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A B S T R A C T   

This study investigated the impact of economic growth, electricity consumption, energy consumption, and the 
crop production index on environmental quality in Qatar by considering four different types of GHGs emissions 
(carbon dioxide, methane, nitrous oxide, and F-GHGs) and using a time-series dataset for the period of 
1990–2019. This study investigated the long- and short-term impacts between these variables using ARDL 
bounds testing, while the stationarity properties of the variables were tested by applying the Zivot–Andrews test. 
The results indicate that electricity consumption, energy consumption, and the crop production index have a 
positive and significant relationship with GHGs, while economic growth has a negative and significant rela
tionship in the long term with these gases. The VECM Cranger and Toda-Yamamoto causality tests were used to 
understand the causal relationship between the variables, and the results suggest a different causality rela
tionship between the variables. Several key policy implications derived from the findings of this research to 
sustain environmental quality in the state of Qatar are discussed in this paper.   

1. Introduction 

Several environmental issues have received extensive attention since 
the Rio de Janeiro Earth Summit held in 1992, which aimed to establish 
and implement suitable international and national sustainable devel
opment policies. During the last few decades, good economic develop
ment performance has contribute to environmental degradation and in a 
significant rise in GHG emissions. Maintaining sustainable use of the 
environment is critical when discussing the implementation of sustain
able development strategies to boost economic growth and develop
ment. Environmental issues such as global warming, biodiversity loss, 
and deforestation have stimulated significant quantitative and qualita
tive studies that have predominantly concentrated on the theoretical 
examinations and explanations of the economic growth environmental 
degradation nexus, known as the Environmental Kuznets Curve (EKC) 
(Grossman and Krueger, 1995)– (Zambrano-Monserrate et al., 2018). 
Energy use is another cause of GHG emissions (El-Montasser and 
Ben-Salha, 2019), (Magazzino and Cerulli, 2019). 

Recently, sustainable development has attracted growing attention 
by policymakers in many countries. The key pillar in achieving this goal 
is decidedly linked to the environment (Zmami and Ben-Salha, 2020). 
However, to develop active emission reduction policies, factors that 
contribute to the growth of carbon emissions must be identified and 
quantified. This study contributes to the existing literature by examining 
the determinants of environmental degradation in Qatar between 1990 

and 2019. Therefore, the focus of this research is to answer the following 
questions: What are the short- and the long-term impacts of economic 
growth, electricity consumption, energy consumption, and crop pro
duction index on carbon dioxide, methane, Nitrous oxide, and other 
GHGs emissions? What are the nature of the causal relationship between 
these variables? What are their impact on environmental degradation in 
Qatar? What are the key policy implications that can be derived to 
sustain environmental quality in Qatar? To answer these questions, this 
paper utilize various econometric models to identify the short- and 
long-term as well the causal relationships between these variables. 
Although numerous time-series studies have been conducted to inves
tigate the causes of environmental degradation, no single study has 
considered four types of GHG emissions to measure environmental 
quality. This study is a significant and unique contribution, particularly 
for an arid country with abundant energy sources, such as Qatar. Few 
studies have investigated Qatar, and these studies have considered only 
CO2 as the indicator of environmental degradation in the country 
(Charfeddine et al., 2018)– (Salahuddin and Gow, 2019a). Other studies 
[see (Magazzino)– (Salahuddin and Gow, 2014)] focused on the Gulf 
Region, which includes Qatar, where the results are comprehensive and 
do not reflect a single-country result. To fill this gap in the literature, the 
focus of this study is to investigate the causes of environmental degra
dation in the state of Qatar using four different types of GHG emissions 
(carbon dioxide, methane, nitrous oxide, and other GHGs) and four 
different indicators (economic growth, energy consumption, electricity 
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consumption, and the crop production index). The reason for consid
ering these indicators is the comprehensive measures they provide for 
measuring environmental quality. Furthermore, depending only on one 
measure, that is, CO2, as the indicator of environmental quality may 
draw conclusive and comprehensive conclusions on the causes of envi
ronmental degradation. Qatar is an interesting case because of the high 
rate of air pollution and its effect on the quality of life and residential 
health. Furthermore, the country has abundant energy wealth (oil and 
gas), which is its main source of economic growth. Furthermore, the 
electricity sector is subsidized, constituting a burden on the government 
budget and motivating residents to consume more, consequently 
increasing air pollution. 

All the countries worldwide have considered protecting our planet 
from environmental crises as a first priority and have been involved in 

many international agreements concerning this issue, including the 
Kyoto Protocol (COP3), Kyoto Protocol (MOP 1), United Nations 
Framework Convention on Climate Change (UNFCCC), Paris Agreement 
(COP21), Doha Amendment to the Kyoto Protocol, and Bali Road Map 
(COP13) (Charfeddine, 2017). Intergenerational equity theory suggests 
that preserving the environment is a moral and ethical commitment for 
future generations (Clayton et al., 2016), (Hunt and Fund, 2016), and 
many researchers have emphasized the significance of formulating and 
imposing national, regional, and international laws that guarantee 
planetary rights and obligations for all generations (Charfeddine, 2017), 
(Demirel et al., 2017), (Foley et al., 2005). Nevertheless, these agree
ments have not achieved the goal of significantly reducing different 
types of pollutants, including CO2 emissions. Several factors contribute 
to the increase in these pollutants and consequently to environmental 

Table 1 
Different studies on GHGs emission.  

Author(s) Elements Period Methodology Findings 

Omri et al. 
(2014) 

CO2 emissions, economic growth and foreign 
direct investment (FDI) 

1990 – 
2011 

Dynamic simultaneous-equation panel 
data models 

Bidirectional causality between the CO2 and 
both the economic growth and FDI 

Zhang and Bin 
Da (2015) 

CO2, CO2 intensity, industrial structure and 
energy sources 

1996 – 
2010 

LMDI method, decoupling index Strong positive correlation between CO2 and 
economic growth 

Arvin et al. 
(2015) 

Urbanization, transportation intensity, CO2 

emissions, and economic growth 
1961 – 
2012 

Panel vector auto-regressive model The network of causal connections among the 
extent of urbanization, economic growth, 
transportation intensity, and CO2 emissions in 
the short- and long-run. 

Shahbaz et al. 
(2015) 

CO2 emissions, economic growth, and energy 
intensity 

1980–2012 Panel cointegration, VECM Granger 
causality, 

Positive correlation between energy use and the 
increase of CO2. 

Alam and 
Paramati 
(2015) 

Oil consumption, economic growth, 
internationalization, CO2 emissions, trade 
openness and financial development 

1980–2012 Panel cointegration tests and a vector error 
correction model (VECM) framework 

A significant positive relationship between oil 
consumption, economic growth, 
internationalization, CO2 emissions, trade 
openness and financial development. 

He et al. (2017) CO2 emissions, affluence, population, 
technology 

1995-2013 Stochastic impacts by regression on 
population, affluence and technology 
(STIRPAT) model 

There existed an inverted U link between CO2 

emissions and urbanization in three regions. 

(Muhammad) Economic growth, energy consumption and CO2 

emissions 
2001–2017 Seemingly unrelated regression (SUR), 

dynamic models estimated through means 
of the generalized method of moments 
(GMM), System generalized method of 
moments (Sys GMM) 

CO2 emissions increase in all countries due to 
increase in energy consumption. The CO2 

emissions increased while the energy 
consumption decreased in developed and 
MENA countries but energy consumption 
increased and CO2 emissions decreased in 
emerging countries due to increase in economic 
growth. 

Saidi and Omri 
(2020) 

Renewable energy, nuclear energy, CO2 

emissions 
1990–2018 Modified OLS (FMOLS), the vector error 

correction model approach (VECM) 
estimation methods 

Investments in nuclear and renewable energy 
reduce CO2 emissions. 

Hu et al. (2020) CO2 emissions, income, 1991-2016 Tapio decoupling model, Kaya-LMDI 
model 

CO2 emissions significantly rise due to 
economic growth. Energy intensity reduces CO2 

emissions to some extent. Energy exports 
increase CO2 emissions to varying degrees. 

Dauda et al. 
(2021) 

Innovation, CO2 emissions 1990-2016 Cross Sectional Augmented Dickey Fuller 
(CADF), Westerlund and Johansen 
cointegration tests, fixed effect model and 
generalized method of moments, ordinary 
least square 

Inverted U-shape relationship between 
innovation and CO2 emission at panel level. 
Renewable energy use lessens CO2 emissions. 
Human capital decreases CO2 emissions. 

Ko ç ak et al. 
(2020) 

CO2 emissions, tourism developments 1995-2014 Continuously updated fully modified 
(CUP-FM), the continuously updated bias- 
corrected (CUP-BC) estimators 

Tourism arrivals have an increasing effect on 
CO2 emissions, while tourism receipts have a 
reducing effect on CO2 emissions. 

Danish and 
Zhang (2019) 

Natural resources’ abundance, carbon dioxide 
(CO2) emissions 

1990-2015 The augmented mean group (AMG) panel 
algorithm 

Abundance of natural resources mitigates CO2 

emission. 
Khan et al. 

(2019) 
Globalization, economic factors, energy 
consumption, CO2 emissions 

1971-2016 Dynamic ARDL simulations model Energy consumption, financial development, 
trade, foreign direct investment, economic 
globalization, social globalization and political 
globalization have positive effect on CO2 

emissions. Urbanization, economic growth and 
innovation have negative effect on CO2 

emissions. 
Chen et al. 

(2018) 
CO2 emission intensity of fossil energy, energy 
consumption structure, energy intensity, per 
capita Gross Domestic Product (GDP), 
population distribution, population size, CO2 

emissions 

2001-2015 Logarithmic Mean Divisia Index (LMDI). 
Tapio decoupling analysis, the LMDI 
decomposition formula 

Energy intensity and per capita GDP are the 
main factors affecting CO2 emissions. The 
impact of population distribution on CO2 

emissions is negligible. 

Ali et al. (2019) Urbanization, carbon dioxide emissions 1972–2014 Auto Regressive Distributed Lag (ARDL), 
VECM model 

Urbanization was found to enhance CO2 

emissions both in the long- and short- terms.  
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degradation, including human activities, urbanization, energy use, and 
population growth (Shahbaz et al., 2013), (Sadorsky, 2014). 

Various studies have explored the link between environmental 
degradation and other determinants, such as economic growth, inter
nationalization, foreign direct investment (FDI), transportation in
tensity, population, industrial structure, and energy use and 
consumption at different time periods (see Table 1). These studies have 
found a positive correlation between CO2 emissions and these de
terminants. For example, economic growth was found to be the main 
driver of increased CO2 emissions in China (Zhang and Bin Da, 2015). 
From the perspective of industrial development, innovative global 
achievements in reducing CO2 emissions are a major concern with 
globalization. One of the strategies adopted to control global warming is 
to lower the percentage of CO2 emissions. Ma et al. (2016) investigate 
the relationship between economic growth and Chinese household CO2 
emissions during 1994–2012 based on a decoupling indicator. The re
sults of their study revealed that China’s household CO2 emissions 
increased rapidly between 1994 and 2012, owing to an increase in en
ergy consumption due to economic growth. Furthermore, the study 
demonstrated weak expansive decoupling and a decoupling state during 
the change in CO2 emissions resulting from economic and population 
growth. Muhammad (Muhammad) investigated the unidirectional ef
fects of energy consumption, economic growth, and CO2 emissions for 
68 countries between 2001 and 2017. The results of the study revealed a 
positive relationship between economic growth and energy consump
tion in developed and emerging countries but a negative relationship in 
MENA countries. The study also found that when energy consumption 
decreased, CO2 emissions increased in developed and Middle East and 
North Africa (MENA) countries. However, the study found that energy 
consumption increased and CO2 emissions decreased in emerging 
countries because of economic growth. 

Qatar is considered one of the highest per capita carbon dioxide 
(CO2) emitters worldwide (Salahuddin and Gow, 2019b). CO2 emissions 
are one of the primary causes of climate change that has severely 
affected Qatar’s economy, such as the supply of desalinated water, 
public health, and food security (Zhang et al., 2017), (Al-Maamary et al., 
2017). Over the past 50 years, Qatar has experienced one of the fastest 
growth rates in energy consumption worldwide due to population and 
economic growth, and recently, because of the preparation for the 2022 
FIFA World Cup and the objectives of the Qatar National Vision 2030 
(Abulibdeh, 2021a). However, the country depends exclusively on hy
drocarbons for its energy supply (Al-Awadhi et al., 2022)– (Ghofrani 
et al., 2021). Qatar is ranked third in terms of having the largest natural 
gas (LNG) reserves in the world (Salahuddin and Gow, 2019a); hence, 
the economy of the country heavily depends on natural sources that 
contribute significantly to government revenues (Abulibdeh et al., 
2019). 

Over the past three decades, the world has witnessed an increasing 
concentration of GHGs, particularly CO2, emitted to the atmosphere. 
GHG emissions are considered the main contributors to global climate 
change (Pachauri et al., 2014), (Wu et al., 2020). Countries worldwide 
must collaborate to face this common challenge by reducing CO2 
emissions. Therefore, Qatar has increased its commitment nationally 
and internationally toward reducing climate-changing carbon emis
sions. Qatar has ratified several international agreements, implemented 
stronger policies and initiatives, and developed strong clean projects. 
For instance, Qatar was among the first countries to accede to the United 
Nations Framework Convention on Climate Change in 1996, to ratify the 
Kyoto Protocol in 2005, and the recent Paris Agreement in 2016 
(Charfeddine et al., 2018). Moreover, policymakers are developing 
compressed natural gas (CNG) as an alternative fuel in Qatar’s public 
transport sector. The second project is the Jetty Boil-Off Gas (JBOG) 
Recovery Facility, designed to reduce CO2 emissions by approximately 
2.5 million tonnes per year. Other initiatives include the gigantic target 
of manufacturing the first Qatari electric cars by 2023, aiming to 
commercialize approximately 500,000 electric cars by 2024. Qatar also 

plans for 10% of the transport energy mix to be produced from renew
able energy, and 2% and 20% of electricity generation to be from 
renewable power by 2020 and 2030, respectively (Charfeddine et al., 
2018). 

The structure of the paper is organized as follows: section 2 gives 
insight into the GHG emissions profile in the State of Qatar and dives in 
details into the different types of GHGs emissions, their sources, and 
their annual growth. Section 3 describes the data and variables used in 
the study. Section 4 details the empirical methodology used and its 
implementation in the study. Section 5 presents the detailed empirical 
findings and discussion. Finally, section 6 provides the conclusion, 
policy implications and recommendations. 

2. GHG emissions profile in the state of Qatar 

2.1. GHGs emission in Qatar 

Population and economic growth was accelerated in the State of 
Qatar from 1970s due to the massive reserves and trade of the natural 
resources oil and gas (Abulibdeh, 2021a). During the past two decades, 
Qatar witnessed a rapid and massive urban development driven lately by 
winning the right to host the 2022 FIFA World Cup (Zaidan and Abu
libdeh, 2018). The country witnessed as well a rise in government 
expenditure and large-scale investment projects resulting in increased 
population and economic growth rate. For example, the population and 
economic growth rates in the country between 2004 and 2016 were 10% 
and 15%, respectively (Abulibdeh, 2021a). The main financial source 
and the keystones for this development was the revenues from the hy
drocarbon resources (Zaidan and Abulibdeh, 2020), (Abulibdeh, 
2021b). The production and usage of oil and gas are main contributors 
to the deterioration of the environment. This gradually increased the 
atmospheric GHGs emissions concentrations in the country (Charfed
dine, 2017). The GHGs emissions plays a major role in increasing land 
and air surface temperature contributing in the global warming phe
nomenon. This section presents GHG emissions profile in Qatar. 

Figure (1a) shows the total GHG emissions, including the land use 
changes. The figure indicates that GHG emissions in Qatar have 
increased rapidly during the past three decades. Figure (1b) illustrates 
how much GHGs the average person emits, calculated as the total 
emissions owing to human activities in the country divided by the total 
population. The figure shows an increase in the per capita GHG emis
sions, reaching a peak in 2005, and decreasing thereafter. This might be 
due to the global economic recession and the increase in population after 
2010, when the country began preparing for the 2022 FIFA World Cup. 
The electricity and heat sector has the highest GHG emissions, followed 
by the manufacturing, construction, and transport sectors, as illustrated 
in Figure (1c). The emissions increased in all sectors during the last two 
decades owing to the development that took place in the country. 
However, agricultural and fugitive emissions from the energy produc
tion sectors produced the highest GHG emissions between 2000 and 
2010, as shown in Figure (1d). 

Methane (CH4) is a key GHG emitted in Qatar in different sectors. 
These strong GHGs are measured in tonnes of carbon dioxide equivalents 
(CO2e) based on a 100-year global warming potential value. Figure (2a) 
shows that this type of GHG has been increasing in the country over 
time; however, the per capita CH4 emissions have started to decrease 
over the last two decades, as indicated in Figure (2b). The main sources 
of CH4 in Qatar are fugitive emissions (leakages from oil and gas pro
duction) and other fuel combustion, as shown in Figure (2c). 

Nitrous oxide (N2O) is another GHG that has increased substantially 
in Qatar over the last two decades, as demonstrated in Figure (3a). N2O 
emissions are measured in tonnes of carbon dioxide equivalents (CO2e) 
based on a 100-year global warming potential value. Figure (3b) shows 
that the per capita N2O emissions fluctuated during the last two decades. 
Agriculture (e.g., from the use of synthetic and organic fertilizers) and 
other fuel combustion are the major sectors that contribute to the 
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emissions of this gas, as shown in Figure (3c). 
Production-based emissions represent the CO2 emitted within the 

boundaries of Qatar. However, this fails to capture the emissions from 
traded goods (e.g., the CO2 emitted in the production of goods elsewhere 
and imported to the country or the emissions from exported goods). 
Consumption-based CO2 emissions are domestic emissions corrected for 
trade. The production and consumption of CO2 emissions are presented 
in Figure (4a). The footprint of the average person (per capita emissions) 
in Qatar is provided in Figure (4b). The yearly growth in annual CO2 
emissions is shown in Figure (4c), where positive values indicate that 
CO2 emissions in a given year were higher than in the previous year, 
while a negative value indicates that emissions were lower than in the 
previous year. The country’s share of CO2 emissions is measured by the 
country’s CO2 emissions, international aviation and shipping, plus the 
‘statistical differences’ in the carbon accounts in a given year divided by 
the sum of the global emissions in the given year. Figure (4e) presents 
the annual emissions as a percentage of the global total for a given year. 
Figure (4f) shows the share of CO2 emissions embedded in trade, 
measured as the emissions exported or imported, as the percentage of 
domestic production emissions. The figure shows negative values of the 
share of CO2 emissions, which indicates net exporters of CO2 (i.e. “30%” 
would mean Qatar exports emissions equivalent to 30% of its domestic 
emissions). CO2 emissions in Qatar are from different sources and are 
dominated by the industrial production of materials such as cement and 

burning fossil fuels for energy production, as indicated in Figure (4 g). 
The figure shows that gas was the predominant source of CO2 emissions 
in the country, followed by oil. Qatar has the third largest reserves of gas 
in the world and is ranked first in exporting liquefied gas. The CO2 
emissions are strongly associated with the energy mix available in the 
country. However, CO2 emissions from these sources have decreased 
over the past two decades, as demonstrated in Figure (4h). Fig. 5 illus
trates the relationship between the per capita consumption CO2 and 
GDP, indicating an inverse relationship between the two. 

2.2. Energy consumption and CO2 emissions 

The rapid economic growth that Qatar witnessed and in fact con
tinues to witness poses a number of challenges including increasing 
energy demand (Abulibdeh, 2019; Al-Marri et al., 2018; Zaidan et al., 
2022). Several studies examined the correlation between energy con
sumption and GHGs emissions (Muhammad), (Wu et al., 2020), (Saidi 
and Omri, 2020), (Salahuddin et al., 2018). Understanding this corre
lation enable governments to develop energy saving strategies as well 
emission reduction policies for mitigating the impacts on climate and 
slow down climate change. This section give more insight on the energy 
consumption effect on CO2 emissions in Qatar. 

Fig. 6a indicates that energy is a key contributor of the CO2 emissions 
in the country. Qatar is characterized by excessively high rates of energy 

Fig. 1. GHGs emission in Qatar.  
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use due to the population and economic growth. Furthermore, Qatar is 
located in arid region with a high level of water scarcity (Abulibdeh, 
2021c). The country depends on non-renewable water sources to meet 
the needs of the population and economic activities. Therefore, seawater 
desalination has been adopted as a solution to produce fresh water and 
overcome this water scarcity (Abulibdeh, 2019). Seawater desalination 
is energy-intensive process that adds to the country’s energy demand 
and subsequently high emissions. Therefore, reducing energy con
sumption can help to reduce emissions. Energy intensity is a useful 
metric to monitor, calculated as the amount of primary energy con
sumption per unit of gross domestic product in kilowatt-hours per 2011$ 
(PPP). Energy intensity can be used to effectively measure how effi
ciently Qatar uses energy to produce a given amount of economic 
output. A lower energy intensity means that the country needs less en
ergy per unit of GDP. The carbon intensity of energy production (i.e., the 
amount of CO2 emitted per unit of energy) is another valuable metric to 
monitor whether countries are making progress in reducing emissions. It 
is measured as the quantity of carbon dioxide emitted per unit of energy 
production in kilograms of CO₂ per kilowatt-hour. Using lower-carbon 
energy and transitioning the energy mix toward lower-carbon sources 
helps to reduce carbon emissions emitted per unit energy. Fig. (6b) 
presents the annual CO2 emissions per unit energy in the State of Qatar. 
The figure clearly demonstrates that the annual CO2 emissions per unit 
energy was reduced during the last two decades. 

3. Data and variables description 

In this study, per capita GHG emissions, per capita methane emis
sions, per capita nitrous oxide emissions, and per capita CO2 emissions 
were used as proxies for the environmental degradation in the State of 
Qatar. The GHG data emissions were obtained from different resources, 
including the World Bank, Worldometer, Climate Analysis Indicators 
Tool, and Our World in Data. These GHG emissions are summed and 
measured in tonnes of carbon dioxide equivalents (CO2e) based on the 
100-year global warming potential factors for non-CO₂ gases, meaning 
that gases have the same warming effect as CO2 over a period of 100 
years. Therefore, the emissions of each gas were multiplied by its ‘global 
warming potential’ (GWP) value. The GWP measures the amount of 
warming that one-ton of that gas would create relative to one-ton of 
CO2. The estimates of CO2 emissions include fossil fuel combustion from 
different activities and functionalities (e.g., industry, transport, natural 
gas flaring, heating and cooling, and fossil industry use), production of 
cement, production of chemicals and fertilizers, and CO2 uptake during 
the cement carbonation process. Furthermore, the estimation of CO2 
emissions relied primarily on the energy consumption data. The 
explanatory variables used to assess environmental degradation include 
economic growth, represented by GDP, electricity consumption, energy 
consumption, and CPI. The dependent and independent variables are 
expressed as per capita or GDP. Annual data for 1990–2019 were used in 

Fig. 2. Methane emissions in Qatar.  
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this study for the State of Qatar. Table 2 lists the dependent variables 
used in this study. 

4. Methodology 

This study examined the long-term and short-term relationships 
between four indicators of environmental quality (per capita GHG 
emissions, per capita methane emissions (ME), per capita nitrous oxide 
(NO) emissions, and per capita CO2 emissions) as dependent variables to 
develop four models to measure the environmental quality in Qatar. 
Four determinants (independent variables) were used to examine their 
effects on environmental quality, including economic growth (GDP), 
energy consumption (ENER), electricity consumption (ELEC), and the 
crop production index (CPI), from 1990 to 2019 in the state of Qatar. 
Accordingly, four models were constructed to examine the impact of the 
independent variables on environmental quality. The first model 
investigated the impacts of these independent variables on environ
mental quality using the per capita CO2 emissions as the dependent 
variable (GHGCO2), while models 2 (GHGF), 3 (GHGME), and 4 
(GHGNO) were constructed using the F-GHGs, per capita ME, and per 
capita NO emissions as the dependent variables. A linear form was 
constructed to examine the long-term, short-term, and causality re
lationships between the dependent and independent variables, as 

specified in Equation (1). 

GHGn = β0 + β1GDPt + β2ELECt + β3ENERt + β4CPIt + εt 1  

where GHGn is GHGCO2, GHGF, GHGME, and GHGNO; β0 is a constant 
form; β1–β4 are coefficients of the model; and εt is an error term. To 
ensure the mobilization of stationarity in the variance–covariance ma
trix, all the variables used in this study were transformed into natural 
logarithms (ln) (Chang et al., 2001). The log-linear model specification 
avoids heteroscedasticity problems and generates more efficient and 
symmetric results (Lau et al., 2014). The proposed methodology to 
assess the environmental degradation in the State of Qatar is shown in 
Fig. 7. 

4.1. Unit root test 

Different methodological steps were considered to examine the long- 
and short-term relationships between the dependent variables and their 
determinants. Stationary tests were conducted to determine the unit 
root of the time-series data. To detect the stationarity at I (0), I (1), or I 
(d), the augmented Dickey-Fuller test statistic using generalized least 
squares (DF-GLS), Phillips–Perron (P–P), and Kwiatkowski, Phillips, 
Schmidt, and Shin (KPSS) were employed (Bekhet et al., 2017). How
ever, unlike the other tests, the KPSS unit root test considers the series in 

Fig. 3. Nitrous oxide emissions in Qatar.  
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the null hypothesis to be level-stationary. A stationarity test is necessary 
before conducting the regression analysis, because if the time series is 
non-stationary, the regression results will become spurious. Further
more, a regression analysis would not be true if the time-series data were 
not stationary. In this case, it is a spurious regression (Bekhet et al., 
2017). It is necessary to ensure that the variables are not at the I (2) 
stationary level prior to processing a bounds-testing approach to avoid 
spurious results (Pesaran et al., 2001). Furthermore, bounds testing is 
based on the assumption that the variables are stationary at I (0), I (1), or 
both. Therefore, the F-statistics are not valid if the variables are sta
tionary at I (2). To ensure that none of the variables are stationary at the 
I (2) level, the implementation of a bounds test procedure may still be 
necessary. 

4.2. Unit root test assuming a single break point in data 

The Zivot–Andrews (Zivot and Andrews, 2012) unit root test was 
employed to identify the presence of a single structural break point in 
the data. Structural tests can take the following form, considering the 
series as X (Salahuddin and Gow, 2019b): 

ΔXt =Φ+ΦXt− 1 + ct + dDt + dDTt
∑k

j=1
djΔXt− j + εt 2  

ΔXt =∝ + ∝Xt− 1 + bT + cDt +
∑k

j=1
djΔXt− j + εt 3  

ΔXt = ¥+ ¥Xt− 1 + ct + bDTt +
∑k

j=1
djΔXt− j + εt 4  

ΔXt = γ + γXt− 1 + ct + dDTt +
∑k

j=1
djΔXt− j + εt 5  

where: 
D: is a dummy variable shows the mean shift at each point. 
DTt: is a trend shift variable. 
In the Zivot–Andrews test, the null hypothesis (C = 0) states that the 

presence of a unit root in the data is without a structural break, against 
the alternative that the series trend is stationary with an unknown time 
break. Therefore, the Zivot–Andrews unit root test selects the time break 

Fig. 4. CO2 emissions in Qatar.  
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that reduces the one-sided t-statistics to test c (= c− 1) = 1 (Salahuddin 
et al., 2018). 

4.3. ARDL bounds testing approach to cointegration 

Conventional cointegration techniques do not provide reliable re

sults when data are plagued with structural breaks (Uddin et al., 2013). 
Therefore, autoregressive distributed lag (ARDL) bounds testing, pro
posed by (Shahbaz et al., 2012), was used in this study to estimate the 
cointegrating or long-term and short-term relationships between the 
variables. The ARDL technique has been used in different studies and has 
been proven to be efficient in cases of small sample sizes (Pesaran et al., 
2001). It also removes the problems of omission bias and autocorrelation 
(Salahuddin et al., 2018). The ARDL bounds testing approach has 
various advantages compared to other co-integration models; therefore, 
it is considered superior and preferable, particularly for small samples 
(Shahbaz et al., 2012). The ARDL model uses more appropriate con
siderations than the Johansen–Juselius (J-J) (Johamen and Jtiselius, 
1990) and Engle and Granger (2015) models to test the co-integration 
among variables in a small sample (Ghatak and Siddiki, 2010) unlike 
the J-J co-integration model, which requires a large data sample for 
validity (Bekhet et al., 2017). Furthermore, the ARDL model can be 
applied if the underlying variables are purely I (0), purely I (1), or 
mixed, whereas other models require that all the underlying variables 
are integrated in the same order (Pesaran et al., 2001). Another 
advantage of the ARDL model is that it allows the variables to have 
different optimal lags that are not available when using conventional 
cointegration procedures (Ozturk and Acaravci, 2011). Therefore, ARDL 
bounds testing uses a proper lag order to capture the data-generating 
procedure and is considered sufficient to simultaneously correct for re
sidual correlation and endogeneity problems. Furthermore, the ARDL 
model provides unbiased estimates of long-term and short-term models 
and valid t-statistics, even in the presence of endogeneity problems 

Fig. 4. (continued). 

Fig. 5. Relationship between per capita consumption CO2 and GDP.  
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(Harris and Sollis, 2003). This method enables the convenient use of a 
single reduced-form equation, long-term equilibrium, and estimation of 
short-term dynamics simultaneously within a dynamic unrestricted 
error correction model (UECM) (Shahbaz et al., 2012). Therefore, this 
study employs the ARDL bounds model to investigate the equilibrium 

relationships among variables. The empirical formulation of the ARDL 
equations for the models is as follows: 

ΔlnCO2Qnt = β0 + α1lnCO2Qnt− 1 + α2lnGDPt− 1 + α3lnELECt− 1

+ α4lnENERt− 1 + α5CPIt− 1 +
∑n

i=1
β1iΔlnCO2Q(n)t− i +

∑n

i=0
β2iΔlnGDPt− i

+
∑n

i=0
β3iΔlnELECt− i +

∑n

i=0
β4iΔlnENERt− i +

∑n

i=0
β5iΔlnCPIt− i + μt

6  

ΔlnMEQnt = β0 + α1lnMEQnt− 1 + α2lnGDPt− 1 + α3lnELECt− 1

+ α4lnENERt− 1 + α5CPIt− 1 +
∑n

i=1
β1iΔlnMEQ(n)t− i +

∑n

i=0
β2iΔlnGDPt− i

+
∑n

i=0
β3iΔlnELECt− i +

∑n

i=0
β4iΔlnENERt− i +

∑n

i=0
β5iΔlnCPIt− i + μt

7  

ΔlnNOQnt = β0 + α1lnNOQnt− 1 + α2lnGDPt− 1 + α3lnELECt− 1

+ α4lnENERt− 1 + α5CPIt− 1 +
∑n

i=1
β1iΔlnNOQ(n)t− i +

∑n

i=0
β2iΔlnGDPt− i

+
∑n

i=0
β3iΔlnELECt− i +

∑n

i=0
β4iΔlnENERt− i +

∑n

i=0
β5iΔlnCPIt− i + μt

8  

ΔlnGHGQnt = β0 + α1lnGHGQnt− 1 + α2lnGDPt− 1 + α3lnELECt− 1

+ α4lnENERt− 1 + α5CPIt− 1 +
∑n

i=1
β1iΔlnGHGQ(n)t− i +

∑n

i=0
β2iΔlnGDPt− i

+
∑n

i=0
β3iΔlnELECt− i +

∑n

i=0
β4iΔlnENERt− i +

∑n

i=0
β5iΔlnCPIt− i + μt

9  

where β1i - β5i , α1-α5 are coefficient, β0 is a constant and, μt is white 
noise error term. The error correction models for the above models are 
specified as follows: 

ΔlnGHGsQnt = β0 +
∑n

i=1
β1iΔlnGHQsQnt− i +

∑n

i=0
β2iΔlnGDPt− i

+
∑n

i=0
β3iΔlnELECt− i +

∑n

i=0
β4iΔlnENERt− i +

∑n

i=0
β5iΔlnCPIt− i + μt 10 

The cointegrating relationship is examined by conducting a Wald test 

Fig. 6. (a) Energy consumption, (b) annual CO2 emissions per unit energy.  

Table 2 
Dependent variables used in this study.  

Variable Unit Definition 

CO2 emissions (CO2) Metrics 
tonnes per 
capita 

CO2 are the primary driver of global 
climate change and is the most 
dominant GHG produced by land use 
change, industrial production, and 
burning of fossil fuels. 

Greenhouse gas emissions 
(GHG) 

metrics 
tonnes per 
capita 

Other GHG includes F-gases 
(hydrofluorocarbons (HFCs), 
perfluorocarbons (PFCs), and sulfur 
hexafluoride (SF6)). These gases are 
summed and used in this study as 
other GHGs emissions. These gases 
contributed significantly in global 
climate change. The sources of these 
emissions are mainly from 
refrigeration/AC, aerosols, and 
semiconductors. 

Methane emissions (CH4). In 
this study, ME is used to 
denote Methane. 

metrics 
tonnes per 
capita 

The main source of ME is the 
agricultural emissions, produced by 
aerobic and anaerobic 
decomposition processes in crop and 
livestock production and 
management activities. The 
subdomains of the agricultural 
emissions that produce Methane 
include enteric fermentation, 
manure management, and burning- 
crop residues. 

Nitrous oxide emissions 
(N2O). In this study, NO 
will be used to denote 
Nitrous oxide 

metrics 
tonnes per 
capita 

The main source of NO is the 
agricultural emissions, produced by 
aerobic and anaerobic 
decomposition processes in crop and 
livestock production and 
management activities. The 
subdomains of the agricultural 
emissions that produce NO include 
agriculture soils, manure applied to 
soils, manure management, 
synthetic fertilizers, burning-crop 
residues, and crop residues.  
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and an F-test for the joint significance of the coefficients of the lagged 
variables, assuming the null hypothesis, as there is no cointegration 
among the variables against the alternative hypothesis of the presence of 
cointegration among variables. The short-term, long-term, and ECT–1 
(error correction term that shows the speed of adjustment of short-term 
deviations towards the long-term equilibrium) are estimated using the 
ARDL method. 

4.4. Causality test 

The Toda–Yamamoto (TY) causality analysis and the vector error 
correction model (VECM) short-term Granger causality test were per
formed to assess the causal direction among the variables to provide a 
better understanding of the policy implications of the empirical findings. 
The VECM test is efficient and appropriate for estimating causal link 
variables once they are integrated in the same order (Salahuddin et al., 
2018), (Granger, 1969). One of the main advantages of the TY test is that 
it is insensitive to the order of integration. In this study, the VECM 
short-term Granger causality test is represented according to Equation 
(11). 

ΔlnGHGt = β0i +
∑n

i=1
β1iΔGHGt− i +

∑n

i=0
β2iΔlnGDPt− i +

∑n

i=0
β3iΔlnELECt− i

+
∑n

i=0
β4iΔlnENERt− i +

∑n

i=0
β5iΔlnCPIt− i + εt

11  

5. Results and discussion 

5.1. Descriptive statistics 

To determine the nature of the data distribution, Table 3 provides the 
basic statistics and pre-estimation diagnostics for all the variables. The 
results indicate that Qatar’s average CO2 emissions are exceptionally 
high compared with the world average of 4.49 (Charfeddine, 2017). 
Overall, the mean and median results exhibit no large differences in 
their values for any of the variables. The standard deviation values 
reflect the volatile nature of the variables. Based on the standard devi
ation values, the data are homogeneous and are nearly normally 
distributed within a reasonable range. This is also shown by the kurtosis 
values, which indicate that the data are light-tailed to a normal distri
bution. The values in the table show that CO2 emissions and CPI are 
negatively skewed. Fat tails are present for all the variables, as indicated 
by the excess kurtosis and Jarque–Bera statistics. This indicates that 
applying the standard estimation techniques is unlikely to provide 
spurious findings. This allowed us to conduct further statistical analyses 
and estimations. 

A variance inflation factor (VIF) test was performed to examine the 
data multicollinearity. The test aims to quantify the extent to which the 
variance of the estimated coefficients is inflated when multicollinearity 
exists. The variance inflation factor for the nth predictor is 

VIFn =
1

1 − R2
n

12  

where R2
n is the R2 value resulting from the regression of the nth pre

dictor with the remaining predictors. The results (Table 4) of the 

Fig. 7. Proposed methodology flowchart to assess the environmental degradation in Qatar.  
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variance inflation factor (VIF) test suggest that the data were free from 
multicollinearity. The entries in the table show that there is no corre
lation between the predictors; therefore, the variances of the variables 
are not inflated. 

5.2. Unit root tests analysis 

The first step in the empirical analysis of the data is to conduct unit 
root tests to determine the order of integration of all the selected vari
ables using three different standard unit root tests: DF-GLS, P–P, and 
KPSS. The results for the level and difference in the variables of these 
unit root tests for the State of Qatar are presented in Table 5. The results 
indicate that the three tests were in harmony. The table shows that most 
of the variables are stationary after the first difference by comparing the 
absolute terms of the observed values of the DF-GLS, P–P, and KPSS test 
statistics, with the critical values of the test statistics at the 1%, 5%, and 
10% levels of significance. These results are strong indicators of statio
narity at both the level and first difference. However, there are still unit 
roots in some variables based on the results of some tests at various 
levels; thus, the null hypothesis is accepted for these variables. 
Furthermore, the null hypothesis of non-stationarity is rejected, and it is 
safe to conclude that some variables are stationary at I (0), while other 
variables are stationary at I (1). This indicates that the variables are 
mutually integrated in the order of zero and one (I (0) and I (1)), which 
enables us to apply the ARDL test. However, these tests have been 
criticized for the lack of any indication or information related to the 
presence of structural breaks in the time series. Therefore, these tests 

may lead to biased results concerning the stationarity of variables 
(Mrabet and Alsamara, 2017). 

***, **, * denotes the significant level of 1% 5% 10% respectively; 
Critical values for DF-GLS test are: − 2.657(1%), − 1.954(5%), − 1.609 
(10%); Critical values for PP test are: − 3.711(1%), − 2.981(5%), − 2.630 
(10%(; Critical values for KPSS test are: 0.739(1%), 0.463(5%), 0.347 
(10%). For DF-GLS and PP tests, the null hypothesis H0 is that the series 
has a unit root (isn’t stationary), while the null hypothesis for the KPSS 
test is that the series is stationary. 

5.3. Unit root tests with structural break 

Because the DF-GLS, P–P, and KPSS tests have been criticized for 
their poor explanatory power and inability to consider break(s) in the 
variables, to overcome this weakness, these variables were further 
examined using the Zivot–Andrews (Zivot and Andrews, 2012) struc
tural break unit root test to allow for structural breaks in the series. The 
results are detailed in Table 6. The results further indicate that the null 
hypothesis cannot be rejected for all the variables. Most of the variables 
are stationary at the level and when considering the first difference 
stationary, that is, I (1), in the presence of single structural breaks in the 
variables; hence, they meet the pre-condition for cointegration. There
fore, it is safe to investigate the cointegrating relationships between the 
variables. The results also confirm that most of the variables are 
first-difference-stationary. Furthermore, the results indicate that the test 
detects numerous break points predominantly around two periods, the 
first half of the 1990s (1993, 1995) and in the 2000s (2003, 2004, 2005, 
2006, and 2009), for some variables in level and first difference, as 
shown in the table. The break in 1993 may have been due to the first 
Gulf War in 1990, and the break in 2009 may be attributed to some 
effects of the global financial crisis. This indicates that the pattern of 
change in these variables is not characterized by significant volatility. 

5.4. ARDL cointegration analysis 

The unit root test demonstrates that most of the variables are sta
tionary and integrated with the first order; therefore, the next step is to 

Table 3 
Summary statistics of the data.  

Definition Variables Mean Median Std. D. Kurt. Sk. J-B P-value 

CO2 emissions (metrics tonnes per capita) CO2 51.36 54.82 11.78 2.0799 -0.43 1.70 0.43 
Greenhouse gas emissions (metrics tonnes per capita) GHG 39.76 38.28 5.59 2.262 0.427 1.34 0.511 
Methane emissions (metrics tonnes per capita) ME 3.38 3.43 0.40 1.576 0.19 2.43 0.297 
Nitrous oxide emissions (metrics tonnes per capita) NO 0.46 0.40 0.15 2.70 0.995 4.07 0.131 
GDP (metric billion USD) GDP 1.18e+11 0.39e+11 1.36e+11 2.247 0.94 4.6 0.100 
Energy consumption (metric kg of oil equivalent per gdp) ENER 4.9634 3.156 3.975 2.416 0.917 4.169 0.124 
Electric power consumption (kWh per capita) ELEC 13502.06 14153.71 2163.185 2.3205 -0.732 2.9317 0.230886 
Crop Production Index CPI 80.09926 82.65000 17.25923 2.3123 -0.2646 0.8472 0.6547 

J-B is the Jarque Bera test statistic for normality hypothesis. 
Std. D. Is the standard deviation. 
Kurt. Is the Kurtosis. 
Sk. Is the skewness. 

Table 4 
Multicollinearity Testing (among the independent variables): Variance Inflation 
Factor (VIF) results.  

Feature Variance Inflation Factor (VIF) 1/VIF 

lnGDP 5.843865 0.171120 
ENER 5.699187 0.175464 
lnELEC 2.859047 0.349767 
lnCPI 2.165853 0.461712  

Table 5 
Standard unit root tests (checking for stationarity).  

Variables Level First Difference 

DF-GLS P–P KPSS DF-GLS P–P KPSS 

lnGDP -0.9139 -0.5452 0.77*** -2.6781*** -2.9018* 0.1503 
ENER -2.8380*** -0.9361 0.6040** -2.6810*** -3.9287*** 0.1439 
lnELEC -1.0735 -2.0491 0.5136** -1.9127* -4.9106*** 0.3925* 
lnCPI -1.6758* -3.2072** 0.4900** -4.3805*** -5.8707*** 0.1743 
lnCO2 -1.6855* -3.0424** 0.2710 -2.7840** -4.4815*** 0.4307* 
lnGHG -1.3252 -2.0537 0.2106 -3.5690*** -4.5110*** 0.5599** 
lnME -1.2630 -1.2728 0.2873 -1.9336* -1.9 0.4569* 
lnNO -0.9165 -3.0274** 0.6510** -7.1702*** -18.1266*** 0.2250  
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estimate the short- and long-term coefficients of the variables. The ARDL 
cointegration approach was used to test for long-term relationships, and 
the results are listed in Table 6. The results of the Wald test F-statistics 
for the four models are statistically significant at 10% and 5%. 
Compared to the Pesaran et al. (2001) critical values, the calculated 
F-statistics indicate that strong cointegration exists among the variables, 
which in turn stimulates the ARDL procedures to continue to estimate 
the short- and long-term coefficients. Nevertheless, prior to such an 
estimation, prior information is necessary for the optimal lag length. The 
optimal lag was selected based on the Bayesian information criteria 
(BIC) for the four models, as listed in Table 7. 

5.5. ARDL short-term analysis 

The next step is to investigate the long- and short-term impacts of 
GDP, ELECT, ENE, and CPI on different types of GHGs. The short-term 
relationship between the dependent and independent variables was 
investigated using the ARDL model, and the results are presented in 
Tables 8–11. As indicated in the table, the short-term effects of GDP, 
ELECT, ENE, and CPI on all the indicators of environmental quality are 
statistically insignificant. This suggests that GDP has a negative but 
insignificant effect on CO2, GHGs, and NO and a positive but insignifi
cant effect on the other MEs. Electricity consumption was found to have 
negative but insignificant effects on CO2, NO, and ME but positive and 
insignificant effects on the other GHGs. Furthermore, energy consump
tion has varying effects on GHG emissions. Energy consumption has a 
positive but insignificant effect on CO2, GHGs, and NO, and a negative 
but insignificant effect on ME. CPI has a negative but insignificant effect 
on NO and a positive but insignificant effect on the other GHGs. 
Furthermore, the estimated coefficients associated with the error 
correction coefficients ECT (− 1) for the four models have their expected 
negative sign, which implies that the disequilibrium can be adjusted to 
the long term with higher speed. Furthermore, ECT (− 1) for CO2 and NO 
was significant at the 10% and 1% levels, respectively. This result in
dicates that the speed of adjustment in CO2 and NO from short-term 
toward the long-term equilibrium will occur by 0.57% and 1.67%, 
respectively, every year. The results affirm that in the short term, there is 
no causality in the independent variables for CO2, ME, NO, or other GHG 
emissions. The R2 values range between 33% and 68%, which confirms 
that the model has a moderately good fit. 

5.6. ARDL long-term analysis 

The ARDL model was used to investigate the long-term impacts of the 
independent variables on the dependent variables; the estimation results 
are reported in Tables 12–15. Table 12 shows the ARDL long-term 
analysis for model lnCO2 as an endogenous variable and provides the 

Table 6 
Zivot–Andrews unit root test assuming a single break point in data.  

Variables Level First Difference  

T-statistic Time break Decision T-statistic Time break Decision 
lnGDP -2.0898 2013 Unit root -5.7043*** 2010 Stationary 
ENER -5.5726*** 1995 Stationary -5.3526*** 1992 Stationary 
lnELEC -5.5726*** 1995 Stationary -5.3526*** 1992 Stationary 
lnCPI -5.246** 2000 Stationary -6.9*** 1996 Stationary 
lnCO2 -7.0175*** 2006 Stationary -5.6744*** 1991 Stationary 
lnGHG -3.615 2007 Unit root -6.7597*** 2004 Stationary 
lnME -5.363*** 2004 Stationary -3.8196 2009 Unit root 
lnNO -5.9697*** 2003 Stationary -8.1301*** 2005 Stationary 

Note: ** and *** denote 5% and 1% levels of significance, respectively; the corresponding critical values: − 5.34(1%), − 4.8(5%), − 4.58(10%). 

Table 7 
Walt test of the ARDL cointegrations  

Models Endogenous variables Function Optimal 
Lag lengths 

Wald Test 
F-statistic 

Cointegration Decision 

1 lnCO2 F (lnGDP, lnCPI, lnELEC, ENER) (1,2,2,1,2) 4.816816a Cointegrated 
2 lnGHG F (lnGDP, lnCPI, lnELEC, ENER) (1,2,2,1,1) 3.482566** Cointegrated 
3 lnME F (lnGDP, lnCPI, lnELEC, ENER) (2,2,3,2,1) 4.349594a Cointegrated 
4 lnNO F (lnGDP, lnCPI, lnELEC, ENER) (1,2,2,2,2) 4.196223a Cointegrated  

a , and ** denote statistical significance at 5%, and 10% levels respectively. 

Table 8 
ARDL short-term analysis for model (lnCO2) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.045259 0.054447 0.831249 0.4174 
LNCO2(-1) 0.260085 0.298958 0.869970 0.3964 
LNGDP (-2) -0.251173 0.303425 -0.827793 0.4193 
LNCPI(-2) 0.113246 0.144089 0.785946 0.4427 
LNELEC (-1) -0.611206 0.550786 -1.109697 0.2826 
ENER(-2) 0.015226 0.015903 0.957424 0.3518 
ECT (-1) -0.574821 0.323662 -1.775991 0.0936  

R-squared 0.336902 Mean dependent var -0.014485 
Adjusted R-squared 0.102868 S.D. dependent var 0.102763 
S.E. of regression 0.097334 Akaike info criterion -1.582846 
Sum squared resid 0.161056 Schwarz criterion -1.239247 
Log likelihood 25.99415 Hannan-Quinn criterion -1.491689 
F-statistic 1.439542 Durbin-Watson stat 2.227118 
Prob (F-statistic) 0.257086    

Table 9 
ARDL short-term analysis for model (lnGHG) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.014068 0.026186 0.537218 0.5981 
LNGHG (-1) 0.169692 0.231878 0.731818 0.4742 
LNGDP (-2) -0.091109 0.140496 -0.648484 0.5253 
LNCPI(-2) 0.078639 0.076065 1.033846 0.3157 
LNELEC (-1) 0.103305 0.337001 0.306543 0.7629 
ENER(-2) 0.002292 0.009007 0.254507 0.8022 
ECT (-1) -0.460391 0.269294 -1.709625 0.1055  

R-squared 0.445810 Mean dependent var 0.001825 
Adjusted R-squared 0.250213 S.D. dependent var 0.056462 
S.E. of regression 0.048890 Akaike info criterion -2.959974 
Sum squared resid 0.040635 Schwarz criterion -2.616375 
Log likelihood 42.51969 Hannan-Quinn criterion -2.868818 
F-statistic 2.279231 Durbin-Watson stat 1.969280 
Prob (F-statistic) 0.084875    
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long-term coefficients from the ARDL estimates. The results suggest that 
ENER, ELECT, and CPI cause a deterioration in environmental quality 
and that there is a highly significant, at the 1% level of significance, 
long-term relationship between GDP, ELEC, and ENER as well as a 
highly significant, at the 5% level of significance, long-term relationship 
between CPI and CO2 emissions. However, GDP has a significantly 
negative association with CO2 emissions. A 1% increase in GDP causes a 
0.11% decline in CO2 emissions. In contrast, ENER, ELECT, and CPI have 
a significant positive association with CO2 emissions. A 1% increase in 
ELECT, ENER, and CPI leads to 1.78%, 0.058%, and 0.33% increases in 
CO2 emissions, respectively. Although these coefficients are still small, 
their magnitudes and effects must not be undermined, indicating that a 
substantial reduction in emissions is still far from reality. 

The results illustrated in Table 13 reveal a negative relationship 
between GDP and per capita GHG emissions. These results imply that a 
0.084% decrease in the per capita GHG emissions is linked to a 1% in
crease in GDP. This relationship is statistically significant at the 1% 
level. However, the results show a positive and statistically significant 
effect of ELEC on the per capita GHG emissions. This indicates that this 
variable plays a substantial role in increasing GHG emissions in the 
country in the long term. Keeping the other factors constant, a 1% in
crease in ELEC increases GHG emissions by 0.97%. ENER and CPI have 
no significant impact on GHG emissions. 

Table 14 suggests a negative and statistically significant relationship 
at the 1% level between GDP and per capita ME emissions. These results 
imply that a 0.104% decrease in the per capita ME emissions is linked to 
a 1% increase in GDP. In contrast, the results suggest a positive rela
tionship between the other independent variables (ENER, ELEC, and 
CPI) and the per capita ME emissions. This indicates that these variables 
play a critical role in increasing ME emissions in a country in the long 
term. The results identify a positive and statistically significant effect of 
ENER on the per capita ME emissions at the 10% level. Keeping the other 
factors constant, a 1% increase in ENER increases the ME emissions by 
0.0058%. Moreover, ELEC and CPI have positive and significant 

Table 10 
ARDL short-term analysis for model (lnME) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.009796 0.018494 0.529678 0.6036 
LNME (-2) 0.467663 0.260469 1.795468 0.0915 
LNGDP (-2) -0.072553 0.091329 -0.794414 0.4386 
LNCPI(-2) 0.012297 0.047783 0.257357 0.8002 
LNELEC (-1) -0.086857 0.176549 -0.491968 0.6294 
ENER(-2) -0.000155 0.006532 -0.023774 0.9813 
ECT (-1) -0.454848 0.296126 -1.535994 0.1441  

R-squared 0.342140 Mean dependent var -0.005616 
Adjusted R-squared 0.095442 S.D. dependent var 0.033774 
S.E. of regression 0.032122 Akaike info criterion -3.792772 
Sum squared resid 0.016509 Schwarz criterion -3.447187 
Log likelihood 50.61687 Hannan-Quinn criterion -3.705858 
F-statistic 1.386878 Durbin-Watson stat 1.281853 
Prob (F-statistic) 0.278937    

Table 11 
ARDL short-term analysis for model (lnNO) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C 0.017243 0.111567 0.154557 0.9790 
LNNO(-1) 0.330236 0.224011 1.474198 0.1587 
LNGDP (-2) 0.143997 0.565122 0.254806 0.8019 
LNCPI(-2) -0.079449 0.316680 -0.250880 0.8049 
LNELEC (-2) -0.757842 0.956003 -0.792719 0.4389 
ENER(-2) 0.011847 0.034128 0.347147 0.7327 
ECT (-1) -1.670209 0.363623 -4.593241 0.0003  

R-squared 0.681230 Mean dependent var 0.020713 
Adjusted R-squared 0.568723 S.D. dependent var 0.322425 
S.E. of regression 0.211742 Akaike info criterion -0.028407 
Sum squared resid 0.762187 Schwarz criterion 0.315192 
Log likelihood 7.340879 Hannan-Quinn criterion 0.062750 
F-statistic 6.055000 Durbin-Watson stat 2.148547 
Prob (F-statistic) 0.001537    

Table 12 
ARDL Long-term analysis for model (lnCO2) as endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C -11.99555 2.140509 -5.604061 0.0000 
LNGDP -0.110877 0.036227 -3.060635 0.0057 
LNELEC 1.781649 0.217682 8.184625 0.0000 
ENER 0.057618 0.013423 4.292550 0.0003 
LNCPI 0.327423 0.140958 2.322847 0.0298  

R-squared 0.828540 Mean dependent var 3.910081 
Adjusted R-squared 0.797366 S.D. dependent var 0.253185 
S.E. of regression 0.113971 Akaike info criterion -1.340170 
Sum squared resid 0.285767 Schwarz criterion -1.100200 
Log likelihood 23.09229 Hannan-Quinn criterion -1.268814 
F-statistic 26.57747 Durbin-Watson stat 1.470067 
Prob (F-statistic) 0.000000    

Table 13 
ARDL Long-term analysis for model (lnGHG) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C -3.894478 1.257173 -3.0997806 0.0053 
LNGDP -0.083962 0.021277 -3.946175 0.0007 
LNELEC 0.969783 0.127850 7.585305 0.0000 
ENER -0.002267 0.007884 -0.287567 0.7764 
LNCPI 0.099757 0.082788 1.204974 0.2410  

R-squared 0.803933 Mean dependent var 3.673526 
Adjusted R-squared 0.768285 S.D. dependent var 0.139058 
S.E. of regression 0.066938 Akaike info criterion -2.404526 
Sum squared resid 0.098575 Schwarz criterion -2.164556 
Log likelihood 37.46110 Hannan-Quinn criterion -2.333170 
F-statistic 22.55165 Durbin-Watson stat 1.025732 
Prob (F-statistic) 0.000000    

Table 14 
ARDL Long-term analysis for model (lnME) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C -5.002116 0.471047 -10.61914 0.0000 
LNGDP -0.104101 0.007972 -13.05800 0.0000 
LNELEC 0.869099 0.047904 18.14256 0.0000 
ENER 0.005853 0.002954 1.981418 0.0602 
LNCPI 0.005853 0.031020 3.638685 0.0014  

R-squared 0.962281 Mean dependent var 1.211770 
Adjusted R-squared 0.955423 S.D. dependent var 0.118792 
S.E. of regression 0.025081 Akaike info criterion -4.367851 
Sum squared resid 0.013839 Schwarz criterion -4.127882 
Log likelihood 63.96599 Hannan-Quinn criterion -4.296496 
F-statistic 140.3162 Durbin-Watson stat 1.696399 
Prob (F-statistic) 0.000000    

Table 15 
ARDL Long-term analysis for model (lnNO) as Endogenous variable.  

Variable Coefficient Std. Error t-Statistic Prob. 

C -7.943123 3.893762 -2.039961 0.0535 
LNGDP 0.243897 0.065899 3.701052 0.0012 
LNELEC 0.190638 0.395982 0.481431 0.6350 
ENER 0.039957 0.024417 1.636451 0.1160 
LNCPI -0.199366 0.256414 -0.777515 0.4451  

R-squared 0.596383 Mean dependent var -0.803535 
Adjusted R-squared 0.522998 S.D. dependent var 0.300183 
S.E. of regression 0.207323 Akaike info criterion -0.143506 
Sum squared resid 0.945618 Schwarz criterion 0.096464 
Log likelihood 6.937329 Hannan-Quinn criterion -0.072150 
F-statistic 8.126764 Durbin-Watson stat 2.475617 
Prob (F-statistic) 0.000350    
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relationships with the per capita ME emissions at the 1% significance 
level, implying that 0.869% and 0.0058% of per capita ME emissions 
increased by a 1% increase in ELEC and CPI, respectively. 

The long-term relationship between the per capita NO emissions and 
the independent variables was investigated and the results are provided 
in Table 15. The results suggest a positive and significant impact of GDP 
at the 1% level on the per capita NO emissions, and a 0.244% increase in 
the per capita NO emissions is linked to a 1% increase in GDP. This 
implies that economic growth plays a vital role in increasing NO emis
sions in the country. However, ELEC and ENER have positive but 
insignificant impacts on the per capita NO emissions, while CPI has a 
negative but insignificant impact. 

The negative long-term relationship between GDP and CO2, ME, and 
GHGs indicates that this relationship is U-shaped, which means that the 
Environmental Kuznets Curve (EKC) hypothesis is not valid for Qatar 
when using CO2, ME, and GHGs as indicators of environmental degra
dation when considering only GDP. This can be attributed to the fact 
that these types of GHG emissions to real GDP per capita ratios were 
smaller compared to the same ratio after a certain point of economic 
development in Qatar. This reflects the importance of the other variables 
because Qatar is practicing a long-term transition toward significantly 
increasing industrial activities related to the energy sector to diversify its 
economy as well as increase gas and oil production. This result agrees 
with the findings of Mrabet and Alsamara (2017). These results reflect 
the dramatic rise in the production and demand for energy and elec
tricity in the country in recent decades. For example, in 2016, the 
electricity demand in the country increased by 2.3% compared to 2015, 
reaching 7435 MW, and the electricity transmitted in 2016 was 39,667 
GWH (Abulibdeh, 2021a), (Khalifa et al., 2019). Furthermore, natural 
gas is used for electricity and energy production, and there is no 
intention to transition to renewable energy sources in the short term in 
the country. This is expected because Qatar has the third largest natural 
gas reserve in the world. However, authorities in the State of Qatar 
recently launched a strategy to minimize the negative impact of eco
nomic development, including energy production and consumption, on 
the environment in the long term. 

5.7. VECM cranger and Toda–Yamamoto causality testing results 

An appropriate assessment of environmental degradation in Qatar 
depends on the nature of the causal relationship between the dependent 
and independent variables. Therefore, the final step in investigating the 
impact of GDP, ELEC, ENER, and CPI on CO2, GHG, NO, and ME is to test 
the existence of a causal relationship between these variables using 
Toda–Yamamoto and VECM Cranger causality testing. Because most of 
the variables are first difference stationary, VECM Cranger and Toda
–Yamamoto (TY) causality analyses are suitable tests to assess the causal 
direction among the variables. Tables (16 and 17) present the empirical 
causality relationships between dependent and independent variables. 
The two tests identified different causal relationships between the var
iables. The TY causality analysis (Table 16) indicates a bidirectional 
causal relationship between the independent variables GDP, ELEC, 
ENER, CPI, and the dependent variable ME, and between GPD, ELEC, 
CPI, and NO. Furthermore, the test suggests a bidirectional causal 
relationship between GDP, ELEC, CPI, and NO. There is also unidirec
tional causality from GDP to CO2, GHG to ELEC, and GHG to ENER. 
However, the VECM Cranger-causality analysis (Table 17) shows only a 
unidirectional causality relationship running from CPI, ELEC, ENER, and 
GHGs; ELEC and ME; ENER and NO; and CO2 and ELEC. 

5.8. The cumulative sum (CUSUM) test 

The cumulative sum (CUSUM) is a stability analysis test that reveals 
the supremacy of long- and short-term parameters. If the graph of this 
test crosses the critical bounds (red lines), we may reject the hypothesis 
of misspecification of the empirical model (Shahbaz et al., 2012). 

Table 16 
Toda–Yamamoto Causality test.   

Chi-sq Prob.  Chi-sq Prob. 

ΔlnGDP–>
ΔlnCO2 

11.21033* 0.0008 ΔlnCO2–>
ΔlnGDP 

0.014844 0.9030 

ΔlnCPI–>
ΔlnCO2 

0.104320 0.7467 ΔlnCO2–>
ΔlnCPI 

0.183727 0.6682 

ΔlnELEC–>
ΔlnCO2 

0.805477 0.3695 ΔlnCO2–>
ΔlnELEC 

0.233759 0.6288 

Δ ENER–>
ΔlnCO2 

1.282560 0.2574 ΔlnCO2–> Δ 
ENER 

0.067642 0.795 

ΔlnGDP–>
ΔlnGHG 

2.558 0.4649 ΔlnGHG–>
ΔlnGDP 

5.029 0.170 

ΔlnCPI–>
ΔlnGHG 

3.821 0.282 ΔlnGHG–>
ΔlnCPI 

0.326307 0.5678 

ΔlnELEC–>
ΔlnGHG 

2.281 0.5161 ΔlnGHG–>
ΔlnELEC 

35.777* 0.000 

Δ ENER–>
ΔlnGHG 

3.457 0.326 ΔlnGHG–> Δ 
ENER 

139.3862* 0.000 

ΔlnGDP–>
ΔlnME 

601.553* 0000 ΔlnME–>
ΔlnGDP 

17.4511* 0.0006 

ΔlnCPI–>
ΔlnME 

48.002* 0.000 ΔlnME–>
ΔlnCPI 

41.7211* 0.000 

ΔlnELEC–>
ΔlnME 

192.425* 0.000 ΔlnME–>
ΔlnELEC 

1767.678* 0.000 

Δ ENER–>
ΔlnME 

107.495* 0.000 ΔlnME–> Δ 
ENER 

7.5274*** 0.0569 

ΔlnGDP–>
ΔlnNO 

477.053* 0.000 ΔlnNO–>
ΔlnGDP 

99.367* 0.000 

ΔlnCPI–>
ΔlnNO 

519.401* 0.000 ΔlnNO–>
ΔlnCPI 

23.4025* 0.000 

ΔlnELEC–>
ΔlnNO 

182.520* 0.000 ΔlnNO–>
ΔlnELEC 

58.355* 0.000 

Δ ENER–>
ΔlnNO 

497.654* 0.000 ΔlnNO–> Δ 
ENER 

2.71734 0.3766 

Note: * and *** show significance at 1% and 10% levels respectively. 

Table 17 
VECM cranger-causality analysis.   

Chi-sq Prob.  Chi-sq Prob. 

ΔlnGDP–>
ΔlnCO2 

0.196447 0.6576 ΔlnCO2–>
ΔlnGDP 

0.171449 0.6788 

ΔlnCPI–>
ΔlnCO2 

0.166898 0.6829 ΔlnCO2–>
ΔlnCPI 

0.157851 0.6911 

ΔlnELEC–>
ΔlnCO2 

0.235059 0.6278 ΔlnCO2–>
ΔlnELEC 

2.977281*** 0.0844 

ΔlnENER–>
ΔlnCO2 

0.848049 0.3571 ΔlnCO2–>
ΔlnENER 

2.274734 0.1315 

ΔlnGDP–>
ΔlnGHG 

7.538323 0.0054 ΔlnGHG–>
ΔlnGDP 

0.193018 0.6604 

ΔlnCPI–>
ΔlnGHG 

7.754302** 0.0303 ΔlnGHG–>
ΔlnCPI 

0.326307 0.5678 

ΔlnELEC–>
ΔlnGHG 

4.692768** 0.0014 ΔlnGHG–>
ΔlnELEC 

0.012261 0.9118 

ΔlnENER–>
ΔlnGHG 

10.18380* 0.0060 ΔlnGHG–>
ΔlnENER 

0.031283 0.8596 

ΔlnGDP–>
ΔlnME 

0.470113 0.4929 ΔlnME–>
ΔlnGDP 

0.503590 0.4779 

ΔlnCPI–>
ΔlnME 

0.023975 0.8769 ΔlnME–>
ΔlnCPI 

0.588699 0.4429 

ΔlnELEC–>
ΔlnME 

3.784971*** 0.0517 ΔlnME–>
ΔlnELEC 

0.013635 0.9070 

ΔlnENER–>
ΔlnME 

0.243587 0.6216 ΔlnME–>
ΔlnENER 

0.002258 0.9621 

ΔlnGDP–>
ΔlnNO 

0.195136 0.6587 ΔlnNO–>
ΔlnGDP 

0.030634 0.8611 

ΔlnCPI–>
ΔlnNO 

1.999195 0.1574 ΔlnNO–>
ΔlnCPI 

0.011271 0.9155 

ΔlnELEC–>
ΔlnNO 

0.590979 0.4420 ΔlnNO–>
ΔlnELEC 

0.063616 0.8009 

ΔlnENER–>
ΔlnNO 

14.88132* 0.0001 ΔlnNO–>
ΔlnENER 

0.781769 0.3766 

Note: *, ** and *** show significance at 1%, 5% and 10% levels respectively. 
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Figs. 8–11 display the CUSUM plots for the four models. These figures 
illustrate that the ARDL parameters in all the models are stable at the 5% 
significance level. The graphical plots of CUSUM examine the stability of 
the short- and long-term estimates over time. The figure indicates that 
the estimated coefficients lie between the upper and lower critical 
bounds at a 5% significance level. 

Comparing the outcomes of this research with the outcomes of other 
studies reveals the congruence and similarity with some findings and 
inconsistency with others. On the national scale, few studies investi
gated the factors that may degrade the environmental quality in Qatar. 

Salahuddin and Gow (2014) investigated the effects of energy con
sumption, financial development, economic growth, and foreign direct 
investment on environmental quality in the country. They conclude that 
energy consumption have an injurious long-term effects on the in
dicators of environmental quality, which aligns with the findings of this 
research. Mrabet and Alsamara (2017) examined the effect of energy 
use, real gross domestic product, the square of real gross domestic 
product, the trade openness, and the financial development on the CO2 
and ecological footprint. When we use the CO2 emissions, the found that 
there is a long-term relationship among the variables and that the 
inverted U-shaped hypothesis is not valid. Charfeddine (2017) also 
investigate the factors that contribute to environmental degradation in 
Qatar. The study used trade openness, economic growth, urbanization, 
and energy consumption as indicators of environmental degradation. 
They found that EKC hypothesis holds for the CO2 emissions under the 
condition of controlling for breaks and that the electricity consumption 
is negatively correlated to CO2 emissions and to Ecological Carbon 
Footprint. On the regional level, Zmami and Ben-Salha (2020) studied 
the environmental degradation in the GCC countries. They investigate 
the impact of energy consumption, foreign direct investments, urbani
zation, per capita GDP, and international trade on CO2 emissions. They 
conclude that energy consumption has a negative impact on environ
mental degradation and that energy consumption is the most variable 
that effect environmental degradation on the short-term. Magazzino 
(Magazzino) investigate the impact of energy use and economic growth 
on CO2 emissions in the Middle East countries. The study found a 
negative correlation between economic growth and CO2 emissions and a 
positive correlation between energy use and CO2 emissions. Salahuddin 
and Gow (El-Montasser and Ben-Salha, 2019) found a positive and sig
nificant relation between CO2 emissions and energy consumption as 
well as between energy consumption and economic growth in the GCC 
countries both in the short- and the long-run. They also found no sig
nificant relation between CO2 emissions and economic growth in this 
region. 

6. Conclusion and policy implications and recommendations 

The aim of this study was to examine the effects of economic growth, 
electricity consumption, energy consumption, and the crop production 
index on different types of GHG emissions, including CO2, methane, 
nitrogen oxide, and other types of GHG gases, using time series data for 
the State of Qatar between 1990 and 2019. The results from the ARDL 
technique illustrate that electricity consumption, energy consumption, 
and the crop production index have a positive and significant relation
ship in the long term. The VECM Cranger and Toda–Yamamoto causality 
tests identify different causality relationships between the variables. It is 
critical to understand the causal relationship (U-shaped or inverted U- 

Fig. 8. The plot of the cumulative sum of recursive residuals of the first 
model (lnCO2). 

Fig. 9. The plot of the cumulative sum of recursive residuals of the second 
model (lnGHG). 

Fig. 10. The plot of the cumulative sum of recursive residuals of the third 
model (lnME). 

Fig. 11. The plot of the cumulative sum of recursive residuals of the fourth 
model (lnNO). 
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shaped) between the variables considered in this study to formulate 
effective environmental policies and strategies to reduce environmental 
degradation in the country. Several key policy implications can be 
derived from the findings of this research to sustain environmental 
quality in Qatar. The existence of an inverted U-shape between GDP and 
CO2, ME, and GHGs indicates that Qatar’s policy to reduce GHG emis
sions must continue to consider environmental factors. This negative 
relationship implies that the high economic growth achieved thus far in 
the country is insufficient to achieve a sustainable reduction in per 
capita GHG emissions. This further implies that Qatar may witness a 
sustainable increase in GHG emissions in the long term but with a high 
cost associated with the negative externalities on the economy. Never
theless, since the 2000s, Qatar has started a significant long-term eco
nomic development diversification plan aimed at diversifying its 
economy by involving more sectors, such as the industrial and service 
sectors, rather than depending on the oil and natural gas sector alone. 

These findings illustrate the challenges for Qatar in pursuing an 
energy conservation policy in the time of enormous growing energy 
demand in the country and globally. Qatar depends on fossil fuel sources 
to generate its growing needs from electricity; hence, there is a need for 
the country to seek alternative sources of electricity generation, such as 
renewable energy sources associated with electricity generation effi
ciency, other potential mitigation measures, and additional resources 
and logistics to reduce the GHG emissions in the country. 

The findings of this study are relevant to energy and environmental 
experts and policymakers in Qatar. Energy and electricity production 
and consumption are the main contributors to GHG emissions. The 
electricity in Qatar is highly subsidized, which encourages massive and 
sprawling consumption, as well as wasting electricity, and is considered 
a substantial handicap to improving energy efficiency and reducing 
energy use. Therefore, the country needs to increase its efforts to 
rationalize its electricity consumption to reduce the social and envi
ronmental costs of a highly subsidized policy. In this sense, achieving 
electricity use efficiency is essential for reducing consumption and, 
hence, emissions from this sector. 

The authorities must promote and rely more on renewable energy 
sources as clean and green alternatives to traditional energy sources. 
Qatar is exceptionally rich in renewable resources owing to its 
geographical location and the abundant natural resources available to 
generate electricity, such as solar and wind resources, which can 
significantly help improve the quality of the environment. The country is 
characterized by its high average daily irradiation and ambient tem
peratures and is rated excellent in terms of solar energy. Qatar can also 
accelerate the development of a cleaner energy sector to sustain long- 
term economic growth and environmental protection, as well as 
reduce the amount of GHGs emitted from oil and gas production. Water- 
and electricity-subsidized tariff systems should be revised, because they 
are a considerable obstacle to promoting renewable energy. Therefore, 
the country should follow a comprehensive strategy that encourages 
investments in environmentally friendly ecosystems and innovative 
planning in a green economy. 

Key policies may include encouraging technological innovation and 
development as well as further investments in research and development 
on developing low-carbon technologies and renewable sources of en
ergy, which could be useful in reducing GHG emissions without any 
detrimental effects on Qatar’s economic growth. Furthermore, the 
transport sector in the country has expanded rapidly over the last 
decade, driven by population growth, rapid urbanization, and the 
preparation for the FIFA 2022 World Cup; therefore, this sector is 
responsible for a substantial proportion of emissions. However, emis
sions from this sector cannot be eliminated for countries where cars are 
essential for commuting, particularly in hot weather. Qatari policy
makers aimed to spread awareness among the Qatari population 
regarding the negative effects of environmental degradation on the 
Qatari economy, quality of life, and health. Therefore, there is a need to 
conduct additional campaigns to increase awareness. 

The heavy reliance on the conventional sources of energy in the 
country results in increasing economic and environmental costs (Char
feddine et al., 2018). Therefore, as part of its vision statement, Qatar 
consider the environmental objectives and the promotion of environ
mental stewardship and alternative sources of energy as one of its top 
priorities. The country has the opportunity to reduce carbon emissions 
and develop strategies and technologies that can play a major part in 
achieving global emissions-reduction targets without a major structural 
change to its economy. These opportunities mainly depend on improved 
management systems in using renewable energy, adoption new tech
nologies, and the shift to zero-carbon energy systems. Through the 
transition to zero-carbon energy technologies and systems, Qatar has the 
ability to apply best practice in energy efficiency, reduce its 
carbon-emission profile at low net cost, and to serve as a platform for 
global development of zero-carbon energy technologies. Despite the 
increase on energy demand in Qatar, the country is working on reducing 
its carbon emission. This ambition gives the country the desire to adapt 
and develop new energy technologies and strategies that will provide a 
source of long-term economic growth. Therefore, the development of 
policies that encourage the transformation to and integration of 
zero-carbon energy systems and technologies enable Qatar to meet its 
own economic and environmental objectives and stay at the center of 
energy economy. However, the transition toward zero-carbon emissions 
is a very challenging issue since it involves the interaction between a 
large set of factors affecting both energy demand side and supply side. 
The identification and analysis of these factors is particularly important 
because the transition to zero-carbon emissions cannot be implemented 
through large and centralized zero-carbon energy projects. 

Qatar is also testing the idea of sustainable communities – The 
Msheireb Downtown Doha district is under construction to be fitted with 
solar panels, solar water heaters and overhangs designed to shade the 
surrounding sidewalks. While these pioneering initiatives are encour
aging, the problem of zero-carbon transition remains very challenging 
and requiring transformational changes at larger societal levels. Except 
for few, these projects focus on capacity building of clean energy pro
duction, including community level shared energy assets. The Stock
holm project seems to be the only which is taking a more comprehensive 
and integrated approach, e.g., managing waste, Electric Vehicles (EVs) 
and energy all together. There are a number of commonly made as
sumptions that can potentially distort results and outcomes for typical 
large-scale projects. The usual cost and benefit models relay on sta
tionary data on technology and demand without much provisions for 
drastic behavioral, demand or other external changes. Furthermore, a 
common assumption for lifecycle assessment is that the installed system 
will be used at around its optimal operational parameter. For example, a 
smart building design will always stay smart irrespective of how its 
occupants behave or use it. Furthermore, in many of the existing ini
tiatives, year 2050 targets are set to 50% or slightly more renewable 
energy production at city levels. It is not clear how these projects tend to 
deal with the Demand Side Management (DSM) and changing social 
landscape over time. Neither it is clear how these projects take into 
account carbon footprints from other sectors of the economy. 
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