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A B S T R A C T   

This study aims to evaluate the performance and effectiveness of six spectral water indices - derived from 
Multispectral sentinel-2 data - to detect soil moisture and inundated area in arid regions to be used as an in-
dicator of mudflow phenomena to predict high-risk areas. Herein, the validation of the performance of spectral 
indices was conducted using threshold method, spectral curve performance, and soil-line method. These indirect 
validation techniques play a key role in saving time, effort, and cost, particularly for large-scale and inaccessible 
areas. It was observed that the Normalized Difference Water Index (NDWI), Modified Normalized Difference 
Water Index (mNDWI), and RSWIR indices have the potential to detect soil moisture and inundated areas in arid 
regions. According to the temporal spectral curve performance, the spectral characteristics of water and soil 
moisture were distinct in the Near infrared (NIR) and Short-wave Infrared (SWIR1,2) bands. However, the rate 
and degree differed between these bands, depending on the amount of water in the soil. Furthermore, the soil 
line method supported the appropriate selection of threshold values to detect soil moisture. However, the 
threshold values varied with location, time, season, and between indices. We concluded that considering the 
factors influencing the behavior of water and soil reflectivity could support decision-makers in identifying high- 
risk mudflow locations.   

1. Introduction 

Mudflow is a common hazardous phenomenon that occurs during 
and after cyclones, causing a direct impact on agricultural areas and 
cities in terms of economic losses and compromised human well-being 
(Perera et al., 2018; Rao et al., 2019; FAO, 2021). Mudflow events 
have multiplied in the past years due to the significant increase in the 
frequency of cyclones and rainfall events as a result of climate change 
impacts (Mamadjanova and Leckebusch, 2022). The distribution of 
mudflow varies depending on the topography and soil type (Castro et al., 
2020; Somos-Valenzuela et al., 2020). For instance, high-potential 

mudflow occurs in locations with steep slopes where the mud and 
debris rush downward due to gravitational force (Volgina and Sergeev, 
2021). However, in low-slope topography, soil types - such as clay - are 
responsible for increasing the probability of mudflow occurrence (Val-
lejo, 1980). In other words, clay soil has a higher water-holding capacity 
and dries out less than other types of soil (Ismail and Ozawa, 2007), as 
clay soils have fine grains stacked together and tiny pores that make it 
highly moisturized in comparison with other soils (Morris and Energy, 
2006). Thus, soil moisture can be considered an essential factor in an 
initial mudflow event (Marino et al., 2020). Variations in soil moisture 
can influence infiltration during rainfall storms (Peranić et al., 2022) 
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and hence can indicate the probability of mudflow occurrence. 
Measuring and analyzing soil moisture before and after an intense 

rainfall event can enhance our understanding of the probability of 
mudflow occurrence by helping to indicate high-risk areas. Methods 
including gravimetric, evaporation, leaching, and chemical reactions 
are considered direct traditional techniques used to determine the water 
content in the soil (Cooper, 2016). In-situ field instruments, such as 
electromagnetic sensors, gamma radiation sensors, neutron probes, and 
heat pulse probes, have also been used to measure soil moisture 
(Babaeian et al., 2019). However, these laboratory methods and in-
struments are only adequate for small areas to provide quantitatively 
accurate point-based field measurements; they are time-consuming and 
expensive for large-scale monitoring (Şekertekin et al., 2018). 

The rapid development of remote sensing technologies has allowed 
the assessment and monitoring of spatio-temporal natural phenomena at 
small and large scales using optical, thermal, microwave, and radar data 
(Yue et al., 2019). Over the last decade, soil moisture has been widely 
studied worldwide, with a focus on different applications such as the 
prediction and monitoring of drought, hydrological processing, agri-
cultural plant production, and landslide hazard assessment (Babaeian 
et al., 2019; Zhao et al., 2021). However, most of the studies used coarse 
spatial resolution, such as Soil Moisture and Ocean Salinity (SMOS) data 
(Gheybi et al., 2019), Soil Moisture Active and Passive (SMAP) data (Ma 
et al., 2017), Advanced Scatterometer (ASCAT) data (Brocca et al., 
2017), and Advanced Microwave Scanning Radiometer (AMSR) data 
(Zhang et al., 2017). These coarse satellite data are adequate for 
monitoring soil moisture at a large scale, especially because they can 
revisit the same area every 1–5 days. Despite providing these satellites 
with high temporal resolution, the coarse resolution (25–50 km) could 
affect the output data at the local scale (Zhang et al., 2022). Some recent 
studies have utilized high-resolution images such as sentinel-1A to 
detect soil moisture (Zribi et al., 2019; Wang et al., 2022). Sentinel-1A is 
a satellite of the European Space Agency (ESA) based on Synthetic 
Aperture Radar (SAR), with high spatial (10 m) and temporal resolutions 
(12 revisit days) (https://sentinels.copernicus.eu/web/sentinel/missi 
ons/sentinel-1). However, the radar backscattering coefficient is sensi-
tive to variations in soil conditions (roughness and soil types), topog-
raphy, and vegetation cover (Parida et al., 2022). 

Furthermore, certain studies have used medium-resolution multi-
spectral data to detect soil moisture based on the relationship between 
vegetation indices and land surface temperature (LST) (Younis and 
Iqbal, 2015; Natsagdorj et al., 2019; Lu et al., 2020). Other studies have 
developed various water extraction algorithms using multispectral data, 
including spectral water indices, single-band thresholding, classification 
methods, and principal component analysis (PCA) (Acharya et al., 2018; 
Huang et al., 2018; Wen et al., 2021). For instance, Acharya et al. (2022) 
evaluated different spectral indices using Landsat-8 data to detect soil 
moisture in agricultural fields, including the Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), 
Normalized Difference Moisture Index (NDMI), Enhanced Vegetation 
Index (EVI), Structure-Insensitive Pigment Index (SIPI), and Atmo-
spherically Resistant Vegetation Index (ARVI). They found a poor rela-
tionship between these indices and field soil moisture, which was highly 
affected by crop growth stages and vegetation cover. Serrano et al. 
(2019) found a significant correlation between soil moisture and NDWI 
derived from sentinel-2 imagery implemented in the Mediterranean 
agro-silvo-pastoral system. Reis et al. (2021) investigated a single 
threshold over the MNDWI to extract water bodies using Landsat-8 and 
sentinel-2 imageries. Sajjad et al. (2020) found that the mNDWI pro-
duced good results in delineating flood-inundated areas in Pakistan, 
with an overall accuracy of 90 % compared with NDWI (85 %) and 
Water Ratio Index (WRI) (82 %). Hence, hydrological monitoring 
studies have mainly focused on four aspects: detecting soil moisture 
using coarse satellite data, delineating surface water using water indices, 
implementing methods in agricultural areas, and validating the perfor-
mance of remote sensing data using field data. Besides, limited studies 

investigate the dynamic changes in soil moisture in arid regions by 
quantifying the correlation between soil moisture and mudflow events 
using multispectral data (Gheybi et al., 2019). 

The essential questions that need to be considered are: First, can 
water indices-based open-access multispectral data with high resolution 
provide satisfactory results for detecting soil moisture? Second, how can 
the performance of indices be validated when access to the areas is 
difficult or when investigating large-scale areas that would increase the 
cost of fieldwork? Thus, this study aims to investigate the potential and 
effectiveness of water indices using multispectral sentinel-2 data with a 
spatial resolution of 10 m and a temporal resolution of 5 days to detect 
soil moisture in arid regions. Six common water indices were evaluated 
in Oman as part of a Shaheen cyclone case study. Different indirect 
validation techniques were implemented to evaluate the performance of 
the examined indices, owing to the lack of field data. 

The outcome of this study is expected to support decision-makers in 
identifying locations of high-risk mudflow areas for successful man-
agement, including land-use planning projects that delineate zoning 
regulations, infrastructure planning, and protecting agricultural areas. 
This will be done by considering soil moisture as an indicator of 
mudflow occurrence, especially in low-slop topography and clay soil. 

2. Study area 

This study was conducted in the Al-Batinah area in the northern part 
of the Sultanate of Oman, along the west shore of the Gulf of Oman, 
nearly 300 km Northwest of Muscat, the capital city of Oman, and at the 
edge of the Western Hajar Mountains in the northeastern part of the 
country (Fig. 1A, B). The study area is approximately 1738 km2, situated 
between 56.841 ◦N and 24.034 ◦N. It was highly impacted by the Sha-
heen cyclone, which hit Oman on Oct 3, 2021 (Al-Awadhi et al., 2024). 
Its geographic location makes Oman be exposed to the most extreme 
climatic events. The climate of the region is classified as a Tropical and 
Subtropical Desert Climate (BWh) according to the Koppen-Geiger 
climate classification (Abulibdeh, 2021). The winter season extends 
between November and March, and is characterized by low humidity 
and warm temperatures, while the summer is scorching. The mean 
annual temperature in the Al-Batinah area ranges from 32 ⁰C to 38 ⁰C, 
and decreases in the mountains; whereas precipitation is scarce and 
erratic, with an average annual rainfall of approximately 100 mm (Al- 
Hatrushi, 2013; Al-Rahbi et al., 2019). The rainfall over mountains is an 
essential factor contributing to the construction of plains by spreading 
sediments (Abulibdeh et al., 2021). Thus, the plain contains numerous 
valley channels, forming a complex pattern of gravel and clay 
descending from the mountains and dissecting the surface to drain into 
the Gulf of Oman. These valley gravels reach 50 m in thickness, act as the 
main conduit upper catchments, and constitute the location of the major 
water-bearing formation. In contrast, valley fans dominate the lower 
parts of the Al-Batinah plain, forming a coastal plain where the surface 
area consists of marine and terrestrial coarse to fine sand. In general, the 
soil varies in the study area and can be divided into six groups: Gyp-
siorthids, Rock outcrop-torriorthents, Torrifluvents-Torriorthents, Tor-
riorthents (extremely gravelly), Torriorthents (very gravelly), and 
Torripsamments (Fig. 1C). 

3. Materials and methods 

The methodological approach is summarized in the schematic 
flowchart in (Fig. 2). We mainly focused on using remote sensing to 
determine changes in soil moisture using six common water indices. We 
also implemented different techniques to evaluate their ability to detect 
soil moisture, due to the lack of field data, including (1) threshold 
method, (2) spectral curve performance, and (3) soil-line method. 
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4. Data collection 

4.1. Satellite imagery 

To investigate the temporal changes in soil moisture and inundated 
areas, two multispectral sentinel-2 images were acquired pre-cyclone, 
and five were acquired post-cyclone (Table1). The time interval be-
tween two images is five days. Image-Oct5th was considered a reference 
image because it was acquired two days after the cyclone when water 
was visible in the dam and narrow streams, facilitating the identification 

of classes (inundated areas and soil moisture) and defining the threshold 
values. These images were downloaded from the United States Geolog-
ical Survey (USGS) website (https://earthexplorer.usgs.gov/), with a 
cloud cover of less than 5 %. The utilized spectral bands were resampled 
at a 10 m spatial resolution before being stacked together. The main 
characteristics of Sentinel-2 images are presented in Table 2. 

4.2. Spectral indices 

In this study, we investigated the potential of six remote sensing 

Fig. 1. (A) Study area: Sentinel 5th Oct 2021. (B) Highlighted area represents dam and narrow streams. (C) Soil map.  
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indices to extract surface water (inundated areas) and soil moisture in 
arid regions, as shown in Table 3. The first index is the Normalized 
Difference Water Index (NDWI), developed by McFeeters (1996) to 
detect surface water. The structure of this index is similar to that of the 
Normalized Difference Vegetation Index (NDVI), but relies on different 
spectral bands, including the green (G) and near-infrared (NIR) bands. 
The second index was the Modified Normalized Difference Water Index 
(mNDWI) developed by Xu (2006). This index replaces the NIR band 
with a short-wave infrared (SWIR) band to suppress the mixing of pixels 
of the water class with built-up lands and soil classes. The mNDWI index 
is considered the most common water index utilized worldwide using 
different satellites, including Landsat (Li et al., 2016; Acharya et al., 
2018), and Sentinel (Bhangale et al., 2020). The third index is RSWIR. 
Rogers and Kearney (2004) replaced the G band with the R band to map 
surface water. This index provides good results for delineating water 
bodies during floods. The fourth index is the Water Ratio Index (WRI) 
proposed by Shen and Li (2010), which focuses on four different bands: 
G, R, NIR, and SWIR2. For the delineation of surface water in urban 
areas, Feyisa et al. (2014) proposed a fifth index called the Automated 

Water Extraction Index (AWEI), which is based on four bands, including 
B, G, NIR, SWIR1, and SWIR2. This index was intended to improve 
surface water extraction in areas with shadows and dark surfaces. 
Finally, the vegetation index (NDVI) was used to detect water and soil 
moisture, with values ranging from − 1 to +1 (Rouse et al., 1973). The 

Fig. 2. A schematic flow chart represents the methodology of the current study.  

Table 1 
Utilized Sentinel-2 satellite imagery (pre- and post-Shaheen 
cyclone).  

Event Image acquisition 

Pre-cyclone 25 Sep 2021 
30 Sep 2021 

*Shaheen cyclone 3 Oct 2021 
Post-cyclone 5 Oct 2021 

10 Oct 2021 
15 Oct 2021 
20 Oct 2021 
25 Oct 2021  

* On Oct. 3 Shaheen cyclone hit the study area (Oman). 

Table 2 
Main characteristics of multispectral sentinel-2 images.  

Bands 
Number 

Bands Name Resolution 
(m) 

Central 
wavelength 
(nm) 

Bandwidth 
(nm) 

B1 Coastal Aerosol 60  442.7 21 
B2 Blue (B) 10  492.4 66 
*B3 Green (G) 10  559.8 36 
*B4 Red (R) 10  664.6 31 
B5 Vegetation Red 

Edge 
20  704.1 15 

B6 Vegetation Red 
Edge 

20  740.5 15 

B7 Vegetation Red 
Edge 

20  782.8 20 

*B8 Near infrared 
(NIR) 

10  832.8 106 

B8A Vegetation Red 
Edge 

20  864.7 21 

B9 Water Vapour 60  945.1 20 
B10 SWIR-Cirrus 60  1373.5 31 
* B11 Short-wave 

Infrared 
(SWIR1) 

20  1613.7 91 

* B12 Short-wave 
Infrared 
(SWIR2) 

20  2202.4 175  

* The utilized spectral bands to calculate the indices. The SWIR1 and SWIR2 
bands were resampled at a spatial resolution of 10 to standardize them with B, G, 
R, and NIR bands. 
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positive values range from 0.1 to 1, indicating sparse vegetation to dense 
vegetation, and zero values correspond to bare soil, while negative 
values indicate water. In this study, we have added the letter W to the 
index (NDVI-W), referring to the use of negative values to detect water 
in the soil. 

4.3. Extract classes using thresholding method 

The thresholding method was used to define and extract inundated 
areas (water) and soil moisture in arid regions. This method is typically 
used to classify and detect edges between two different classes, where 
each class has similar pixel values and characteristics (Balaji and 
Sumathi, 2014). In this study, we have extracted the threshold values of 
water (inundated areas) and soil moisture classes for each examined 
index from the Oct5th (reference) and Oct10th images, respectively. In the 
Oct5th image, water pixel values were extracted from dams and streams, 
where they were visually identified, as shown in Fig. 1. Meanwhile, we 
extracted the pixel values of soil moisture from the Oct10th image (after 
five days of reference image) in areas that obviously dried, assuming 
that they changed from inundated to highly moisturized areas. Then, the 
threshold values obtained from each index were applied to all images 
(pre- and post-cyclone) using the decision tree method in ENVI 5.3 
software, as shown in Table 4. Finally, the derived maps were visually 
evaluated, focusing on the highly impacted areas, such as the main dam 
and prominent narrow streams (Fig. 1B). 

4.4. Spectral reflectance curves and soil-line method 

Different spectral reflectance techniques, including curve analysis 
and soil line method, were implemented to evaluate the performance of 
the investigated indices owing to the lack of field data. These techniques 
are essentially based on spectral bands (Digital Numbers). A total of 300 
random points were extracted from the spectral bands (Digital Numbers) 
of each image (pre- and post-cyclone). These points represented 
different classes, including water (W), soil moisture (SM), dry soil (DS), 

and vegetation (V). The points of the water (W) and soil moisture (SM) 
classes were extracted from the overlap layers of the best indices derived 
from the Oct5th image (post-cyclone) using the thresholding method, 
where the classes can be easily detected. 

Furthermore, spectral reflectance curves with an average of 300 
points for each spectral band, including CA, B, G, R, NIR, SWIR1, and 
SWIR2, were developed to assess the temporal behavior of these bands 
with respect to soil moisture and water classes. The soil lines were built 
based on the NIR and R spectral bands, considering water, soil moisture, 
dry soil, and vegetation classes. 

4.5. Hypothesis and statistical analysis 

Two hypotheses were addressed in the current study to validate soil 
moisture detection:  

(1) Spectral reflectance curve: Soil reflectivity decreases with 
increasing soil water content and vice versa but varies between 
bands. Water absorption bands, such as SWIR1 and SWIR2, are 
highly sensitive to the soil water content. In wet cases, the 
reflectivity of these bands should be low, indicating a high ab-
sorption. Hence, the soil classes (DS, SM, and WS) can be 
distinguished based on these bands. If this hypothesis is sup-
ported, the One-way ANOVA test using JMP 11 software will 
demonstrate a significant difference between classes (DS, SM, and 
WS) in the SWIR1 and SWIR2 bands.  

(2) Soil line concept (NIR-R): The pixels located along the soil line 
represent bare soil of different classes, including wet soil (WS) 
and dry soil (DS). The pixel values of wet and dry soil are located 
opposite to each other on the soil line, where WS is situated on the 
left side and DS on the right side. If this hypothesis is supported, 
on Oct5th, the highest number of pixels will be located on the left 
side (WS) representing soil moisture and then migrate gradually 
to the right side (DS) during the day. 

5. Results 

5.1. Spatiotemporal analysis of inundated areas (water) and soil moisture 

Fig. 3 shows the results of the water maps derived using the six water 
indices according to the selected threshold for the period from Sep25th to 
Oct25th (Table 4). The dam area was highlighted as the area with the 
highest impact during the cyclone, including the surface water and 
narrow streams. According to the visual interpretation, the sensitivity of 
inundated areas (water) and soil moisture varied among indices, where 
the inundated areas (water) are represented in dark blue and soil 
moisture in light blue. All indices revealed a good ability to detect 
changes in inundated areas (surface water), especially behind the dam 
(Fig. 3). However, the detection of water in narrow streams and soil 
moisture varied among indices. 

The quantitative results showed that all indices exhibited similar 
behavior in inundated areas (surface water) (Fig. 4A); however, varia-
tion was observed in the soil moisture (Fig. 4B). According to the one- 
way ANOVA statistical analysis, the inundated areas (surface water) 
were significantly higher on Oct5th (P-value < 0.05) for all indices, 
which occupied 1.4 %, 1.3 %, 1.2 %, 1.1 %, 0.93 %, and 0.81 % for 
mNDWI, NDWI, AWEI, RSWIR, NDVI-W, and WRI, respectively. How-
ever, the inundated areas drastically decreased by an average of 38 % 
after five days (Oct10th) and then stabilized, with slight variations rep-
resented by the remaining water trapped by dams. The pre-cyclone dates 
(Sep25th and Sep30th) also demonstrated inundated areas (surface water) 
not exceeding 0.3 % for all indices, which represented water surface 
previously trapped by a dam-2 (Fig. 5). Moreover, the soil moisture 
decreased gradually after the cyclone event, but it was unexpected that 
the soil moisture was detected pre-cyclone (Oct20th and Sep30th). 
Furthermore, among these indices, NDWI, mNDWI, and RSWIR 

Table 3 
Utilized water indices and soil indices.  

Index Abbreviation Formula References 

Normalized 
Difference Water 
Index 

NDWI G-NIR/G + NIR (McFeeters, 
1996) 

Modified Normalized 
Difference Water 
Index 

mNDWI G-SWIR1/G +
SWIR1 

(Xu, 2006) 

RSWIR RSWIR R-SWIR1/R + SWIR1 (Rogers and 
Kearney, 2004) 

Water Ratio Index WRI G + R/NIR + SWIR2 (Shen and Li, 
2010) 

Automated Water 
Extraction Index 

AWEI B + 2.5*G-1.5*(NIR 
+ SWIR1)- 
0.25*SWIR2 

(Feyisa et al., 
2014) 

Normalized 
Difference 
Vegetation Index 

NDVI (NDV1- 
W) 

NIR-R/NIR + R (Rouse Jr et al., 
1973)  

Table 4 
Threshold values of water and soil moisture for each utilized index based on the 
reference image (Oct5th).  

Indices Threshold values 

Water Soil moisture 

NDWI > 0.0419 ≥ − 0.0320 ≤ 0.0419 
mNDWI > 0.0376 ≥ − 0.118 ≤ 0.0376 
RSWIR > 0.1215 ≥ − 0.05 ≤ 0.1215 
WRI > 1.51 ≥ 1.01 ≤ 1.51 
AWEI > − 4392.75 ≥ − 5507.5 ≤ -4392.75 
NDVI-W < − 0.1002 < − 0.1002 > -0.0374  
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exhibited similar behaviors in detecting soil moisture, with a slight 
overestimation observed in the NDWI index. They were also signifi-
cantly higher (P-value < 0.05) on the examined dates, illustrating their 
ability to detect soil moisture compared to the other indices (Fig. 4B). 
Meanwhile, WRI and AWEI indices did not show any significant differ-
ences in soil moisture (P-value > 0.05) except on Oct5th, and the NDVI-W 
index failed to detect the soil moisture on all examined dates (P-value >
0.05). 

5.2. Assessment of temporal spectral characteristics of soil moisture and 
inundated areas 

Our results support hypothesis 1, that soil reflectivity decreases with 
increasing water content, and higher absorption occurs in the SWIR1 
and SWIR2 bands. Fig. 6 shows the spectral curves representing the 
sensitivity of each band to soil moisture and the inundated areas (water). 
Each curve is an average of the digital number (DN) for 300 points that 

were randomly selected based on the overlap of the three indices, 
including NDWI, mNDWI, and RSWIR. These three indices showed the 
best performance in discriminating between inundated areas and soil 
moisture, with significant differences at P-value < 0.05, as mentioned in 
the previous section. 

The spectral band curves showed a similar trend in the soil moisture 
and inundated areas (water); however, the DN values varied within the 
curves. It was found that the reflectivity decreased with increasing soil 
water content and vice versa but varied between bands. The temporal 
DN values of soil moisture and inundated areas demonstrated low 
variation in the CA and visible bands (B and G), ranging between 1600 
and 2000. Meanwhile, a high temporal variation in DN values was 
observed in the NIR, SWIR1, and SWIR2 bands in response to changes in 
inundated areas (water) (Fig. 6B). The DN values for the Oct5th image 
showed a highly significant absorption of these bands (P-value < 0.05) 
(Fig. 7), with an average of 910 for NIR, 699 for SWIR1, and 509 for 
SWIR2, and showed differences in absorption of 60 % (NIR), 66 % 

Fig. 3. True color composite images (red, green, blue) and derived water and soil moisture maps using the six considered indices, considering defined threshold 
values for each index (Table 4), highlighting a dam-1 area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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(SWIR1), and 77 % (SWIR2) in comparison with Sep30th (Pre-Cyclone) 
(Fig. 6B). Subsequently, after five days (Oct10th), it was found that the 
DN values changed in the NIR-SWIR1,2 bands from the water (W) class to 
the soil wet (SW) class. The DN values for the NIR, SWIR1, and SWIR2 
bands ranged from 1427 to 2005 for the NIR band, 1466–2393 for the 
SWIR1 band, and 1120–1913 for the SWIR2 band. However, the 
remaining bands, CA, B, and G, showed no significant differences be-
tween the inundated area (water) and soil moisture (SM) classes. 

Furthermore, owing to the ability of the NIR, SWIR1, and SWIR2 
bands to distinguish between the classes, a quadratic regression analysis 
was also performed between these significant bands and derived water 
index maps. The results showed that the NDWI index for all images was 
highly correlated with significant bands, with R2 above 0.71 and RMSE 
below 0.02. However, mNDWI, RSWIR, WRI, and AWEI indices were 
highly correlated with SWIR1,2 bands only on Oct5th

, with R2 above 0.77 
and RMSE below 0.08. An exception was observed in the NDVI index, 
where the result showed a weak correlation with significant bands (R2 ≤

0.35). 

5.3. Assessment of soil-line behavior in considered dates 

Fig. 8 shows scatterplots supporting hypothesis 2, which states that 
pixels migrate from wet to dry along the soil line based on water 
availability in the soil. According to the soil line method (red line), 
pixels perpendicular to the soil line (red line) upside represent vegeta-
tion. Dense and healthy vegetation (agricultural area) are represented 
by high digital number (DN) values in the NIR band and low values in 
the R band. The pixels located along the soil line represent bare soil with 
different classes, including wet soil (WS) and dry soil (DS). The DN 
values of wet and dry soils were opposite to each other on the soil line. 

The results showed that the pixel distribution varied between dates 
(Fig. 8). On Oct5th (post-cyclone), most pixels were concentrated on the 
left side of the soil line, representing highly wet soil. However, some 
pixels settled down under the soil line of wet soil (left side) because of 
the high absorption of R and NIR bands, representing the water class. 
After five days (Oct10th), the distribution of pixels changed from SM to 
DS in response to water changes in the soil. According to spatiotemporal 
changes, DN values respond to soil status (W, SM, and DS), as the 
threshold values of the water class approximately range from 975 to 
1297 for the R band and 368–951 for NIR. Meanwhile, for the SM class, 
the values ranged from 1298 to 2379 for the R band and 951 to 2000 for 
the NIR band. The DS values ranged from 2380 to 3609 for the R band 
and 2001 to 4047 for the NIR band. 

6. Discussion 

The current study indicates that the NDWI, mNDWI, and RSWIR 
indices derived from multispectral sentinel-2 have the potential to 
detect inundated areas and soil moisture in arid regions. The formulas of 
the three indices similar but depend on different spectral bands. Among 
these indices, the mNDWI and RSWIR exhibited a similar quantity of soil 
moisture. Meanwhile, an overestimation was observed in soil moisture 
for the NDWI in comparison with mNDWI and RSWIR. Replacing the 
NIR band in NDWI with the SWIR band in mNDWI enhanced soil 
moisture detection. The SWIR band is less sensitive to turbid waters with 
a higher concentration of sediment than the NIR band (Huang et al., 
2018; Pereira et al., 2019). It is well known that the SWIR band is 
dedicated to discriminating between the moisture content of soil and 
vegetation. Hence, the interpretation of the similarity of the RWSIR 
index with mNDWI also relies on the SWIR band. However, the WRI, 
AWEI, and NDVI indices can only detect inundated areas, whereas they 
failed to detect soil moisture on the examined dates. 

Furthermore, it seems that the WRI could detect only highly mois-
turized soil that occurred on Oct5th, which was two days after the 
cyclone hit the area. Meanwhile, the AWEI index may have recognized 
the soil moisture that contained a high amount of clay as dark surfaces, 
which could explain why this index failed. The AWEI index was devel-
oped to enhance the water extraction accuracy and distinguish the 
boundary of water from shadows and dark surfaces (Feyisa et al., 2014). 
Thus, it showed excellent results in detecting surface water rather than 
soil moisture. For the NDVI index, the results were anticipated because it 
is well known that this index was developed to detect vegetation 
coverage within the range of 0 (non-vegetation) to 1 (high vegetation), 
and any values below zero correspond to water (Rouse et al., 1973). 

The results also showed acceptable preliminary results for validation 
techniques, including the spectral reflectance curve and soil line 
method. These indirect validation techniques play a key role in saving 
time, effort, and cost, particularly for large-scale and inaccessible areas. 
Our study indicates that the spectral characteristics of water and soil 
moisture are distinct in the NIR, SWIR1, and SWIR2 bands. However, the 
rate and degree of absorption differ between these bands, illustrating 
different absorption coefficients (Yue et al., 2019). The significant 
relationship (P-value < 0.05) obtained between these bands and water 

Fig. 4. Comparison of the inundated areas (A) and soil moisture (B) using 
different indices at different dates (Pre and Post-Cyclone). 

Fig. 5. Trapped water by dam-1 and dam-2 in pre-and post-cyclone.  
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indices supports an adequate selection of threshold values for these 
indices to detect water and soil moisture classes. This is consistent with 
the fact that the NIR, SWIR1, and SWIR2 bands are major water ab-
sorption bands that are highly sensitive to changes that occur in the soil 
(Tian and Philpot, 2015; Ngo Thi et al., 2019; Yue et al., 2019). Hence, 
spectral indices based on the SWIR and NIR bands often provide higher 
saturated soil moisture than the other bands (Yue et al., 2019). 

In addition, we found that the spectral reflectance curves changed in 
response to water availability in the soil, especially in significant bands. 
The soil reflectance curve (DN) decreases as soil moisture and water 
increase and vice versa. This occurs because of the increased spectral 
forwarding scattering as a response to replacing air with water in the soil 
pores (Twomey et al., 1986; Yue et al., 2019). Five days after the cyclone 
event (Oct10th), it was found that the DN values changed in NIR-SWIR1,2 
bands from the water (W) class to the wet soil (WS) class in terms of an 
increase in reflectivity. The quantity of inundated areas also has rapidly 
changed, with an average decrease of 38 %. Based on the behavior of 
these bands, the soil moisture class can be defined with a range from 
1439 to 2063.5 for the NIR band, 1677 to 2234.5 for the SWIR1 band, 
and 1245 to 1681 for the SWIR2 band. 

The soil line results also support the appropriate selection of the 
threshold values of the indices. The pixel values (DN) distributed along 
the soil line depended on their classes. The classes that defined water 
(inundated area) and highly moisturized soil were located on the left 
side of the soil line and shifted gradually to the right side when it dried 
during the examined dates. These findings agree with the results ob-
tained from the spectral reflectance curves, where the reflectivity in-
creases during the examined dates as a response to desiccation soil. In 
addition, some vegetation classes disappeared from Oct5th to Oct15th, 
illustrating that agricultural areas have been covered by water. 

Furthermore, selecting threshold values is challenging, where shift-
ing from inundated areas (water) to wet and dry soil classes is still the 
main obstacle in understanding the behavior of spectral reflectivity. For 
instance, water turbidity can cause mixing between classes (Fisher et al., 

2016), in terms of increasing reflectivity as a response to the suspended 
sediments (Garg et al., 2020). The mixed classes could also occur be-
tween turbid water containing high clay sediment and highly moistur-
ized soil; and between areas that have changed from low soil moisture to 
dry soil. Therefore, selecting the indices threshold is essential for 
discriminating high turbid shallow water from soil moisture. We believe 
the threshold values vary with location, time, and seasons, as well as 
between indices. Thus, adjusting the threshold values is crucial in 
obtaining accurate results by understanding the conditions associated 
with the phenomenon (Huang et al., 2018). 

In addition to water turbidity, different factors such as topography, 
soil type, and weather conditions can influence the behavior of water 
and soil reflectivity (Tian and Philpot, 2015; Li et al., 2016; Yumang 
et al., 2016; Garg et al., 2020; Du et al., 2021). For instance, surface 
slope plays an essential role in water movement from one area to 
another (Zhang et al., 2022). Surface slope controls rainfall aggregation 
and surface runoff occurrence, where the water velocity increases with 
an increase in surface slope gradients (Huang et al., 2018). Moreover, 
soil type affects water retention, as infiltration rates differ between soil 
types. Sandy soil has a strong positive relationship with the infiltration 
rate, whereas it is negative for clay soil (Patle et al., 2019). Clay soils 
have a high water-holding capacity owing to their fine particle size (high 
porosity and low permeability) (Patle et al., 2019; Liu et al., 2022). 
Unlike sandy soil, water quickly drains through coarse particles (low 
porosity and high permeability). In contrast, arid regions have a high 
evaporation rate that significantly affects soil water content (Baalousha 
et al., 2022). These factors are essential for interpreting the spectral 
reflectivity behavior and evaluating the performance of the indices. 
Overall, integrating these factors with the high spatial and temporal 
resolution of soil moisture can enhance our understanding of the prob-
ability of mudflow occurrence in arid regions. 

Our study highlighted the potential of three water indices derived 
from multispectral sentinel-2 imagery to detect soil moisture in arid 
regions. Soil moisture plays a vital role in the generation of mudflows. 

Fig. 6. Temporal spectral reflectance curve of soil moisture (A) and inundated areas (B).  
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Thus, detecting soil moisture using water indices as an indicator of 
mudflow phenomena is crucial to predict high-risk areas and take steps 
to mitigate the risk. Indirect validation techniques such as spectral 
reflectance curves and soil line methods have been implemented in an 
inaccessible and large-scale area due to the impact of Shaheen cyclone. 
Despite obtaining acceptable preliminary results of utilized techniques. 
In contrast, we believe that the soil is not homogeneous, and many 
factors control the mudflow generation, including soil types, topography 
(slopes), intensity and frequency of precipitation, and vegetation 
coverage. Thus, adjusting threshold values in order to obtain precise 
predictions requires further studies that rely on field measurements. In 
addition, soil moisture rapidly changes and is unpredictable in arid re-
gions due to dry climate conditions, including high temperatures, high 
evaporation rates, and low precipitation. Thus, the temporal resolution 
of free satellite imagery may not be adequate to monitor changes in soil 
moisture over a short time or on specific days. 

Furthermore, we believe that combining field measurements with 
multi-sensor satellite (Landsat and Sentinel) and Unmanned Aerial Ve-
hicles (UAVs) imageries will help in defining the threshold values, 
considering different aspects such as physical attributes (soil types and 
topography), water table fluctuations, climate conditions (low precipi-
tation and high evaporation rate), and climate change. The combination 
of field measurements and remote sensing technologies will also 
improve long-term monitoring, where Sentinel will fill the gap in 

Landsat at large-scale monitoring and UAVs for small scale and during 
cloudy days. Our study also recommended conducting more studies 
using an integrating approach of using multi-spectral bands (NIR, 
SWIRs, and thermal bands), artificial intelligence, and spectroradi-
ometer to enhance soil moisture prediction and develop new models that 
are applicable to arid regions considering different environmental 
aspects. 

7. Conclusion 

This study highlights the effectiveness of remote-sensing techniques 
for estimating soil moisture prediction as an indicator of mudflow in 
low-slop topography and areas containing clay soil. The multispectral 
Sentinel-2 data provided adequate spatial and temporal resolution data 
that permitted monitoring soil moisture changes in arid regions. As soil 
moisture plays a crucial role in flood and mudflow phenomena, water 
indices can be utilized to detect soil moisture and predict high-risk 
mudflow areas in arid regions. Among the examined indices, the re-
sults showed that the NDWI, mNDWI, and RSWIR indices had the po-
tential to detect soil moisture once the threshold values for classes were 
adjusted correctly. The study also showed that indirect validation 
techniques, including spectral reflectance curve analysis and soil-line 
method, can help evaluate the performance of indices, especially for 
inaccessible and large-scale areas, in terms of saving time, effort, and 

Fig. 7. Statistical relationships between bands (B1–B12) and classes (DS, SM, and W) for reference image (Oct5th). *Significant difference at P-value < 0.05.  
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cost. However, we believe that even if an index shows certain satisfac-
tory results in a particular area, it does not mean that it will provide 
similar results in other areas. Therefore, testing the potential indices in 
different locations and validating them with fieldwork is necessary. 
Future studies should also be conducted to define the threshold values of 
soil moisture under various environmental conditions, considering 
seasonal variation (winter and summer) and physical attributes such as 
soil type and topography (low, moderate, and steep). The outcome of 
this study will support land-use planning projects in arid regions, 
particularly those affected by climate change, such as increasing the 
frequency and intensity of mudflow and flood events. 
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Peranić, J., Čeh, N., Arbanas, Ž., 2022. The use of soil moisture and pore-water pressure 
sensors for the interpretation of landslide behavior in small-scale physical models. 
Sensors 22 (19), 7337. 

Pereira, F.J.S., Costa, C.A.G., Foerster, S., Brosinsky, A., de Araújo, J.C., 2019. Estimation 
of suspended sediment concentration in an intermittent river using multi-temporal 
high-resolution satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 79, 153–161. 

Perera, E., Jayawardana, D., Jayasinghe, P., Bandara, R., Alahakoon, N., 2018. Direct 
impacts of landslides on socio-economic systems: a case study from Aranayake, Sri 
Lanka. Geoenviron. Disasters 5 (1), 1–12. 

Rao, N.N., Rao, V.B., Ramakrishna, S., Rao, B., 2019. Moisture budget of the tropical 
cyclones formed over the Bay of Bengal: role of soil moisture after landfall. Pure 
Appl. Geophys. 176 (1), 441–461. 

Reis, L.G.D.M., Souza, W.D.O., Ribeiro Neto, A., Fragoso Jr, C.R., Ruiz-Armenteros, A.M., 
Cabral, J.J.D.S.P., Montenegro, S.M.G.L., 2021. Uncertainties involved in the use of 
thresholds for the detection of water bodies in multitemporal analysis from landsat-8 
and sentinel-2 images. Sensors 21 (22), 7494. 

Rogers, A., Kearney, M., 2004. Reducing signature variability in unmixing coastal marsh 
Thematic Mapper scenes using spectral indices. Int. J. Remote Sens. 25 (12), 
2317–2335. 

Rouse, Jr, J. W., Haas, R. H., Schell, J., Deering, D., 1973. Monitoring the vernal 
advancement and retrogradation (green wave effect) of natural vegetation. 

Sajjad, A., Lu, J., Chen, X., Saleem, N., 2020. Rapid riverine flood mapping with different 
water indexes using flood instances Landsat-8 images. Proceedings of the 5th 
International Electronic Conference on Water Sciences. 
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