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ABSTRACT
Oral microbiome research has gained significant interest in recent years due to its potential 
impact on overall health. Smoking has been identified as a significant modulator of the oral 
microbiome composition, leading to dysbiosis and possible health consequences. Research 
has primarily focused on the association between smoking and oral microbiome, as well as 
smoking’s association with cardiometabolic syndrome (CMS). This narrative review presents an 
overview of the recent findings and current knowledge on the oral microbiome and its role 
in CMS, including the effects of smoking and ethnicity. We discussed the development and 
composition of the oral microbiome and the association of periodontitis with diabetes and 
cardiovascular diseases. Furthermore, we highlighted the correlations between oral microbiome 
and CMS factors, such as diabetes, hypertension, dyslipidemia, and obesity. There is a need 
for further research in this area to better understand the mechanisms underlying the impact 
of smoking on oral microbiome dysbiosis and the development of CMS. Interestingly, 
geographic location and ethnicity have been shown to impact the oral microbiome profiles 
across populations. This knowledge will help develop personalized disease prevention and 
treatment approaches considering individual differences in oral microbiome composition. 
Understanding the complex interplay between oral microbiome, smoking, and CMS is 
essential for developing effective prevention and treatment strategies for a wide range of 
diseases.

Abbreviations:  CMS: cardiometabolic syndrome; T2D: type 2 diabetes; CVD: cardiovascular 
disease; HMP: human microbiome project; NIH: National Institute of Health; IHMC: International 
Human Microbiota Consortium; DM: diabetes mellitus; BMI: body mass index; HDL: high 
density lipoprotein; LDL: low density lipoprotein; IR: Insulin resistance

Background

The human microbiome is a complex ecosystem 
comprising 10 to 100 trillion symbiotic microbial 
cells, including bacteria, viruses, fungi, and pro-
tozoa.1 Microbiome projects worldwide have been 
dedicated to understanding the role of microor-
ganisms in health and disease. The human micro-
biome project, for instance, was committed from 
2007 to 2016 and focused on determining the 
microorganisms that make up the microbiome in 
five body sites, including the skin, oral cavity, 
nasal cavity, gastrointestinal tract, and urogenital 
tract.2 One key area of interest is the oral 

microbiome, which is critical in maintaining oral 
health and preventing diseases.

Recent studies have indicated that the oral 
microbiome is highly dynamic and can be affected 
by several factors, such as cardiometabolic syn-
drome (CMS). CMS describes a cluster of meta-
bolic disorders that includes insulin resistance 
(IR), dyslipidemia, hypertension, and obesity, 
which could lead to the development of type 2 
diabetes (T2D) and cardiovascular disease (CVD). 
CMS is mostly preventable and treatable; how-
ever, it is one of the highest causes of mortality 
worldwide, with 22.4 million deaths.3,4 Alarmingly, 
almost half of these deaths were categorized as 
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“premature deaths,” occurring before the age of 
60 and often leading to a significant reduction in 
the quality of life for affected individuals.3,4

There has been emerging evidence that the 
oral microbiome may be involved in the patho-
genesis of CMS factors and may be influenced by 
lifestyle factors such as smoking. Smoking is one 
of the habits worldwide that has significantly 
impacted the oral microbiome. Several studies 
have studied the role of smoking on the oral 
microbiome in different populations.5–7 However, 
the mechanisms between oral microbiome, smok-
ing, and CMS are largely unexplored. The physi-
ological effects of numerous chemicals found in 
smoking have not received sufficient research 
attention, and there is even less understanding of 
how the oral microbiome might influence the 
interactions between cigarette smoke and human 
physiology. The circulatory system serves as a 
pathway through which oral microbiome bacteria 
can potentially impact the risk of CMS. The 
blood supply associated with each tooth allows 
metabolites or endotoxins produced during oral 
bacterial metabolism to enter the bloodstream.8 
Consequently, this process can lead to systemic 
inflammation, affecting various other parts of the 
body.8 A recent study conducted in China found 
that smoking was associated with enrichment of 
four bacterial genera in the oral microbiome 
(Anaeroglobus, Megasphaera, Actinomyces, and 
Rothia), which were linked to elevated triglycer-
ide levels.9 Additionally, Anaerglobus was nega-
tively associated with HDL-C levels.9 Overall, 
there is still a lack of evidence on the role of oral 
microbiome in CMS and the effects of smoking 
in different populations. This narrative review 
aims to provide an overview of the current 
knowledge.

Oral microbiome overview

Microorganisms residing in the oral cavity are 
referred to as the oral microbiome. It includes 
various distinct habitats, which include teeth, 
gums, tongue, hard palate, soft palate, cheeks, 
and lips. Adjacent anatomical structures such as 
tonsils, pharynx, middle ear, trachea, esophagus, 
eustachian tube, nasal passages, and sinuses are 
included in the human oral microbiome. The 

human oral microbiome is defined as all micro-
organisms present on or within the oral cavity 
and its contagious extension, except for the distal 
esophagus. However, most studies and samples 
have been from the oral cavity itself.10

The healthy oral microbiome harbors approxi-
mately 50–100 million bacteria belonging to 700 
species and is the second most abundant and 
diverse microbiome in the human body, following 
the gut microbiome 11–13 The oral cavity region 
provides an optimal environment for microorgan-
ism growth with an average temperature of 37 °C 
and a saliva pH consistently between 6.5–7.5, 
allowing bacteria to thrive in a stable environ-
ment.14 Moreover, saliva serves as a source of 
hydration for microorganisms and functions as a 
transport medium for nutrients to microorgan-
isms. The oral microbiome and its host have a 
mutually dependent and evolutionary relationship 
characterized by continuous communication.15 
The oral microbiome plays diverse roles, includ-
ing physiological, immunological, metabolic, 
mucosal protection, nutritional, and detoxifying 
functions.15,16

The development of the oral microbiome starts 
at a very early stage of life. During delivery, the 
newborn encounters the microflora of the moth-
er’s uterus and vagina and later with the other 
microorganisms in the atmosphere during deliv-
ery.13 Initially, the newborn’s oral cavity is usually 
sterile, but it becomes inoculated with microor-
ganisms from the first feeding, and the residen-
tial oral microflora acquisition process starts.17 
Streptococcus salivarius and Streptococcus mitis are 
pioneer species that inhabit the oral cavity at the 
early stages after birth.18 In the first year after 
birth, the oral cavity is mainly invaded by aerobic 
bacteria, including Streptococcus, Lactobacillus, 
Actinomyces, Neisseria, and Veillonella.19 Later, 
after teeth eruption, anaerobic microorganisms, 
such as Prevotella, Fusarium, and more, dominate 
the environment that exists between the gums 
and teeth.18 Streptococcus species, including 
Streptococcus parasanguis and Streptococcus 
mutans, can grow on enamel and colonize gingi-
val epithelial surfaces.19

The Human Microbiome Project (HMP) was 
initiated in 2007 as a collaborative effort between 
the National Institute of Health (NIH) and the 
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International Human Microbiota Consortium 
(IHMC).20 The main objective was to comprehen-
sively characterize the human microbiota on a 
large scale and explore their significance in rela-
tion to human health and disease.20 According to 
the expanded Human Oral Microbiome Database 
(eHOMD) (https://homd.org/, accessed on 16 
April 2023), there are 774 oral bacterial species, 
58% are named, 16% have been cultivated but 
unnamed, and 26% have been identified through 
DNA analysis but yet to be cultivated; 96% of the 
total oral microbiome belongs to six broad phyla: 
Firmicutes, Actinobacteria, Proteobacteria, 
Fusobacteria, Bacteroidetes, and Spirochetes.21 
These oral microorganisms significantly impact 
various aspects of human health, ranging from 
the host metabolic process to immune responses.22

Microbial dysbiosis is an imbalance in the 
microorganisms of the host. Indeed, oral micro-
biome dysbiosis has a high chance of spreading 
into adjacent epithelial surfaces, leading to poten-
tially infectious diseases. Moreover, studies have 
linked oral bacteria dysbiosis to several system-
atic diseases, including CVD and diabetes.23–28 By 
understanding the role of the oral microbiome in 
health and disease, researchers can develop better 
treatments and strategies to promote oral health.

Oral microbiome and periodontitis

Periodontitis is a bacterially induced chronic 
inflammatory disease.29 The disease is character-
ized by bone and connective tissue loss, tooth 
mobility, and, ultimately, tooth loss.30 The host’s 
immunological response is responsible for 80% of 
tissue destruction, while oral bacteria account for 
the remaining 20%.29 Poor oral hygiene practices 
lead to plaque accumulation, triggering a chronic 
inflammatory response and affecting the gingival 
tissues. Gingivitis is the earliest periodontal dis-
ease stage and is reversible with simple oral 
hygiene practices.29,31 However, if left untreated, it 
can proceed into periodontitis due to persistent 
plaque accumulation and the patient’s response to 
the bacterial challenge.29 Periodontitis is com-
monly associated with anaerobic Gram-negative 
bacteria such as Porphyromonas gingivalis, 
Prevotella intermedia, and Spirochetes such as 
Treponema denticola.32–34

Oral bacteria can enter the bloodstream 
through various activities, including eating, floss-
ing, and tooth brushing, leading to bacteremia.35 
Studies have shown that periodontitis is linked to 
CVD due to the pathogenic oral bacteria found 
in atherothrombotic mice tissue.36,37 The local 
inflammatory response triggers pro-inflammatory 
cytokines, which can also enter the bloodstream 
and initiate an acute inflammatory response.38 
Eventually, it results in a local inflammatory 
response and triggers pro-inflammatory cytokines 
such as interleukin-1 beta (IL-1β), interleukin-6 
(IL-6), and tumor necrosis factor-alpha (TNFα), 
which can also enter the bloodstream and initiate 
an acute inflammatory response.38 Chronic sys-
temic inflammation caused by these cytokines 
can increase the risk of developing CVD, hyper-
tension, and T2D.35,38 Additionally, the release of 
reactive protein can activate cytokines and oxida-
tive stress response, further exacerbating chronic 
systemic inflammation.38

Inflammation in periodontitis also drives dysbi-
osis by promoting the growth of pathogenic bacte-
ria that can utilize nutrients released from the 
destruction of periodontal tissues, such as collagen 
fragments and heme-containing compounds.39,40 
These bacteria, including Porphyromonas gingivalis, 
can thrive in low-oxygen environments created by 
inflammation and have an increased ability  
to cause inflammation.41 They are known as 
“inflammophilic pathobionts” and can upregulate 
virulence-associated genes in response to certain 
nutrients.40 The overgrowth of these bacteria is a 
major contributor to the development of 
periodontitis.42

A meta-analysis has identified individuals with 
periodontitis to have a moderate to increased risk 
of developing coronary heart disease, ischemic 
stroke, and CVD.43–46 Another meta-analysis has 
also resulted in the correlation of periodontitis 
increasing the risk of hypertension.47 Evidence 
shows periodontitis treatment decreased CVD 
markers, consisting of C-reactive protein and cir-
culating lipid.36,48 Moreover, diabetic patients had 
a 24% risk of developing cardiometabolic syn-
drome (CMS); periodontitis patients had a 26% 
risk of developing diabetes.49

Porphyromonas gingivalis, Treponema denticola, 
and Tannerella forsythia are common bacteria 

https://homd.org/
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found in the subgingival biofilms that contribute 
to the development of periodontitis.50 Recent 
studies have found an association between 
Treponema and Corynebacterium bacteria for the 
development of periodontitis and CMS in subgin-
gival plaque and saliva samples.51 Furthermore, 
Filifactor alocis and Fretibacterium fastidiosum 
were found to be dominant in subgingival plaque 
of periodontitis patients who smoke.52

Treatment for periodontitis has been shown to 
improve CVD markers, such as C-reactive pro-
tein and circulating lipids.53 Furthermore, diabetic 
and periodontitis patients are at an increased risk 
of developing CMS and diabetes. Therefore, early 
detection and management of periodontitis is 
essential and can help in reducing the risk of 
developing CMS.

Oral microbiome influence on cardiometabolic 
syndrome

CMS is also known as metabolic syndrome x. As 
previously mentioned, it is a combination of met-
abolic diseases that includes a combination of 
diabetes mellitus (DM), hypertension, central 
obesity, and dyslipidemia. Studies have shown a 
strong link of CMS in developing atherosclerotic 
CVD, peripheral vascular disease, coronary artery 
disease, myocardial infarction, cerebrovascular 
Diabetes Mellitus disease, stroke, and DM.54–56 
An essential factor of CMS is obesity, which is on 
the rise globally where it is estimated that 1.1 bil-
lion adults are overweight and 312 million are 
obese.57 Although obesity is well-recognized risk 
of developing CMS, a study revealed middle-aged 
men with CMS are at an increased risk of devel-
oping CVD and related deaths regardless of their 
Body mass index (BMI).58

There are various internationally recognized 
definitions of CMS used. According to the 
National Cholesterol Education Program Adult 
Treatment Panel III (NCEP-ATP III), CMS is 
defined as the presence of 3 or more clinical 
abnormalities, which include: dyslipidemia, cen-
tral obesity, systemic arterial hypertension, and 
hyperglycemia.59 European Group for Study of 
Insulin Resistance (EGIR), the American 
Association for Clinical Endocrinology (AACE), 
and the International Diabetes Federation (IDF) 

are international organizations and have slightly 
different criteria for CMS; however, all include 
visceral obesity and insulin resistance.60,61 
However, the World Health Organization (WHO) 
and ATPIII diagnostic criteria are more widely 
used. The WHO defines CMS as the presence of 
DM and IR as the primary factors and other risk 
factors such as obesity, high triglycerides, reduced  
high-density lipoprotein (HDL), hypertension, or 
micro-albuminuria.61 EGIR and ATPIII defined 
obesity in CMS as visceral obesity rather than 
total obesity or overweight.57 The effects of hyper-
glycemia, hypertension, dyslipidemia, and obesity 
on the oral microbiome will be discussed below. 
Figure 1 summarizes the oral microbiome of the 
different CMS.

Hyperglycemia

Hyperglycemia is the increase of glucose in the 
bloodstream. The hemoglobin A1c (HbA1c) test 
is used to evaluate the percentage of the hemo-
globin glycosylation and a person’s level of glu-
cose control.62 A level below 5.7% HbA1c is 
considered normal, 5.7 to 6.4% HbA1c is consid-
ered as pre-diabetic and a level higher than 6.7% 
HbA1c is considered diabetic.62 Diabetes is a 
chronic metabolic disorder, it is one of the top 10 
causes of mortality worldwide; in 2019, 463 mil-
lion individuals were living with diabetes, which 
is expected to increase by 2045 to 700 million.63

Studies have revealed a strong association 
between diabetes and both the gut and oral 
microbiome. In particular, diabetes is bidirection-
ally linked to periodontitis.31,64–66 This association 
is believed to be due to several factors, including 
increased glucose levels in gingival crevicular 
fluid and saliva, which provides a favorable envi-
ronment for the growth of pathogenic bacteria. 
In addition, pH changes and reduced saliva flow 
associated with diabetes can cause alterations in 
the oral microbiome.

Interestingly, studies have suggested that indi-
viduals with periodontitis are at a higher risk of 
developing diabetes, and individuals with diabetes 
are more likely to develop periodontitis.67 For 
example, a study conducted on Hispanic patients 
with T2D and periodontitis found that the most 
frequently isolated microorganisms from 
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periodontitis sites were the red-complex bacteria, 
such as Aggregatibacter actinomycetemcomitans 
and Campylobacter rectus.67 Miranda et  al. (2017) 
investigated the impact of glycemic control on 
the abundance of periodontal pathogens 
(Treponema denticola, Porphyromonas. gingivalis, 
Tannerella forsythia, Eubacterium nodatum, 
Parvimonas micra, Fusobacterium nucleatum ssp., 
and Prevotella intermedia) in T2D who presented 
generalized chronic periodontitis.68 They collected 
subgingival biofilm samples from patients with 
poor and good glycemic control.68 The analysis 
revealed individuals with poor glycemic control 
had significantly higher levels of Fusobacterium. 
nucleatum ssp. and detection frequencies of 
Tannerella forsythia, Eubacterium nodatum, 
Parvimonas micra, and Fusobacterium nucleatum 
ssp, indicating poor glycemic control is associated 
with elevated levels and frequencies of periodon-
tal pathogens.68 In another study, researchers 
found an increase in aciduric species, including 
Streptococcus, Veillonella, and Rothia, in T2D 
patients who adhere to a Mediterranean diet.69

Furthermore, specific oral microbiome profiles 
have been associated with the development of 
insulin resistance. Recent studies investigated the 
subgingival plaque of periodontitis patients with 
and without diabetes and found that periodontitis 
diabetic patients had significantly higher levels of 
Tannerella forsythia, Treponema denticola, and 
Filifactor alocis.70 Notably, nondiabetic patients 
also showed a correlation between red complex 
species and Filifactor alocis and Fretibacterium 
fastidiosum.70 These findings suggest that the oral 
microbiome may play a role in the development 
and progression of diabetes and periodontitis.

Hypertension

Hypertension is a major contributor to global 
morbidity and mortality.71 It is associated with 
various metabolic and cardiovascular complica-
tions, posing a significant burden on global health 
and leading to years of life lost as a result of dis-
ability.71,72 The current diagnostic parameter for 
hypertension is based on systolic pressure values 

Figure 1.  Oral microbiome bacterial enrichment or depletion in cardiometabolic syndrome (CMS). Cardiovascular disease (CVD), 
type 2 diabetes (T2D), and obesity.
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above 130 mmHg and diastolic pressure above 
80 mmHg.73

The salivary microbiome has emerged as a 
potential factor associated with hypertension. A 
2015 study revealed a reciprocal correlation between 
a chlorhexidine-based mouthwash and Veillonella 
dispar, a nitrate-reducing bacteria, along with an 
increase in systolic blood pressure.74 However, our 
earlier study demonstrated an increase in 
nitrate-reducing microbes in hypertensive patients,71 
indicating possible variations in microbial profiles 
among different hypertensive populations.

A recent study conducted on 1190 Qatari indi-
viduals investigated the differences in the salivary 
microbiome of hypertensive and normotensive 
individuals.75 The analysis of differential abun-
dance revealed that Bacteroides and Atopobium 
were significant members associated with hyper-
tensive groups.75 Normotensive individuals exhib-
ited higher alpha diversity compared to 
hypertensive individuals and with beta diversity 
the normotensive individuals were significantly 
different from hypertensive individuals.75

Studies exploring the subgingival microbiome in 
relation to hypertension have shown intriguing find-
ings. In one study, in subgingival plaque of hyper-
tensive individuals exhibited an increased abundance 
of Actinobacillus actinomycetemcomitans, while 
Streptococcus was significantly more abundant in 
normotensive individuals.76 Additionally, Treponema 
denticule was more prevalent in supragingival region 
and prosthetic materials of hypertensive patients.76 
Furthermore, salivary nitric oxide levels were 
inversely associated with hypertension.76

Elevated relative abundance of Fusobacterium in 
subgingival samples of hypertensive individuals 
has been reported.77 Moreover, a decrease in the 
relative abundance of Actinomyces and increase in 
Selenomonas in subgingival plaque specimens was 
correlated with elevated blood pressure.77 
Furthermore, the relative abundance of Streptococcus 
and several of its species were decreased in saliva 
and oral samples of hypertensive and ischemic 
stroke compared to individuals with no CVD.77–79

Dyslipidemia

Dyslipidemia, is defined as elevated concentra-
tions of plasma triglycerides, reduced level of 

HDL concentration, and an increase in the levels 
of Low-Density Lipoprotein (LDL) concentra-
tions. Dyslipidemia and pro-inflammatory cyto-
kines play a crucial role in the development of 
atherosclerosis, a major underlying factor contrib-
uting to CVD.

Furthermore, the role of dyslipidemia in CVD 
is significant and is causing a health problem 
worldwide, with an increased mortality rate from 
12.1 million in 1990 to 18.6 million in 2019. 
Research has identified that the microbiome may 
play a crucial role in CVD development. Oral 
microbiome dysbiosis can lead to gut dysbiosis by 
traveling through saliva, which can result in the 
release of endotoxins into the circulation, pro-
moting CVD, heart failure, and left ventricular 
dysfunction.80 Heart failure is also associated with 
lipopolysaccharide, a gram-negative cell wall 
product that activates dysregulated systematic 
inflammation.81

Elevated levels of Aggregatibacter actinomyce-
temcomitans were detected in saliva samples and 
subgingival plaque, and have been associated with 
ischemic stroke and various cardiovascular condi-
tions, including coronary artery disease, acute 
coronary symptoms, and valvular heart dis-
ease.82–85 Furthermore, it has been found in sam-
ples of coronary artery atherosclerotic tissue, 
suggesting its potential role in atherosclerosis 
development.83,86 The effect of periodontitis has 
been associated with the development of CVD. 
Individuals with periodontitis experience endo-
toxins in their bloodstream, leading to low-level 
inflammation.84,87 Chronic inflammation can 
accelerate atherosclerotic plaques, increase inflam-
mation permeability of the blood vessels, and 
increase the risk of thrombosis.84,87 Interestingly, 
a study found an inverse relationship between the 
levels of IgG antibodies to Tannerella forsythia 
and CVD mortality risk, specifically in men who 
had previously had heart attacks.88 These findings 
suggest a complex relationship between the oral 
microbiome and CVD, which requires further 
investigation.

Multiple species of Fusobacterium were detected 
in both subgingival plaque and samples of coro-
nary artery atherosclerotic plaques.89 
Porphyromonas gingivalis was identified in both 
subgingival and coronary artery atherosclerotic 
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plaque samples either independently or in con-
junction with several other species, such as 
Eikenella corrodens, Tannerella forsythia, Tannerella 
denticola, and Campylobacter rectus.89,90

Studies have explored the association between 
the oral microbiome and heart valve defects. One 
study sampled the heart valve during heart valve 
replacement surgery and cut it into two halves; 
each part was cultivated in different conditions 
(aerobic and nonaerobic).91 Seven gram-positive 
bacteria were identified; three were typical oral 
bacteria (Streptococcus sanguinis, Streptococcus 
oralis, and Streptococcus sp.), while Cutibacterium 
acnes, which was the most abundant species and 
is also part of the skin normal flora.91,92 A prior 
study also found that cardiac valve samples exhib-
iting high rates of gingivitis and/or periodontitis 
contained oral bacteria, specifically Streptococcus 
mutans.93 This confirms a previous study where 
Streptococcus mutans and Aggregatibacter actino-
mycetemcomitans were the abundant oral bacteria 
in cardiovascular specimens.94 In addition, 
Veillonella was detected in whole mouth samples 
and in samples of carotid artery atherosclerotic 
plaque.95

Obesity

Obesity is a complex metabolic disorder charac-
terized by excessive adipose tissue accumulation 
that increases the risk of chronic disease, includ-
ing T2D, CVD, and certain types of cancer. 
Recent research has focused on the role of oral 
microbiome in the pathogenesis of obesity. Studies 
have reported alterations in the composition and 
diversity of obese oral microbiome compared to 
lean individuals. Tam et  al. (2018) conducted a 
study to explore whether obesity influences the 
composition and diversity of the oral microbi-
ome.96 They collected subgingival and saliva sam-
ples from 18 patients with T2D, including 6 in 
which are obese (BMI ≥ 30 Kg/m2) and 12 
non-obese (BMI ˂ 30) most of them had peri-
odontitis.96 The study revealed in the subgingival 
of normal weight individuals there was a higher 
abundance of Bacteroidetes, Spirochetes, 
Firmicutes, Treponema spp., Selenomonas spp., 
and Filifactor spp.96 On the other hand, obese 
individuals had a greater abundance of 

Proteobacteria, Firmicutes, Chloroflexi spp., and 
Campylobacter spp., with Bacteroidetes being 
nearly absent.96 Similar patterns were observed in 
saliva with normal weight individuals; normal 
weight individuals had a higher abundance of 
Bacteroidetes and Firmicutes, while obese indi-
viduals had a higher abundance of Firmicutes.96 
The differences in microbial composition and 
diversity between obese and normal weight indi-
viduals were statistically significant indicating 
reduced species diversity in the obese group.96

Certain bacterial species, such as Provotella 
and Actinomyces, have been shown to increase 
the salivary microbiome of obese individuals 
without periodontitis.97 However, recent studies 
have found that obese individuals have a signifi-
cantly low abundance of specific bacteria, includ-
ing Haemophilus, Corynebacterium, Carbonophilic 
phage, and Staphylococcus, but an increase in the 
abundance of Plasmodium, Streptococcus genus, 
and Streptococcus mutans.98,99 In our previous 
study, we observed a higher abundance of proteo-
bacteria and Firmicutes/Bacteroidetes ratio (a 
recognized obesogenic microbiome trait) in obese 
insulin-resistant and nondiabetic adults.100

In another study, 647 obese and 969 non-obese 
individuals’ mouth rinse samples were analyzed.101 
Five taxa in Firmicutes and two each in 
Proteobacteria and Actinobacteria were signifi-
cantly associated with increased obesity.101 
Bifidobacterium and Lactobacillus were associated 
with decreased obesity prevalence, lower weight 
gain and BMI.101 A recent study on saliva sam-
ples on 3–4 years of age using shotgun metage-
nomics. Firmicutes, Actinobacteria, and 
Bacteroidetes phylum were linked to weight gain 
during the initial two years of life.102 As BMI 
increased, the diversity of the oral microbiome 
decreased.102 This suggests that alterations in 
body composition influenced the diversity of the 
oral microbiome, potentially contributing to an 
elevated risk of developing diseases in 
adulthood.102,103

Impact of smoking on cardiometabolic 
syndrome

The impact of smoking on the oral microbiome 
is significant, and it is also considered as an 
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underlying cause and a significant risk for CMS. 
Meta-analysis studies have shown that smokers 
have a 1.26 times higher chance of developing 
CMS than nonsmokers.104 It has also been indi-
cated that smokers and passive smokers are asso-
ciated with increased susceptibility to metabolic 
disturbances among adolescents.105

Smoking has been associated in promoting 
insulin resistance leading to diabetes as well as 
hypertension and dyslipidemia.106,107 Notably, 
smoking is associated with visceral obesity, which 
plays a role in CMS. Multiple studies have shown 
a positive correlation between smoking and vis-
ceral obesity due to its harmful effects on adipose 
tissue, altering its secretion pattern, lipolysis, and 
differentiation.

However, smoking cessation can reduce the 
risk of developing CMS and CVD and subse-
quently lower mortality rates.108,109 Nevertheless, 
it should be emphasized that lifestyle modifica-
tion should occur alongside smoking cessation, as 
it may lead to weight gain if not managed cor-
rectly.110 A recent study conducted found smok-
ers had increased levels of dyslipidemia, body 
mass index, and central obesity, in addition to 
higher von Willebrand factor (vWF) protein 
functional activity increased troponin I levels in 
smokers, indicating a higher susceptibility to car-
diovascular mortality among smokers.4

Overall, there is a lack of studies on the impact 
of smoking on CMS and cardiovascular health is 
multifaceted, involving various physiological fac-
tors, and understanding its influence on the oral 
microbiome adds to the complexity of its effects 
on overall health.

The impact of smoking on the oral 
microbiome

Smoking has a profound impact on the oral 
microbiome in various populations. Cigarette 
smoke contains several toxic compounds that 
affect the gut and oral microbiota and induce 
dysbiosis.111 The toxic compounds include nico-
tine, heavy metals, aldehydes, nitrosamines, poly-
cyclic aromatic hydrocarbons, and more, which 
are inhaled into the lungs as aerosol particles or 
free in a gaseous state.112–115 The toxic compounds 
reduce endogenous antioxidants, increase 

pro-inflammatory factors concentration in the 
blood, and increase lipid peroxidation and oxida-
tive stress.112,116–119

When smoking, the oral cavity is the first that 
comes into direct contact with these toxic com-
pounds making it the most affected part of the 
body. Toxic compounds found in cigarettes dis-
rupt the oral microbiome’s ecological balance 
through the formation of unstable bacterial 
growth in biofilms, increasing saliva acidity and 
reducing oxygen levels, altering bacterial attach-
ment to mucosal surfaces, inducing antibiotic 
resistance, and affecting the host’s immune 
cells.120–122

The salivary microbiome may be influenced by 
various factors, including host genetics, diet, and 
environmental factors.123 In an American adult 
study using 16S rRNA oral wash samples, smok-
ers had a lower abundance of the proteobacteria 
phyla and Neisseria, Porphyromonas, and 
Capnocytophaga compared to never smokers.5 
Meanwhile, Atopobium, Veillonella, and 
Streptococcus were enriched.5 The functional anal-
ysis from inferred metagenomics revealed that 
the depleted bacterial genera were involved in 
carbohydrate, energy metabolism, and xenobiotic 
metabolism.5 In contrast, the increased bacterial 
genera were anaerobes, thus supporting the oxy-
gen depletion hypothesis.5

A Puerto Rican study using 16S rRNA, chemo-
kines, and cytokine analysis revealed taxonomic 
differences between smokers and nonsmokers, 
which was correlated with enhanced inflamma-
tory responses.124 These factors have been linked 
with carcinogenesis and inflammation in the oral 
cavity.124 Proteobacteria was highly enriched in 
smokers and has been associated with CVD and 
metabolic conditions.125

A Chinese 16S rRNA study found that alpha 
diversity differed between smokers and never 
smokers. Actinomyces and Veillonella were 
enriched in smokers, which are nitrite-producing 
bacteria that increase acidity.7 Moryella, Bulleidia, 
and Moraxella were significantly enriched in the 
smoking status.7 Acid production pathways were 
enriched in smokers.7 In a Qatari salivary micro-
biome study, smoking increased the Bacteroidetes 
at the phylum level and Prevotella at the genus 
level. Proteobacteria and Synergistetes at the 
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phylum level, Lactococcus, Corynebacterium, 
Gemella, Capnocytophaga, and Streptococcus at the 
genus level were significantly higher in the non-
smokers.7 In another study of low-income African 
Americans participants, mouth rinse samples were 
collected and analyzed using 16S rRNA sequenc-
ing and showed higher levels of the probiotic 
genera Bifidobacterium and Lactobacillus, as well 
as the phylum Actinobacteria in smokers com-
pared to never-smokers. In contrast, the phylum 
Proteobacteria was depleted in current smokers 
(Yang et  al., 2019).126 A Jordanian study aimed to 
investigate the salivary microbiome using high 
throughput next-generation sequencing found 
Streptococcus, Prevotella, and Veillonella showed 
significantly elevated levels among smokers at the 
expense of Neisseria in nonsmokers.127

Tongue samples have also been studied to learn 
the effects of smoking on the tongue microbi-
ome. Tongue microbiomes of East Asian subjects 
who were current, former, or never smokers using 
16S rRNA amplicon sequencing.128 Their results 
showed significant differences in microbiome 
composition and metagenomic functions between 
current and never smokers but not between for-
mer and never smokers.128 Several genera, such 
as Streptococcus and Megasphaera, showed increase 
abundance in current smokers, while others, such 
as Neisseria and Capnocytophaga, were less abun-
dant.128 The same group also conducted metage-
nomic sequencing on the tongue microbiome and 
single-nucleotide variant (SNV) profiles and gene 
content.129 They found that beta diversity between 
never and current smokers was significantly dif-
ferent, and the SNV profiles of Actinomyces 
graevenitzii, Megasphaera micronuciformis, Rothia 
mucilaginosa, Veillonella dispar, and one Veillonella 
sp. were significantly different between never and 
current smokers. Furthermore, genes related to 
the lipopolysaccharide biosynthesis pathway in 
Veillonella dispar were more frequently present in 
current smokers.129 Suzuki et  al. (2022) used bar-
coded pyrosequencing analysis to identify bacte-
rial composition in resting saliva and tongue 
coating; the study demonstrated a significant dif-
ference in microbiome richness and diversity 
between saliva and tongue but not between smok-
ers and nonsmokers.130 Saliva samples of smokers 
were enriched with the genera Treponema and 

Selenomonas; however, tongue samples from 
smokers were enriched with the genera Dialister 
and Atopobium. The study also found that the 
genera associated with periodontitis and oral 
malodor were more abundant in smokers’ saliva 
and tongue and were positively associated with 
lifetime exposure to smoking.130

Al-Bataineh et  al. (2020) aimed to investigate 
the oral microbiota of 105 adults using shotgun 
metagenomics and compared the functional capa-
bilities of the oral microbiome in smokers and 
nonsmokers. There was an increase in the relative 
abundance of Veillonella dispar, Leptotrichia spp., 
and Prevotella pleuritidis in smokers’ buccal swap 
samples.131 Functional profiling showed that smok-
ers had an enrichment of tricarballylate utilization 
and lactate racemization, while smokers with high 
nicotine dependence had an enrichment of xan-
thosine utilization, p-Aminobenzoyl-Glutamate 
utilization, and multidrug efflux pump in 
Campylobacter jejuni biosynthesis modules.131 A 
Hungarian study also used shotgun analysis and 
found an increase of Prevotella and Megasphaera 
genera in smokers, which has been associated with 
facilitating disease development.6 In contrast, the 
overall diversity and composition did not differ 
significantly between smokers and nonsmokers.

It is worth mentioning studies that have cate-
gorized their sample size into three groups, cur-
rent, former, and never smokers, revealed that 
there is no significant difference in the oral bac-
teria abundance between former and never smok-
ers, indicating that significant bacteria depletion 
caused by smoking may be reversed following 
smoking cessation.5,7 Furthermore, these studies 
have shown that the oral microbiome of smokers 
is enriched with anaerobic and facultative anaer-
obe bacteria while being depleted of aerobic bac-
teria, indicating smoking alters oxygen availability. 
A summary of the microbiome profile is pre-
sented in Table 1.

Variability in the oral microbiome among 
different populations

Research suggests there is a significant variation 
in the oral microbiome among different popula-
tions. Some studies have found no apparent geo-
graphical distribution,132,133 while others have 
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reported a significant association between salivary 
microbiome and geographical location.134,135 For 
instance, Nasidze et  al. (2009) group sequenced 
16s rRNA from 10 individuals from 12 different 
countries and found that the variation in micro-
biome might be influenced with the distance of 
each country from the equator.135 However, 
despite the geographical diversity the study did 
not show any significant bacterial clustering 
depending on the geographical location, the bac-
terial composition of individuals differed from 
one individual to another, and it is not uniform 
across all individuals.135 In another study, Li et  al. 
(2014) conducted a study that explored oral 
microbiome variation from three different groups 
from different climates and regions (Alaska, 
Germany, and Africa). They found significant dif-
ferences in alpha and beta diversity among the 
different groups, with Germans having the high-
est alpha diversity and the lowest beta diversity 
and Africans having the lowest alpha diversity 
and highest beta diversity. Using UniFrac, net-
work, ANOSIM, and correlation analyses, they 
found similarities between the Germans’ and 
Alaskans’ salivary microbiome.136

Similarly, Clarke et  al. (2022) found significant 
differences in oral microbial diversity from four 
different geographical areas: Thailand, Chile, South 
Africa, and Barbados. Bacteroidetes and 
Proteobacteria were the two most abundant phyla, 
but there were significant differences in their prev-
alence between countries.137 A recent Qatari study 
compared the salivary microbiome of the Qatari 
population to that of various other populations, 
including Bangladesh, British, Brazilian, Japanese, 
South Korean, American, and German.134 The data 
was retrieved from the National Center for 
Biotechnology Information/Sequence Read Archive 
(NCBI/SRA) bioprojects.134 The study found differ-
ences in microbial composition at the phylum and 
genus level, with the Qatari population resembling 
the German population in the abundance of 
Bacteroidetes, while the other countries had a pre-
dominance of the Firmicutes genus.134 A recent 
study compared the oral and skin microbiome 
from two regions in Italy and found no significant 
difference in the oral microbial beta diversity.138 
However, the study identified trends in the abun-
dance of specific bacteria depending on age and 

smoking habits.138 It has been reported the abun-
dant phyla in the salivary microbiome, in general, 
are Actinobacteria, Bacteroides, Firmicutes, 
Fusobacteria, Proteobacteria, Spirochetes, and 
Saccharibacteria.139 Additionally, a study conducted 
on supragingival plaque samples from children 
residing in the same geographical location and rep-
resenting four ethnic groups (Caucasian, Hispanic, 
Burmese, and African American)140 revealed signif-
icant differences in alpha and beta diversity among 
the ethnic groups, with Burmese children exhibit-
ing the most complex microbial community.140 
Burmese and Caucasian children had a higher 
microbial similarity compared to other ethnic 
groups.140 Therefore, these findings highlighted the 
significant variations of the microbiome in supragin-
gival samples among children.140 Similarly, a study 
conducted in the Kingdom of Saudi Arabia, in 
Jeddah city, on four different families from differ-
ent ethnicities (Saudi, Sudanese, Yemeni, and 
Indian) showed a variation in the abundance of 
bacteria among the families.141

Furthermore, saliva samples were analyzed from 
eight different ethnic groups from southern Africa, 
suggested that ethnicity did not shape the oral 
microbial profiles of the population, but socioeco-
nomic status could.142 In contrast, a study in 
Gansu Province, China, where dental plaque sam-
ples were sequenced, showed geographic location 
had a significant influence on the composition of 
the oral microbiome in the same ethnic group.143

Understanding the interplay between smoking, 
ethnic-related differences in the oral microbiome, 
and the pathogenesis of CMS could hold crucial 
implications for tailored treatment strategies. The 
oral microbiome’s role as a potential mediator in 
the association between smoking and CMS war-
rants further investigation, as it may offer new 
insights into preventive and therapeutic approaches 
for individuals at risk. Ultimately, elucidating the 
complex relationship between the oral microbi-
ome, smoking, and CMS could pave the way for 
personalized interventions and improved manage-
ment of cardiometabolic health.

Future direction

The predominant existing studies are correlational 
rather than causational relationships between oral 
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dysbiosis and CMS. Therefore, there is a need for 
causation studies to understand the direct impact 
of oral microbiome on CMS development and 
progression. Furthermore, to our knowledge, 
most studies focused on hyperglycemia, hyperten-
sion, dyslipidemia, and obesity rather than the 
syndrome itself. It is crucial to comprehensively 
study the mechanisms through which smoking 
induced changes in microbial composition 
impacts immune, metabolic, and physiological 
functions. Additionally, exploring variations in 
the oral microbiome across geographical locations 
and ethnicities while considering environmental 
factors such as diet, host genotype, socioeco-
nomic status, lifestyle could lead to valuable 
insights. This could provide valuable insights into 
the association between ethnicity, regional loca-
tion, and disease susceptibility, thus, establishing 
a foundation for personalized approaches to dis-
ease prevention and treatment strategies. 
Moreover, future research should investigate oral 
microbial dysbiosis’s impact on the metagenomic 
content to identify specific microbial taxa and 
functional pathways influenced by smoking and 
contributing to CMS. Conducting larger and lon-
gitudinal studies can improve statistical power 
and enhance generalizability, providing crucial 
insights into the underlying pathogenesis of 
smoking-related diseases and help in the develop-
ment of novel targeted therapies.

Conclusion

In conclusion, this narrative review explored the 
impact of oral microbiome dysbiosis in peri-
odontitis and CMS. Smoking exerts a significant 
influence on the oral microbiome, leading to 
dysbiosis that disrupts the ecological balance of 
the oral microbiome and is linked to the devel-
opment of oral and systematic diseases. However, 
the reviewed studies had certain limitations, 
including variation in sample size, methodologies 
employed, and inconsistent results from different 
populations, which made it challenging to estab-
lish a direct correlation between smoking-induced 
dysbiosis and CMS in this review. Nevertheless, 
it is crucial to acknowledge that smoking has 
detrimental effects on the oral microbiome and 
has the potential to contribute to the 

development of CMS. To gain deeper under-
standing of the specific effects of smoking on the 
oral microbiome and its role in disease develop-
ment, further studies with larger sample sizes 
with a specific age group is warranted. By 
addressing these knowledge gaps, we can enhance 
our comprehension of the complex relationship 
between smoking, oral microbiome dysbiosis, 
and the pathogenesis of CMS, paving the way for 
more effective preventive and therapeutic strate-
gies in the future.
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