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A B S T R A C T   

The carbon footprint (CF) linked to electricity consumption in buildings has become a significant environmental 
issue because of its significant role in greenhouse gas emissions. This study seeks to assess and examine the CF of 
electricity consumption in buildings across various building types. Additionally, this paper aims to investigate 
the impact of the COVID-19 pandemic on the CF of buildings. The investigation involves a comparative analysis 
between the CF values observed and predicted during the years affected by the pandemic. Additionally, the study 
evaluates the influence of the pandemic on the accuracy of CF model predictions by employing three distinct 
machine-learning models. Spatial analyses were conducted to identify clustering patterns of CF and identify areas 
of both high and low CF concentrations within the study area. The findings demonstrate significant disparities in 
the CF of electricity consumption across distinct building types, with residential buildings emerging as the largest 
contributors to carbon emissions. Moreover, the pandemic has had a notable impact on CF patterns, leading to 
alterations in the areas identified as hotspots and cold spots during the pandemic years compared to the pre- 
pandemic period, based on building types.   

1. Introduction 

The carbon footprint (CF) of buildings is a crucial aspect of sus
tainability and environmental impact. As buildings consume energy and 
resources throughout their lifecycle, they contribute significantly to 
greenhouse gas emissions and climate change [1–4]. Furthermore, 
buildings play a pivotal role in global endeavors aimed at decreasing 
energy consumption, mitigating greenhouse gas emissions, and facili
tating the transition to sustainable and clean energy sources [5]. With 
the challenges posed by climate change and national energy security 
concerns, international agreements, initiatives, and policies specific to 
the building sector are offering promising alternatives to the current 
situation. The concept of CF encompasses the total amount of green
house gases, particularly carbon dioxide (CO2), emitted directly and 
indirectly from building-related activities, including construction, 
operation, and demolition [6–8]. Given the substantial energy con
sumption and emissions associated with buildings, understanding, and 

reducing their carbon footprints has become a priority in achieving 
global climate goals and promoting sustainable development. 

The CF of buildings is gaining increasing attention as a crucial aspect 
of sustainability research. Mitigating the impact of buildings on the 
environment is critical in addressing the adverse effects of global 
warming. However, the methods for calculating CF in buildings vary 
widely, leading to inconsistencies in results. Despite this, the increasing 
demand for CF assessments driven by legal and business requirements 
has resulted in the widespread adoption of the Greenhouse Gas Protocol 
(GHG Protocol) [9]. The built environment, including buildings, trans
portation, and energy, is responsible for a significant proportion of 
global CF [7,10,11]. 

Electricity, though it only constitutes a small part of a country’s GDP, 
is essential for human activities and plays a pivotal role in driving 
economic and social progress [12,13]. However, the production and 
consumption of electricity also have significant environmental impacts, 
including pollution and its contribution to climate change [13,14]. As 
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such, reducing the CF associated with electricity consumption in 
buildings has become a priority in environmental policies worldwide. 
This is crucial for mitigating the harmful effects of climate change and 
promoting a more sustainable future [14–16]. 

The empirical literature on the CF of buildings contributes to un
derstanding the environmental impact of the built environment. Studies 
have identified that residential and commercial buildings are among the 
largest consumers of energy worldwide, contributing significantly to 
global greenhouse gas emissions [17–21]. This consumption is primarily 
for space heating, cooling, lighting, and operating appliances, with most 
of the energy sourced from fossil fuels, thus exacerbating the CF. 
Furthermore, several studies have extensively investigated the role of 
building design and construction materials in energy efficiency [22–25]. 
Studies have shown that sustainable building materials and 
energy-efficient design can substantially reduce energy consumption 
and consequently, the CF of buildings. The incorporation of insulation, 
energy-efficient windows, and the use of passive solar design are among 
the methods that are effective. Trovato et al. [26] focused on the eco
nomic and environmental valuation of energy retrofit projects in public 
buildings. They integrated a life cycle analysis (LCA) into traditional 
economic-financial evaluation to assess the impact of sustainable low
–CO2–emission technologies in building retrofit. They examined the 
effectiveness of retrofit strategies like wooden double-glazed windows, 
organic external wall insulation systems, and green roofs. These strate
gies show a significant reduction in energy needs for heating and cool
ing, with a decrease of 58.5% and 33.4% respectively. Additionally, the 
use of sustainable materials in the retrofit leads to a 54.1% reduction in 
the building’s CF index. Li et al. [27] employed a hybrid systems analysis 
combining input-output analysis and process analysis to quantify the 
embodied energy consumption and greenhouse gas emissions of build
ing construction. They highlighted the substantial role of the construc
tion sector in driving energy consumption and greenhouse gas emissions 
across different scales and industries. Their study suggests the need for 
multi-entity responsibility and coordinated efforts for consumption and 
emission reduction, emphasizing the importance of considering the 
supply chain’s full extent in environmental impact assessments of con
struction projects. 

The COVID-19 pandemic has had a significant impact on electricity 
consumption, CF of buildings, and people’s behavior [28–30]. During 
the pandemic, there was a notable shift in energy consumption patterns 
due to lockdowns and work-from-home policies. Several studies inves
tigated the impact of the pandemic on the CF of buildings. For example, 
Rugani and Caro [31] investigated the environmental impact of 
COVID-19 lockdown measures in Italy, focusing on the CF associated 
with energy consumption across different economic activities and re
gions. The findings revealed a significant reduction (~20%) in CF during 
the lockdown, translating to an avoidance of approximately 5.6–10.6 
MtCO2eqv. The study observed greater impact savings in the more 
industrialized Northern regions of Italy, which were most affected by the 
pandemic. Huang and Gou [32] found that the restrictions had a greater 
impact on reducing electricity use in the first year of the pandemic 
compared to the second. The electricity use intensity significantly 
decreased across all public building types considered in the study except 
offices, with secondary schools experiencing the largest decrease and 
museums the smallest. Geneidy et al. [33] analyzed the CF of a multi
national knowledge organization, highlighting the significant role of 
organizations in addressing the climate crisis. In response to COVID-19, 
three scenarios were developed to assess post-pandemic emissions. Re
sults show that even with reduced business travel and increased remote 
working, Scope 3 and travel-related emissions continue to be the largest 
contributors to CF. Filimonau et al. [34] examined the CF of Bourne
mouth University during the lockdown period from April to June 2020, 
comparing it with the same period in previous years. The study found 
that although the overall CF of the university decreased by about 29%, 
the carbon intensity of online teaching and learning was substantial, 
almost equating to the CF of staff and student commutes before the 

lockdown. This suggests that online education, while reducing physical 
commute, still results in significant carbon emissions. The lockdown’s 
effect on utility consumption in closed university campuses was also 
notable but less than expected, indicating that maintaining these facil
ities still requires substantial energy. Huang and Gou [35] employed the 
Gaussian Mixture Model (GMM) to analyze the electricity consumption 
patterns of public buildings in Scotland during the COVID-19 pandemic. 
The research found a sustained reduction in basic electricity consump
tion in public buildings post-pandemic, continuing the trend observed 
during the pandemic. Moreover, the peak electricity consumption in the 
post-pandemic period, although rebounding, did not reach 
pre-pandemic levels. 

Studies of CF have uncovered substantial variations in consumption 
and emission patterns among households, communities, and regions, 
leading to a shift in the focus of analysis from a national to a local scale 
[15,36–39]. These findings indicate that reducing CF requires address
ing differences in emissions produced by different socioeconomic sec
tors. However, these studies did not fully uncover the connection 
between electricity consumption and CF with disparities in building 
types within and between communities. A review of the literature 
highlights a shortage in the monitoring and assessment of CF of elec
tricity consumption in buildings based on building occupancy. This is 
particularly relevant in emerging market economies like Qatar, which 
has a high electricity consumption and per capita carbon emission [21]. 
To tackle this, a thorough assessment of the CF is necessary. This aligns 
with Qatar’s low-carbon city initiative, aimed at reducing its depen
dence on carbon-emitting activities and transitioning to a low-carbon 
economy [40]. The Qatari government is making strides towards a 
low-carbon economy through initiatives such as the development of 
Lusail and Msheireb Smart Cities, aimed at reducing electricity 
consumption. 

During the COVID-19 pandemic, many buildings experienced 
reduced occupancy or temporary closures, leading to decreased energy 
consumption [41–43]. This resulted in lower carbon emissions associ
ated with heating, cooling, and lighting. With fewer people using the 
buildings, energy demand decreased significantly. On the other hand, as 
more people worked remotely, residential energy consumption 
increased, particularly for heating, cooling, and electricity. This shift in 
energy demand patterns from the commercial and industrial sectors to 
the residential sector could have offset some of the environmental gains 
from reduced building occupancy. 

Investigating the CF of buildings is crucial for reducing their envi
ronmental impact. Analyzing a building’s CF based on its utilization 
offers an effective method for measuring emissions. By examining 
electricity consumption patterns, we seek to investigate the extent of CF 
from buildings in emerging economies like Qatar, which has been 
largely overlooked in previous studies, particularly during major health 
crises such as the pandemic. Therefore, this study aims to.  

• Fill the knowledge gap by assessing the CF of six building categories 
in Doha, both spatially and temporally, using machine-learning and 
spatial statistical models.  

• Assess the influence of electricity consumption in different building 
types during the pandemic on the emission pattern of CF in Qatar.  

• Examine how the COVID-19 pandemic has influenced the predictive 
accuracy of machine-learning models in forecasting the CF of 
buildings based on building type. 

Through the examination of variations in electricity consumption 
across different building types and their consequential impact on the CF, 
this study aims to provide valuable insights for policymakers and 
planners. The findings will contribute to a better understanding of the 
intricate relationship between electricity consumption and carbon 
emissions during health crises in Qatar, facilitating informed decision- 
making and strategic planning. This study aims to answer the 
following questions. 
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1 How do different building types contribute to the overall CF associ
ated with electricity consumption spatially and temporally?  

2 What is the impact of the COVID-19 pandemic on the CF of buildings 
associated with electricity consumption spatially and temporally?  

3 How accurate are machine-learning models in predicting the carbon 
footprint of buildings during unpredictable events like pandemics? 

This study addresses several gaps in understanding the CF of build
ings, focusing on factors such as occupancy types, the impact of pan
demics, and the effectiveness of predictive models. It significantly 
contributes to the field by offering a sector-specific analysis of CF in the 
context of a major health crisis, providing valuable insights for policy
makers and planners. The contributions of this study to the literature are 
threefold: First, it conducts a detailed spatial and temporal analysis of 
the COVID-19 pandemic’s impact on CF from electricity consumption 
across six different building categories in Doha, utilizing machine 
learning and spatial statistical models. Second, by covering data from 
2017 to 2020, the study offers insights into how patterns of electricity 
consumption in buildings contribute to CF and how these patterns were 
affected by the pandemic. Third, it evaluates the performance of various 
machine-learning models in predicting CF during the pandemic, thereby 
advancing predictive analytics within sustainability research. By 
examining CF in residential, commercial, industrial, governmental, and 
hotel sectors, the study presents a comprehensive view of how different 
building types contribute to CF, especially during the pandemic. 

While the pandemic itself may have passed, the findings of this study 
offer critical insights for future crisis management, energy policy, and 
environmental sustainability. The study provides a unique perspective 
on how sudden global events can drastically alter energy consumption 
patterns and the associated CF and highlights the need for adaptable and 
resilient energy systems. 

2. Materials and methods 

2.1. Study area 

Situated in the eastern region of the Arabian Peninsula, the State of 
Qatar encompasses a land area totaling 11,437 square kilometers [29]. 
Qatar has undergone rapid economic and social development in recent 
years, driven in large part by its vast oil and gas reserves [44–46]. 
Studies have shown that this development has led to significant im
provements in living standards and infrastructure but has also brought 
challenges such as a high population growth rate, labor issues, and 
environmental degradation [47–49]. The government of Qatar has 
implemented a number of efforts and development initiatives aimed at 
promoting sustainable economic and social development in the country 
[50]. Some of these initiatives include Qatar National Vision 2030; a 
long-term development plan that sets out the government’s vision for 
the country’s future, with a focus on economic diversification, human 
development, and environmental sustainability. The plan includes 
several specific targets, such as increasing the contribution of non-oil 
sectors to GDP and reducing the country’s CF. Recently, the country 
hosted The FIFA World Cup 2022 which has had a significant impact on 
Qatar [51,52]. This includes the development of new infrastructure, 
such as stadiums, hotels, and transportation systems, alongside a surge 
in the population of expatriate workers within the country. 

2.2. Database description 

The present study utilized electricity consumption data obtained 
from the Qatar General Electricity and Water Corporation (KAHRA
MAA) to examine CF within various socioeconomic buildings in Qatar. 
The spatial dataset consists of six distinct building types based on 
building usage, specifically residential (villas and flats), government, 
commercial, industrial, and hotels. For the examination of the CF of 
these buildings, the dataset includes daily recorded electricity 

consumption data from January to December, covering the years 
2017–2020. The electricity consumption data used to investigate the 
impact of the pandemic on machine-learning model prediction spans 
from January to December during the years 2010–2020. The electricity 
consumption data were acquired at a highly precise and granular spatial 
resolution, specifically at the meter level, encompassing multiple pe
riods and sectors. Additionally, rigorous quality control measures were 
implemented to ensure the integrity of the data. This involved thorough 
checks to eliminate any instances of missing or zero values within in
dividual months throughout the entire study duration. The aim is to 
examine the alterations in the spatial arrangement of CF over time. 
Table 1 shows a detailed description of the data. 

In a temporal context, this investigation centers around three distinct 
temporal levels. Firstly, the study focuses on the time intervals that 
demonstrate the progression of the COVID-19 pandemic’s spread and 
the corresponding measures enacted at national and global scales to 
mitigate its transmission during the year 2020. This period is divided 
into three temporal phases. Initially, the pre-lockdown phase, 
comprising the months of January and February, represents the period 
before the dissemination of the pandemic. Subsequently, the lockdown 
period, spanning from March to May, indicates the timeframe when 
authorities implemented restrictive measures and enforced the stay-at- 
home policy. Lastly, the post-lockdown period, spanning from June to 
December, characterizes the phase when all restrictions were lifted, and 
daily life returned to its state prior to the pandemic. Secondly, the study 
investigates the changes in CF patterns on an annual basis between 2017 
and 2020. Finally, to investigate the impact of the pandemic on the 
prediction accuracy of machine-learning models, monthly electricity 
data spanning from 2010 to 2020 was utilized. 

2.3. Methodology 

This study utilizes the Multi-Regional Input-Output (MRIO) method, 
spatial analysis tools, and three machine-learning models (Extreme 
Gradient Boosting (XGBoost), Support Vector Machines (SVM), and 
Random Forest (RF)) to analyze the CF resulting from electricity con
sumption in various building typologies, as illustrated in Fig. 1. The 
electricity consumption data was first converted into CF using the MRIO 
method, followed by a spatial analysis of CF at the zonal level. This 
analysis aimed to identify patterns of CF distribution across the study 
area and to determine whether these patterns are clustered or randomly 
dispersed. The primary objective of this approach was to graphically 
discern and illustrate the variations in CF across different zones within 
Doha, with a specific focus on the temporal aspect. This involved 
comparing CF in 2019 with the corresponding period in 2020, across the 
three phases of the COVID-19 pandemic’s propagation. Three machine- 
learning models were used to investigate the impact of the pandemic on 
model prediction accuracy. The following subsections describe these 
models in detail. 

2.3.1. Spatial analysis model 
In this study, the investigation of carbon footprint’s spatial distri

bution patterns and its clustering across different sectors and temporal 
variations was conducted using two renowned and established geo
spatial statistical tools in the GIS domain: the Getis-Ord G*i test and the 
Anselin Local Moran’s I statistics tool. These tests serve as valuable re
sources for comprehending the spatial patterns of various geographical 
phenomena [53]. By employing these tools, it becomes possible to 
identify both hotspot and cold spot regions associated with CF, consid
ering their spatial, temporal, and sector-specific characteristics. 

The statistical analysis of the spatial distribution patterns of CF 
resulting from electricity consumption in six distinct building types was 
performed using the Getis-Ord Gi* statistic. This analysis aimed to 
identify specific zone-level areas exhibiting significantly high or low 
clustering of CF for each year within the study duration. The objective 
was to visually and statistically differentiate the CF across different 
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regions within the study area during the three identified time phases, 
encompassing the pandemic year and the year preceding it. This step 
holds significance in determining areas with pronounced CF levels and 
assessing the potential temporal variations within the three designated 
periods, which were influenced by the spread of the COVID-19 
pandemic and the associated measures. This crucial analysis helps 
elucidate the spatial, temporal, and sector-specific variability of CF. 

The statistical significance of the identified clusters, specifically 
hotspots and cold spots, pertaining to CF emissions from diverse build
ing types, was evaluated at three levels of confidence: 99%, 95%, and 
90%. A higher positive Z-score indicates a stronger aggregation of high 
CF values. Consequently, hotspots are typically characterized by clusters 
exhibiting high positive Z-scores, while clusters with high negative Z- 
scores generally indicate cold spots. Utilizing the outcomes derived from 
the Getis-Ord Gi* values and their corresponding levels of significance, 
the city of Doha was subdivided into three primary sectors: hotspots, 
cold spots, and areas lacking significant clustering. The determined hot 
and cold areas were assessed for three distinct temporal intervals in both 
2019 and 2020: pre-lockdown (January–February), during the lock
down (March–May), and post-lockdown (June–December). Mathemat
ically, the calculation of the Getis-Ord Gi* is based on the following 
equation [42]: 

G∗
i =

∑n
j=1wi.jxj − X

∑n

j=1
wi.j

s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

j=1
w2

i.j

(∑n

j=1
wi.j

)2
]

n− 1

√
√
√
√

(3) 

Where n represents the total number of locations within the city. Xi 
denotes the attribute value at a specific location, while Xj represents the 
variable value at another location. X signifies the mean value of the 
variable across all locations. Additionally, Wij represents the weight 
assigned to the comparison between location i and location j. The weight 
matrix used in this calculation is distance-based and relies on the inverse 
distance between locations i and j, expressed as 1/dij. 

Additionally, the Anselin Local Moran’s I statistical tool was utilized 
to investigate the spatial pattern of CF within each block of the study 
area. The primary objective was to assess whether the CF levels in each 
block demonstrated statistically significant differences from neigh
boring blocks. This analysis aimed to identify significant clusters of high 
and low CF rates. Moreover, the tool facilitated the identification of 
outliers that exhibited values that were statistically distinct from their 
surrounding areas in terms of spatial and temporal characteristics. 

2.3.2. Multi-Regional Input-Output (MRIO) 
To accurately compute the CF arising from electrical power pro

duction in Qatar, it is imperative to calculate the Global Warming Po
tential (GWP100). This metric quantifies the amount of CO2-equivalent 
emissions produced per kilowatt-hour (kWh) of electricity generated. 
The following methodological steps were adopted. 

3. Data extraction 

Essential data was meticulously extracted from the comprehensive 
EXIOBASE 3.8.2 database, a state-of-the-art multiregional input-output 

Table 1 
Description of the building typology.  

Building type Description Number of 
buildings 
(%) 

Rational 

Residential 
villa 

Typically refers to a 
luxurious, detached and 
semi-detached house 
designed primarily for 
single-family living. It is 
often characterized by 
spacious interior and 
exterior designs, 
including multiple 
bedrooms, large living 
areas, and sometimes, 
personalized amenities 
like private gardens, 
swimming pools. 

118,934 
(41%) 

Residential buildings 
are significant 
contributors to global 
greenhouse gas 
emissions, primarily 
through energy use for 
heating, cooling, 
lighting, and 
appliances. 

Residential 
flats 

Refers to housing units 
within a larger building 
where each unit is a 
separate living space. 
Flats are a common form 
of urban housing. 

106,970 
(36.9%) 

Residential buildings 
are significant 
contributors to global 
greenhouse gas 
emissions, primarily 
through energy use for 
heating, cooling, 
lighting, and 
appliances. 

Commercial 
buildings 

Refers to structures that 
are primarily used for 
business activities. They 
encompass a wide range 
of building types, 
including office 
buildings, retail stores, 
shopping malls, 
restaurants, warehouses, 
and other facilities 
catering to commercial 
needs. 

46,415 
(16.67%) 

Understanding and 
reducing the CF from 
commercial buildings 
can lead to more 
energy-efficient 
buildings, lowering 
operational costs. 

Government 
buildings 

Governmental buildings 
are structures used for 
various government 
functions and services. 

15,551 
(5.36%) 

Government 
buildings, often 
numerous and 
sizeable, can set an 
example for 
sustainability 
practices in the 
community. 
Understanding their 
carbon footprint helps 
in shaping effective 
environmental 
policies and 
regulations. 

Industrial 
buildings 

Industrial buildings are 
structures designed 
primarily for 
manufacturing, 
processing, or storing 
goods. They include 
factories and workshops. 
These buildings are 
typically characterized 
by large, open floor plans 
to accommodate heavy 
machinery and 
production lines. 

590 (0.2%) Industrial buildings 
often consume large 
amounts of energy for 
manufacturing 
processes, heating, 
and cooling, leading to 
significant greenhouse 
gas emissions. 
Understanding their 
carbon footprint helps 
in devising strategies 
to control and reduce 
pollution. 

Hotels Hotel buildings are 
designed to provide 
accommodations, dining, 
and various amenities to 
travelers and guests. 

1450 
(0.5%) 

Studying the CF of 
hotel buildings is 
important because 
they are significant 
energy consumers, 
often operating 
continuously 
throughout the year. 
This energy use, 
primarily for guest  

Table 1 (continued ) 

Building type Description Number of 
buildings 
(%) 

Rational 

comfort and 
amenities, contributes 
considerably to 
greenhouse gas 
emissions.  
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database with high country and sector resolution, with a specific focus 
on the electricity consumption sector in Qatar and its associated 
greenhouse gas emissions. The selection of EXIOBASE 3.8.2 was predi
cated on its extensive coverage of various dimensions - social, economic, 
environmental, and sustainability aspects - pertaining to electricity 
generation. This database uniquely encapsulates the supply chain dy
namics of electricity generation, stratified by source, country, and in
dustrial sector. It encompasses a time series of symmetric multinational 
input-output tables, covering 43 countries and 5 rest of the world re
gions across 163 sectors, thereby representing nearly the global econ
omy in its entirety. These input-output tables are constructed based on 
raw data sourced from authoritative databases such as Eurostat, Com
trade, the UN System of National Accounts, and various national sta
tistical agencies. It is important to note that specific data for Qatar are 

not individually delineated in EXIOBASE. Consequently, Qatar is cate
gorized under the ’Rest of the World - Middle East’ (WM) segment 
within the EXIOBASE dataset. 

3.1. Sector identification 

The economic sectors in Qatar pertinent to electricity consumption 
are identified. These include both direct and indirect contributions, 
particularly from sectors generating electricity from gas and solar 
sources. The carbon footprint calculation was focused on the sectors 
"Electricity by gas" and "Electricity by solar photovoltaic." 

Fig. 1. The flow chart of the study.  
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3.2. Utilizing the MRIO model, an input-output analysis 

This process traces the flow of electricity through various sectors, 
considering interdependencies. The MRIO model employs Leontief’s 
inverse formula, shown in Equation (1): 

X=(I − A) − 1 ∗ y (1) 

Here, X denotes the total output vector (in Millions of Euros), Y 
represents the total demand vector, A is the input/output coefficient 
matrix, I is the identity matrix, and L=(I-A) - 1 is the Leontief inverse, 
symbolizing the total requirements matrix. The outcome of this analysis 
is a matrix that elucidates the impact of electricity generation in Qatar 
per Million Euros, providing a comprehensive understanding of the 
economic and environmental interplay. 

Global Warming Potential Calculation: 
Thereafter, the impact of electricity generation per Millions of Euro 

in Qatar is multiplied by the cost of electricity generation to calculate 
the footprint by equivalent carbon dioxide using the EXIOBASES’s MRIO 
model through Eq. (2) as: 

FEG= Ime × CEG × 10-6 (2)  

Where: 
FEG is the footprint of electricity generation in Qatar per Kg/kWh. 

Ime is the impact of electricity generation per Millions of Euro, CEG is the 
cost generation of 1 kWh in Euro. 

Subsequently, The GWP100 for "Electricity by gas" and "Electricity 
by solar photovoltaic" sectors are calculated by integrating the impact 
metrics of CO2, CH4, and N2O combustion with the Global Warming 
Potentials defined by UN Climate Change1 and illustrated in Table 2 and 
shown in Equation (3): 

GWP100k = FEG [CO2] + FEG [CH4] × 21 + FEG [N2O ] × 310 (3a)  

Where: 
GWP100k is the global warming potential of sector k. 
FEG [CO2], FEG [CH4] and FEG [N2O] columns represent CO2, CH4 

and N2O emissions, respectively. All these columns are part of the FEG 
Matrix, which quantifies the footprint of electricity generation in Qatar 
in terms of Kg/kWh. 

GWP100 Computation for Electrical Power Production: The GWP100 
values for Qatar’s electricity generation (over a 100-year horizon) are 
determined using Equation (4): 

GWP100e =
∑n

k=0
IDk × GWP100 k (4)  

Where: 
GWP100e is GWP100 of electricity generation in Kg CO2-eqv per 

kWh. IDk is industrial designation or sector. GWP100k is the global 
warming potential of sector k. 

In the context of Qatar, this calculation translates to a weighted sum 

of GWP100 values for gas and solar electricity generation, taking into 
account their respective contributions to the total electricity production. 
The global warming potential of Qatar’s electricity generation (over a 
100-year horizon) is shown in Table 3. 

3.2.1. Machine-learning techniques 
To assess the effect of the COVID-19 pandemic on the prediction 

accuracy of machine learning models, three commonly used supervised 
learning algorithms were employed in this study - XGBoost, SVMs, and 
RF. These models were selected due to their widespread use and effec
tiveness in handling complex, high-dimensional problems like those that 
the building CF prediction problem examined in this study. XGBoost is 
renowned for its efficiency and effectiveness in handling large and 
complex datasets [29,54], making it suitable for analyzing the multi
faceted impacts of the pandemic. Its ability to manage missing data and 
process various types of features is crucial in COVID-19 research, where 
data can be incomplete or heterogeneous. SVMs are beneficial for their 
robustness and accuracy in classification problems [55]. They are 
particularly effective in discerning patterns and trends within the pan
demic’s data, which often involves high dimensional spaces. Lastly, RF is 
a versatile model known for its high accuracy and ability to run both 
classification and regression tasks [56]. It can handle large datasets with 
multiple variables, which is essential in COVID-19 research to account 
for the numerous factors influencing the pandemic’s progression and 
impacts. The following subsections provide a detailed description of 
each of these models. 

3.2.1.1. Extreme Gradient Boosting (XGBoost). XGBoost is a machine 
learning strategy founded on the gradient boosting framework [57]. 
This technique builds a predictive model via the combination of weak 
prediction models, typically decision trees [29]. The particular scal
ability and computational speed of XGBoost have facilitated its recog
nition, thus positioning it as an influential tool for handling large-scale 
data [58]. The employed methodology pivots around the objective 
function that XGBoost optimizes, expressed mathematically as: 

L(Φ)=
∑

l(ŷi , yi) +
∑

Ω(fk) (5)  

Wherein l(ŷi , yi) signifies a differentiable convex loss function that 
quantifies the divergence between the prediction and the actual target, 
and Ω(fk) represents a regularization term that limits the complexity of 
the model, thus averting overfitting [59]. Moreover, the regularization 
term Ω(f) plays a critical role in further smoothing the final learned 
weights to prevent overfitting, defined as: 

Ω(f )= γT +
1
2

λ ‖ w‖2 (6)  

Here, γT encapsulates the model’s complexity in terms of leaf count, and 
λ ‖ w‖2 implies the L2 regularization on the leaf weights. 

3.2.1.2. Support vector machine (SVM). SVM is a fundamental tool in 
machine learning, renowned for its versatility and efficacy in classifi
cation tasks [60]. SVM excels in high-dimensional spaces and with 
limited data, addressing non-linear problems efficiently through kernel 
functions [61,62]. Its robustness and accuracy in various applications 
solidify its status as a key component of statistical learning and struc
tural risk minimization within the machine-learning domain. 

Table 2 
Global warming potentials (IPCC second assessment report).  

Industrial designation Chemical formula GWP values for X-year time horizon 

20 years 100 years 500 years 

Carbon dioxide CO2 1 1 1 
Methane CH4 56 21 6.5 
Nitrous oxide N2O 280 310 170  

Table 3 
GWP kWh of the Electricity generation sector for Qatar.  

Year GWP100 (gram CO2-eqv per kWh) 
2020 400.560 
2019 411.171 
2018 440.709 
2017 468.594  

1 https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-da 
ta/greenhouse-gas-data-unfccc/global-warming-potentials. 
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Conceptually, SVM is a binary linear classifier that seeks to construct a 
hyperplane or a set of hyperplanes in a high-dimensional feature space. 
This hyperplane acts as a decision boundary and is optimized to segre
gate classes with maximal margin, thus minimizing the generalization 
error and ensuring optimal model performance. Mathematically, this 
involves solving a constrained optimization problem. Given a labeled 
training dataset {(xi, yi)} (where i = 1,2,…,n), xi ∈ Rd, and yi ∈ { − 1,
1}, the primal form of the SVM problem can be formulated as: 

min
w,b,ξ

0.5 ∗ wT ∗ w + C ∗
∑

ξi (7) 

subject to: 

yi ∗
(
wT ∗ φ(xi)+ b

)
≥ 1 − ξi, ξi ≥ 0 ∀i. (8)  

Here, w represents the weight vector perpendicular to the hyperplane, b 
is the bias, and ξi are the slack variables introduced to handle non- 
separable data and misclassifications. The function φ(x) maps input 
vectors into a high-dimensional feature space, and C > 0 is a regulari
zation parameter controlling the trade-off between maximizing the 
margin and minimizing classification errors [63]. 

To solve this problem efficiently, SVMs resort to the dual formulation 
of the problem using Lagrange multipliers (αi ≥ 0), which enables the 
introduction of the kernel trick. This leads to the dual problem: 

max
α

∑
αi − 0.5 ∗

∑∑
yi ∗ yj ∗ αi ∗ αj ∗ K

(
xi, xj

)
(9)  

0≤ αi ≤ C ∀i, and
∑

αi ∗ yi = 0 (10)  

where K(xi, xj) = φ(xi)
T
∗ φ(xj) is the kernel function which implicitly 

maps input vectors into a high-dimensional feature space without hav
ing to compute the map explicitly. It is important to note that the so
lution to the problem only depends on the inner product of the inputs, 
not on the inputs themselves. This is the fundamental property that al
lows the kernel trick to be possible [64,65]. While linear SVM is effective 
for linearly separable data, real-world data often exhibits non-linear 
patterns. This complexity necessitates the application of different 
kernel functions, such as polynomial kernels and Radial Basis Function 
(RBF) kernels, to capture these non-linear relationships. RBF kernels, in 
particular, have the advantage of transforming the data into an 
infinite-dimensional space, thus enhancing the model’s flexibility [66]. 

3.2.1.3. Random Forest (RF). RF is an ensemble learning method that 
has gained significant popularity in the domain of machine learning for 
its interpretability, versatility, and robust performance across diverse 
tasks and data types [67]. Fundamentally, an RF model consists of a 
collection of decision tree classifiers {h(x,Θk),k = 1,…,K}, where Θk are 
independently identically distributed random vectors, and each tree 
casts a unit vote for the most popular class at input x. Unlike a single 
decision tree that may be prone to overfitting, an RF model leverages the 
power of ’majority votes’ from numerous de-correlated trees to make the 
final prediction, which enhances generalization and robustness. Math
ematically, the RF model can be expressed as: 

hrf(x)=mode(h(x,Θ1),…, h(x,ΘK)) (11)  

where h(x,Θk) is the k-th decision tree in the ensemble, Θk are the pa
rameters of the k-th tree learned during the training process, and 
mode( •) is the statistical mode, used to determine the most frequent 
prediction. Two key strategies contributing to RF’s effectiveness are 
bagging (bootstrap aggregating) and random subspace method. In 
bagging, each decision tree is trained on a different bootstrap sample 
from the original data, adding an extra layer of randomness and 
reducing the variance without increasing the bias [68]. Mathematically, 
if the original dataset is denoted as D and the bootstrap sample as Dk, 
then: 

Dk =
{

dk
1,…, dk

n

}
, (12)  

where dk
i is randomly picked from D with replacement. 

The random subspace method involves selecting a random subset of 
features at each split point, thereby creating de-correlated trees and 
further enhancing the model’s performance [69]. An advantage of RF is 
its natural ability to handle multiclass problems and estimate class 
probabilities. Given an input x, the estimated class probabilities can be 
obtained by averaging across the proportions of training samples in the 
leaf nodes of all trees: 

Prf(y|x)=
1
K

∑

k
I(h(x,Θk)= y) (13)  

where I( •) is the indicator function, and y is the class label. 
Finally, RF models provide a measure of feature importance by 

calculating the total reduction in the criterion brought by that feature. 
This offers not only a model with high predictive accuracy but also in
sights into the underlying structure of the data, making RF a powerful 
tool for both prediction and interpretation tasks [70]. 

4. Results 

4.1. Carbon footprint of electricity consumption in buildings 

In this study, our primary emphasis was on the carbon emissions 
linked to electricity consumption in the operational phase of buildings. 
Consequently, our analysis did not encompass other phases in the life 
cycle of buildings, such as construction and demolition. Following the 
calculation of buildings’ overall electricity consumption, we employed 
MRIO analysis to estimate the total carbon footprints originating from 
the electricity generation sector, meeting the overall electricity demand. 
The monthly electricity consumption data in kilowatt-hours (kWh) from 
January 2017 to December 2020 were transformed into CF measure
ments. In this research, our primary approach involved employing MRIO 
analysis to calculate both the direct and indirect carbon footprints 
associated with the electricity production sector in Qatar. Rather than 
constructing a process-based environmental life cycle assessment model 
for estimating the carbon footprints of electricity, we opted for MRIO 
analysis as our primary method. This method effectively captured car
bon emissions originating from both regional and global supply chain- 
related activities in Qatar’s electricity production. The calculation of 
upstream impacts resulting from electricity production is accomplished 
by utilizing upstream impact factors derived from the MRIO model, 
using the EXIOBASE 3.8.2. This approach also enabled us to assess the 
global upstream supply chain-related carbon footprints associated with 
Qatar’s electricity production. 

This research utilizes data obtained from a total of 292,195 build
ings, providing insights into the temporal dynamics of specific building 
categories within a defined timeframe (2017–2020) (Fig. 2a). The 
analysis of CF contributions over time and across sectors is depicted in 
Fig. 2b. The residential villas and flats category exhibits the largest 
number of buildings, displaying a progressive increase over the study 
period. However, when examining CF values, a contrasting pattern 
emerges. The residential villas contribute a significantly higher amount 
of CF compared to residential flats. In fact, the residential villa sector 
emerges as the primary contributor of CF when compared to other 
sectors, as illustrated in Fig. 2c. This discrepancy can be attributed to 
inherent characteristics of these residential villas, such as their size and 
the number of occupants, which contribute to higher CF emissions. The 
CF emanating from the residential sector, comprising both villas and 
flats, exhibits monthly variations in its magnitude throughout the year. 
Notably, the highest CF levels are observed during the summer season 
(Fig. 3). This surge in CF emissions can be attributed to the exceedingly 
high temperatures exceeding 40 ◦C, necessitating extensive utilization of 

E. Zaidan et al.                                                                                                                                                                                                                                  



Energy Strategy Reviews 52 (2024) 101350

8

air conditioning systems by residents. 
Within the six sectors examined, commercial buildings occupy the 

third position in terms of their numbers (Fig. 2a) but rank second in 
terms of CF emissions. Fig. 3c demonstrates that the commercial sector is 
accountable for around 30% of the overall CF emitted, exhibiting a 
consistent contribution over time. Interestingly, the commercial sector 
displays a similar CF emission pattern to the residential sector as shown 
in Fig. 3. Specifically, the monthly average CF emitted from commercial 
buildings shows an increase during the summer months and a decrease 
during the winter season. This pattern can be attributed to the extensive 
utilization of air conditioning systems within these buildings. Despite 
the relatively small number of industrial buildings compared to other 
sectors, their CF emissions are notably high, ranking third. This can be 
attributed to the substantial electricity consumption associated with 
industrial activities. Fig. 3 depicts that CF emissions from the industrial 
sector maintain consistent proportions throughout the studied time
frame. However, there is a divergence in the pattern of monthly average 
CF emitted from industrial buildings compared to other sectors. Fig. 3 
illustrates that the variation in average monthly CF values within the 
industrial sector is comparatively lower, particularly during the summer 
season. This indicates a minimal impact of air conditioning usage in 
these industrial settings. The governmental sector, despite having a 
significantly larger number of buildings compared to the industrial 
sector, ranks fourth in terms of CF emissions. On the other hand, the 
hotel sector exhibits the lowest CF emissions resulting from electricity 

consumption, primarily due to the relatively smaller number of cate
gorized hotel buildings and their specific characteristics. The average 
monthly CF emission patterns from the governmental and hotel build
ings align with those observed in other sectors, except for the industrial 
sector. Notably, the highest CF emissions occur during the summer 
season due to increased electricity consumption across all sectors. 

4.2. Temporal variation of CF of electricity consumption in buildings 

Fig. 4 depicts the temporal fluctuations in CF of various building 
types on a monthly basis during the period spanning from 2017 to 2020. 
It presents the proportional variations in CF, expressed as a percentage, 
between consecutive years, thereby illustrating the observable trends of 
either augmentation or reduction in CF over time. Within the residential 
villa-building category, Fig. 4 illustrates fluctuating trends of increase or 
decrease of CF between 2017 and 2020. Notably, no discernible patterns 
emerge when comparing the same two months across different years. 
For instance, while CF experienced an increase in January between 2018 
and 2019, it simultaneously decreased between 2018 and 2017, as well 
as between 2019 and 2020. However, February exhibits a distinct 
pattern, wherein CF demonstrates a higher percentage increase between 
2017 and 2018, albeit maintaining an overall upward trend between 
2017 and 2020. A similar pattern can be observed in June. It is worth 
noting that the most substantial decline in CF in this building type is 
observed in November, both between the years 2017 and 2018, as well 

Fig. 2. (a) Total number of buildings during the study period, (b) Electricity consumption and the resultant CF of buildings, (c) Total shared CF by the different 
socioeconomic sectors between 2017 and 2020. 
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as between 2019 and 2020. The Figure does not present distinct patterns 
of monthly CF increase or decrease between the years 2017 and 2020 
across all building types. Consequently, it is difficult to draw definitive 
conclusions regarding the significant impact of disease propagation on 
building CF. However, the figure does reveal noteworthy observations 
that all building types, except for residential sectors, experienced a 
significant decline in CF during March, April, and May between 2019 
and 2020. These months align with the period of lockdown measures 
implemented during the first year of the COVID-19 pandemic. 

4.3. Spatiotemporal analysis of CF prior and during the pandemic 

This study comprises two sections that investigate the impact of the 
pandemic on the CF of buildings. The first section involves spatial 
analysis, aiming to identify the areas with significant changes in CF 
before and during the pandemic. The second section entails temporal 
analysis, aiming to assess the effects of the pandemic on CF and its 
subsequent impact on the accuracy of CF predictions for buildings. 

The spatial distribution of CF among various building categories was 
examined through the use of clustering analysis, hotspot analysis, and 

Fig. 3. The CF emitted from buildings over time and building type.  
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cold spot analysis. This investigation specifically focused on the years 
2019 and 2020 and explored three different temporal intervals: the pre- 
lockdown, lockdown, and post-lockdown phases as shown in Fig. 5. 
These stages depict the progressive phases of the COVID-19 pandemic in 
Qatar and the corresponding measures implemented for its containment 
in the first year of the pandemic. The aim was to assess the impact of the 
pandemic on CF by comparing the spatial distribution during the three 
time phases in 2020 with the distribution observed prior to the 
pandemic in 2019. Moreover, the spatial analysis was carried out within 

the Doha metropolitan area, which serves as the primary residence for 
the majority of the population and is a hub for economic activities. 

4.3.1. Spatial analysis of CF prior to the pandemic 
In order to examine the spatial clustering characteristics of CF, the 

statistical method of Anselin Local Moran’s I was employed. The out
comes of the investigation indicate varying spatial clustering patterns of 
CF based on the type of buildings in year 2019. Notably, the predomi
nant regions exhibiting high-high clustering of CF (i.e., statistically 

Fig. 4. The monthly changes in carbon footprint distribution among various sectors from 2017 to 2020.  
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significant clusters with elevated values) are situated in the south
western area, specifically associated with residential villas and flats, as 
well as the industrial and commercial sectors. Moreover, the CF 
exhibited a higher degree of clustering in villa buildings compared to 
other building types. The spatial distribution of CF within the residential 
villa sector demonstrated positive autocorrelation, primarily concen
trated in the southern and southwestern regions of the Doha 

metropolitan area. These areas displayed a notable occurrence of high- 
high and low-high outliers in their neighboring regions. Importantly, 
this spatial pattern remained consistent across the three examined pe
riods as shown in the figure. 

This configuration diverges among residential flat buildings. The 
figure exhibits a stochastic arrangement of CF values pertaining to res
idential flat buildings within the studied vicinity, spanning across 

Fig. 5. The Anselin Local Moran’s I statistics of CF across six types of building in 2019. Different areas are identified as high-high clustering in the residential (villa), 
industrial, and governmental buildings. 
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different time intervals. The aggregation tendencies of CF values, 
emanating from this specific building typology, predominantly manifest 
within the central sector of the City. The CF pattern observed in com
mercial buildings exhibits a strong positive correlation (high-high) pri
marily within the southwestern region, predominantly concentrated in 
the industrial zone, while demonstrating a comparatively weaker cor
relation in other areas of the city. This consistent pattern persisted 

throughout the year 2019. Industrial buildings exhibit a similar CF 
pattern to residential villas, as shown in the figure, with a high-high 
clustering observed in the southwestern part of the City, owing to the 
notable concentration of such buildings in that particular area. 
Governmental buildings, on the other hand, display a random high-high 
clustering pattern dispersed across various parts of the city, primarily 
concentrated in the central region. This pattern remained largely 

Fig. 6. The Anselin Local Moran’s I statistics of CF across six types of building in 2020. Different areas are identified as high-high clustering in the residential (villa) 
and industrial buildings. 
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consistent throughout 2019, albeit with some instances of low-high 
clustering in the northern and southern regions of the city. Finally, the 
presented figure reveals an absence of discernible clustering patterns in 
the CF of hotel buildings. 

4.3.2. Spatial analysis of CF during the first year of the pandemic 
The CF patterns observed in 2020 exhibit both similarities and dif

ferences when compared to the CF patterns of various building types in 

2019. In the residential villa sector, the spatial distribution pattern of CF 
remains largely consistent with that of 2019 (see Fig. 6). Prior to the 
implementation of lockdown measures, the southwestern region of the 
city demonstrates a high-high clustering pattern of CF, accompanied by 
a low-high clustering pattern. Conversely, the eastern part of the city 
exhibits a low-low clustering pattern. This distribution pattern aligns 
with the spatial pattern observed during the equivalent period in 2019. 
However, during the lockdown period, there are notable changes in the 

Fig. 7. The Getis-Ord G* i statistics of CF across different building types in 2019.  
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CF spatial patterns. The previously observed high-high and low-high 
clustering patterns in the southwestern area decline, while new in
stances of high-high clustering emerge in other areas of the city. In the 
post-lockdown period, the CF spatial distribution reverts to a pattern 
similar to the pre-lockdown period. However, the figure illustrates an 
increase in the area exhibiting high-high and low-high clustering in the 
southwestern region, along with an expansion of the low-low clustering 
pattern in the eastern part of the city. 

4.4. Hotspot and cold spot analysis 

For further spatial analysis of CF of buildings, hotspot and cold spot 
analysis was carried out in order to understand the spatial clustering of 
CF for each of the six types of buildings during the three distinctive 
periods of pre-lockdown, lockdown, and post-lockdown in 2020 in 
comparison to the year 2019. Fig. 7 reveals that the majority of areas 
depicting hotspot and cold spot CF of residential villas in 2019 have a 

Fig. 8. The Getis-Ord G* i statistics of CF across different building types in 2020.  
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degree of similarity across the three time periods, with few exceptions of 
hotspot areas for the post-lockdown period. The spatial distribution of 
2019 high CF from residential villas is manifested by hotspot areas that 
are concentrated in the southwest and in the north and northeast. On the 
other hand, the 2019 cold spot areas dominate the east side and have 
some noticeable presence in the south. The 2020 hotspots map reveals a 
significant difference of CF from residential villas during the lockdown 
in comparison the other two periods and to the same period of business- 
as-usual of 2019 as shown in Fig. 8. New hotspots appear in the north, 
northwest, and in the northeast in response to the stay-at-home/work- 
from-home policy imposed by the Qatari government during this 
period. The 2020 cold spots for the same sector do not exhibit noticeable 
differences across the three periods or against 2019 map. As for the 
residential flats buildings, the maps in Fig. 7 delineate 2019 hotspot 
areas of CF in the southwest and the center across the first and second 
periods; however, other hotspots appeared in the east for the post- 
lockdown period. The cold spots representing low CF are dominant in 
the southern part in the second and third periods at confidence levels of 
90% and 95%. 

Since the study area encompasses the capital city of Doha, a large 
proportion of the commercial buildings in the country can be found 
within this area. The 2019 map reveals hotspots concentration in the 
southwest and the east. These hotspots seem to be uniform across the 
three time periods which reflects the constant nature of commercial 
activities irrespective of seasonality before the pandemic. The 2020 map 
shows a completely different pattern of hotspots where they disappeared 
from the southwest area due to the pandemic, and where the effect of 
pandemic rippled through the rest of 2020 (even post-lockdown) where 
businesses struggled to regain in form of normality. 

The other sector that has a sizable impact on CF in Qatar is the in
dustrial sector which is mainly focused on oil and gas energy. Although 
the largest industrial areas are located outside the limits of study area, 
there is a sizeable industry within the study area, which is mainly 
located in the industrial area (southwest) and to a lesser extent in Doha 
downtown. The hotspots and cold spots of 2019 CF emissions show 
consistency across the three time periods, which reflects a stable and 
coherent sector within the study area. However, the maps show a 
different story during the 2020 lockdown period where the hotspot of CF 
emissions has contracted substantially, reflecting the effect of lockdown 
on the industrial sector and the CF produced by this sector. The cold 
spots have not shown any major changes across periods and between 
2019 and 2020. The hotels sector also experienced a pattern of CF, 
which is quite similar to that of the industrial sector as a direct result of 
the lockdown on the international and national tourism in the State of 
Qatar. 

4.5. Comparing the actual and predicted CF during the first two years of 
the pandemic 

The examination of the spatial distribution of CF among the six 
distinct building types does not reveal any discernible pattern of CF 
variation across space, time, and sectors. While fluctuations in CF during 
the pandemic year have been previously observed over time and across 
sectors, the impact of the pandemic on CF remains unclear using this 
particular approach. Consequently, it becomes imperative to compare 
the actual CF derived from electricity consumption with the CF pre
dicted based on historical electricity consumption data (2010–2019). To 
achieve this, three machine-learning models were employed to predict 
CF under pandemic-free conditions. Additionally, this process aims to 
ascertain which of the three models demonstrates superior performance 
and accuracy in predicting CF for the pandemic year. The evaluation of 
the three machine learning models was based on key metrics, such as 
mean squared log error (MSLE), mean absolute error (MAE), and the 
coefficient of determination (R2). Table 4 presents the results, indicating 
that the XGBoost algorithm outperforms the other models with the 
highest coefficient of determination (R2 = 0.838) and the lowest errors 

(MSLE = 0.185). 
The disparities in CF between the actual values observed during the 

first pandemic year and the pandemic-free scenario (referred to as the 
business-as-usual scenario), as derived from the outcomes of the three- 
machine learning models, are graphically presented in Fig. 9. By 
examining the discrepancies between the actual CF and the simulated 
CF, it becomes possible to discern the magnitude of CF gap over time and 
across sectors. This analysis sheds greater light on the impact of the 
pandemic on building CF, both in terms of temporal changes and sector- 
specific effects. The figure illustrates that the disparity between the 
actual and simulated CF notably increased during the post-lockdown 
period within the residential sector. While the CF experienced a surge 
during the lockdown phase, when residents were confined to their 
homes, the disparity between the actual and simulated CF was relatively 
less pronounced compared to the post-lockdown period. The latter 
period coincides with summer, during which residents heavily rely on 
air conditioning to combat the extremely hot weather. Additionally, 
with limited international travel within the first pandemic year, resi
dents remained in the country, leading to extensive use of cooling sys
tems and increased electricity consumption, consequently elevating the 
CF of residential buildings. 

In the other building types (commercial, industrial, governmental, 
and hotels), the figure shows a reduction in CF of these buildings due to a 
reduction in electricity consumption. These economic activities were 
impacted significantly by the propagation of the pandemic due to the 
policies that were imposed to slow down the spread of the disease. Many 
non-essential commercial and industrial activities were closed down 
during the lockdown period and were gradually but slowly reached to 
full operation during the post-lockdown period due to the limited ca
pacity restrictions during this period. The hotel buildings witnessed a 
reduction in CF during the lockdown period due to the lack of visitor or 
tourist activities during this period. However, during the post-lockdown 
period, many of these hotels were used as places for quarantine for 14 
days for residents who returned to the country or international visitors 
resulting in increasing the CF of this building type. 

In the case of other building types, including commercial, industrial, 
governmental, and hotels, the figure illustrates a notable reduction in CF 
for these buildings, primarily attributed to a decrease in electricity 
consumption. These economic activities experienced significant impacts 
resulting from the widespread transmission of the pandemic, brought 
about by various policy measures aimed at mitigating disease spread. 
During the lockdown period, numerous non-essential commercial and 
industrial operations were mandated to close temporarily, and their 
return to full operation occurred gradually and cautiously during the 
post-lockdown phase, subject to limited capacity restrictions. Regarding 
hotel buildings, the CF of these types of buildings witnessed a decline 
during the lockdown period due to the absence of visitor and tourist 
activities. However, in the post-lockdown period, several hotels were 
repurposed as quarantine facilities for residents returning to the country 
or international visitors, leading to an increase in CF for this particular 
building type. This shift in usage resulted in an elevated demand for 
energy and resources, thereby contributing to the observed rise in CF 
levels during this phase. 

The CF of industrial buildings exhibited a decline during a significant 
portion of the pandemic year in 2020. Notably, during the lockdown 
period, there was an observed decrease in actual CF, primarily attributed 
to the temporary closure of most industrial activities. However, 
intriguingly, the three predictive models suggest that the CF of industrial 

Table 4 
Evaluation of the machine-learning models.   

XGBoost RF SVM 

Coefficient of determination (R2) 0.838 0.814 0.746 
Mean squared log error (MSLE) 0.186 0.260 0.198 
Mean absolute percentage error (MAPE) 0.219 0.198 0.310  
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buildings should have shown an increase during this period. Subse
quently, as the post-lockdown phase commenced, the actual CF gradu
ally increased, reaching its peak in August, followed by a subsequent 
decrease after September, only to peak down in November and 
December of 2020. Finally, the figure demonstrates fluctuations in the 
actual CF of governmental buildings during different phases of the 
pandemic. Notably, the CF reduced during the lockdown period owing 
to the implementation of work-from-home policies. Conversely, during 
the post-lockdown phase, the CF experienced a rapid increase, 

particularly in October, as in-person activities resumed in offices and 
educational institutions like schools and universities. However, as a new 
wave of the disease spread, the CF of governmental buildings declined in 
November and December due to the reinstatement of online working 
and learning. Despite efforts to predict the CF using three distinct 
models, none of the predictive models effectively simulate the actual CF 
of governmental buildings over time. 

The study extended its investigation into the influence of the 
pandemic on the CF of buildings by exploring the relationship between 

Fig. 9. Comparing the actual and predicted CF using machine learning models for year 2020.  
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the CF gap and the daily count of infected cases. Fig. 10 shows the 
findings for the first year of the pandemic (2020), while Fig. 11 illus
trates the corresponding results for the second year (2021). The CF gap 
was determined as the disparity between the actual CF of buildings for 
each specific year and the outcomes generated by the three simulated 
machine-learning models. For any line of the three models, a positive 
value indicates that the simulated CF is lower than the actual value, 
whereas a negative value suggests the opposite scenario. The figures 
reveal diverse correlations over time and across sectors. Moreover, they 
provide insights into the pandemic’s impact on the CF of buildings, 

specifically with regard to electricity consumption. 
Fig. 10 provides compelling evidence of a significant increase in the 

CF disparity observed in residential buildings (Villas and Flats). This 
increase is strongly correlated with the rise in the number of COVID-19 
cases, particularly following the initiation of the lockdown period in 
March, reaching its peak in August. This observed trend could be pre
dominantly attributed to the enforcement of stay-at-home policies and 
restrictions on international travel, which resulted in individuals 
spending extended periods within their residences. In contrast, both the 
commercial and industrial sectors exhibited negative simulated CF 

Fig. 10. the gap between the actual and simulated CF based on the three machine-learning models and building types in the first year of the pandemic.  
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values during the lockdown period and subsequent months of the post- 
lockdown phase, indicating that the actual CF of these buildings was 
considerably lower than the typical levels. This alignment with the 
number of COVID-19 cases and the implemented disease containment 
measures is evident. As the post-lockdown period progressed and the 
number of COVID-19 cases declined, the disparity between the actual 
and simulated CF diminished, reflecting the gradual resumption of in- 
person work activities. 

In the prediction of the carbon footprint for various building types 
during the second year of the pandemic, we adhere to the same meth
odology employed in the first year. The sole distinction lies in the 

utilization of monthly CF data spanning the period between 2010 and 
2020. This deliberate choice enables us to discern potential impacts of 
crises on the efficacy of the employed machine-learning models. In 
evaluating the pandemic’s influence on the CF of buildings, a compar
ison is drawn between the actual CF and the simulated values for the 
year 2021, as depicted in Fig. 11. This analytical approach aims to 
ascertain the extent of the pandemic’s effect on the CF across the 
different building types under consideration. 

Fig. 11 reveals a distinct CF pattern in the residential sector during 
the initial months of year 2021, as opposed to the corresponding period 
in 2020. Notably, as the number of infected cases rose, the three models 

Fig. 11. the gap between the actual and simulated CF based on the three machine-learning models and building types in the second year of the pandemic.  
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predicted higher CF values for these buildings compared to the actual 
measurements. Conversely, during the period between June and 
November of that year, the models projected lower CF values for resi
dential buildings. The models projected higher CF values for commercial 
buildings than the actual measurements between January and June, 
except for April, presenting a distinct pattern compared to the corre
sponding period in 2020. Notably, the increase in infected cases co
incides with this trend during these months. Conversely, for the 
remaining months, the figure demonstrates that the actual CF of these 
buildings exceeded the estimated values. Furthermore, in the second 
year of the pandemic, the predicted CF of industrial buildings surpassed 
the actual measurements. Notably, the CF gap exhibited a notable in
crease after the month of May, indicating that the country’s economy 
had not fully recovered from the pandemic’s impact, despite the absence 
of workplace restrictions and the commencement of vaccination efforts. 
Finally, we observe that the disparity between projected and observed 
CF values in the hotel sector exhibited notable fluctuations throughout 
the seasonal variations. Specifically, during the summer season, the gap 
was notably significant, attributed to a surge in domestic and interna
tional travel. This trend was exacerbated by the extreme hot weather 
conditions, where temperatures exceeding 40 ◦C, which negatively 
affected tourist interest in visiting the region. Conversely, during the 
winter season, a decline in the gap was observed. This reduction can be 
attributed to the hosting of the FIFA Arab Cup, which took place in late 
November and December. The event attracted a considerable number of 
football fans, who predominantly chose to stay in hotels during their 
visit. This phenomenon contributed to a decrease in the CF value 
discrepancy during the winter months. 

5. Discussion 

The COVID-19 pandemic has drastically altered CF patterns and 
electricity consumption trajectories, presenting unique challenges in 
Qatar. As the pandemic progressed, the government’s dynamic mitiga
tion measures significantly influenced the spatial and temporal aspects 
of CF from electricity consumption in buildings. This shift has necessi
tated a reevaluation of CF in various building types, highlighting the 
importance of electricity as a critical resource in economic and social 
sectors and having a great impact on the environment. The pandemic 
has catalyzed changes in socioeconomic practices, directly affecting 
electricity consumption and offering insights into potential climate 
change mitigation through altered consumption behaviors. 

The analysis in this study is bifurcated into spatial and temporal 
assessments to assess the pandemic’s impact on CF of electricity con
sumption in different building typologies during the period of the 
COVID-19 pandemic. This approach provides a holistic view of how 
pandemic-related measures have altered CF patterns spatially and 
temporally in Doha, reflecting the direct consequences of COVID-19 
containment strategies on energy consumption and associated CF 
emissions in buildings. This analysis categorizes the pandemic into pre- 
lockdown, lockdown, and post-lockdown phases. The goal is to compare 
CF spatial distribution during these pandemic phases in 2020 with the 
pre-pandemic year of 2019 and to identify areas with significant CF 
changes attributable to the pandemic. 

Spatiotemporal analysis across six sectors revealed distinct varia
tions in CF of electricity consumption. A notable shift was observed from 
commercial and industrial sectors to residential sectors, influenced by 
lockdowns and disease spread. During lockdowns, residential electricity 
consumption spiked, and hence the CF, driven by increased home oc
cupancy and remote work and learning practices. The absence of in
ternational travel further intensified this trend. Summer 2020 saw a 
significant rise in residential CF due to the increase in the electricity 
consumption, primarily due to increased air conditioning and appliance 
use. Conversely, the industrial and commercial sectors experienced a 
reduction in CF from electricity consumption, aligning with decreased 
economic activities and mobility restrictions. While residential and 

government sectors saw increased consumption, the overall electricity 
demand stabilized. The post-lockdown phase saw a gradual return to 
physical workplaces and resumed production, particularly in industrial 
and commercial sectors. However, these sectors faced challenges in 
returning to pre-pandemic consumption levels, potentially affecting the 
economy. 

Geospatial analysis played a crucial role in understanding the dis
tribution and dynamics of CF during the pandemic. Mapping hotspots 
and cold spots at the zonal level revealed significant spatial and tem
poral clustering and agglomeration in CF of different building typol
ogies. This analysis provided valuable insights for policymakers to 
manage CF of buildings due to electricity demand during crises and 
identify high-CF areas. The spatial distribution of CF varied significantly 
across sectors and over time, underscoring the need for targeted in
terventions and an understanding of local demand dynamics. 

The examination of CF among different building types during the 
pandemic reveals complex and multifaceted patterns. The lack of a 
discernible pattern in CF variation across space, time, and sectors, even 
during the pandemic year, underscores the complexity of the situation. 
This complexity is further highlighted by the need to compare actual CF 
from electricity consumption with predicted CF based on historical data 
(2010–2019). Employing three machine-learning models (XGBoost, RF, 
and SVM) to predict CF under pandemic-free conditions is a crucial step 
in understanding the pandemic’s impact. The lockdown period led to an 
increase in residential CF, presumably due to heightened electricity 
usage as people stayed home. However, the post-lockdown phase 
exhibited an even greater disparity between actual and predicted CF, 
likely due to increased use of air conditioning during the summer 
months. In contrast, commercial, industrial, governmental, and hotel 
buildings experienced a CF reduction, reflecting the broader economic 
slowdown and policy responses to the pandemic. These findings illus
trate the diverse ways in which different sectors responded to pandemic- 
related changes. 

In contrast to residential buildings, other building types like com
mercial, industrial, governmental, and hotels saw a notable reduction in 
CF during the pandemic. This decrease was primarily due to reduced 
electricity consumption, a direct result of lockdown measures and the 
gradual, restricted reopening of these sectors. Hotel buildings, inter
estingly, had a varied CF pattern: a decrease during the lockdown due to 
reduced tourism, followed by an increase as they were repurposed for 
quarantine purposes. This scenario highlights the dynamic and sector- 
specific impacts of the pandemic on building CF. The industrial sector 
presented an interesting case, where the actual CF decreased during the 
lockdown, contradicting the predictions of the machine-learning 
models. This anomaly suggests the models’ limitations in capturing 
unexpected shifts in industrial activity. The governmental buildings also 
displayed fluctuating CF levels, impacted by the transition between 
remote work and resumption of in-person activities, further complicated 
by subsequent waves of the pandemic. These variations underline the 
challenges in accurately predicting CF in dynamic and unprecedented 
scenarios like the pandemic. 

The relationship between CF gap and daily COVID-19 cases offers 
intriguing insights. The significant increase in CF disparity in residential 
buildings during the pandemic’s peak periods suggests a strong corre
lation with enforced stay-at-home measures and travel restrictions. 
Conversely, commercial and industrial sectors showed lower actual CF 
than predicted during the lockdown, aligning with reduced activities. 
The second year’s analysis provides a different view, revealing how the 
models’ predictions diverged from actual CF, particularly in the resi
dential and hotel sectors. These findings underscore the pandemic’s 
varied impact on different building types and the challenges in modeling 
such unprecedented events. 

Thus, the findings of this research have both local and global envi
ronmental implications. While focusing on Qatar, the insights gained are 
applicable to other regions facing similar challenges, contributing to the 
broader understanding of environmental management and 
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sustainability. This study is thus a valuable resource for policymakers, 
urban planners, and stakeholders in understanding and managing the 
environmental impact of buildings, particularly during global crises like 
the COVID-19 pandemic. Importantly, the findings contribute to a better 
understanding of the intricate relationship between electricity con
sumption and carbon emissions during health crises in Qatar. This un
derstanding is crucial in facilitating informed decision-making and 
strategic planning, especially in times of public health emergencies. By 
providing this comprehensive analysis, the study aids in navigating the 
challenges posed by such crises, ensuring a more sustainable and resil
ient future in terms of energy consumption and environmental impact. 

6. Study limitations 

Although the study provides a comprehensive analysis of the impact 
of the COVID-19 pandemic on the CF from electricity consumption in 
various building types, there are several limitations that future research 
could address. Firstly, a comprehensive CF assessment of buildings 
should ideally include their entire lifecycle, from construction to de
molition. However, due to data availability, this study focused mainly 
on CF resulting from electricity consumption. Another critical aspect for 
future studies is consumer behavior, which necessitates the creation and 
distribution of survey questionnaires among households. This approach 
would allow for the exploration of how socioeconomic factors influence 
building CF. While not the primary aim of this study, its findings can 
assist in identifying high CF (hotspots) and low CF (cold spots) areas. 
This localization is crucial for conducting targeted consumer behavior 
studies, comparing these areas to enhance the precision and complexity 
of machine learning model predictions. Additionally, acknowledging the 
influence of external elements like government policies, public behav
ioral shifts during the pandemic and economic activities on CF is 
important. Integrating these factors into predictive models remains 
challenging due to their complex and often intangible nature. 

7. Conclusion and policy implications 

The examination of the CF has revealed that there is no discernible 
temporal trend concerning the increase or decrease of CF across distinct 
building categories. However, an investigation of CF patterns between 
the years 2017 and 2020 has indicated a certain degree of similarity with 
seasonal variations. Notably, during the summer months, all building 
types exhibited elevated CF levels owing to prevailing weather condi
tions and the augmented demand for electricity, primarily for cooling 
systems. Conversely, the winter season, characterized by warmer 
weather, saw minimal reliance on cooling or heating systems 
throughout the country. 

The COVID-19 pandemic has profoundly influenced Qatar’s CF pat
terns and electricity consumption trajectories, particularly in the context 
of buildings. This situation necessitates a reevaluation of CF in different 
building types, emphasizing the critical role of electricity in economic 
and social sectors. The pandemic’s alteration of socioeconomic practices 
has direct implications for electricity consumption, offering valuable 
insights into potential climate change mitigation through changed 
consumption behaviors as depicted from the spatial analysis in this 
study. Policymakers must consider these shifts when developing stra
tegies for energy efficiency and environmental sustainability. The 
increased electricity consumption in homes during lockdowns, due to 
higher occupancy and remote work, underscores the necessity for pol
icies that target energy efficiency in residential areas. Conversely, the 
reduced consumption in commercial and industrial buildings highlights 
the opportunity to reassess and potentially restructure energy use in 
these sectors for long-term sustainability. 

The spatial examination of CF across various building types unveiled 
distinct spatial clustering and areas of high CF concentration within the 
study area. It is recommended that authorities prioritize these specific 
regions to effectively mitigate and reduce CF emissions associated with 

buildings in those areas. Authorities can implement policies targeting 
the CF of buildings that focus on promoting energy efficiency, encour
aging the use of renewable energy, setting sustainability standards, and 
fostering public awareness. Furthermore, the study’s spatial and tem
poral analysis during the COVID-19 pandemic reveals significant 
changes in CF due to electricity consumption across different building 
typologies in Doha. This highlights the importance of flexible and 
responsive energy policies that can adapt to rapidly changing scenarios. 
The government must recognize the dynamic nature of CF patterns and 
develop targeted interventions that address the unique energy needs and 
consumption behaviors of each sector. Policymakers should leverage the 
insights from this study to implement sector-specific energy policies and 
programs that not only mitigate the environmental impact but also 
enhance resilience to future crises. 

According to the results of this research, it’s clear that the COVID-19 
pandemic has negatively affected the condition factor (CF) of certain 
types of buildings, especially residential ones. The actual CF levels 
increased during the pandemic years, primarily due to the imple
mentation of stay-at-home policies and heightened public concerns 
surrounding the disease, especially in the initial year when vaccination 
or cure was not yet available. The stay-at-home policy resulted in 
increased indoor activities by residents and greater utilization of elec
tronic devices within residential buildings. In contrast, there was a 
decrease in CF levels observed in other building types, primarily in
dustrial and commercial, indicating a decline in economic activities 
during the first year of the pandemic. These factors have resulted in 
shifts in CF patterns among buildings. These variations in CF across 
building types have the potential to amplify energy demand, especially 
during prolonged periods of COVID-19 or any future extended crises. 
These findings emphasize the importance for authorities to implement 
distinct measures aimed at reducing CF during such crises. 
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