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Introduction: Diabetes mellitus (DM) is recognized as one of the oldest chronic

diseases and has become a significant public health issue, necessitating

innovative therapeutic strategies to enhance patient outcomes. Traditional

treatments have provided limited success, highlighting the need for novel

approaches in managing this complex disease.

Methods: In our study, we employed graph signature-based methodologies in

conjunction with molecular simulation and free energy calculations. The

objective was to engineer the CA33 monoclonal antibody for effective

targeting of the aP2 antigen, aiming to elicit a potent immune response. This

approach involved screening a mutational landscape comprising 57 mutants to

identify modifications that yield significant enhancements in binding efficacy

and stability.

Results: Analysis of the mutational landscape revealed that only five substitutions

resulted in noteworthy improvements. Among these, mutations T94M, A96E,

A96Q, and T94W were identified through molecular docking experiments to

exhibit higher docking scores compared to the wild-type. Further validation was

provided by calculating the dissociation constant (KD), which showed a similar

trend in favor of these mutations. Molecular simulation analyses highlighted

T94M as the most stable complex, with reduced internal fluctuations upon

binding. Principal components analysis (PCA) indicated that both the wild-type

and T94Mmutant displayed similar patterns of constrained and restricted motion

across principal components. The free energy landscape analysis underscored a

single metastable state for all complexes, indicating limited structural variability

and potential for high therapeutic efficacy against aP2. Total binding free energy

(TBE) calculations further supported the superior performance of the T94M

mutation, with TBE values demonstrating the enhanced binding affinity of

selected mutants over the wild-type.
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Discussion: Our findings suggest that the T94M substitution, along with other

identifiedmutations, significantly enhances the therapeutic potential of the CA33

antibody against DM by improving its binding affinity and stability. These results

not only contribute to a deeper understanding of antibody-antigen interactions

in the context of DM but also provide a valuable framework for the rational design

of antibodies aimed at targeting this disease more effectively.
KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is considered the oldest chronic disease

that is characterized by high glucose levels in the blood. It mainly

occurs due to the scarcity of insulin production and can be classified

into two types: type 1 (T1DM) and type 2 (T2DM) DM (1, 2). The

condition arises from the destruction of pancreatic beta-cells which

consequently cannot produce insulin. In T2DM, insulin production

is decreased but not completely abolished. The delay in diagnosis or

management of diabetes may lead to serious complications such as

diabetic neuropathy, retinopathy, diabetic foot ulcer, and

cardiovascular diseases. DM is also considered as a socioeconomic

burden and recent data revealed that by 2049, there will be 629

million people suffering from DM worldwide (3). The major

contributing risk factors in the development of this condition

include genetic predisposition, obesity, and a sedentary lifestyle.

The distorted metabolic functioning and regulation of the adipose

tissue are also considered another important aspect contributing to

the pathophysiology of DM (4, 5).

Adipose tissue is an endocrine organ that maintains the

homeostasis of various other tissues such as the brain, pancreas,

and liver (6). Adipocytes respond to metabolic and immune cues by

mobilizing their fat stores through lipolysis and by secreting a

variety of hormones known as adipokines (7). Such signals interact

with the target tissues to regulate several important processes such

as glucose or insulin production. Integration of systematic

metabolic regulation with adipocytes is primarily controlled by a

(FAPB4) fatty acid binding protein 4 or aP2 (8). Since its discovery,

the role of aP2 has been depicted in lipid metabolism and the

pathogenesis of several metabolic diseases such as atherosclerosis,

fatty liver, and diabetes (9–11). Improved liver function, increased

sensitivity to insulin, and reduced fatty liver have been reported in

mice deficient with aP2 protein thus showing the essential role of

this protein in chronic metabolic disorders. The connection

between aP2 and T2DM is further corroborated by genetic

investigation studies conducted in diverse populations (12). These

studies have shown that individuals with a rare haplo-sufficiency

mutation in the aP2 gene experience metabolic and cardiovascular

advantages (13). This finding further confirms the involvement of
02
aP2 in the pathogenesis of metabolic diseases. Being an intracellular

protein, aP2 also acts as an active adipokine, a peptide that is

secreted by adipose tissue that regulates hepatic glucose production

and systematic glucose homeostasis. It has also been reported that

aP2 contributes to insulin resistance as its serum levels are

significantly elevated in obese mice and T2DM (14). In human-

based investigations, the role of aP2 was observed in metabolic and

cardiovascular disorders. Nonetheless, in a population-based study,

reduced expression of aP2 was found to protect against

cardiovascular disease and diabetes. Taken together, these

findings underline that the biological and hormonal roles of aP2

are evolutionarily conserved and hold relevance in the context of

human pathophysiology. Furthermore, the presence of secreted aP2

indicates a robust and promising therapeutic target for the

development of therapeutics for diabetes (10, 15). Additionally,

this paradigm-shifting evidence about aP2 biology underscores the

potential for designing novel therapeutics based on anti-aP2

monoclonal antibodies (mAb) and offers potential solutions to

the existing challenges in diabetes treatment (16).

Targeting aP2 therapeutically is a formidable task; however,

Burak et al. identified a mAb, CA33, specifically targeting aP2 that

was reported to improve glucose metabolism, increase insulin

sensitivity, reduce fat mass, and ameliorate liver steatosis in obese

mouse models (16). They reported that the novel mAb, CA33, binds

to the aP2 through a direct interaction with the light chain and an

indirect interaction with the heavy chain. Improving the specificity

and binding of CA33 may yield better therapeutic outcomes and

elicit stronger immune response. Therefore, using state-of-the-art

computational methods is a promising approach to engineer

therapeutic proteins for improved bindings. In silico saturation,

mutagenesis offers a faster and more accurate way to improve the

binding by inducing specific mutations. For instance, such methods

have been used to engineer different proteins in different diseases

such as stomach ulcers, cancer, and SARS-CoV-2 (17–20).

Computational methods have greatly accelerated the

identification and development of therapeutic agents against

various diseases (21, 22). As proof of the principle of this

therapeutic direction, the current study uses in silico mutagenesis

approaches by employing the graph signature-based algorithm to
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determine the impact of novel substitutions on the binding of CA33

with aP2. We resolved the mutated structures by using Chimera

software and the interaction of the mutated CA33 with aP2 was

predicted through the HADDOCK algorithm. A mutational

landscape of 57 mutants was constructed which revealed that

only 4 substitutions were able to improve the binding. The

mutations designed to enhance affinity were subsequently

examined through the utilization of dissociation constant

calculations and molecular simulations. These analyses have

confirmed the efficacy of the four most prominent mutants,

namely T94M, T94W, A96Q, and A96GE, in their ability to

enhance the binding affinity of CA33 with aP2. These mutant

variants may be deemed suitable for experimental verification in

the context of therapeutic applications.
2 Materials and methods

2.1 Structure retrieval, preparation, and
interface analysis

The crystallographic coordinates of the aP2-CA33 complex were

retrieved from the Protein Databank (RCSB) using the accession

number 5C0N. the native structure contains three chains including

the aP2 which comes in direct contact with the light (L) chain of the

antibody and a heavy (H) chain of the antibody which interacts

indirectly with the aP2 (23). The structures were assessed before

further processing and the L chain has some missing residues so

Modeler was used to model the missing loops. The structure was

minimized and prepared in Chimera using the Conjugate gradients

and steepest descent algorithms to relax the contacts and address

deformity (24). The final prepared structure was submitted to

PDBsum and analyzed for the contacts using PyMOL visualization

software. The interface residues were retrieved using the PDBsum

and PyMOL consensually (25, 26).
2.2 Graph-based signature algorithm for
antibodies modeling

For the flexible and robust recognition and binding of the CA33

antibody by aP2, we employed a computational algorithm, graph-

based signatures, available as mCSM-Ab2 (http://structure.

bioc.cam.ac.uk/mcsm_ab) which uses experimental data to predict

the impact of a particular mutation on the binding of antigen and

antibody (27). The interface residues were scanned for predicting

the essential contacts which revealed three residues important for

recognition while the other three contacts are supplementary. We

generated a mutational landscape of 57 mutants by replacing the

Glu27, Thr94, and Ala96 with the remaining 19 amino acids to

understand the impact on stability and binding affinity. The two

contacts Tyr92 and Asp28 were kept the same as they are required

for the recognition of the antigen. Among the 57 mutants only top

mutations that affect the overall binding (increase) were selected for

subsequent analysis. The top-scoring residues that increase the

binding of the antibody were modeled in Chimera using the
Frontiers in Immunology 03
Dunbrack rotamers library based on the proper sidechain torsion

(chi) and probability value (24). For optimization purposes,

rotamer sampling and side-chain flexibility were applied.
2.3 Antigen-Ab docking using HADDOCK

To model the biomolecular complexes of the antigen (aP2) and

antibodies, we used a high ambiguity-driven protein-protein

docking (HADDOCK) algorithm. This approach utilized the

biophysical and biochemical data to model the interactions and

gives the results based on chemical shift perturbation data obtained

from NMR titration experiments of mutagenesis data. The obtained

information is then incorporated into the docking process such as

Ambiguous interaction Restraints (AIRs). An AIR is specifically

characterized as an uncertain distance constraint involving all

residues that have been identified as participants in the

interaction. For docking the protonation states were set as default

(“authohis = true”). The Z-positioning restraints were also set to

default as experimental restraints. The surface contact restraint was

set as “surfrest = true” while the dihedral angles were also set as

default. The top-scoring complexes based on the HADDOCK

docking score and Z-scores were retrieved analyzed and subjected

to interactions and subsequent analysis (28). The residues Glu27,

Asp28, Tyr92, Thr94, and Ala96 were selected as the interface

residues for the heavy and light chain of CA33 while the residues

Lys9, Leu10, Val11, Lys37, and Glu129 were selected as the active

residues for aP2 interaction.
2.4 Determination of the binding strength
through dissociation constant prediction

The dissociation constant is an essential aspect of determining

the pharmacological potential of antigen-antibodies complexes

modeling and the results provide essential insights into the

impact of a particular mutation on the recognition and binding.

We used PRODIGY, a contact-based predictor, for modeling the

binding strength of the native and mutated CA33 antibody with aP2

(29). The Prodigy server is the most widely and highly accurate

server used for predicting the dissociation constant of a

macromolecular complex. The server uses the interatomic

contacts with 5.5Å and combines them with the non-interacting

surface (NIS) to derive essential knowledge regarding the binding

strength of KD.
2.5 All-atoms molecular simulation
and analysis

We assessed the dynamic characteristics of the wild-type,

T94M, T94W, A96Q, and A96E complexes in conjunction with

E4R using the AMBER 21 software. To prepare the system, we

employed the “tleap” module from AmberTools to generate

topology and coordinate files. Missing atoms and hydrogens

were added via the LEaP builder tool. To achieve charge
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neutrality, we introduced counterions using the AddToBox

module, and for solvation, we incorporated an optimal point

charge (OPC) model of the water box using the SolvateBox

module. Initially, we conducted an energy minimization of the

system, employing both the steepest descent and conjugate

gradient algorithms. This minimization process ran for 10,000

and 8,000 steps or until the energy change became less than 0.1

kcal/mol. Subsequently, we subjected the system to a 10 ns

equilibration period. During the initial 100 ps of equilibration,

we applied Langevin dynamics with a collision frequency of 1.0 ps-

1 to raise the system’s temperature from 0K to 300 K. Following

this, we maintained a constant pressure of 1 atm using the

Parrinello-Rahman barostat for 1 ns. This was succeeded by

sustaining a constant temperature of 300K through Langevin

dynamics for an additional 1 ns. Finally, a 7 ns equilibration

simulation was performed utilizing an NPT ensemble with PME

electrostatics and a non-bonded cutoff of 10 Å. After achieving

equilibration, we conducted a 300 ns production simulation under

the same parameters used during equilibration. To accelerate the

simulation, we employed PMEMD.CUDA and saved the

coordinates every 10 ps for subsequent analysis.
2.6 Essential dynamics

To understand the dynamics variation and atomic motion of

the whole trajectories the similar conformations were clustered and

presented as Principal components by using the principal

component analysis approach (30). This approach clusters the

simulation trajectories and has been widely used in large-scale

data analysis. To further understand the stable and metastable

states the two principal components i.e., PC1 and PC2 were used

to determine the free energy landscape (FEL). It has been widely

used to determine the lowest conformational state and variations as

compared to the native conformation. For this purpose, CPPTRAJ

was used and the g_sham module of Gromacs was used for the

PC’s construction.
2.7 Calculation of binding free energies

The strength of a protein interacting with its biologically

significant ligand/protein, or a small inhibitor significantly

impacts the drug discovery and understanding of protein

coupling mechanisms (31, 32). For protein-protein and protein-

ligand complexes, this property is frequently represented by the

binding free energies (BFE). In this work, it is calculated as the

difference between the free energies of the bound aP2-CA33

complex (Gcomplex, solvated) and the unbound states of aP2 (GaP2,

solvated) and CA33 (GCA33, solvated), as shown in equation (i). For each

complex, the hydrogen bonding and distances with energetic

contribution were calculated from a relaxed structure. The

following equation was used to calculate each term:

DGbind =  G(complex,    solvated) −  G(aP2,    solvated) −  G(CA33,    solvated) (i)
Frontiers in Immunology 04
This equation can be used to determine the contribution of

interaction in the complex and can be expressed as equation (ii):

G =   EMolecular  Mechanics −  Gsolvated −  TS (ii)

This equation can be further restructured to calculate the

specific energy term.

DGbind =  DEMolecular  Mechanics +  DGsolvated −  DTS

=  DGvaccum   + DGsolvated   (iii)

DEMolecular  Mechanics =  DEint +  DEelectrostatic   + DEvdW (iv)

DGsolvated =  DGGeneralized   born + DGsurface   area (v)

DGsurface   area =   g : SASA + b (vi)

DGvaccum =  DEMolecular  Mechanics − TDS (vii)

Specifically, we represent the free energy associated with the total

binding of proteins as DGbind (iii, v, vii). This encompasses the

cumulative gas phase energy, which consists of DEinternal,

DEelectrostatic, and DEvdW, and is denoted as DEMM (iv). The

combined contributions from the polar (DGPB/GB) and nonpolar

(DGSA) components of solvation are expressed as DGsol (v). The

conformational binding entropy, typically evaluated through normal-

mode analysis, is denoted as -TDS. The internal energy, resulting

from various bonds, angles, and dihedrals in the molecular mechanics

(MM) force field, is encapsulated in DEinternal. Notably, in calculations
involving MM/PBSA andMM/GBSA, this value remains consistently

zero, as observed in the single trajectory of a complex calculation.

DEelectrostatic and DEvdW represent the electrostatic and van der Waals

energies, respectively, computed using MM. Meanwhile, DGPB/GB
signifies the polar contribution to the solvation-free energy,

computed employing Poisson–Boltzmann (PB) or generalized Born

(GB) methods. Lastly, DGSA quantifies the nonpolar solvation-free

energy, usually determined using a linear function based on solvent-

accessible surface area (SASA) (vi). It’s worth noting that the

calculation of conformational entropy is often omitted due to its

computational expense and susceptibility to inaccuracies.
3 Results and discussion

3.1 CA33 mutants prediction and docking
with aP2

Structural engineering of a protein has always been a great tool

to increase the binding affinity and specificity for therapeutic

purposes. Using graph-based signatures we generated the

structural mutant of the L chain of the CA33 antibody. The

complex as depicted in Figures 1A, B (cartoon and surface

presentation) shows the binding of aP2 with the L and H chains

of CA33. It was observed that the L chain only interacts directly

with the binding residues of aP2 while the H chain comes in indirect
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contact with aP2 through non-bonded contacts. Before modeling

the novel mutants, we analyzed the binding interface which revealed

that the residues Lys9, Leu10, Val11, Thr56, Glu129, and Lys37 are

involved in interaction with the aP2. Among these six hydrogen

bonds were formed by Lys9-Thr94 (2.72Å), Lys9-Thr94 (3.26Å),

Leu10-Tyr92 (2.26Å), Val11-Asp28 (2.89Å) and Glu129-Thr94

(2.55Å). The only salt bridge was reported between Lys37-Glu27

with a bonding distance of 3.41 Å. Considering this interaction

paradigm we mutated the selected residues in the L chain of the

antibody. We observed that mutating Tyr92 and Asp28 abolish the

interactions while the others Glu27, Thr94, and Ala96 are non-

essential contacts and favorable for substitutions that could result in

higher binding affinity than the native complex. Among the

predicted mutants 30 mutants were predicted to increase the

binding affinity while the rest were predicted to decrease

the binding affinity. We set a threshold of Predicted DDG>1 that

will be considered while the others should be considered as non-

essential substitutions. Using this criterion, Thr94Met was observed
Frontiers in Immunology 05
to increase the binding affinity with the predicted DDG of 1.24 to be

the highest among all. The Ala96Gln replacement reported an

affinity change in the predicted DDG of 1.09 while the Ala96Thr,

and Ala96Ile, Ala96Glu reported DDG of 1.035, 1.202 and 1.02

respectively. The Thr94Trp substitution reported DDG of 1.022

respectively. These top-scoring mutants were generated by using

Chimera software and subjected to aP2-antibody docking using

HADDOCK. The interaction pattern for the wild-type CA33 and

aP2 is illustrated in Figure 1C while the predicted affinity change for

top residues with RSA (accessible surface area) is provided in

Figures 2A, B. The predicted Ramachandran plot (Clash Score,

Ramachandran Favored/Outliers, rotamer Outliers) for dihedral

angle analysis, and MolProbity Scores are summarized in

Supplementary Table S1.

Next, we generated the mutants (Figure 2) that increase the

binding affinity and modeled by using Modeler software embedded

Chimera tool. To obtain the docking scores for the wild-type we

submitted the native complex to the HADDOCK server and used a
BA

FIGURE 2

The predicted top mutants increase the binding affinity upon the substitution. (A) shows the relative surface area change in percent while (B) shows
the affinity change due to each substitution.
B

CA

FIGURE 1

(A) Cartoon presentation of the aP2-CA33 complex. The aP2 antigen is shown in cyan color, the heavy chain of CA33 is shown in pomegranate
color while the light chain is given in light green color. (B) shows the surface representation of the aP2-CA33 complex. (C) represents the interaction
pattern for the aP2-CA33 complex, where the green color represents the L chain, magenta represents the H chain and the yellow represents aP2.
The hydrogen bonding interactions are given in blue dashes with the bonding distances.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1357342
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Khan et al. 10.3389/fimmu.2024.1357342
refinement option to get the results for the wild-type and use as a

comparison for the further mutant’s selection. The HADDOCK

server predicted the docking score for the wild-type of -364.90 ± 3.0

kcal/mol with the vdW (Van DerWaals) score of -184.70 ± 4.0 kcal/

mol and the electrostatic energy of -498.00 ± 28.2 kcal/mol. The

other parameters are provided in Table 1. Considering the total

docking score of the wild-type (-364.90 ± 3.0 kcal/mol) the top-

scoring mutants were selected based on this threshold. Among the

selected mutants the two i.e., Ala96Leu reported a docking score of -

363.50 ± 2.0 kcal/mol and Ala96Thr reported a docking score of -

361.70 ± 5.3 kcal/mol which is a higher than the control (wild-type)

and were excluded from the further analysis. The mutant Thr94Met

predicted the best docking score among all. The docking score for

the Thr94Met was calculated to be -372.00 ± 3.7 kcal/mol with ten

hydrogen bonds and 2 salt bridges. A total of 51 non-bonded

contacts were reported in this complex. In this complex Tyr103

established a hydrogen bond with Lys9 (2.8 Å) from the H chain

while the L chain established the remaining nine hydrogen bonding

contacts. Among these Glu27-Lys37 (2.8 Å), Asp28-Lys37 (2.7 Å),

Ser30-Lys37 (3.5 Å), Ser30-Thr56 (3.5 Å), Tyr92-Leu10 (2.7 Å),

Met94-Lys9 (2.99 Å), Ala96-Leu10 (2.9 Å) and Ala96-Val11

(2.9 Å) respectively. The only salt bridge was established between

Lys37-Glu27 with a bonding distance of 2.70 Å. Interestingly the

mutated residues Met94 directly interact with the aP2 and

additional contacts have been established such as Ser30

interaction with Lys37 and Thr56. The interaction paradigm for

the Thr94Met is shown in Figure 3A. For this complex the vdW was

estimated to be -194.40 ± 6.1 kcal/mol while the electrostatic energy

was calculated to be -459.7 ± 18.1 kcal/mol. In contrast to the native

complex, this mutant presented a better vdW energy that

particularly contributed to the robust binding of this mutant than

the wild-type. On the other hand, the Ala96Glu with a docking

score of -371.4 ± 1.9 was ranked as the second-best mutant that has
Frontiers in Immunology 06
a lower docking score than the wild-type. The rationale behind the

increase in the docking is that this complex involved the highest

number of non-bonded contacts with additional hydrogen bonds and

the conserved salt bridge. The hydrogen bonding paradigm reported

eight hydrogen bonds Lys9-Thr94 (2.83 Å), Leu10-Tyr92 (2.93 Å),

Val11-Glu96 (2.79 Å), Lys37-Asp28 (3.17 Å), Lys37-Glu27 (2.85 Å),

Lys37-Asp28 (2.84 Å) and Thr56-Asp28 (2.75 Å) respectively. The

only salt bridge was established between Lys37-Glu27 with a bonding

distance of 2.80 Å. Additionally, a hydrogen bond was also reported

between the heavy chain Tyr103 and Lys9 residue of aP2. These

additional hydrogen bonding contacts consequently increase the

binding and neutralization of aP2 antigen through the recognition

of essential immune epitopes. The vdW and electrostatic energies for

this complex were calculated to be -192.30 ± 4.7 and -471.10 ± 17.8

kcal/mol respectively which are lower than the control native aP2-

CA33 complex thus inducing stronger binding and neutralization.

The interaction paradigm for the Ala96Glu is shown in Figure 3B.

The docking scores and other parameters for these mutants are

provided in Table 1.

We further evaluated the binding patterns of T94W and A96Q

mutants with aP2. The T94W with the docking score of -366.1 ± 2.0

kcal/mol reported eight hydrogen bonds involving Glu27-Lys37 (2.7

Å), Asp28-Lys37 (2.7 Å), Asp28-Thr56 (3.3 Å), Ser30-Lys37 (3.1 Å),

Tyr92-Leu10 (2.8 Å), Tyr103-Lys9 (2.8 Å) and Tyr103-Glu129 (3.4

Å) respectively. Interestingly the heavy chain established two direct

hydrogen bonds with the two residues of aP2 thus showing

differential binding of this mutant. Moreover, the Ala96 interaction

with Val11 was observed to be demolished while the extra contacts by

the Ser30 can be seen in the complex. The Lys37-Glu27 (2.74 Å) salt

bridge remained conserved here too. The vdW energy for this

complex was observed to be -192.9 ± 4.4 kcal/mol while the

electrostatic energy was -437.0 ± 26.8 kcal/mol respectively. The

interaction pattern of T94W is shown in Figure 4A. On the other
BA

FIGURE 3

3D interaction paradigm for the T94M and A96E mutants in complex with aP2. (A) represent the interaction pattern of T94M with aP2. In this panel,
the yellow sticks represent aP2, the blue sticks represent the L chain, and the green stick represents the H chain. (B) represents the interaction
pattern of A96E with aP2. In this panel, the yellow sticks represent aP2, the blue sticks represent the L chain, and the cyan stick represents the
H chain.
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TABLE 1 The predicted docking score for each substitution using HADDOCK. The bonding residues and distances for each complex.

Parameters
Wild-

type-aP2
T94M-aP2 A96E-aP2 A96Q-aP2 T94W-aP2

A96L-
aP2

A96T-
aP2

HADDOCK
score

-364.9 ± 3.0 -372.0 ± 3.7 -371.4 ± 1.9 -369.2 ± 2.3 -366.1 ± 2.0
-363.5
± 2.0

-361.7
± 5.3

Cluster size 20 20 20 20 20 20 20

RMSd from the
overall lowest-

energy
structure

0.5 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 0.6 ± 0.3 0.6 ± 0.3 0.5 ± 0.3 0.5 ± 0.3

Van der
Waals energy

-184.7 ± 4.0 -194.4 ± 6.1 -192.3 ± 4.7 -190.9 ± 1.5 -192.9 ± 4.4
-189.3
± 4.5

-185.7
± 5.0

Electrostatic
energy

-498.0 ± 28.2 -459.7 ± 18.1 -471.1 ± 17.8 472.8 ± 16.5 -437.0 ± 26.8
-432.3
± 22.9

-495.6
± 25.5

Desolvation
energy

-80.7 ± 3.6 -85.6 ± 1.1 -84.9 ± 2.8 -83.8 ± 1.5 -85.8 ± 3.6
-87.8
± 1.4

-76.9
± 4.4

Restraint’s
violation
energy

0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.3 ± 0.3 0.2 ± 0.2 0.2 ± 0.1 0.3 ± 0.2

Buried
Surface Area

4748.5 ± 44.2 4694.9 ± 49.8 4776.0 ± 48.2 4774.2 ± 67.2 4686.1 ± 32.8
4722.5
± 62.5

4668.1
± 76.5

Z-Score 0 0 0 0 0 0 0

Dissociation
constant (KD)

1.2E-8 0.9E-10 1.1E-9 1.1E-9 1.2E-6 – –

Hydrogen
Bonds

Lys9-Thr94
(2.72Å), Lys9-
Thr94 (3.26Å),
Leu10-Tyr92
(2.26Å),

Val11-Asp28
(2.89Å) and
Glu129-

Thr94 (2.55Å)

Glu27-Lys37 (2.8 Å),
Asp28-Lys37 (2.7 Å),
Ser30-Lys37 (3.5 Å),
Ser30-Thr56 (3.5 Å),
Tyr92-Leu10 (2.7 Å),
Met94-Lys9 (2.99 Å),
Ala96-Leu10 (2.9 Å)
and Ala96-Val11

(2.9 Å)

Lys9-Thr94 (2.83 Å),
Leu10-Tyr92 (2.93
Å), Val11-Glu96
(2.79 Å), Lys37-
Asp28 (3.17 Å),

Lys37-Glu27 (2.85
Å), Lys37-Asp28

(2.84 Å) and Thr56-
Asp28 (2.75 Å)

Lys9-Thr94 (3.10 Å),
Leu10-Tyr92 (3.23 Å),
Val11-Gln96 (2.97 Å),
Lys37-Asp28 (3.30 Å),
Lys37-Asp28 (2.68 Å),
Thr56-Asp28 (2.71 Å),
Lys37-Asp28 (3.00 Å),

Glu129-Thr94 (2.69 Å), and
Glu129-Tyr103 (3.10 Å)

Glu27-Lys37 (2.7 Å),
Asp28-Lys37 (2.7
Å), Asp28-Thr56

(3.3 Å), Ser30-Lys37
(3.1 Å), Tyr92-
Leu10 (2.8 Å),

Tyr103-Lys9 (2.8 Å)
and Tyr103-Glu129

(3.4 Å)

– –

Salt bridges
Lys37-Glu27
(3.41 Å)

Lys37-Glu27 (3.41 Å) Lys37-Glu27 (2.80 Å) Lys37-Glu27 (2.74 Å) Lys37-Glu27
(2.74 Å)

– –
F
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FIGURE 4

3D interaction paradigm for the T94W and A96Q mutants in complex with aP2. (A) represent the interaction pattern of T94W with aP2. In this panel, the
yellow sticks represent aP2, the blue sticks represent the L chain, and the green sticks represent the H chain. (B) represents the interaction pattern of A96Q
with aP2. In this panel, the yellow sticks represent aP2, the blue sticks represent the L chain, and the green sticks represent the H chain.
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hand, the Ala96Gln reported a docking score of -369.2 ± 2.3 kcal/mol,

vdW of -190.9 ± 1.5, and electrostatic energy of -472.8 ± 16.5 kcal/

mol respectively. Investigation of the binding pattern revealed ten

hydrogen bonds among which 2 were established by the H chain and

the remaining 8 by the L chain. The other differences include the

direct interaction of the H chain with the aP2. Among the hydrogen

bonds Lys9-Thr94 (3.10 Å), Leu10-Tyr92 (3.23 Å), Val11-Gln96

(2.97 Å), Lys37-Asp28 (3.30 Å), Lys37-Asp28 (2.68 Å), Thr56-Asp28

(2.71 Å), Lys37-Asp28 (3.00 Å), Glu129-Thr94 (2.69 Å), and Glu129-

Tyr103 (3.10 Å) respectively. The Lys37-Glu27 (2.74 Å) salt bridge

remained conserved here too. The interaction pattern of A96Q is

depicted in Figure 4B. The docking scores and other parameters for

these mutants are summarized in Table 1. Overall, the current

findings show that both the vdW and electrostatic energy terms are

increased which consequently causes the robust binding of CA33 to

the aP2. The current findings highlight the importance of protein

engineering in the design of novel and effective therapeutics for the

development of specific antibodies against T2DM.
3.2 Calculation of binding strength
through KD

The binding strength was further validated by using the

dissociation constant calculation based on the AI-powered algorithm

trained with the experimental data. The results demonstrated that the

KD value for the wild-type was 1.2E-8 while for the T94M, the KD was

estimated to be 0.9E-10. For the T94W the KD was estimated to be 1.1E-

9, for the A96Q the KD was computed to be 1.1E-9 and for the A96E the

KD was computed to be 1.2E-6. This shows the higher binding strength

for the mutants except A96E and therefore demonstrates a robust

immune response by interacting with aP2.
3.3 Dynamic stability assessment of the
wild-type and mutant complexes

Determining complex stability during simulation is an essential

step towards the understanding of the pharmacological efficiency of a
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therapeutic molecule. It is considered as important for stable binding

and therefore is necessary to estimate the system’s stability.

Considering the importance of dynamic stability, we calculated root

mean square deviation (RMSd) as a function of time using the

simulation trajectory. As shown in Figure 5A, the wild-type antibody

stabilized at 3.0 Å at 75ns. The complex initially demonstrated a higher

RMSd with minor deviations, it stabilized and maintained the same

level until the end of the simulation. An average RMSd for the wild-

type was calculated to be 2.74 Å. On the other hand, the T94M

stabilized at 2.25 Å at 37ns. The complex reported no significant

perturbation and the average RMSd for this complex was calculated to

be 2.40 Å. This indicates that the introduction of this mutant causes

structural stabilization and thus the binding is further stabilized. Hence,

this mutation is more favorable for enhancing the binding and

instigation of a stronger immune response against aP2. Moreover,

the T94Wmutant reported a comparatively destabilized behavior than

the T9M but was more stable than the wild-type at the end of the

simulation. The trajectory started from 0 and reached 4.3 Å at 40ns.

The complex then exhibited a stable behavior but after reaching 75ns

the RMSd increased again and maintained the same level till 175ns. An

abrupt rise in RMSd at 180ns was followed by a subsequent decline.

After 190ns, the complex attained stability and maintained a uniform

level until the end of the simulation. An average RMSd for this complex

was calculated to be 2.95 Å. The RMSd results for the T94W are shown

in Figure 5B. Interestingly, the A96Q and A96E substitutions were

found to show dynamically unstable behavior with a reported RMSd

higher than the wild-type and T94M/W mutants. For instance, the

RMSd pattern for the A96Q reported significant structural

perturbations with a higher RMSd level of 6.2 Å. The structure

started with 1.5 Å until 50ns and then an abrupt increase/decrease

was experienced. An average RMSd for the A96Q complex was

estimated to be 3.24 Å. The A96E complex was observed to be the

most destabilized complex with a reported RMSd of 6.5 Å. With

significant structural perturbation, this complex maintained a higher

RMSd level than all the complexes, with an average RMSd (4.58 Å)

being observed. The RMSd graphs for the A96Q are shown in

Figure 5C while the RMSd graph for the A96E is depicted in

Figure 5D. It can be observed that the T94M is the most stable

substitution which increases the binding stability throughout the
B
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A

FIGURE 5

Dynamic stability assessment of the wild-type and mutants. (A) shows the RMSd graphs for the wild-type and T94M, (B) shows the RMSd graphs for
the wild-type and T94W, (C) shows the RMSd graphs for the wild-type and A96Q while (D) shows the RMSd graphs for the wild-type and A96E.
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simulation while the T94W also exhibited comparatively a dynamically

stable behavior. The superimposed structures of each complex retrieved

at different time intervals were further compared with the native to

understand the structural variations. As shown in Supplementary

Figure S1, it can be noted that the interface in all the complexes

remains intact while the tail of the L chain folds and unfolds inward

and outward to cause deviation from the native structure. Moreover,

the flipping of the beta sheets in the aP2 also causes deviation from the

native structure. This shows that the aP2-CA33 remains bound during

simulation however the movement of some secondary structural

elements causes the drift in the RMSd pattern. In sum, these two

substitutions are more favorable for the enhanced and stabilized

binding of the CA33 antibody than the A96E and A96Q and

therefore should be further investigated for clinical purposes.
3.4 Structural compactness assessment

Calculation of the structural compactness by using a radius of

gyration (Rg) over the simulation time is an important parameter that

determines the binding and unbinding events during the simulation.

It is an essential step to determine the pharmacological potential of a

therapeutic molecule. Considering the application of Rg in

determining structural stability and compactness, we also calculated

Rg using the simulation trajectory. Interestingly, the Rg results for the

wild-type aligned with the RMSd results. The Rg started from 29.80 Å

and steadily decreased over time. The highest Rg value was observed

at 70ns and then a continuous decline in the Rg value was observed.

An average Rg for the wild-type was calculated to be 29.85 Å. On the

other hand, the Rg for T94M mutant started at 30.0 Å and continued

to decrease till 26.8Å at 50ns. The complex then reported a uniform

straight graph for Rg values and no deviation was observed. This

indicates that the complex maintained a rigid and stabilized compact

structure and therefore had minimal unbinding events during the

simulation. The Rg results strongly align with the RMSd results, with

stability maintained throughout the simulation. An average Rg for the

T94M complex was estimated to be 27.0 Å as shown in Figure 6A.

The T94W initially reported a lower Rg (30.0 Å) behavior by keeping

the Rg at 30.0 Å up to 75ns. The Rg then gradually increased and
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continued to report a similar behavior until 225ns. Like the RMSd

results, the Rg also maintained a stable and lower level during the last

part of the simulation. The increase in the Rg pattern determines the

unwinding of the tail of the CA3which causes a significant increase in

the protein size. The Rg for the T94W is shown in Figure 6B.

Interestingly, the A96Q comparatively reported a stabilized protein

size during the first 75ns and then gradually increased up to 32.0 Å.

This Rg level was maintained for the remaining simulation time

showing the unwinding of the CA33 tail and then rewind. An average

Rg for the A96Q was calculated to be 31.5 Å (Figure 6C). The Rg

results for the A96E also reported a similar behavior to the findings of

RMSd. The Rg remained higher than all the complexes. This complex

maintained an Rg level of ~34.50 Å throughout the simulation. An

average Rg for the A96E was calculated to be 34.45Å (Figure 6D).

Overall, these findings strongly corroborate with the RMSd and show

that T94M and T94W are the most favorable that not only increase

the binding but also increase the stability. Interestingly, the higher

binding mutant remained the most compact avoiding the unbinding

events while the three other substitutions i.e., T94W, A96Q, and

A96E caused structural instability. Thus, substitutions that increase

the structural stability increase the binding significantly.
3.5 Hydrogen bonding analysis

Hydrogen bonding calculation is one of the key assessments

that help in determining the pharmacological potential of a drug or

inhibitor. It is an essential approach to reveal the potency and

binding strength of the interacting molecules. This approach has

been widely applied to understand the pharmacological mechanism

of a particular drug, and the interaction mechanism of two or more

proteins to reveal the mechanism of a disease or bio-catalytic

process (33–37). Considering the essential role of this approach,

we used a similar approach to calculate the total number of

hydrogen bonds in each complex. The average number of

hydrogen bonds in each complex was calculated to be 231 in the

wild-type, 236 in the T94M, 229 in the T94W, 232 in the A96Q, and

231 in A96E. It can be observed that the hydrogen bonds in the

predicted mutants are more than the wild-type thus implying that
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FIGURE 6

Structural compactness assessment of the wild-type and mutants. (A) shows the Rg graphs for the wild-type and T94M, (B) shows the Rg graphs for
the wild-type and T94W, (C) shows the Rg graphs for the wild-type and A96Q while (D) shows the Rg graphs for the wild-type and A96E.
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these mutants increase the binding. Although the number of bonds

is increased in the three mutants T94M is the more favorable

substitution that increases the binding stability with the number of

hydrogen bonds. The hydrogen bonding results for all the

complexes are presented in Figures 7A–D. Additional information

about the hydrogen bonding, distances, and half-life information

are summarized in Supplementary Table S2.
3.6 Root mean square
fluctuation calculation

Residue fluctuation indexing is an essential factor in determining

the role of particular residues in molecular recognition, protein

inhibition, ligand recognition, and opening and closing switches. For

instance, this approach has been widely used to determine the impact

of different mutations on the binding and internal fluctuation of

different receptors (38). Herein, we also calculated residual flexibility

using the simulation trajectory. The RMSF results presented in

Figure 8A demonstrate that the internal fluctuation of the aP2 has

been stabilized and thus minimal fluctuations are produced by the

wild-type and T94M complexes while the other complexes have

produced higher fluctuations. The regions 35-225 and 230-335

determined major fluctuations in the T94W, A96Q, and A96E. We

further dissected the RMSF profiles of each mutated residue in each

complex. The results shown in Figure 8B indicate that the mutated

residues demonstrated higher fluctuation than the wild-type and

therefore result in better conformational optimization for enhanced

binding. Interestingly, the RMSF results also corroborate with the

binding results and indicate that wild-type and T94M are better

immune response-provoking agents than the other mutants.
3.7 Principal component analysis for
trajectories motions clustering

The analysis of data distribution within the component space

yields valuable insights into the fundamental dynamics of the

underlying system. Notably, both the wild-type and T94M had
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comparable patterns of constraint and restricted motion across each

principal component. It further shows that these two systems are

more stable and controlled in these dimensions. The

conformational space is divided into two states i.e., the pink color

which is separated by the purple color (transition state) from the

blue color. On the other hand, the T94W, A96Q, and A96E

determined differential trajectories clustering and therefore

presented an unstable state for each complex. This indicates that

mutant T94M behaves more like the wild-type but presents

favorable variations that cause more robust binding of T94M

than the control. These findings also corroborate the residues’

flexibility and docking results. The PCA graphs are presented in

Figures 9A–E.
3.8 Free energy landscape analysis

In the context of molecular mechanics and simulation, the free

energy landscape is used to understand and visualize the energy

landscape of each system. It provides a visual presentation of the

relationship between the potential energy and its collective

variables. It determines the possible lowest energy configuration

state and determines the protein folding. All the complexes

presented a single metastable (lowest energy state) during the

simulation which indicates that the system does not readily

transit through multiple conformations. This demonstrates

limited structural variability and underscores the therapeutic

antibody’s efficacy against aP2. The FEL graphs are presented in

Figures 10A–E.
3.9 Binding free energy analysis

We calculated the binding free energy for each complex which

revealed that vdW values of -160.82 kcal/mol, -173.49 kcal/mol,

-165.69 kcal/mol, -170.83 kcal/mol, -168.67 kcal/mol were

calculated for wild-type, and T94M, A96Q, and A96E mutants,

respectively. This indicates that the rise in the number of hydrogen

bonds leads to a corresponding increase in the vdW energy within
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FIGURE 7

Hydrogen bonding analysis of the wild-type and mutants. (A) shows the H-bonds graphs for the wild-type and T94M, (B) shows the H-bonds graphs
for the wild-type and T94W, (C) shows the H-bonds graphs for the wild-type and A96Q while (D) shows the H-bonds graphs for the wild-type
and A96E.
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each complex, causing the binding affinity to strengthen. On the

other hand, the electrostatic energy calculations showed Elec values

of -20.36 kcal/mol, -19.27 kcal/mol, -18.39 kcal/mol, -19.35 kcal/

mol, -18.48 kcal/mol for wild-type, T94M, T94W, A96Q, and A96E

mutant, respectively. To provide conclusive evidence on the role of

the introduced mutations and their impact on the binding, we

calculated the total binding free energy for each complex to

accurately evaluate the binding strength of each complex. The

results strongly corroborate with the docking scores and

dissociation constant (KD) results. The TBE for the wild-type was
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computed to be -279.84 kcal/mol, for the T94M the highest binding

free energy was estimated to be -295.22 kcal/mol. For the T94W, the

binding free energy was computed to be -281.67 kcal/mol, and for

the A96Q the TBE was -289.44 kcal/mol while for the A96E the TBE

was estimated to be -277.29 kcal/mol. This shows that the predicted

substitutions strongly corroborate with the hypothesis of affinity-

increasing mutants that consequently cause an enhanced binding of

the CA33-engineered antibody to the aP2 antigen. The binding free

energy results for each complex are shown in Figure 11. The specific

energy contribution is summarized in Supplementary Table S2.
B C

D E

A

FIGURE 9

Trajectories clustering and motion using principal component analysis (PCA). (A) represents the trajectory distribution for the wild-type complex in X
and Y dimensions given as PC1 and PC2. (B) represents the trajectory distribution for the T94M complex in X and Y dimensions given as PC1 and
PC2. (C) represents the trajectory distribution for the T94W complex in X and Y dimensions given as PC1 and PC2. (D) represents the trajectory
distribution for the A96Q complex in X and Y dimensions given as PC1 and PC2. (E) represents the trajectory distribution for the A96E complex in X
and Y dimensions given as PC1 and PC2.
B
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FIGURE 8

(A) Residue’s flexibility analysis of the wild-type and mutants. All the complexes are differently colored. (B) shows the RMSF pattern for the mutated
residues in each complex.
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4 Conclusions

The current study utilized structure-guided engineering

strategies to enhance the CA33 antibody, leveraging graph-

signature-based algorithms for rationale antibody design. The

mutational landscape was subjected to a thorough examination,

which revealed the presence of only four substitutions that were

found to be significant. These alterations include T94M, T94W,

A96Q, and A96E. Additional validation was conducted using post-

prediction molecular simulations, which confirmed that the T94M

substitution was the most favorable. Significantly, this change not

only enhanced the docking score but also demonstrated exceptional

stability throughout the simulation. To bolster the robustness of our

results, we employed KD estimates to quantify the binding affinity,

introducing an additional level of validation to our investigation.
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Future directions for this research involve investigating similar

antibodies and exploring diverse diabetes-related biotargets.

Analyzing additional antibodies using similar structurally guided

engineering approaches promises a more thorough understanding

of potential improvements. Expanding the study with a broader

range of mutations and rigorous experimental validation can

address the limitations and enhance the robustness of the

findings. A comprehensive exploration of various diabetes-related

biotargets will contribute to a holistic approach to antibody design.

Although the findings of this study have the potential to offer

significant insights into the strategic design of diabetes-targeting

antibodies, collaborative efforts with experimentalists for in vitro

and in vivo validations are anticipated, paving the way

for the translation of these insights into clinical trials and

practical applications.
FIGURE 11

Total binding free energy results for each complex using the MM-GBSA approach. All the energies are given in kcal/mol.
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FIGURE 10

Free energy landscape (FEL) analysis of the wild-type and the designed mutated antibodies. (A) represents the FEL for the wild-type complex in X
and Y dimensions given as PC1 and PC2. (B) represents the FEL for the T94M complex in X and Y dimensions given as PC1 and PC2. (C) represents
the FEL for the T94W complex in X and Y dimensions given as PC1 and PC2. (D) represents the FEL for the A96Q complex in X and Y dimensions
given as PC1 and PC2. (E) represents the FEL for the A96E complex in X and Y dimensions given as PC1 and PC2. Each graph represents the only
conformational state attained by each complex.
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