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Abstract
In college assignments, a common practice is that students receive their dorm allo-
cation after the realization of college placements. This causes wasted resources and
unfair allocation. To fix this, we consider a college assignment problem where stu-
dents simultaneously receive their college and dorm assignments. We first introduce
the so-called “Dorm Augmented Deferred Acceptance” (DDA) and show that it is
stable and efficient. However, it is not student-optimal stable. We then introduce
our next mechanism, “Student-Improving Dorm Augmented Deferred Acceptance”
(SDDA). It is mainly built on DDA, but with some extra steps to neutralize the
student-harming rejection cycles. We show that SDDA is student-optimal stable, effi-
cient, and unanimously preferred to DDA by students. Stability and strategy-proofness
are incompatible, implying that neither of these mechanisms is strategy-proof. None
of these mechanisms is more manipulable than the other; hence SDDA improves the
students’ welfare without an extra strategic cost.

1 Introduction

Dorms are essential for many college students to pursue their education. In today’s
practice, students are placed at colleges first, and then apply for a dorm, leaving uncer-
tainties regarding dorm assignments by the realization of college placements. This
sequentiality in the assignment yields severe problems, including wasted resources
and unfairness. For instance, consider a scenario where a student is placed at a col-
lege. She then applies for a dorm, but cannot get it. If the student cannot offer college
life without a dorm, because of high off-campus housing rental rates, she cannot go
to the college, causing a wasted quota. Moreover, such a student might envy someone
else even though the former has a better ranking, causing unfair assignments.
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This problematic phenomenon is not only hypothetical but rather happening in prac-
tice. For instance, in Turkey, many college students did not enroll or had to freeze their
enrollments because of not receiving a dorm assignment.1 Even college officials might
suggest students not complete their registration unless they secure a stable accommo-
dation. For instance, Glasgow University does not guarantee a dorm to newcomers,
and they give that advice.2

A remedy for the problem is to design a centralizedmatchingmarket where students
report their preferences over college-accommodation pairs so that the mechanism
designer is aware of how students evaluate each contingency before concluding an
assignment. This, coupled with a well-working assignment mechanism allocating col-
leges and dorms simultaneously, would avoid all the problems above. The current
work pursues this research direction and offers a dorm-augmented college assignment
problem. As extensively discussed in Sect. 2, our paper admits some unique features,
which have not been considered before.

Essentially, two goods are allocated in the problem: College seats and dorms. This
calls for fairness restrictions for both goods assignments. Yet another feature mak-
ing the problem even more convoluted is that students might be treated differently
in the assignment of these goods. That is, colleges’ preferences for students might
very well be different from dorm priorities.3 This, in turn, raises tradeoffs between
fairness notions, manifested in our solution. Nevertheless, we manage to introduce
two plausible and compatible fairness concepts: C-fairness and D-fairness (fairness
with respect to the college and dorm assignments, respectively). C-fairness rules out
any pair of students being placed at different colleges, and either of them envies the
other while the former is better ranked by the latter’s college. D-fairness, on the other
hand, only considers students in the same college. It ensures that if a dorm is given to
a student at the expense of another with a higher dorm priority, either only the former
has a strong dorm demand or she has a better ranking at the college.4

Stability requires the standard individual rationality and non-wastefulness in addi-
tion to C-fairness and D-fairness.5 When it comes to the mechanism design, we first
introduce the so-called “Dorm-Augmented Deferred Acceptance" (DDA). It is mainly
built on theGale and Shapley (1962)’s deferred acceptance (DA)mechanism. Students
apply to college-accommodation pairs in order of their preferences. Each college first
tentatively accepts the best-ranked students up to its quota without rejecting the rest.
Those applying for a dorm among the tentatively-accepted group are assigned a dorm
according to an ordering based on the preferences and dorm priorities until the dorm
capacities are exhausted. Each student in this group is rejected upon not receiving a
dorm, and someone else who is not tentatively accepted previously can replace her in
the next step.

1 https://www.voaturkce.com/a/barinamiyoruz-diyen-ogrenciler-parklarda-sabahliyor/6240312.html.
2 https://www.bbc.com/news/uk-scotland-glasgow-west-62982938.
3 For instance, academic standing does matter for colleges when it comes to admissions. On the other hand,
students’ addresses and their parents’ income levels might be determining factors in dorm allocations.
4 A student has a strong dorm demand at a college if conditional on being placed at the college, she would
rather receive some other college-accommodation alternative unless a dorm is assigned to her.
5 Individual rationality ensures that no student would rather be unassigned. Non-wastefulness, on the other
hand, eliminates wasted resources.
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Weshow that DDA is stable and efficient.However, it is not student-optimal stable.6

We then introduce our second mechanism—Student-Improving Dorm-Augmented
Deferred Acceptance (SDDA). SDDA neutralizes the student-harming requests in
DDA, manifested by futile applications to college-dorm pairs where the applicants
ultimately receive these colleges without a dorm. We show that SDDA is student-
optimal stable and efficient. It is also unanimously preferred to DDA by students.

In terms of strategic properties, we find a general tension between stability and
strategy-proofness, implying that none of these mechanisms is strategy-proof.7 We
also compare their degree of vulnerability à la Pathak and Sönmez (2013) and find
that none of them is more vulnerable than the other. Hence, SDDA improves the
students’ welfare over DDA without an additional strategic cost.

2 Literature review

This paper extends the classical college admission problemofGale and Shapley (1962)
by incorporating dorm assignments. It allows for separate rankings for both college and
dorm assignments and addresses fairness with respect to both assignments. While our
setting is similar toHatfield andMilgrom (2005)’smatchingwith contract formulation,
there are critical differences. Dorms cannot be interpreted as a contract term in the
latter’s formulation since they are real resources, which entails a fairness restriction.
The double fairness imposition, empowered by separate rankings, constitutes a critical
departure from the matching with contract setting and significantly affects the results,
including mechanism designs and matching properties. For instance, stability and
strategy-proofness are incompatible in our formulation, while the opposite is true in
Hatfield and Milgrom (2005).

There is an extensive literature on generalizing college admission problems in
various dimensions. Dur et al. (2019) introduce a school choice problem where cer-
tain priorities can be violated. They weaken the usual stability and propose a stable
and constrained efficient mechanism. Afacan (2019) incorporates vouchers into the
school choice problem, where poor students need to have a voucher to receive a pri-
vate school. He introduces a stability notion and proposes a constrained efficient and
stable mechanism. Abizada (2016) studies a college admission problem where col-
leges distribute seats and budget as stipends for the admitted students. Students have
preferences over college-stipend pairs. He achieves stability and strategy-proofness
despite the absence of the substitutes condition. Ehlers andMorrill (2019) define legal
assignments in school choice and examine their properties.

A surging literature is on the frontier of incompatible properties in school choice.
Abdulkadiroğlu et al. (2020) obtain that the Top-Trading Cycles mechanism admits
minimal justified envy in the class of efficient and strategy-proof mechanisms when-
ever schools have unit capacity. Doğan and Ehlers (2022) extends this result to a larger
set of justified envy comparison measures. Doğan and Ehlers (2021) characterize the

6 Amatching is student-optimal stable if it is stable, and no other stable matching is unanimously preferred
to the former by students.
7 A mechanism is strategy-proof if no student ever benefits by misreporting her preferences.
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priority profiles ensuring the existence of an improvement over the DA outcome that
is also minimally unstable among efficient assignments.

3 Model

A problem consists of (S,C, P,�,�, q) where the elements are as follows

• S and C are the finite sets of students and colleges, respectively.
• P = (Pi )i∈S is the preference profile of the students, where each Pi is a com-
plete, asymmetric, and transitive binary relation over (C ×{D, N })∪{∅}—the set
of college-accommodation pairs along with being unassigned, denoted by ∅. The
terms of D and N stand for the “with dorm" and “without dorm" options, respec-
tively. We write Ri for the “at-least-as-good-as" relation, defined as follows: For
each college-accommodation pair (c, t) and (c′, t ′), (c, t) Ri (c′, t ′) if and only
if (c, t) Pi (c′, t ′) or (c, t) = (c′, t ′). We say that (c, t) is acceptable to student i
if (c, t) Pi ∅; and otherwise, unacceptable. We write P−i = (Pj ) j∈S\{i} for the
preference profile of all students but student i .

• Each college c has a strict preference �c over the subsets of students, which is a
complete, asymmetric, and transitive binary relation over 2S . We assume that it
is responsive (Roth 1985) to the rankings over the individual students.8 We also
make the assumption that the colleges are acceptant, meaning that for each student
i and college c, i �c ∅, indicating that no college prefers to keep its slot empty.
This assumption, as discussed in Section 5, simplifies the analysis, and the entire
work can still be carried out with minor modifications. Let�c be the weak version
of �c, where for any pair of student groups S′, S′′, S′ �c S′′ if and only if S′ = S′′
or S′ �c S′′. Let �= (�)c∈C be the profile of the college preferences.

• Each college c has a separate quota for enrollment and dorms. The enrollment
(dorm) quota limits the maximum number of students that can be placed (assigned
a dorm) at college c. Let qc = (qec , q

d
c ) be the quota vector of college c where qec

and qdc are the enrollment and dorm quotas, respectively. Let q = (qc)c∈C be the
quota profile of the colleges. Unless otherwise stated, we refer to the enrollment
quota as the quota.

• Each college c has a strict priority ordering over S for its dorm assignments. It is
denoted by �c, and that might very well differ from the students’ rankings under
�c. Let � = (�c)c∈C .
For ease of writing, let A = {D, N }—the set of accommodation types. In the rest

of the paper, we fix all the primitives except the students’ preferences and denote the
problem by P .

A matching μ is an assignment of students to the college-accommodation pairs
such that no student receives more than one such pair, and no college receives more
students than its quota and assigns more dorms than its dorm quota. We write μi for
the assignment of student i under matching μ. We write μC

i and μA
i for the college

and the accommodation components of μi , respectively. For instance, if μi = (c, D)

8 �c is responsive if, for each S′ ⊂ S, and pair of students i, j ∈ S \ S′, (i) S ∪ {i} �c S ∪ { j} if and only
if i �c j , and (ii) S ∪ {i} �c S if and only if i �c ∅.
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[μi = (c, N )], it means that student i is placed at college c with a dorm [without a
dorm], and we write μC

i = c and μA
i = D [μA

i = N ]. Let μc = {i ∈ S : μC
i = c}

and μd
c = {i ∈ μc : μA

i = D}, the sets of students at college c and that with a dorm,
respectively.

For any college c, we define Nc(P) = {i ∈ S : (c, D) Pi (c, N ), and there is no
k ∈ (C × A) ∪ {∅} such that (c, D) Pi k Pi (c, N )}. It is the set of students, each
ranking college c with a dorm and without a dorm back to back. We say that these
students do not have a strong demand for a dorm at college c in that conditional on
being placed at college c, they do not prefer to drop the college or to switch to another
even when they do not receive a dorm. Let Dc(P) = {i ∈ S : (c, D) Pi k Pi (c, N )

for some k ∈ (C × A) ∪ {∅}}. This is the set of students having a strong demand for a
dorm at college c as conditional on being placed at college c, they would rather change
their assignment unless they receive a dorm.

We are now ready to introduce our properties. Amatchingμ is individually-rational
if μi Ri ∅ for each student i . This is a standard requirement ensuring that no student
would rather be unassigned. Non-wastefulness below is also canonical, eliminating
wasted resources.

Definition 1 Matching μ is non-wasteful if there is no triplet (i, c, t) ∈ S × C × A
such that
(i) (c, t) Pi μi ,
(ii) |μc| < qc, and
(iii) t = N or t = D and |μd

c | < qdc .

Definition 2 Matching μ is fair with respect to the college-assignments if there is no
pair of students i, j such that μC

i 	= μC
j = c and i �c j , and any of the followings

holds:
(i) μA

j = D and (c, t) Pi μi for some t ∈ {D, N },
(ii) μA

j = N and (c, N ) Pi μi , or

(iii) μA
j = N , (c, D) Pi μi , and |μd

c | < qdc .

The fairness notion above only considers student pairs placed at separate colleges,
making it specific to college assignments. It eliminates envy among student tuples
where the envying student is also preferred by the college, and she can be given a
dorm if desired. Its only difference from the standard fairness notion is that envies by
better-ranked students are tolerated as long as they demand a dorm, which is already
exhausted.

The next condition takes care of fairness in dorm assignments within the colleges.

Definition 3 Matching μ is fair with respect to the dorm-assignments if, for each
pair of students i, j such that μC

i = μC
j = c for some college c, μA

i = D, μA
j = N ,

(c, D) Pj μ j , and j�ci , we have either [i ∈ Dc(P) and j /∈ Dc(P)], or [i, j ∈ Dc(P)

and i �c j].

Definition 3 imposes that if dorm priorities are not respected within the colleges, it
must be due to the fact that either the envying student does not have a strong demand
for a dorm or both have a strong demand, but the envying student is less preferred by
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the college.9 From now on, we refer to fairness with respect to the college-assignments
and dorm-assignments as C-fairness and D-fairness, respectively.

Remark 1 In Appendix A, we consider a more stringent fairness notion for dorm
assignments, ruling out envies by the students with a higher dorm priority. However,
it turns out to be incompatible with C-fairness, as formally shown in the Appendix.
Thus, we consider the above weakening. It’s our modeling choice to weaken the
fairness requirement for dorm assignments instead of for colleges. This is because
college assignments are central to the problem; dorms complement them.

A matching is stable if it is individually rational, non-wasteful, C-fair, and D-fair.
Matching μ Pareto dominates μ′ where μ 	= μ′ if, for each student i and college c,
μi Ri μ′

i and μc �c μ′
c. Matching is efficient if it is not Pareto dominated. Matching

μ is student-optimal stable if it is stable, and there is no other stable matching μ′ such
that for each student i , μ′

i Ri μi , where it holds strictly for some student.

Remark 2 Whenever no student ever prefers receiving a dorm, no dorm is assigned at
an efficient matching. Thus, D-fairness becomes vague, and our problem reduces to
the standard student placement model without dorms. Likewise, our stability comes
to be equivalent to the Gale and Shapley (1962)’s stability.

Mechanism ψ is a function producing a matching for each problem P . We write
ψ(P) to denote its outcome at P . Mechanism ψ is < stable, efficient, student-optimal
stable > if ψ(P) is < stable, efficient, student-optimal stable> at each problem P .
Mechanism ψ is strategy-proof if there are no P , student i , and P ′

i such that ψi (P) Pi
ψi (P ′

i , P−i ). Mechanism ψ Pareto dominates φ if, for each problem, either ψ(P) =
φ(P) or ψ(P) Pareto dominates φ(P), where the latter holds for some problem.

4 Themechanism designs and the results

Before delving into themechanisms, let us present a result that highlights some notable
distinctions in our framework compared to the well-known facts concerning conven-
tional stability in a standard college assignment setting without dorms. In the absence
of dorms, stability implies efficiency, and stable matchings form a lattice. However,
these established results do not hold in our framework, as demonstrated below.

Proposition 1
(i) Stability does not imply efficiency.
(ii) There might be multiple student-optimal stable matchings, implying that stable
matchings do not form a lattice.

In what follows, we pursue stable and efficient mechanism designs. For this pur-
pose, we first introduce an artificial ordering over the students, which is used in the

9 In a sense, students promote their dorm priorities through their preference reporting by revealing their
strong demand for dorms. A similar approach exists in Sönmez and Switzer (2013) where cadets improve
their assignment odds by preferring extended service duration.
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mechanisms’ formulations later. For each college c, let �′
c denote this ordering over

S, which is defined as follows: For each i, j ∈ S, i �′
c j if and only if any of the

followings holds:

(I ) i ∈ Dc(P) and j /∈ Dc(P), or (I I ) i, j ∈ Dc(P) and i �c j, or

(I I I ) i, j ∈ Nc(P) and i �c j, or (I V ) None of them holds and i �c j .

4.1 The dorm augmented deferred acceptance

Let us first describe the mechanism with words. Students apply to college-
accommodation pairs in order of their preferences. Each college collects its applicants
and tentatively accepts the best of them up to its quota. A critical difference from
Gale and Shapley (1962)’s DA is that those who are not tentatively accepted are not
rejected right away.10 Instead, their applications are kept for possible late acceptance.
This is because some of the tentatively accepted students might not be able to receive
a dorm, causing them to withdraw their application. Hence, some quotas might come
to be available, which can be filled by those who are not tentatively accepted at first.

After the tentative acceptances, colleges tentatively assign dorms to those applying
for a dormby following the artificial priorities constructed above. If a dorm-demanding
student does not receive one, she is rejected for her application. She may apply to the
same college again but without a dorm application.

Here is the formal definition of our first mechanism: Given a problem P ,
Step 1.Each student applies to her best acceptable college-accommodation pair. Let S1c
be those applying to college c for any accommodation type (that is, they are applying
to (c, D) or (c, N )).

College c tentatively accepts its most preferred students in S1c up to its quota, and
let T 1

c be the set of these students. A twist here is that college c does not reject the rest
now, as some of the tentatively accepted students may be rejected later on, because of
not receiving a dorm, yielding a room for tentatively accepting the others.

Let T 1
c (D) ⊆ T 1

c be the set of tentatively accepted students applying to (c, D). We
order the students in T 1

c (D) following �′
c. That is, for any i, j ∈ T 1

c (D), i comes
before j if and only if i �′

c j .
The first min{qdc , |T 1

c (D)|} students in T 1
c (D) tentatively receive a dorm. If no

student in T 1
c (D) is left without a dorm, then college c rejects all the students in

S1c \T 1
c . Otherwise, only the students in T

1
c (D)without a dorm assignment are rejected

for their (c, D) application. Let K 1
c ⊆ S1c be the set of students who are not rejected

by college c, called “the set of tentatively kept students." We then move to the next
step.

10 In DA, if a student is rejected by a college, the rejection is permanent. However, in our mechanism,
tentatively accepted students might withdraw their applications if they do not receive a dorm. As a result
of these withdrawals, the newly available quotas can be used to assign previously rejected students.
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In general,
Step m. Each rejected student applies to her next best acceptable college-

accommodation pair. College c tentatively accepts its most preferred students from
Smc ∪ Km−1

c up to its quota without rejecting the rest. Let Tm
c and Tm

c (D) denote the
sets of tentatively accepted students, and those with a dorm demand, respectively. That
is, Tm

c (D) = { i ∈ Tm
c : (c, D) Pi (c, N )}.

We order the students in Tm
c (D) following�′

c. The first min{qdc , |Tm
c (D)|} students

in Tm
c (D) tentatively receive a dorm. If each student in Tm

c (D) receives a dorm, then
college c rejects all in (Smc ∪ Km−1

c )\Tm
c . Otherwise, those in Tm

c (D) without a dorm
are rejected for their (c, D) application. Let Km

c ⊆ Smc ∪ Km−1
c be the set of students

not rejected in this step.
The algorithm terminates whenever each student is tentatively accepted or has

gotten a rejection from each of her acceptable alternatives. The assignments by the
end of the terminal step constitute the algorithm’s outcome. We call the algorithm
“Dorm augmented deferred acceptance" (DDA).

Before formally showing the properties of DDA, we run it on an example below.

Example 1 Let us consider six students, i1, .., i6, and three colleges, c1, .., c3. Each
college has a capacity of 2 and a dorm capacity of 1. The preferences and priorities
are as follows:

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 �c1 �c2 �c3 �c1
(c1, D) (c1, D) (c2, D) (c3, D) (c3, D) (c3, N ) i3 i2 i4 i2
(c2, D) (c2, D) (c1, D) ∅ ∅ ∅ i1 i3 i5 i1

(c1, N ) ∅ ∅ ...
...

...
...

...
...

...

∅ ...
...

...
...

...
...

...
...

...

Note that Dc1(P) = Dc2(P) = {i1, i2, i3}, and Dc3(P) = {i4, i5}. Therefore,
the relevant artificial priorities directly come from the colleges’ preferences. That is,
i3 �′

c1 i1 �′
c1 i2; i2 �′

c2 i3 �′
c2 i1; and i4 �′

c3 i5 �′
c3 i6.

Step 1. Students i1 and i2 apply to (c1, D). College c1 tentatively accepts both
students. As i1 �′

c1 i2, student i1 tentatively receives a dorm, and i2 is rejected for her
(c1, D) application.

Student i3 applies to (c2, D), and she is tentatively accepted with a dorm. Students
i4 and i5 apply to (c3, D)while i6 applies to (c3, N ). i4 and i5 are tentatively accepted.
However, as i4 �′

c3 i5, student i5 does not receive a dorm, hence she is rejected. Note
that i6 is tentatively kept.

Step 2. Students i2 applies to (c2, D). As i2 �′
c2 i3, student i2 tentatively receives a

dorm, and student i3 is rejected. On the other hand, student i6 is tentatively accepted by
college c3 in this step. As she is not applying for a dorm, student i4’s dorm assignment
is not affected.
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Dorm augmented college assignments 617

Step 3. Student i3 applies to (c1, D). As i3 �′
c1 i1, student i3 is tentatively accepted

with a dorm; hence student i1 stops receiving dorm and is rejected.
Step 4. Student i1 applies to (c2, D). As i2 �′

c2 i1, she cannot receive a dorm; hence
she is rejected.

Step 5. Student i1 applies to (c1, N ). She is tentatively accepted without a dorm.
The algorithm terminates by the end of Step 5. If we writeμ for the DDA outcome,

we have μi1 = (c1, N ), μi2 = (c2, D), μi3 = (c1, D), μi4 = (c3, D), μi5 = ∅, and
μi6 = (c3, N ).

Theorem 1 DDA terminates in a finite number of steps and produces a matching. It
is stable and efficient. However, DDA is not student-optimal stable.

The reasonwhy DDA fails to achieve student-optimal stability is the fact that stabil-
ity constraints are not fixed but rather change depending on the students’ assignments.
More specifically, the constraints a student imposes on college c assignments differ
when she receives the college cwithout a dorm and when she is placed at a college dif-
ferent from c. However, DDA remains rigid in respecting the priorities, causing more
rejections than necessary for stability. This harms students beyond stability, explaining
why it fails to achieve student-optimal stability. For example, in the above scenario,
i2 is rejected for her (c1, D) application. However, conditional on student i1 receiving
(c1, N ), student i2 could obtain (c1, D) under stability as i2 �c1 i1.

Our nextmechanismbelow improves students’welfare over DDAwhile preserving
stability.

4.2 The student-improving dorm-augmented deferred acceptance (SDDA)

This mechanism—SDDA—is built on Kesten (2010)’s efficiency-adjusted deferred
acceptance mechanism. Informally, SDDA identifies students rejected for their dorm
demand at their colleges under the DDA matching. It then removes the alternatives
consisting of these colleges with a dorm from those students’ preferences and runs
DDA with a twist that any tentatively accepted student should have a higher artificial
or dorm priority than those students. Below is its formal description: Given a problem
P ,

Step 0. We apply DDA to problem P and write μ0 for the outcome. For each
college c, let Ic = ∅.

Step 1.
Substep 1.1. Let N 1 = {(i, c) ∈ S × C : (c, D) Pi (c, N ) and μ0

i = (c, N )}.
Note that a student cannot be paired with more than one college in N 1.

If N 1 = ∅, then the algorithm endswith the final outcome ofμ0. Otherwise, for each
(i, c) ∈ N 1, we identify the step in which student i’s (c, D) application is rejected in
the previous DDA application. We next consider the pairs in N 1 having this rejection
step latest. For each such pair (i, c), we define artificial preferences for student i by
demoting (c, D) to the least preferred unacceptable alternative while keeping the rest
of the rankings the same. We keep the other students’ preferences the same. We also
add i to Ic. Let P1 denote these artificial preferences.We thenmove to the next substep.
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618 M. O. Afacan

Substep 1.2.We apply DDA to P1 with a twist that a tentatively accepted student
j at a college c is rejected for her dorm demand whenever i �′

c j and i �c j for some
i ∈ Ic. We write μ1 for the outcome and move to the next step.

In general,
Step k.
Substep k.1. Let Nk = {(i, c) ∈ S×C : (c, D) Pk−1

i (c, N ) andμk−1
i = (c, N )}.

If Nk = ∅, the algorithm ends with the final outcome of μk−1. Otherwise, for each
(i, c) ∈ Nk , we identify the step inwhich student i is rejected for her (c, D) application
in the previous step DDA application. We pick the student-college pairs admitting
this rejection step latest. For each such pair (i, c), we change the ranking of (c, D)

under Pk−1
i and put it at the very end of the preferences below the being unassigned

alternative, while keeping the other alternatives’ positions the same. We also add i to
Ic. We keep the other students’ preferences the same as under Pk−1 and write Pk for
the newly created preferences.

Substep k.2.We apply DDA to Pk with a twist that a tentatively accepted student
j at a college c is rejected for her dorm demand whenever i �′

c j and i �c j for some
i ∈ Ic. We write μk for the outcome and move to the next step.

As formally shown in Theorem 2, Nk becomes empty in some Step k, meaning that
the algorithm terminates in a finite time. We call the algorithm “Student-improving
dorm-augmented deferred acceptance" (SDDA).

Let us run SDDA on the problem in Example 1 to see its difference from DDA.

Example 2 Step 0. This step consists of DDA to be applied to the problem P . It is
already performed in Example 1, and the outcome μ0 is such that μ0

i1
= (c1, N ),

μ0
i2

= (c2, D), μ0
i3

= (c1, D), μ1
i4

= (c3, D), μ1
i5

= ∅, and μ1
i6

= (c3, N ).
Step 1.
Substep 1.1. In the DDA application in Example 1, we see that student i1 receives

(c1, N ) while (c1, D) Pi1 (c1, N ). Thus, (i1, c1) ∈ N 1. On the other hand, student
i6 receives (c3, N ), but since (c3, N ) Pi6 (c3, D), (i6, c3) /∈ N 1. No other student is
placed at a college without a dorm, hence N 1 = {(i1, c1)}.

We define P1
i1

: (c2, D), (c1, N ),∅..; and P1−i1
= P−i1 . We also add i1 to Ic1 .

Substep 1.2. We next apply DDA to P1 with a twist that any tentatively accepted
student j at college c1 is rejected for her dorm demand whenever i �′

c1 j and i �c1 j .
If we run DDA to P1, it is easy to verify that the outcome μ1 is such that μ1

i1
=

(c1, N ), μ1
i2

= (c1, D), μ1
i3

= (c2, D), μ1
i4

= (c3, D), μ1
i5

= ∅, and μ1
i6

= (c3, N ).
Note that as i2 �c1 i1, she is not rejected for her (c1, D) application.

Step 2.
Substep 2.1. N 2 = ∅, thus the algorithm terminates, with the final outcome of μ1.
As we see from the outcomes, μ1 is stable, efficient, student-optimal stable, and

unanimously preferred toμ0 by the students. Notice that the reasonwhy SDDA differs
from DDA at the problem is the fact that i2 �c i1 so that i2 is not rejected for her
(c1, D) application in SDDA. However, if it were i1 �c i2, then i2 would have been
rejected for (c1, D) in Substep 1.2 above, thereby the SDDA outcome would remain
the same as μ0.
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Theorem 2 SDDA is stable, efficient, and student-optimal stable. Moreover, its out-
come is always at least weakly better than DDA’s for each student.

ByProposition 1, theremight bemultiple student-optimal stablematchings. SDDA
selects a particular one among them. Its selection in a given problem depends on the
dynamics of DDA in that problem, which in turn relies on the primitives.

Let us next investigate the strategic properties of the mechanisms. A mechanism
ψ is manipulable by a student i at problem P if ψi (P ′

i , P−i ) Pi ψi (P) for some P ′
i .

Mechanism ψ is strategy-proof if there is no problem at which it is manipulable by
some student.

Proposition 2 There is no stable and strategy-proof mechanism.

Corollary 1 Neither DDA nor SDDA is strategy-proof.

The tension between stability and strategy-proofness emerges because of D-
fairness. Without it, Gale and Shapley (1962)’s deferred acceptance where dorms
are assigned to the demanders with the better ranking at the college preferences would
satisfy all the properties except D-fairness. It is also strategy-proof. However, under
D-fairness, students with a strong dorm demand (i.e., those in Dc(P)) have an advan-
tage in dorm assignment. Thus, they might benefit from false reporting, which puts
them in the strong dorm demanders.

We next compare the degree of strategic vulnerability of DDA and SDDA á la
Pathak and Sönmez (2013).11

Proposition 3 There is some problem at which DDA is manipulable, but not SDDA;
and the converse is also true.

Thus, neither of these mechanisms is more manipulable than the other. Hence,
SDDA improves students’ welfare over DDA without a strategic cost in the sense of
Pathak and Sönmez (2013).

5 Discussion

Weassume a single type of dormat each college.However, the analysis can be extended
to accommodate multiple dorm types. In this extended framework, students will have
further preferences over the dorm types within each college. D-fairness becomes
more stringent, dealing with the students’ preferences over dorm types. We define
strong dorm demand, similar to what we do in the main body, for each dorm type.
We also construct artificial priorities for each dorm type similarly. When it comes to
the mechanisms, each dorm type is assigned to its applicants based on the artificial
priorities defined for that type, and so on.

Yet another easily generalizable aspect of the modeling is regarding the colleges’
preferences. The base model assumes that no college finds any student unacceptable.

11 Pathak and Sönmez (2013) say that a mechanism is more manipulable than another if the former is
manipulable whenever the latter is, but the converse does not hold.
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However, the whole analysis could be carried out for that more general class of college
preferences through simple modifications to stability and mechanisms.

An interesting restricted domain is one where a group of students consistently
prefers colleges with dormitories, and the opposite for the rest of the students. We can
categorize the former group as “poor" and the latter as “rich" students. If each college is
considered unacceptable without a dormitory for the poor group, then DDA becomes
equivalent to the following: Tentatively allocate the dorms to the poor applicants based
on their rankings in the college preferences up to the capacity and reject those without
a dorm assignment. Subsequently, the tentative dorm holders and all the other rich
applicants compete for the college seats, and they are tentatively accepted following
the college preferences.Upon being rejected, the dormholders lose their dorms aswell,
and the rejected students apply to their next best alternative, and so on. It is important
to note that no rich student is allocated a dorm. Furthermore, as no poor student ever
receives a college without a dorm, DDA is equivalent to SDDA. Therefore, DDA is
student-optimal stable and efficient. It is also strategy-proof, as all the poor students
already have a strong demand for dormitories. Thus, they cannot improve their ranking
in the artificial priorities used for dormitory assignments through misreporting. This
special case resembles Afacan (2019), where the poor group has access to private
schools only when they obtain a voucher. A critical distinction in the modeling is that
a voucher can be used at any private school, whereas dormitories are college-specific
in the current problem. This leads to different mechanisms, causing researchers to
diverge even in this special case.

On the other hand, the positive strategy-proof result mentioned above breaks down
even if only one poor student finds a college without a dorm option acceptable. To
illustrate this, consider the proof of Proposition 2. In that scenario, both students are
poor, with one of them still finding the college without a dorm acceptable, and each
stable mechanism is manipulable in that instance. Furthermore, SDDA is no longer
equivalent to DDA in this case, as a student can be assigned to a college without a
dormitory even though she prefers a college with a dormitory.
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Appendices

A. A stronger fairness notion for dorm asssignments

Definition 4 A matching μ is strongly fair with respect to the dorm-assignments if
there is no pair of students i, j such that μC

i = μC
j = c for some college c, μA

i = D,

μA
j = N , (c, D) Pj (c, N ), and j �c i .

Proposition 4 There does not always exist a non-wasteful and C-fair matching that is
strongly fair with respect to the dorm-assignments.

Proof Consider a problem with two students i, j and one college c. Let qec = 2 and
qdc = 1. Let the preferences be such student i’s only acceptable alternative is (c, D),
whereas student j prefers (c, D) to (c, N ) while finding both acceptable. Let i �c j
and j�c i . There is only one non-wasteful andC-fairmatchingwhere student i receives
(c, D) and student j receives (c, N ). This matching, however, is not stronlgy D-fair.

��

B. The proofs of Proposition 1, Theorem 1, and Theorem 2

Proof of Proposition 1 (i). Let us consider a problemwith two students i, j and one col-
lege c, with qec = 2 and qdc = 1. Let the preferences be such that Pi : (c, N ), (c, D),∅;
and Pj : (c, D), (c, N ),∅. Suppose i �c j and i �c j . Let μ be a matching such
that μi = (c, D) and μ j = (c, N ). This matching is stable. However, it is Pareto
dominated by μ′ where μ′

i = (c, N ) and μ′
j = (c, D), showing that μ is not efficient.

(ii). In the same market above, let us consider preferences Pi : (c, D), (c, N ),∅;
and Pj : (c, D),∅. There are two stable matchings, say μ and μ′: μi = (c, D);
μ j = ∅; and μ′

i = (c, N ); μ′
j = (c, D). Note that as j ∈ Dc(P) and i /∈ Dc(P),

μ′ is D-fair. Neither of them is unanimously preferred to the other by the students,
implying that both of them are student-optimal stable. This also implies that the stable
matchings do not form a lattice. ��

The following Lemma will be used in the rest of the proofs.

Lemma 1 Let P be a problem and μ be a stable matching. Suppose μ is such that
for each student i with μi = (c, D) for some college c, (c, D) Pi (c, N ). Then, μ is
efficient.

Proof Assume for a contradiction that there is another matchingμ′ Pareto dominating
μ. We first claim that for some college c, μ′

c 	= μc. Assume for a contradiction that
μ′
c = μc for each college c. This means that for some student i with μ′C

i = μC
i = c,

either μ′
i = (c, D) and μi = (c, N ) or μ′

i = (c, N ) and μi = (c, D). Suppose
μ′
i = (c, N ) and μi = (c, D). This means that (c, N ) Pi (c, D), contradicting our

supposition. Thus, consider μ′
i = (c, D) and μi = (c, N ). We have (c, D) Pi (c, N ).

By the stability (hence, non-wastefulness) of μ. we have |μd
c | = qdc . This, as well as

μc = μ′
c for each college c, implies that for some student j , we have μ j = (c, D)
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and μ′
j = (c, N ). This, however, falls into the previous case, yielding a contradiction.

Thus, we conclude that μc 	= μ′
c for some college c.

Let i ∈ μ′
c \ μc. Note that as μ′ Pareto dominates μ, it means that μ′

c �c μc.
Suppose μ′

i = (c, N ). By the non-wastefulness of μ, |μc| = qc. On the other hand,
by the responsiveness of �c, for some student j ∈ μ′

c \ μc, we have i �c j . Thus,
we have (c, N ) Pi μi , where μC

i 	= c, and i �c j for some j ∈ μc. This, however,
contradicts the stability of μ. Next, suppose that μ′

i = (c, D). As the same as above,
for some student j ∈ μ′

c \ μc, we have i �c j . If μ j = (c, D), then it contradicts
the stability of μ. Thus, μ j = (c, N ). If |μd

c | < qc, it constitutes a contradiction to
the stability of μ. Suppose that |μd

c | = qc. This implies that there exists some student
h ∈ μd

c such that μ
′
h 	= μh . Moreover, from above, μ′

h 	= (c, N ). This, along with the
responsiveness, in turn, implies that for some such student h ∈ μd

c and μ′C
h 	= c, we

have i �c h. Thus, we have (c, D) Pi μi , i �c h, and μh = (c, D), contradicting the
stability of μ. Therefore, μ is efficient, finishing the proof. ��
Proof of Theorem 1 In each step, some rejected student applies to her next best accept-
able college-accommodation pair. This, along with the fact that there are finitely many
students and college-accommodation types, implies that DDA terminates in a finite
step. By its construction, no student receives more than one college-accommodation
assignment, and no college has more students than its capacity and gives more dorms
than its capacity. All these show that DDA terminates in a finite step, producing a
matching; hence it is a well-defined mechanism.

Let us next show that DDA is stable. No student ever applies to her unacceptable
alternatives, implying that it is individually rational. Students apply in order of their
preferences. A student with a dorm demand at a college is never rejected whenever
the college has an available enrollment and dorm quota. If she does not have a dorm
demand, then the college never rejects her unless it already fills the quota. All these
mean that DDA is non-wasteful.

Let us next show that DDA is C-fair. Let P be a problem and DDA(P) = μ. Let
us consider a pair of students i, j with μC

i = c and μC
j = c′ with c 	= c′. Let j �c i .

Suppose that μA
i = D and (c, t) Pj μ j for some t ∈ {D, N }. This means that student

j applies to either (c, D) or (c, N ) in DDA. This, along with j �c i , means that
μ j Pj (c, N ). Because otherwise, she would have received (c, N ) at DDA at most
at the expense of student i . Hence, we have (c, D) Pj μ j Pj (c, N ). This means that
j ∈ Dc(P). On the other hand, j �c i ; hence j �′

c i . This, in turn, means that student
j has a priority against student i in both the seat allocation at college c and its dorm
assignment. This, however, contradicts our supposition.

Suppose μA
i = N and (c, N ) Pj μ j . In DDA, student j applies to (c, N ), but is

rejected. As j �c i and μi = (c, N ), it cannot happen, yielding a contradiction.
Suppose μA

i = N , (c, D) Pj μ j and |μd
c | < qc. Student j applies to (c, D) in

DDA. Moreover, μ j Pj (c, N ), because, otherwise, we reach a contradiction from
above (recall that μC

j = c′ 	= c, hence μ j 	= (c, N )). Thus, we have (c, D) Pj μ j Pj

(c, N ), hence j ∈ Dc(P).
As j �c i , student j is rejected by college c because of dorm shortage. This, as

well as j ∈ Dc(P), shows that all the tentatively dorm-receiving students at college
c by the rejection of student j are more preferred to the latter by college c. Hence, in
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particular, they all have a better artificial ranking than student j , implying that they
are all in Dc(P). On the other hand, |μd

c | < qdc implies that some of these students
are rejected by college c for the sake of another, say k, applying to college c without a
dorm demand. Thus, student k does not compete for a dorm at college c. From above,
all the tentatively dorm receivers after the rejection of student j have a better ranking
than student j , implying that each is preferred to student i by college c. This, as well as
μi = (c, N ), shows that none of them is rejected for the sake of student k as they are
better ranked than student i , and student k does not have a dorm demand. This implies
that college c cannot have an excess dorm, contradicting |μd

c | < qdc . Therefore, μ is
C-fair.

Let us next show that μ is D-fair. Suppose for a pair of students i, j , we have
μC
i = μC

j = c for some college c, μA
i = D, μA

j = N , (c, D) Pj μ j , and j �c i .
As (c, D) Pj μ j = (c, N ), student j also applies for (c, D) in DDA. Hence, both
compete for a dorm. This, as well as the fact that student i obtains a dorm, shows that
i �′

c j . Thus, either i ∈ Dc(P) and j /∈ Dc(P) or i �c j . This shows thatμ is D-fair.
Hence, μ is stable, so is DDA.

By the definition of DDA, no student receives a dorm at a college unless she
demands it. That is, for each student i with μi = (c, D) for some college c, we have
(c, D) Pi (c, N ). Thus, we can invoke Lemma 1 to conclude that μ is efficient, and
so is DDA. Example 2 reveals that DDA is not student-optimal stable. ��

The Lemma below will be used in the proof of Theorem 2.

Lemma 2 At any problem P, letμk be the Step k outcome in SDDA. For each student
i , μk

i Ri μk−1
i . Moreover, if (i, c) ∈ Nk, and an artificial preference list is defined for

student i in Step k, then μt
i = (c, N ) for each Step t outcome in SDDA where t ≥ k.

Proof Let us consider Step k in SDDA. Let us suppose that (i, c) ∈ Nk (note that
Nk 	= ∅, because, otherwise, the algorithm terminates with the final outcome ofμk−1),
and student i is rejected for her (c, D) application not earlier than any such pair in Nk .
This means that μk−1

i = (c, N ), and she is rejected for her (c, D) application latest
among all such pairs in the previous step’s DDA application. As she is rejected latest,
she receives the same rejections in Step k’s DDA application in SDDA, showing
that μk

i = (c, N ). Moreover, in Step k, the rejection rule for (c, D) is relaxed. This is
because in order for a student j to receive (c, D) in the previous step, she has to be
ranked better than student i with respect to �′

c. But in Step k, she can have a better
ranking than student i based on �′

c or j �c i . This, in turn, implies that no student
receives an extra rejection in Step k’s DDA application compared to the previous step.
Thus, for each student j , μk

j R j μk−1
j .

Suppose (i, k) ∈ Nk , and student i is rejected for her (c, D) application latest among
all such pairs in Nk . From above, we have μk

i = (c, N ). Suppose for a contradiction
that μt

i 	= (c, N ) for some t > k. This means that for some ( j, c′) ∈ Nt , we define
artificial preferences for student j , causing student i to receive a better assignment
(from above, we know that students are never worse off after each step). This means
that student j’s (c′, D) application causes a rejection cycle, placing student i at (c, N ).
Moreover, as it is a rejection cycle, once student i receives (c, N ), someone else is
rejected from (c, N ), and so on.These rejections ultimately lead student j to be rejected
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from (c′, D). This shows that in Step k−1, where student i’s preferences are changed
in SDDA, student j is rejected from (c′, D) in a later step than that in which student i
is rejected from (c, D). However, as j’s preferences are not changed in Step k, student
j does not receive (c′, N ) in Step k − 1, but in some later step. But then, this means
that student j starts receiving (c′, N ) after some student h’s preferences are changed
in SDDA through removing (c′′, D) for some college c′′. By the same token as above,
it means that student h is rejected for (c′′, D) in a later step than student j’s rejection
from (c′, D). If student h receives (c′′, N ) in Step t , then student j’s preferences are
not changed in this step, a contradiction. Thus, student h does not receive (c′′, N ) in
Step t . Note that all the students i, j, h are different from each other, as the step in
which each is rejected from her relevant college-dorm application is different. If we
continue applying the same arguments above for student h, we need to find a different
student in each step, which is not possible due to the finite number of students. Thus, it
eventually leads to a contradiction, showing thatμt

i = (c, N ) for each t ≥ k, finishing
the proof. ��

Proof of Theorem 2 Let us consider Nk in some Step k in SDDA. If it is non-empty,
we consider the pairs (i, c) ∈ Nk who are rejected for her dorm application by college
c not earlier than any such pair in Nk . We then define an artificial preference for
student i where she reports (c, D) unacceptable. This implies that (i, c) cannot be
included in Nk+1. As both students and colleges are finite, it shows that Nk comes
to be empty after some step, hence SDDA terminates in a finite time. As no student
receives more than one assignment, and no college admits more students than its quota
and gives more dorms than its dorm capacity in DDA (this clearly holds for the slight
DDA modifications in the SDDA steps), the SDDA outcome in its terminal round
is a matching. Hence, we conclude that SDDA is a well-defined mechanism.

Let us next show that SDDA is stable. Let P andμ be a problem and its outcome at
P . In each SDDA step, students only apply to their acceptable alternatives, meaning
that they would never rather be unassigned. Hence, μ is individually rational. Let us
next show that μ is non-wasteful. From Theorem 1, we know that μ0 is non-wasteful.
Let us consider the Step 1 outcome of SDDA, μ1. We claim that μ1 is non-wasteful.
If μ1 = μ0, then there is nothing to prove. Otherwise, N 1 	= ∅, and the preferences of
some students from N 1 are changed, as defined in SDDA. Let us suppose that student
i is one of them, and (c, D) is put at the very end of her preferences. Assume for a
contradiction that μ1 is wasteful. The rejection rules are the same as in DDA for each
college accommodation pairs except those removed from the preferences. Thus, the
only possibility is the existence of a waste at some college-accommodation pair that
is removed from the preferences. However, if a student j is rejected by (c, D) because
i �′

c j and i�c j , then he cannot obtain it in DDA as well (because i �′
c j and student

i is rejected for (c, D)). In this case, the same rejections occur in Step 1’s DDA as the
original DDA, causing the same matching. This, along with the non-wastefulness of
μ0, implies that μ1 is non-wasteful. If we apply the same arguments for μ1 and μ2,
we conclude that μ2 is non-wasteful, and so on. Thus, SDDA is non-wasteful.

Let us next show thatμ isC-fair. FromLemma 2, we know that if (c, D) is removed
from the preferences of student i , then μi = (c, N ). Moreover, student i continues to
apply all the college-accommodation pairs except (c, D) in SDDA. Thus, she cannot
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violate C-fairness. On the other hand, all the other students whose preferences are not
changed in SDDA already apply to all alternatives in order of their preferences; thus,
they do not violate C-fairness. All these show that μ is C-fair.

To show its D-fairness, let us consider a pair of students i, j such thatμC
i = μC

j = c,

μA
i = D, μA

j = N , and (c, D) Pj (c, N ). Then, by SDDA definition, either i �′
c j

or i �c j (the latter arises if (c, D) is demoted in student j’s preferences in SDDA.
Otherwise, the former is always the case). Thus, D-fairness is never violated, showing
that SDDA is D-fair. Hence, SDDA is stable.

By the definition of SDDA, no student receives a dorm at a college unless she
demands it. Thus, for each student i with μi = (c, D), we have (c, D) Pi (c, N ).
Thus, by Lemma 1, μ is efficient, and so is SDDA.

From Lemma 2, SDDA outcome is always at least weakly better than DDA’s
for each student. We lastly show that SDDA is student-optimal stable. Assume for a
contradiction that it is not. By following above, if we write μ for the SDDA outcome
at problem P , there exists another stable matching μ′ such that for each student i ,
μ′
i Ri μi , where it holds strictly for some student. Let W = {i ∈ S : μ′

i Pi μi }.
By our supposition, W 	= ∅. Let i ∈ W . By the individual rationality of μ, μ′

i 	= ∅.
Let us write μ′

i = (c, t) ∈ C × A. Because of the non-wastefulness of μ, there exists
another student j ∈ W such that μ j = μ′

i = (c, t). For the same reason, for some
student k ∈ W , we have μk = μ′

j . That is, for each i ∈ W , there exists another
student j ∈ W such that μ j = μ′

i . That is, the students in W are better off by trading
their assignments under μ with each other. In other words, there are beneficial cyclic
trades at μ among those in W . Moreover, once we implement these trades among the
students in W , we obtain μ′. Note that as μ′ is at least weakly better than μ for the
student side, for each student i /∈ W , we have μi = μ′

i .
In SDDA, students apply to the college-accommodation pairs in decreasing order

of their preferences. This means that the students in W apply for their assignments
under μ′. However, in SDDA, students in W receive their inferior options under
μ, causing the beneficial cyclic trades discussed above. Moreover, these trades are
stability preserving because of the stability of μ′. This shows that the rejection rule
in SDDA is more than what is needed for stability, implying that some student, say
i , is rejected for (c, D) and ultimately receives (c, N ). This is because, otherwise,
D-fairness requires that no student j receives (c, D) whenever i �′

c j , implying that
SDDA exactly requires what is needed for stability. Thus, in SDDA, some student
receives (c, N ) after being rejected by (c, D) for some college c. This, however, cannot
be possible as (c, D) is ranked as unacceptable in the artificial preferences of student
i in SDDA. Hence, μ is student-optimal stable, and so is SDDA. ��

C. Proofs of Proposition 2 and Proposition 3

Proof of Proposition 2 Let us consider a problemwith two students i, j , and one college
c. Let qec = 2 and qdc = 1. Let P be a problem such that Pi : (c, D), (c, N ),∅; and
Pj : (c, D),∅. Let i �c j and j �c i .
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Let ψ be a stable mechanism. There is only one stable matching μ where μi =
(c, N ), μ j = (c, D). However, student i can benefit by reporting (c, D) as the only
acceptable choice: Under the misreporting, there is a unique stable matching ν where
νi = (c, D), ν j = ∅. This shows that student i benefits by misreporting; hence, no
stable mechanism is strategy-proof, finishing the proof. ��
Proof of Proposition 3 Let us consider six students i1, .., i6 and three colleges c1, c2, c3.
Let qc1 = qc2 = 2, and qc3 = qdc3 = qdc1 = qdc2 = 1.

Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 �c1 �c2 �c3 �c2
(c3, N ) (c2, D) (c2, D) (c2, N ) (c1, D) (c1, N ) i1 i6 i3 i3
(c1, D) (c3, N ) (c3, N ) ∅ ∅ (c2, D) i5 i2 i1 i2

(c1, N ) (c2, N ) ∅ ...
... ∅ ... i3

...
...

∅ ∅ ...

In the problem above, DDA outcome, say μ, is such that μi1 = (c1, N ), μi2 =
(c2, N ), μi3 = (c3, N ), μi4 = ∅, μi5 = (c1, D), and μi6 = (c2, D). Let us next
consider a false preferences for student i1, say P ′

i1
, where P ′

i1
: (c1, D),∅. It is

immediate to see that DDAi1(P
′
i1
, P−i1) = (c1, D), benefiting student i1, hence DDA

is manipulable at P .
Let us next consider SDDA at P . Its outcome, say μ′, is such that μ′

i1
= (c3, N ),

μ′
i2

= (c2, N ), μ′
i3

= (c2, D), μ′
i4

= ∅, μ′
i5

= (c1, D), and μ′
i6

= (c1, N ). In
SDDA, (c2, D) is removed from the preferences of student i2, causing a different
matching from DDA’s to emerge (it is the only preference change done in SDDA).
As i1, i3, i5, i6 already obtain their top alternatives; they do not have an incentive to
manipulate SDDA. On the other hand, it is easy to verify that none of the students
i2 and i4 can manipulate SDDA. Hence, SDDA is not manipulable at P , whereas
DDA is.

Let us next consider a problem with three students, i1, i2, i3, and two colleges,
c1, c2. Let qc1 = 2, qc2 = 1, qdc1 = 1, and qdc2 = 1. The preferences and priorities are
as follows:

Pi1 Pi2 Pi3 �c1 �c2 �c1
(c2, N ) (c1, D) (c1, D) i1 i3 i3
(c1, D) (c2, N ) ∅ i2 i1 i2

∅ (c1, N )
...

...
...

...

The DDA outcome at the problem, sayμ, is such thatμi1 = (c2, N ),μi2 = (c1, D),
andμi3 = ∅. Student i3 cannotmanipulate DDA at P , and all the others already obtain
their best alternative. Hence, DDA is not manipulable at P .

Let us next consider SDDA. Its outcome at P , say μ′, is the same as μ above.
Let us consider P ′

i3
: (c1, D), (c2, N ),∅. We have SDDA(P ′

i3
, P−i3) = μ′′ where

μ′′
i1

= (c2, N ), μ′′
i2

= (c1, N ), and μ′′
i3

= (c1, D), benefiting the misreporting student
i3. Through misreporting, student i3 causes student i2 to receive (c1, N ), leading

123



Dorm augmented college assignments 627

SDDA to remove (c1, D) from her preferences. Thus, SDDA is manipulable at P ,
whereas DDA is not. This finishes the proof. ��
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