) [22,25,19,51,21]. Oper-
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Fig. 5. The Random Rotation and Random Perspective augmentation on a image sample from the dataset.
Fig. 6. Flowchart of Handwriting Training Module.

ation Neural networks (ONNs) are conceptualized on Generative Oper-
ational Perceptrons (GoPs) [21]. By incorporating generative neurons, 
ONNS or SelfONN replaces the homogeneous linear approximation of 
CNN. These ONNs or SelfONNs [21,51,25] imitate the genuine biolog-
ical neuron with varied synaptic connections since biological neurons 
5

carry out a wide range of neurochemical processes. In ONNs or Self-
Fig. 7. Basic building block of MobileNet_V2 CNN architecture.

ONNs, the non-linear synaptic connections as well as the integration 
process that takes place in the soma of a human neuron model have 
been imitated [22,25,19,51,21]. ONNs or SelfONNs employ “Nodal” 
operations, which are analogous to synaptic connections, and “Pool” 
operations, which are analogous to integration in the soma, although 
“Activation” operators have been directly adopted. During training, 
the operator can self-organize and generate any family of nodal opera-
tors [24]. Fig. 8 illustrates the operation of SelfONN with nodal operator 
Ψ and pooling operator 𝑃 . If 𝑦𝑛−1 is the input to 𝑚𝑡ℎ neuron of 𝑛𝑡ℎ layer, 
the output 𝑥𝑛

𝑚
can be calculated from Equation (1).

𝑥𝑛
𝑚
= 𝑃 (

𝑁𝑛−1∑

𝑖=1
𝜓𝑛

𝑚𝑖
(𝜔𝑛

𝑚𝑖
, 𝑦𝑛−1

𝑖
)) (1)

From Equation (1), 𝜔𝑛
𝑚𝑖

is the weights. Here, 𝜔 is an array of parameters 

in 𝑞 dimensions made up of internal parameters and weights for each 
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Fig. 8. SelfONN operation on a input feature with nodal operator Ψ and pooling 
operator 𝑃 .

unique function. The nodal operator can be approximated by Taylor 
Series approximation. So, the approximation can be written as,

𝑓 (𝑥) = 𝑓 (𝑥0)+
𝑓 ′(𝑥0)
1!

(𝑥−𝑥0)+
𝑓 ′′(𝑥0)

2!
(𝑥−𝑥0)2 + ....+

𝑓𝑞(𝑥0)
𝑞!

(𝑥−𝑥0)𝑞

(2)

𝑓 (𝑥) = 𝑓 (0) +
𝑓 ′(𝑥0)
1!

(𝑥) +
𝑓 ′′(𝑥0)

2!
(𝑥)2 + ....+

𝑓𝑞(𝑥0)
𝑞!

(𝑥)𝑞 (3)

𝑓 (𝑥) = 𝑏+𝜔1(𝑥) +𝜔2(𝑥)2 + ....+𝜔𝑞(𝑥)𝑞 (4)

Here, 𝑏 is the bias. If a 𝑡𝑎𝑛ℎ activation is applied to the overall feature 
map or the Equation (1), the approximation can be bounded between 
[−1, 1]. The 𝑡𝑎𝑛ℎ function and its application on Equation (1) can be 
shown as,

𝑡𝑎𝑛ℎ = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
(5)

𝐴𝑐𝑡𝑥𝑛
𝑚
= 𝑡𝑎𝑛ℎ(𝑥𝑛

𝑚
) (6)

𝐴𝑐𝑡𝑥𝑛
𝑚
= 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
(𝑃 (

𝑁𝑛−1∑

𝑖=1
𝜓𝑛

𝑚𝑖
(𝜔𝑛

𝑚𝑖
, 𝑦𝑛−1

𝑖
))) (7)

SelfONN exhibits better performance than CNN in many tasks [25,
19,51]. Therefore, as shown in Fig. 1, SelfONN generates a 𝑞 set of 
weights; in this study, 𝑞 = 3 is employed; all of these weights are then 
pooled via a pooling operation that incorporates bias to construct the 
resulting feature map.

In this study, two types of blocks are used to construct the model ar-
chitecture, 1) Inverted residual Block, and 2) Non-residual block. Fig. 9
represents the two building blocks of Self-ChakmaNet. Both of these 
blocks have 1 × 1 point-wise convolution, 3 × 3 convolution, and 1 × 1
point-wise convolution sequentially, but only inverted residual blocks 
has the residual connection to counter the vanishing gradient. Another 
difference between these two blocks is in the middle layer of 3 × 3 con-
volution of non-residual block has stride of 2 which is returns reduce the 
spatial dimensional of features from (ℎ𝑒𝑖𝑔ℎ𝑡 ×𝑤𝑖𝑑𝑡ℎ) to ( ℎ𝑒𝑖𝑔ℎ𝑡2 × 𝑤𝑖𝑑𝑡ℎ

2 ).
The Self-ChakmaNet architecture consists of five inverted residual 

blocks and four non-residual blocks. The spatial dimension of the input 
image is reduced by four non-residual blocks by the factor of 2 and 
before flatting the feature at the end average pooling of 7 is used. For 
the classification part, Self-MLP is used which is a variant of SelfONN. 
Unlike the identical “linear” neuron model of Multi-Layer Perceptrons 
(MLPs), Self-MLP also employs non-linearity and generative neurons as 
SelfONN. (See Fig. 10.)

3.2.4. Ethnic handwriting learning module: “Swakkhor App”

“Swakkhor App” is an app which helps users to learn indigenous 
language. This app is currently under development. Fig. 3 block D rep-
resents the app and how it is connected to the whole system. This app 
provides a canvas to draw “Chakma” characters. Users draw the char-
6

acter they are asked to draw and the trained model from handwritten 
Egyptian Informatics Journal 24 (2023) 100413

Fig. 9. Building blocks of Self-ChakmaNet, a) Inverted residual block with resid-
ual connection and (b) Non-residaual block.

module recognizes the character. The probability of recognized char-
acter sets the achievement of user in developing the written skills of 
“Chakma” language. Every user is set draw a character for 10 times and 
based on recognized probabilities they progress to learn all the alpha-
bets of “Chakma” language.

3.3. Visualization technique

Deep learning models are often considered as a black box. Know-
ing the attributes that a deep learning model uses for predictions is 
necessary to increase the model’s credibility with its users. Utilizing 
different visualization techniques, the areas from which the networks 
generate decisions have been verified visually. CAM [52], GradCAM 
[41], SmoothGrad++ [30], and ScoreCAM [49] are the popular visu-
alization techniques for deep learning models’ decision interpretation. 
In this study, GradCAM visualization techniques is used. GradCAM [41]
is an extensive version or generalization of Class Activation Mapping 
(CAM) [52]. CAM visualization is sensitive of particular deep learning 
models, which is a major drawback of CAM. GradCAM eliminates the 
CAM requirement of a fully connected layer be followed by a global av-
erage pooling [41]. GradCAm uses “alpha values” that are computed 
based on gradients to weight the feature maps [41]. The hot part in the 
visualization using GradCAM represents the “class-discriminative local-
ization map” or the heatmap. However, GradCAM was chosen for this 
work because of its promising results in contemporary computer vision 
research. It generates heatmaps to the parts of the input image that 
model considers when making predictions. This could make it easier for 
users to understand how the network makes predictions.

4. Experimental setup

In deep learning experiment, the dataset needs to be divided into 
training, validation, and testing set. The “Indigenous Handwritten Char-
acter Dataset- Chakma” contains 1,000 images for each 47 classes which 
is in total of 47,000 images. The dataset was divided into training, 
validation, and test by the ratio of 70%, 10%, 20% of each class re-
spectively. The illustration of the data splitting is given in Fig. 11. As a 
result, 32,900 images were used for the training of deep learning models 

in classifying 47 handwritten Chakma Character. For hyper-parameter 
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Fig. 10. Architecture of Self-ChakmaNet with inverted residual blocks and non-residual blocks with Self-MLP.
tuning (learning rate drop, early stopping) of the model 4700 images 
were used while the models were evaluated on 9400 images.

The model under consideration underwent training and testing on 
additional datasets pertaining to the recognition of handwritten charac-
ters in the Bengali language. For Bangla handwritten character recog-
nition, the Self-ChakmaNet model was trained on single fold of the 
datasets. The dataset known as CMATERdb 3.1.2 consisted of a total 
of 15,000 images, which were utilized for the purpose of training and 
validation (12,000 images) as well as testing (3,000 images) of 50 fun-
damental Bangla characters. The CMATERdb 3.1.1 dataset consisted of 
4,000 samples for both training and validation, and 2,000 images for 
testing purposes. The dataset encompassed 10 distinct Bangla numer-
als. The BanglaLekha Numerals refer to a specific subset of the origi-
nal BanglaLekha dataset, consisting solely of images related to the ten 
Bangla numerals. The BanglaLekha Numerals dataset underwent parti-
tioning into three distinct sets, namely the training set, validation set, 
7

and test set. The dataset consisted of a total of 13,833 images for the 
training set, 1975 images for the validation set, and 3949 images for 
the test set. In order to maintain consistency with the other two nu-
meral datasets, the images of BanglaLekha numerals were inverted to 
ensure that the black stroke remained on a white canvas.

Data cleaning was performed exclusively on the ISI numerals and 
EKush datasets. Following the cleaning process, the ISI numerals dataset 
was reduced to 19,392 images for the training and validation set, and 
4,000 images for the testing set, resulting in a total of 23,392 images. 
It is important to mention that the original dataset prior to cleaning 
contained 27,500 images. Conversely, the Ekush dataset underwent a 
cleaning process resulting in a total of 17,745 images allocated to the 
training set, 5,053 images assigned to the test set, and 2,530 images 
designated for the validation set.

Datasets containing numerals and basic characters from the same 
domain were assessed against another dataset. The evaluation process 
involved utilizing the complete dataset to assess the performance of the 

trained model across various datasets. For instance, the Self-ChakmaNet 
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Fig. 11. An illustration of training, validation and test set splitting from main dataset using cross validation.
Table 2

Details of training parameters of MobileNet_V2,and Self-
ChakmaNet.

Training Parameters MobileNet_V2 Self-ChakmaNet
Batch Size 4 4
Learning rate 0.0001 0.0001
Learning Rate Drop factor 0.1 0.1
Normalization True False
Max Epochs 100 100
Epoch Patience 5 5
Early Stopping 13 13
Optimizer Adam Adam

model was trained on 3,600 samples from the CMATERdb 3.1.1 dataset, 
with 400 samples reserved for validation purposes, specifically in the 
numeral’s domain. The performance of that model was evaluated on 
two numeral datasets, namely BanglaLekha Numerals and ISI numerals, 
consisting of 19,757 and 23,392 samples, respectively. Additionally, for 
basic character recognition for Bangla, the Self-ChakmaNet was trained 
using 10,800 training samples from the CMATERdb 3.1.2 dataset, with 
an additional 1,200 validation samples. Subsequently, that model was 
tested separately on 25,328 samples from the Ekush dataset. The same 
method of unseen data evaluation was done on other dataset considered 
for Bangla handwritten character recognition.

This research is done using Pytorch library with Python 3.7. All the 
model was trained in Google Colab Pro. The specifications were used 
through Google Colab for this experiment were 16GB Tesla T4 GPU, 
and 120GB High RAM.

4.1. Hyperparameters

The training parameters were used in this experiment is given in 
Table 2.

4.2. Evaluation metrics

Deep learning curves are widely used to examine trends in the learn-
ing of models (optimizing the parameters) versus each epoch or over 
time. There are two categories into which learning curves may be di-
vided: optimization learning curves and performance learning curves. 
While the model performance or accuracy plotted curve is known as 
the Performance Learning Curves, the learning curves including the op-
timization parameters or loss of the model are known as Optimization 
Learning Curves. A model’s overfit, underfit, and well-fit characteris-
tics may be understood by comparing training learning curves to trends 
in accuracy and loss during validation and testing. Evaluation metrics 
of the model are another way to investigate at the performance of the 
models. Proposed SelfONN based model and the mentioned architec-
tures’ performances were estimated through evaluation metrics, such 
as overall and weighted accuracy, Sensitivity, Specificity, Precision and 
F1_score. The terms used to define the evaluation metrics are noted be-
8

low:
𝛽 = number of true positive instances,
𝜅 = number of false-positive instances,
𝜁 = number of true negative instances, and
𝜂 = number of false-negative instances.

Here, a deep learning model’s precision—or the standard for a correct 
prediction—is one measure of how accurate the model performs. To 
calculate precision, divide the total number of true positive predictions 
by the total number of true positives:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝛽

𝛽 + 𝜅
(8)

Specificity is another criterion for assessing deep learning models. 
The specificity is defined as the ratio of true predicted negatives to 
negatively identified samples which can be expressed as:

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝜁

𝜁 + 𝜅
(9)

Sensitivity is the proportion of test samples that were properly pre-
dicted in positive class samples. The model performance on indemnify-
ing positive instances for positive classes, or Sensitivity can be written 
as:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝛽

𝛽 + 𝜂
(10)

where the F1-score is an important evaluation metric in deep learning. 
The harmonic mean of sensitivity/recall and precision is the F1 score. 
By combining two apparently at variance criteria—precision and sensi-
tivity/recall—it concisely sums up a model’s predictive ability.

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

(11)

Finally, the overall accuracy is the percentage of true positives, true 
negatives, false positives, and false negatives combined.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝛽

𝛽 + 𝜁 + 𝜅 + 𝜂
(12)

A receiver operating characteristic curve (ROC curve) is a graph that 
plots the true positive rate and false positive rate to show how well 
a classification model performs across all classification thresholds. The 
two-dimensional region between 0 and 1 beneath a ROC curve is known 
as the area under the curve (AUC). A model can distinguish between 
true positive and negative classifications better the higher the value of 
AUC:

𝐹𝑎𝑙𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 =
𝜒

𝜏 + 𝜒
(13)

Additionally, two criteria for evaluation that show how light or heavy 
and fast the model performs, are the total number of trainable parame-
ters and the inference time. Trainable parameters are those which value 
is adjusted/modified during training as per their gradient. The more 

number of trainable parameters indicates the model is heavy, while less 
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Fig. 12. Learning curves of first folds evaluation of (a) Self-ChakmaNet aND (B) MobileNet_V2. The primary y-axis in the left side represents the Optimization 
learning curves, and secondary y-axis in the right side represents the Performance learning curve of the models.
trainable parameters indicate the lightness of the model. Inference time 
indicates the processing time the model takes to predict a single pre-
diction over a single sample. Let, 𝑡 is the processing time for predicting 
one single pre-processed sample and the sample is predicted 𝑁 = 1000
times, then inference time 𝑇𝑖𝑛𝑓 can be written as follows,

𝑇𝑖𝑛𝑓 =
∑𝑁=100

𝑖=1 𝑡𝑖

𝑁
(14)

5. Result analysis

The performance of MobileNet_V2, and Self-ChakmaNet is reported 
in this section. The performance of MobileNet_V2, and Self-ChakmaNet 
is evaluated with learning curve, and comparative result analysis of 
existing other handwritten character recognition models.

5.1. Learning curves comparison

Learning curve analysis helps to diagnose a complex deep learn-
ing model for different scenarios of underfitting, overfitting, and well-
fitting characteristics. Fig. 12 represents the learning curves of first fold 
of the models. All the learning curves of both of the models for all 
folds are available in Supplementary Table S1 and Supplementary Ta-
ble S2. From Fig. 12 and Supplementary Table S1, it is evident that 
MobileNet_V2 converge earlier than Self-ChakmaNet. Self-ChakmaNet 
converged perfectly after few more epochs than MobileNet_V2, but 
showed the trend of getting almost saturated between 20 to 30 epochs. 
As the loss plot is not a flat line at higher loss and the loss got saturated 
at earlier epochs, leaving no opportunity for improvement, the opti-
mization learning curves of MobileNet_V2 and Self-ChakmaNet support 
that the models are not underfitted. Additionally, the models are not 
overfitted as the model gradually learned features from training data, 
the models became more generalized in the new data such as validation 
and test set. Such an assertion is supported by the models’ improving 
accuracy and declining loss in the test and validation sets as training 
proceeds. The learning curves in Fig. 12, Supplementary Table S1 and 
Supplementary Table S2 also represent that the validation and test set 
is a well representation of the problem statement. A well-fit model is 
defined by a training, validation and test loss that declines or accu-
9

racy that improved to a stable point with a small difference between 
the two final loss values. In early epochs, the Self-ChakmaNet optimiza-
tion learning curves exhibited notches for validation and test, but as 
the epoch continued on, the loss reduced toward zero with a saturation 
trend. Overall, the Self-ChakmaNet is well-fitted model as state-of-the-
art MobileNet_V2 for Chakama Handwritten Character recognition.

5.2. Evaluation metrics comparison

Accuracy, precision, f1 score, sensitivity/recall, and specificity were 
the evaluation metrics used for performance evaluation of trained mod-
els. All these matrics can be formulated using 𝛽, 𝜅, 𝜁, 𝑎𝑛𝑑𝜂 used in Equa-
tion (12), (11), (8), (10), and (9). Supplementary Figure S1 and Supple-
mentary Figure S3 contain the confusion matrics of MobileNet_V2 and 
Self-ChakmaNet and using confusion matrics 𝛽, 𝜅, 𝜁, 𝑎𝑛𝑑𝜂 were calcu-
lated for Accuracy, precision, f1 score, sensitivity/recall, and specificity 
formulation. All the trained models were tested on the test set which 
comprises 20% of the entire dataset. The number of instance for each 
class was considered for metrics calculation. Table 3 represents the 
comparison of the two models. The best accuracy, precision, f1 score, 
sensitivity/recall, and specificity were achieved by MobileNet_V2. The 
Self-ChakmaNet performed similar to MobileNet_V2 with only 0.06% 
decrease in accuracy, precision, f1 score, and sensitivity/recall. The 
close precision and recall values of Self-ChakmaNet to MobileNet_V2 
represents that the models are capable at predicting true positive in-
stances for multi-class classification. The f1 score of the both models 
which is a combined metric of precision and recall, also indicates the 
models superiority of true positive instance (for multi-class classifica-
tion) classification over the false positive and false negative. Though 
the self-ChakmaNet under-performed by a very slight margin for accu-
racy, precision, f1 score, and sensitivity/recall than MobileNet_V2. Self-
ChakmaNet was highly capable of predicting true negative instances 
(for multi-class classification) over all negative instances as the speci-
ficity of Self-ChakmaNet is 100%. So, on five fold cross validation of 
Chakma Handwritten character recognition, MobileNet V2 and Self-
ChakmaNet performed similarly in evaluation metrics.
However, comparing trainable parameter and inference time reveals the 
difference in architecture and processing speed. MobileNet V2 has over 
5.037 times more trainable parameters than Self-ChakmaNet, which 
has 453,443 trainable parameters. MobileNet_V2 is one of the lightest 

state-of-the-art CNN architecture for implementation on mobile devices. 
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Table 3

Result Analysis of MobileNet_V2 and Self-ChakmaNet on Chakma Handwritten Character recognition.

Model Inference Time(ms) Trainable Parameters Accuracy Precision F1 Score Sensitivity Specificity
MobileNet_V2 8.4801 2,284,079 99.90 99.90 99.90 99.90 100

Self-ChakmaNet 8.0775 453,443 99.84 99.84 99.84 99.84 100

Fig. 13. Receiver Operating Characteristic (ROC) curves of (a) MobileNet_V2 and (b) Self-ChakmaNet. A high resolution version of these ROC curves can be found 
in the Supplementary Figure S2 and Supplementary Figure S4.
Self-ChakmaNet mimicked the MobileNet V2 basic blocks but had less 
trainable parameters and operation neurons, which allowed it to com-
pute predictions more swiftly than MobileNet V2. Self-ChakmaNet out-
performed MobileNet V2 by having an inference time of 8.0775 ms as 
opposed to 8.4801 ms. Self-ChakmaNet and MobileNet V2 are compa-
rable models overall, with Self-ChakmaNet being lighter and faster, but 
also performing similarly accurate and efficiently.

5.3. ROC curves and AUC comparison

The ROC curves for the MobileNet V2 and Self-ChakmaNet are 
shown in Fig. 13 by showing the True Positive Rate and False Positive 
Rate at various thresholds. A lower X-axis value on the ROC curve of 
Fig. 13 indicates a lower proportion of True negatives to False positives. 
A higher Y-axis number, on the other hand, indicates a higher ratio of 
True positives to False negatives. Both ROC curves of MobileNet V2 and 
Self-ChakmaNet have an Area Under the Curve (AUC) of 1.00, which in-
dicates that both models are capable of correctly classifying the sample 
across all classification thresholds.

5.4. GradCAM visualization of the MobileNet_V2 and self-ChakmaNet 
predictions

Fig. 14 represent the visualization analysis of Chakma Handwrit-
ten character recognition using GradCAM. GradCAM is used in this 
study to understand the decision making features for Chakma Hand-
written character recognition by MobileNet_V2 and Self-ChakmaNet. 
The heatmap generated using GradCAM for four different Chakma char-
acter are given in Fig. 14. The four heatmaps of MobileNet_V2 for four 
characters represent that the model is selecting the appropriate features 
or the character region pixels for the classification. The character stroke 
region in the visualization using GradCAM is hotter or mapped as red 
for the true classification by MobileNet_V2. In comparison with visu-
alization of Self-ChakmaNet predictions, the heatmap is not as spread 
over the region of the Chakma characters as MobileNet_V2. However, it 
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is evident from the Self-ChakmaNet visualizations that Self-ChakmaNet 
predictions based on the stroke pattern of the character. All the pre-
dictions of Self-ChakmaNet follows the stroke pattern of the character 
with hotter or red mapping in the heatmap. All these visualization out-
comes support the interpretability of the models. These models are not 
making predictions on arbitrary features, rather than focusing impor-
tant features as stroke pattern of the handwritten character. Overall, 
the Self-ChakmaNet is classifying the instances as MobileNet_V2 with a 
high degree of accuracy as well as from the relevant features.

5.5. Comparative result analysis with existing literature

As this research is the first approach of Chakma Handwritten Char-
acter recognition model, there is no other literature to compare. But, 
as handwritten character recognition problem, Table 4 illustrates the 
comparison of our proposed models with other handwritten character 
recognition models. Previous literatures on Bangla Handwritten char-
acter recognition are considered for comparison. From Table 4, au-
thors in literature [38] used classical machine learning approach for 
Bangla Handwritten character recognition. In the literature [15,20], 
Convolutional Neural Networks were adopted to gain significantly good 
result on Bangla handwritten character recognition. All the CNN mod-
els in [15,20] have more number of trainable parameters than Self-
ChakmaNet.

For comparative analysis and the evaluation of the proposed model 
across the different character recognition dataset, the Self-ChakmaNet 
was trained and tested on five different Bangla handwritten char-
acter datasets, such as CMATERdb 3.1.1(numerals), ISI numerals, 
BanglaLekha Numerals, CMATERdb 3.1.2 (basic characters), and Ekush 
(basic characters). The models trained with one dataset were tested on 
the test set of the same dataset along with other dataset/datasets of 
same domain, such as a model trained on numerals dataset was tested 
on other two numerals dataset. All the evaluation is tabulated in Ta-
ble 4. Self-ChakmaNet achieved 97.30% accuracy on the test set of the 
ISI numerals dataset while the best results were on this dataset was 
95.10%, 99.78%, and 99.36% reported in literature [5], [45], and [43]
respectively. The result represents that Self-ChakmaNet outperformed 

literature [5], but under-performed 2.48% and 2.06% than literature 
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Fig. 14. GradCAM visualization of MobileNet_V2 and Self-ChakmaNet model on recognizing the Chakma Handwritten Character dataset.

Table 4

Comparative analysis of handwritten character recognition models.

References Technique Used Language Dataset
Number of

Classes
Accuracy

[38] SVM Bangla [38] 50 83.68

[15]
Combination of InceptionResNetV2,
InceptionNetV3 and DenseNet121

Bangla CMATERdb 231 97.69

[20] Squeeze and excitation ResNeXt Bangla BanglaLekha-Isolated 2 dataset 50 99.82
[5] MLP Bangla ISI Numerals 10 95.10
[45] BDNet CNN Bangla ISI Numerals 10 99.78
[36] CNN Bangla CMATERdb 3.1.2 50 98.00
[36] BornoNet CNN Bangla CMATERdb 3.1.2 50 98.00
[42] CNN Bangla CMATERdb 3.1.1 10 99.50
[40] BengaliNet CNN

Bangla

CMATERdb 3.1.1 10 99.01
CMATERdb 3.1.2 50 98.97
BanglaLekha Numerals 50 98.97
Ekush 50 98.36

[43]
Skip-connected
Multi-column CNN

Bangla
CMATERdb 3.1.1 10 98.15

ISI Numerals 10 99.36
CMATERdb 3.1.2 50 96.65

Our
proposed
method

Self-ChakmaNet Chakma
Indigenous Handwritten Character
Dataset - Chakma

47 99.84

Bangla
CMATERdb 3.1.1 10 96.08
Trained: CMATERdb 3.1.1
Tested: BanglaLekha Numerals

10 81.26

Trained: CMATERdb 3.1.1
Tested: ISI Numerals

10 91.25

Bangla
BanglaLekha Numerals 10 95.67
Trained: BanglaLekha Numerals
Tested: CMATERdb 3.1.1

10 94.15

Trained: BanglaLekha Numerals
Tested: ISI Numerals

10 94.70

Bangla
ISI Numerals 10 97.30
Trained: ISI Numerals
Tested: CMATERdb 3.1.1

10 98.68

Trained: ISI Numerals
Tested: BanglaLekha Numerals

10 93.10

Bangla
CMATERdb 3.1.2 50 94.83
Trained: CMATERdb 3.1.2
Tested: Ekush

50 91.61

Bangla
Ekush 50 95.59
Trained: Ekush
Tested: CMATERdb 3.1.2

50 76.53
[45], and [43]. The total number of parameter of BDNet [45] was more 
than 1.71 millions and the model proposed in literature [43] had even 
more than this number of trainable parameters. Compared to these gi-
11

ant models, Self-ChakmaNet was trained on only 453k parameters and 
produced close accuracy to literature [43,45]. Similarly, CMATERdb 
3.1.1 dataset was tested on the model trained on ISI dataset using Self-
ChakmaNet which showed 98.68% accuracy. The accuracy achieved 

in literature [40] on testing CMATERdb 3.1.1 dataset was 99.01% with 
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more than 2.24 millions of parameters. In this instance, Self-ChakmaNet 
attained a level of accuracy that was nearly equivalent, while utilizing 
only one-fifth of the number of trainable parameters. Similar patterns 
are evident in the results of other evaluations (numerals, and basic char-
acters datasets) presented in Table 4 for Self-ChakmaNet. This model 
demonstrated comparable performance to previous studies when tested 
on the same or different datasets that were not included in the training 
set.

The performance degradation of Self-ChakmaNet in Bangla Hand-
written character recognition, as compared to other studies, may be 
attributed to the resizing of the input image. The input size of the pro-
posed architectures exceeds the dimensions of all available datasets of 
Bangla Handwritten Characters. The increase in size of the input im-
age resulted in the loss of data, which can be mitigated through various 
preprocessing techniques, including white padding, black padding, and 
others. As the scope of this study was limited to the Chakma Hand-
written Character, the comprehensive analysis of these findings was in-
tended to inform future research endeavors. The Self-ChakmaNet model 
has demonstrated a notable level of accuracy in recognizing handwrit-
ten Chakma characters when compared to other current studies in the 
field of Bangla handwritten character recognition. The Self-ChakmaNet 
model exhibited notable accuracy in the domain of handwritten char-
acter recognition, while utilizing only a small number of trainable pa-
rameters and demonstrating expedited processing capabilities.

6. Conclusion and future work

A significant number of languages are dying each year due to lack 
of availability of resource, education and practice. The learning and 
practice of indigenous language can be done digitally if the written 
characters can be recognized correctly and proper feedback given after 
practice. This research focused developing language resources which 
can help to develop deep learning systems to recognize Chakma char-
acters. A SelfONN based complex model Self-ChakmaNet is proposed 
in this study and also the performance compared with state-of-the-art 
CNN model MobileNet_V2. The proposed model was also tested on five 
different Bangla handwritten characters’ dataset. The aim of develop-
ing a lighter and faster model than MobileNet with same accuracy is 
fulfilled in this research. Therefore, Self-ChakmaNet may be used in the 
“Swakkhor App” for mobile device implementation in the future. In fu-
ture, Indigenous Handwriting Recognition can be achievable using this 
method which will be helpful to build “Indigenous Language Learning” 
system along with other three modules such as listening, reading and 
speaking of different Indigenous languages. This approach can be repli-
cated and expanded for other Indigenous languages.
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