
QATAR UNIVERSTIY

COLLEGE OF ENGINEERING

SAFETY AWARE VEHICLE ROUTING ALGORITHM,

A WEIGHTED SUM APPROACH

BY

RADWAN NIZAM

A Thesis Submitted to

the Faculty of the College of

Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computing

June 2017

© 2017 Radwan Nizam. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of Radwan Nizam defended on

06/01/2017

Prof.Abbes Amira

Thesis Supervisor

Dr.Khaled Shaban

Committee Member

Dr.Khaled Khan

Committee Member

Dr. Fatih Mutlu

Committee Chair

Approved:

Khalifa Al Khalifa, Dean of College of Engineering

iii

ABSTRACT

NIZAM, RADWAN, FAISAL, Masters

June:2017, Master of Science in Computing

Title: Safety Aware Vehicle Routing Algorithm, a Weighted Sum Approach

Supervisor of Thesis: Prof. Abbes, Amira

Driving is an essential part of work life for many people. Although driving can

be enjoyable and pleasant, it can also be stressful and dangerous. Many people around

the world are killed or seriously injured while driving. According to the World Health

Organization (WHO), about 1.25 million people die each year as a result of road

traffic crashes. Road traffic injuries are also the leading cause of death among young

people. To prevent traffic injuries, governments must address road safety issues, an

endeavor that requires involvement from multiple sectors (transport, police, health,

education). Effective intervention should include designing safer infrastructure and

incorporating road safety features into land-use and transport planning.

The aim of this research is to design an algorithm to help drivers find the

safest path between two locations. Such an algorithm can be used to find the safest

path for a school bus travelling between bus stops, a heavy truck carrying

inflammable materials, poison gas, or explosive cargo, or any driver who wants to

avoid roads with higher numbers of accidents. In these applications, a path is safe if

the danger factor on either side of the path is no more than a given upper bound. Since

travel time is another important consideration for all drivers, the suggested algorithm

utilizes traffic data to consider travel time when searching for the safest route. The

key achievements of the work presented in this thesis are summarized as follows.

Defining the Safest and Quickest Path Problem (SQPP), in which the goal is to find a

iv

short and low-risk path between two locations in a road network at a given point of

time. Current methods for representing road networks, travel times and safety level

were investigated. Two approaches to defining road safety level were identified, and

some methods in each approach were presented. An intensive review of traffic routing

algorithms was conducted to identify the most well-known algorithms. An empirical

study was also conducted to evaluate the performance of some routing algorithms,

using metrics such as scalability and computation time. This research approaches the

SQPP problem as a bi-objective Shortest Path Problem (SPP), for which the proposed

Safety Aware Algorithm (SAA) aims to output one quickest and safest route. The

experiments using this algorithm demonstrate its efficacy and practical applicability.

v

ACKNOWLEDGMENTS

I would like to convey my heartfelt gratitude and sincere appreciation to all people

who have helped and inspired me throughout the completion of this research.

First and foremost, I am grateful to my supervisor Prof. Abbes Amira, for the

continued support during this research, for his patience, motivation and enthusiasm.

His guidance helped me in all the time of research and writing of this thesis, and he

still is my reference in self-confidence, perseverance, hard work, and organization.

In addition, I am indebted to Dr. Fethi Filali and Dr. Elyes Ben Hamida from

Qatar Mobility Innovation Center (QMIC) for their help and support. My thanks are

also due to Dr. Mohamed Bin Mokhtar Kharbeche from Qatar Transportation and

Traffic Safety Studies Center to the data he provided for this work.

Finally, I would like to thank my family who have supported me throughout

my whole study, and who tolerated my extremely busy schedule which sometimes

prevented me from spending time with them even at the weekends. My deepest

gratitude goes especially to my wife; completing my thesis would not have been

possible without her unfaltering and continuous support.

vi

TABLE OF CONTENTS

Acknowledgments.. v

List of Figures .. x

List of Tables ..xii

List of Algorithms .. xiii

List of Abbreviations ...xiv

1 Introduction ... 1

1.1 Roads Safety.. 3

1.2 Quickest Route .. 5

1.3 Motivation ... 6

1.4 Problem Statement .. 8

1.4.1 Time Dependent Graph Example... 10

1.5 Research Objectives .. 11

1.6 Research Contributions ... 12

2 Related work ... 14

2.1 Shortest Path Problem Using Static Graphs .. 14

2.2 TDSPP Problem .. 20

2.2.1 Finding Best Departure Time to Reduce Travel Time........................... 21

2.3 Safety Aware Algorithms and Approaches ... 22

2.4 Quickest path problem using V2V communicatoins..................................... 26

vii

2.5 Strategies for solving the Bi-criteria Shortest Path Problem......................... 29

2.5.1 Scalarization Technique ... 29

2.5.2 Biobjective label correcting ... 33

2.5.3 Two phase method ... 36

2.5.4 Genetic-algorithm based approach... 38

2.5.5 Conclusion ... 41

3 Formal Definition .. 41

3.1 Optimal Path Definition .. 41

3.2 Quick Path Problem .. 42

3.3 Safest Path Problem .. 44

3.4 The Safest and Quickest Path Problem ... 44

4 Research Methodology.. 47

4.1 Algorithms Performance Evaluation Metrics.. 48

4.2 Safety Level Definition ... 48

5 Algorithms... 49

5.1 Dijkstra Algorithm .. 49

5.2 A* Algorithm .. 50

5.2.1 Critical Analysis for the Heuristic Function .. 52

5.3 Quickest Path Algorithm ... 53

5.4 Quickest Path Algorithm – Heuristic .. 54

viii

5.5 Safety Aware Algorithm ... 56

6 Traffic Simulation ... 58

6.1 Overview ... 58

6.2 SUMO ... 58

6.3 When to use SUMO?... 59

6.4 Simulation Results in SUMO .. 60

6.5 SUMO Road Network Definition ... 60

6.5.1 Network Format ... 60

6.5.2 Coordinates and Alignment ... 61

6.5.3 Edges and Lanes... 62

6.5.4 Traffic Light Program .. 62

6.5.5 Junctions... 62

6.5.6 Plain Connections .. 62

6.6 Vehicle Interaction .. 62

6.7 Vehicle Configuration Parameters .. 63

7 Experiments... 64

7.1 Obtaining Road Networks ... 64

7.2 Parsing and Loading Road Networks.. 65

7.3 Algorithms Performantce Evaluation .. 65

7.4 Maps with Different Scalability Levels .. 65

ix

7.4.1 Road Length ... 68

7.4.2 Performance Analysis .. 69

7.5 Verifying SAA Routes .. 81

7.5.1 Approach .. 81

7.5.2 Details .. 81

8 Conclusions ... 88

9 Future Work .. 89

References .. 90

Appendix A: Algorithms.. 98

Appendix B: SUMO Utilities.. 106

x

LIST OF FIGURES

Figure 1 – Trends in Reported Road Traffic Deaths in Qatar [2] 1

Figure 2 - Area in Doha ... 9

Figure 3 – Area in Doha Represented Using a Graph ... 9

Figure 4 - Time-Based Graph 𝑮𝒕(𝑽, 𝑬,𝑾).. 10

Figure 5 – Computation Time in Center Area in [15] ... 16

Figure 6 – Computation Time in Suburban Area [15] ... 16

Figure 7 – Computation Time in Remote Area [15] .. 17

Figure 8 – Road Network as Dual Graph [22] ... 18

Figure 9 –Example of Network for Timebase Dynamic Weight Dijkstra Algorithm

[23] ... 19

Figure 10 – Solution Space in [27] .. 23

Figure 11 – Example of a Pareto curve [36] .. 31

Figure 12 - Example of weak and strict Pareto optimum [36]..................................... 31

Figure 13 – Ditchotomic method, first iteration [41]... 37

Figure 14 – Dichotomic method, second iteration [41] ... 37

Figure 15 – Road Network [42] ... 38

Figure 16 – Chromosome Representation [42] .. 39

Figure 17 - Initial population composition [42]... 39

Figure 18 – Example of crossover ... 40

Figure 19 – Manhattan Distance .. 55

Figure 20 – Road Network in SUMO .. 61

Figure 21 – Doha - Center Area... 66

file:///C:/donotbackup/GoogleDrive/Master/Thesis/RoutingAlgorithms/MasterThesis/RadwanNizam-201405546-Thesis.docx%23_Toc476724639

xi

Figure 22 – Doha - Remote Area ... 66

Figure 23 – Doha Map ... 67

Figure 24 – Glasgow Map.. 67

Figure 25 – Four Routes in Central Area ... 68

Figure 26 – Four Routes in Remote Area .. 69

Figure 27 – The Generted Routes in Central Area .. 70

Figure 28 – The Generted Routes in Remote Area .. 72

Figure 29 – The Generated Routes in Doha Map .. 74

Figure 30 - The Generated Routes in Glasgow Map ... 76

Figure 31 – Algorithms Computation Time in Central Area 78

Figure 32 - Algorithms Computation Time in Remote Area 78

Figure 33 - Algorithms Computation Time in Doha ... 79

Figure 34 - Algorithms Computation Time in Glasgow .. 79

Figure 33 – Safety Aware Experiment – Central Area - Route1 82

Figure 34 – Safety Aware Experiment – Central Area - Route2 83

Figure 35 – Safety Aware Experiment – Central Area - Route3 83

Figure 36 – Safety Aware Experiment – Central Area - Route4 84

Figure 39 – Safety Aware Experiment – Doha - Route1 ... 86

Figure 40 – Safety Aware Experiment – Doha – Route2 .. 86

Figure 41 - Safety Aware Experiment – Doha – Route3 ... 87

Figure 37 – OSM – Central Area ... 106

xii

LIST OF TABLES

Table 1- Time Based Graph Example – Routes... 11

Table 2 - Summary of Some Routing Algorithms ... 27

Table 3 - Routes with Different Risk Factors .. 46

Table 4 - Number of junctions and roads in the maps ... 68

Table 5 - Trips Duration and Length in Central Area.. 69

Table 6- Trips Duration and Length in Remote Area .. 71

Table 7 - Trips Duration and Length in Doha.. 73

Table 8 - Trips Duration and Length in Glasgow .. 75

Table 9 - QPHA Versions .. 77

Table 10- Safety Aware Experiment – Central Area - Routes Information 84

Table 11- Safety Aware Experiment – Doha – Routes Information............................ 87

xiii

LIST OF ALGORITHMS

Algorithm 1 - Label-Setting (Dijkstra's) Algorithm .. 21

Algorithm 2 - Biobjective Label Correcting .. 36

Algorithm 2 - Dijkstra.. 50

Algorithm 3 - A*... 52

Algorithm 4 – QPA .. 54

Algorithm 5 - QPHA.. 56

Algorithm 6 - SAA.. 57

xiv

LIST OF ABBREVIATIONS

∞ Travel Time Weighting Factor

DA Dijkstra Algorithm

iRAP

International Road Assessment Program

NRSS National Road Safety Strategy

OSM

OpenStreetMap

QPA Quickest Path Algorithm

QPHA Quickest Path Algorithm – Heuristic

QPP Quickest Path Problem

QTTSC Traffic Safety Center

RSA

Road Safety Assessment

SAA Safety Aware Algorithm

SFPP Safest Path Problem

SP Safest Path

SPP Shortest Path Problem

SQPP Safest and Quickest Path Problem

SUMO

Simulation of Urban Mobility – Traffic Simulator

TDSPP Time-Dependent Shortest Path Problem

TraCI Traffic Control Interface

UNGA United Nations General Assembly

WHO

World Health Organization

xv

WHO World Health Organization

𝛽 Safety Level Weighting Factor

1

1 INTRODUCTION

Car ownership is increasing annually in many countries [1]. Although cars

increase convenience for people, they also contribute to increasing traffic congestion

and road accidents, which result in public demand for road safety solutions

worldwide. The transportation sector in Doha, for example, is rapidly growing, and

the country’s research priorities include mitigating road accidents. These research

initiatives led to a significant drop in the number of road traffic deaths between 2010

and 2011 [2], as shown in Figure 1.

Figure 1 – Trends in Reported Road Traffic Deaths in Qatar [2]

According to The Global Status Report on Road Safety 2015 [2], the number

of road traffic crashes has steadily declined in recent years, despite the growing

number of registered vehicles in Qatar. Nonetheless, over 200 people are still killed

every year due to traffic accidents, of which 34% are drivers, 38% passengers, 28%

pedestrians and 90% men. To address the problem of road accidents, Qatar has

2

adopted a number of key road safety practices, such as a demerit/penalty point

system, national speed limits and a seat belt law.

The safe routing of vehicles has become a broad area of research. Nowadays,

there are many applications for routing based on travel time and safety. Individuals,

industries and businesses that are reliant on driving (such as logistics and distribution

and taxi drivers) could all benefit from a routing system designed to find the shortest,

safest route. Optimal vehicle routing is generally provided through applications that

apply variables such as distance, historic traffic data and real-time traffic data to

calculate the efficient route between two locations in a road network. Currently, there

are many free vehicle routing services, such as Google Maps and OpenStreetMaps

(OSM), that provide optimal vehicle routing solutions but do not consider safety

factors.

This work defines the problem SQPP, a bi-objective shortest path problem in

which the goal is to minimize both travel time and risk of the route. To achieve this,

the road network is imported from OSM and converted to a digital network using the

traffic simulator Simulation of Urban Mobility (SUMO). Both the travel time and the

safety level for each road are stored in the digital network. This work proposed the

algorithm SAA to find the quickest and safest route between two locations in the

network.

3

1.1 Roads Safety

To calculate the relative risk of travelling on a route, the risk must be

quantified and aggregated across every segment in the route. In this research, the risk

of travelling on a specific road is referred to as road safety level, which can be

estimated using reactive and proactive approaches.

To calculate the relative risk of travelling on a route, the risk must be

quantified and aggregated across every segment in the route. The risk of travelling on

a specific road is referred to as road safety level, which can be estimated using

reactive and proactive approaches. A reactive approach to road safety involves the

identification of locations experiencing safety problems, while a proactive approach

emphasizes the prevention of safety problems before they manifest themselves in

patterns of crash occurrences [3].

A reactive approach to road safety is based on the analysis of existing crash

data. For example, data mining techniques can be used to identify certain road

accident features associated with high frequency of accidents on a road [4]. A reactive

approach identifies safety problems and proposes a set of improvements to optimize

the safety level of the road. The reactive approach has some limitations: (1) it requires

the identification of high crash locations before suggesting improvement plans, and

(2) since improvement plans are implemented on a road already built and open to the

public, the cost of the improvements is very high. The reactive approach to road

safety is a core component of the safety management system, as it is a powerful tool

for addressing existing safety problems.

4

A proactive approach focuses on the evolving Science of Safety. For example,

regression algorithms can be used to predict the safety performance of the roads [5].

These algorithms explain crash performance based on physical and operational

variables such as intersection form and traffic volume. A proactive approach can be

applied in the road design process or used to suggest improvement plans on existing

roads to diminish the risk of crashes prior to their reconstruction. Advantages of a

proactive approach include that it: (1) prevents car accidents as it does not rely on

existing crash data, and (2) avoids extra costs for implementing an improvement plan

on a road currently open to the public.

This research follows a proactive approach, in which the road safety level is

determined through RSAs [6]. RSA is a formal assessment of the safety performance

of an existing or planned road segment or intersection. An RSA can be performed

during any or all stages of a project; it can be a tool for public agencies to improve

road safety levels. This study uses the safety model of iRAP [7]. iRAP is a registered

charity dedicated to preventing the more than 3,500 road deaths that occur every

day worldwide. The activities of this charity include inspecting high-risk

roads, developing Star Ratings assessments based on road inspection data and

providing a simple and objective measure of safety levels inherent in the roads for

vehicle occupants, motorcyclists, bicyclists and pedestrians. Five-star roads are the

safest, while one-star roads are the least safe. In Qatar, the Public Works Authority

‘Ashghal’ signed a memorandum of understanding (MoU) with iRAP [8] to adopt and

implement iRAP’s road safety standards to evaluate roads. This effort aims to raise

the safety levels on the roads to a three star minimum; hence, the result of the

assessment can be applied to this work in the future.

http://www.irap.net/index.php/about-irap-2/safety-inspections
http://www.irap.net/index.php/about-irap-2/safety-inspections

5

1.2 Quickest Route

The SPP problem that involves positive and static edge weights is one of the

most studied problems in graph theory. In the context of vehicular transportation,

since the length of the roads is positive, the proposed algorithms can be used to

generate the shortest path between two locations in the network, and by using the

travel time on the roads as a weighting function, it is possible to generate the quickest

route between locations. In reality, however, road networks tend to have different

flow speeds at various times due to reasons such as accidents, rush hours and weather.

Hence, the generated route at a given time may not be optimal upon considering

predictable future changes. Two approaches are used to tackle this issue: (1) as the

traffic situation may change from time to time, the quickest path is re-computed when

the vehicle reaches an intersection. This recalculation should verify whether the

current route is still the optimal one [9]. (2) Another approach is called the Time-

Dependent Shortest Path Problem (TDSPP), in which flow speed on the road changes

with time in a predictable fashion. The problem initially dates back to 1966, when it

was first proposed in discrete time by Cooke and Halsey [10]. TDSPP assumes that

the travel time along each arc is a function of the departure time along the arc and that

all such functions are known in advance over all values of time.

6

1.3 Motivation

Road crashes have enormous health and economic impact in Qatar [11]. Road

crashes also significantly impact local communities and society as a whole through

infrastructure repair costs, lost output, traffic delays and the demand on police and

medical resources. The National Road Safety Strategy (NRSS) 2013-2022 was built to

reduce the human suffering inflicted by road traffic crashes, with an ambitious long-

term vision of developing “a safe road transport system that protects all road users

from death and serious injury.”

Globally, in response to the large impact of road crashes around the world, the

United Nations General Assembly (UNGA) proclaimed the period 2011–2020 as the

United Nations Global Decade of Action for Road Safety. The Decade of Action was

launched on 11 May 2011 with the goal of stabilizing and then reducing the

forecasted level of global road fatalities by 2020 through increasing activities

conducted at national, regional and global levels. In response to this initiative, Qatar’s

Road Safety Strategy has developed a safety system in accordance with the principles

of the framework defined by the Decade of Action. The system helps identify eight

key areas of concern for priority action in Qatar. One key area is road design, which

can contribute significantly to the number and severity of crashes. For example, many

roads in Qatar are divided using a median, but there are often no crash barriers to

prevent vehicles from crossing over the median and striking opposing traffic.

Intersections in Qatar also vary in suitability for the roads where they are located.

The large incidence of road accidents in Qatar has prompted research centers

in Qatar to contribute to the national strategy, providing approaches to significantly

reduce road accidents and building Intelligent Transportation Systems. The Qatar

7

Transportation and Traffic Safety Center (QTTSC) studies patterns of accidents,

factors that contribute to road accidents and drivers' attributes and makes

recommendations for approaches to improved road safety. Qatar Mobility Innovations

Center (QMIC) uses its platform Masarak to provide real-time and historic traffic

information, incident detection and traffic prediction, utilizing real-time traffic

information to provide intelligent trip planning and other functions.

Prioritization of transportation safety in Qatar and the ongoing work of

research centers have produced accurate data such as traffic data, travel time

estimation, road safety levels and number of accidents on the roads. This body of

traffic and safety data has prompted the creation of solutions for generating safe and

quick routes for car travel in Qatar. Such solutions, which help people avoid risky

roads and thereby reduce the number of road accidents, can be used in various

scenarios. The solution can be used to build a routing service, a core function of any

Intelligent Transportation System, and an on-board routing system, in which traffic

data and safety data are collected using connected-vehicles technology that allows

vehicles to exchange information about traffic jams and road accidents. Social media

platforms, such as Twitter, are other sources of information about traffic jams and

road accidents. Integrating these platforms with the proposed systems would lead to

more optimal solutions.

8

1.4 Problem Statement

The problem here is to find the quickest and safest route between two locations

in a road network, at a specified departure time and an accepted safety level. In this

work, the problem is called the Safest and Quickest Path Problem (SQPP). The SQPP

is decomposed into three problems that are, (1) finding the quickest route only when

any safety level is accepted. (2) finding the safest route, when targeting the highest

safety level. (3) finding the route that combine both the safety and the travel time.

It is clear that SQPP is similar to the SPP, in both problems; the objective is to

find the optimal solution based on a specified condition. SPP was addressed by many

algorithms, Dijkstra Algorithm (DA) [12] and A* [13] were proposed by many

researches as good solutions to find the shortest route in a real road network [14] [15],

and by using the travel time on the road as a weighting function, the algorithms

generate the quickest route.

As mentioned earlier, travel time in transportation networks could vary over

time, hence, the required time to travel on a road, depends on the entry time of that

road. This problem is known as TDSPP, which already heavily studied by many

researches [16] [10] [17] [18]. To tackle TDSPP a road network is represented as a

time-based graph, the junctions of the roads represent the nodes of the graph and the

road segments represent the edges between the nodes, and the travel time between two

nodes at a specified departure time, is given using a time-based function, also an

adapted version of Dijkstra algorithm is used to find the dynamic shortest path, this

approach is implemented and evaluated by many works in the literature like [18] and

9

[19] . Figure 2 shows an area in Doha and Figure 3 shows the graph used to represent

that area, the black circles and lines represents nodes and edges.

Figure 2 - Area in Doha

Figure 3 – Area in Doha Represented Using a Graph

As mentioned, in a time-based graph, the travel time between two nodes at a

specified departure time, is given using a time-based function, by adapting this

10

function to return the travel time or the safety level, the sub-problems (1) and (2) can

be tackled. The third sub-problem, is a bi-criteria optimization problem, where the

goal is to minimize both the travel time as well as the risk of the route, to tackle this

problem, the solution comes up with an equation to combine the two objectives in a

single one.

1.4.1 Time Dependent Graph Example

Figure 4 shows a road network modelled as a time-dependent graph

𝐺𝑡 (𝑉, 𝐸, 𝑊), figure (a) shows its graph (𝑉, 𝐸) with four nodes and five edges. The

edge-delay functions for the edges (v1, v2),(v2, v3),(v1, v3),(v2, v4) and(v3,v4),

are shown in figures (b), (c), (d), (e) and (f) respectively. Table 1 shows the possible

solutions to travel from 𝑣1 to 𝑣4 at 𝑡1 = 10 and 2 = 50 . According to the travel

times, P2 is the best solution to reach 𝑣4 when a driver left 𝑣1 at 𝑡1 and 𝑡2.

 Figure 4 - Time-Based Graph 𝑮𝒕(𝑽,𝑬, 𝑾)

11

Table 1- Time Based Graph Example – Routes

Time Solution Travel Time

𝒕𝟏 = 𝟏𝟎 P1 = {v1,v2}, {v2, v3} , { v3, v4} 80

 P2 = {v1,v2}, {v2, v4} 30

 P3 = {v1, v3}, {v3, v4} 50

𝒕𝟐 = 𝟓𝟎 P1 = {v1,v2}, {v2, v3} , { v3, v4} 100

 P2 = {v1,v2}, {v2, v4} 30

 P3 = {v1, v3}, {v3, v4} 40

1.5 Research Objectives

The overall research aim in this dissertation is to develop an algorithm to

provide the quickest and safest route between two points at a given time. Hence the

main objectives of this thesis can be summarized as follows:

 Carry out a thorough literature review about different existing routing algorithms;

 Evaluate and analyze the available methods used for road networks representation;

 Perform an empirical study for A* and Dijkstra based routing algorithms using

different performance metrics such as scalability, computation time and

complexity;

 Design and implementation of a modified version of A* and Dijkstra algorithms

using time-dependent graph to find the quickest route;

 Design and implementation of a hybrid technique for safety aware routing using

both the length and risk of the path; and

 Develop a framework for validating the proposed safety aware routing algorithms

using SUMO platform;

12

1.6 Research Contributions

The major contribution of this work is SAA algorithm which can find the

optimal path in the following cases:

 The quickest route with no consideration to safety level.

 The safest route with no consideration to travel time.

 The safest and quickest route where the minimum safety level is provided as an

input parameter.

The proposed algorithm can be used to build safety aware routing services in

Qatar. Such services can be used by the public to find safe routes for normal cars, or

heavy truck carrying poison gas, inflammable materials, or petrol, and traveling in a

city.

For representing road networks, two methods were identified for this purpose.

The first method uses directed graph, while the second one uses time-based graph,

which makes the second one a good option to get the accurate travel time between

two nodes at a specified time. In terms of risk assessment and quantifying risks, the

used methods and techniques are divided into two approaches, reactive and proactive.

As the proposed algorithm deals with the safety level on the road, the outcome in any

of these methods and techniques can be used as an input for the proposed algorithm.

In the conducted experiments, as there is no available roads’ safety level for Qatar

road networks, random values were generated and assigned to the roads. In the area of

shortest path algorithms, an intensive review of the related work for finding the

shortest path and quickest path was conducted; the objective was to identify the

known algorithms in this area, taking into consideration two factors that are, the

computation time, and the possibility to consider different factors when finding the

13

streets in the whole route. Also, two routing algorithms, to find the quickest path,

were implemented using different approaches. Furthermore, to solve the SQPP

problem, the work reviewed different strategies for solving the problem, and suggests

an approach that gives the optimal solution by combining the two objectives, the

safety and the travel time. For traffic simulation and route verification, a

parameterized integration between the proposed algorithm and the simulation

environment was implemented. The integration allows to conduct a benchmark for

some routing algorithms, and to verify the output of the proposed algorithm using

different parameters.

14

2 RELATED WORK

In this study, the shortest path problem in a time dependent network and the

road safety estimation are two major concerns. The ultimate aim of this chapter is to

provide a summary of related work in three areas:

1. Shortest path problem using static graphs

2. Shortest path problem using time-dependent graphs.

3. Safety aware algorithms and approaches to quantitative road safety level.

4. Quickest path problem using V2V communications

5. Strategies for solving the Bi-criteria Shortest Path Problem

2.1 Shortest Path Problem Using Static Graphs

SPP problem have significant practical implications in different areas like

computer science and vehicle routing. Classical SPP problems with fixed arc lengths

have been studied intensively, resulting in the development of a number of efficient

algorithms [17]. Among the developed algorithms, Dijkstra Algorithm (DA) is one of

the most used algorithms in the literature because of the good performance of this

algorithm [14] [15] [20]. In the following, an overview of some works that evaluated

the performance of DA, also some DA variations are included in this section.

In [14]. The performance of 15 routing algorithms was evaluated using real

road networks. Three shortest path algorithms that run quickest on real road networks

were identified. These algorithms are 1) the graph growth algorithm implemented

with two queues, 2) the DA implemented with approximate buckets, and 3) the DA

algorithm implemented with double buckets. The study recommends DA to obtain a

15

one-to-one shortest path because it can be terminated as soon as the shortest path

distance to the destination node is obtained.

The work in [15] has evaluated the performance of DA and A* algorithm. A*

algorithm is a popular extension of DA that reduces the number of visited nodes when

finding a shortest path, if additional information is available that provides a lower

bound on the ‘distance’ to the target. Also, the work evaluated two variant algorithms,

that are Dynamic DA, and Dynamic A* algorithm that find the fastest routes. A* use

the Euclidean distance between the source node and the target node as a lower bound

to travel between the two locations, the distance is calculated when the algorithm

selects a new node in the graph. The lower bound in Dynamic A* is the actual time

required to reach the destination, the lower bounds are calculated periodically by

static all-to-all DA and the results are stored in memory. The work evaluated the

performance of the four algorithms in different network size (center has 4025 nodes,

suburban has 2597 nodes and remote has 1810 nodes) and different trip length (2km,

4km, 6km, 8km and 10km). As shown in Figure 5, Figure 6 and Figure 7 the

computation time for all the algorithms is proportional to the scenario scalability level

as well as the trip length. In general, it is clear that the A* and Dynamic A*

outperforms DA and its variant due to the heuristic approach of A*. Also, Dynamic

A* performs better than A* because the statas the latter needs to calculate the lower

bound during its execution while Dynamic A* just loads the lower bound it needs into

the memory. As a result, DA is recommended to find the shortest route in the remote

areas due to its low complexity and good performance in terms of computation time,

DA is recommended in the central and suburban areas for short trips (i.e. ≤ 4km), and

A* is recommended in the central and suburban areas for long trips (i.e. ≥ 6km).

16

Figure 5 – Computation Time in Center Area in [15]

Figure 6 – Computation Time in Suburban Area [15]

0

1
2

3
4

5
6

7

8
9

10 8 6 4 2

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (s
e

co
n

d
)

Trip Length (KM)

Dynamic A* Static A*

Dynamic Dijkstra's Algorithm Static Dijkstra's Algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

10 8 6 4 2

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (s
e

co
n

d
)

Trip Length (KM)

Dynamic A* Static A*

Dynamic Dijkstra's Algorithm Static Dijkstra's Algorithm

17

Figure 7 – Computation Time in Remote Area [15]

The performance of DA is a problem of interest for many researchers, F.

Benjamen [20] mentioned that the performance of the shortest path algorithm, that

follow the labeling method, depends on the strategy used to select the next node to be

scanned, and the used data structure to maintain the set of unlabeled nodes. For the

first aspect, the commonly used strategies are FIFO, LIFO and Best-First-Search. For

the next aspect, the data structures include buckets, linked lists and priority queues

like Fibonacci heaps.

In [21] DA was used to provide the optimal route, the weight function in this

work considers road length, traffic congestion and road quality to find the optimal

path. Each of these factors has a nonnegative weight coefficient between zero and one

which allow giving different priorities for those factors.

In the area of cargo route planning, in [22] the work suggests an algorithm to

find the shortest path for oversized cargo transportation, the suggested algorithm

considers the cost of directions at road intersection, those directions are turning left,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 8 6 4 2

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (s
e

co
n

d
)

Trip Length (KM)

Dynamic A* Static A* Dynamic Dijkstra's Algorithm Static Dijkstra's Algorithm

18

going straight, turning right, and turning back. The algorithm uses a dual graph to

describe the steering relationship and restrictions between adjacent roads; in dual

graph, the original edge of the road map (which is the road on which trucks drive

before making a turn) becomes a node, and the turning direction in the original road

map is represented by an edge. As shown in Figure 8, edge de in the auxiliary network

based on road corners stores not only the weight value of the turn from road ab to

road bc, but also the weight value of the turn from road bc to road ab. They are both

functional values related to the value of the turn angle. Meanwhile, the auxiliary arc in

the auxiliary network based on road corners also stores the real distance covered by

the trucks.

Figure 8 – Road Network as Dual Graph [22]

The nodes in the dual graph contain information about the corresponded edges

in the road map such as the cost of passing that edge. Also the edge in the dual graph

contains information about the cost of going from the original edge of the destination

edge or vice versa. DA is used to find the shortest path between two nodes in the dual

graph.

In [23] in order to provide an optimal route during the trip, the work propose a

dynamic traffic factor based on time function, which is implemented to the Dijkstra

algorithm calculation, Figure 9 shows an example of network for time base dynamic

19

weight DA . To implement the dynamic traffic factor based on time, a traffic profile

for each road is maintained, the profile describes how much time is needed to pass the

road at a specified time. The traffic profile can be made different between different

conditions like workdays, weekend or holiday. The limitation in this algorithm is that

the algorithm calculates the travel time on all edges in a single point of time, it does

not consider the required time to travel between the edges of the selected route.

Figure 9 –Example of Network for Timebase Dynamic Weight Dijkstra Algorithm [23]

20

2.2 TDSPP Problem

The TDSPP problem initially dates back to 1966, when it was first proposed

by Cooke and Halsey [10]. Cooke and Halsey proposed a modified form of Bellman’s

iteration scheme [24] for finding the shortest route between any two vertices. Dreyfus

[17] shows that this problem is quite similar to the well-known static shortest path

problem and it can be solved by a trivially-modified variant of any label-setting static

shortest path algorithm. In the literature, we found that the well-known routing

algorithm DA has been used for developing a number of efficient algorithms like [18].

The work in [18] deals with the problem of computing the earliest arriving

time EAs∗ (t), in which the objective is to find the shortest path leaving some source

node s at a particular departure time t. The result shows that EAs∗(t) can be solved by

a trivially-modified variant of any label-setting shortest path algorithm. In this

research, a modified version of DA is used, where the weight of an arc is represented

by required time to travel on that arc. The asymptotic running time of the modified

algorithm exhibit the same performance in practice as their static counterparts, this

result was achieved by taking into consideration that the running time of DA depends

on the implementation of the priority queue S; according to the research, the strongest

known running time, O(m+ n log n), is achieved when S is a Fibonacci heap.

Algorithm 1 shows the modified version of DA.

21

Algorithm 1 - Label-Setting (Dijkstra's) Algorithm

1. for all 𝑖 ∈ 𝑁\{𝑠}: 𝐸𝐴𝑠𝑖(𝑡) ← ∞

2. 𝐸𝐴𝑠𝑠 (𝑡) ← 𝑡

3. 𝑆 ← 𝑁

4.
5. While 𝑆 ≠ ∅

6. Select 𝑖 ∈ 𝑆 𝑚𝑖𝑛𝑚𝑖𝑧𝑖𝑛𝑔 𝐸𝐴𝑠𝑖(𝑡)

7. 𝑆 ← 𝑆\{𝑖}
8. for all j such that (𝑖, 𝑗) ∈ 𝐴

9. 𝐸𝐴𝑠𝑖 (𝑡) ← min (𝐸𝐴𝑠𝑖(𝑡), 𝑎𝑖𝑗 (𝐸𝐴𝑠𝑖(𝑡)))

2.2.1 Finding Best Departure Time to Reduce Travel Time

A variant problem of the TDSPP problem is finding the best departure time for

minimizing the total travel time from a place to another over a road network, where

the driver has the flexibility to start the trip during a time interval, and to wait for

some time in some nodes across the route. This problem has been studied widely and

intensively over years. An application of this problem can be a products distribution

company that delivers products using trucks. A truck may travel to a place with less

travel time, if it delays the trip for some time, e.g. one or two hours, the company can

utilize the truck to do other jobs during this time. The main challenges to find the

optimal route in this problem, is that edge delay changes as the starting time changes

[25]. Different approaches were used to solve the best departure time problem, for

example, in [16] a discrete–time approach is suggested, where the starting time

interval is discretized into k time points, and for each time point an equivalent static

graph is created. The new graph has same edges, nodes and delay on every edge at

that time point. By finding the shortest path in the k graph, the path with the minimum

travel time will be the path with the best departure time. This approach has two

drawbacks. First, having low value of k will result in an inaccurate result, as the

22

optimal solution can be in an unconsidered time point. Second, having big value for k

will result in more computation to find the optimal solution.

2.3 Safety Aware Algorithms and Approaches

In general, safety aware algorithms use a risk model for the road network,

which is essentially an assignment for a risk factor to each edge. As mentioned earlier,

the risk factor is calculated using a reactive or proactive approach. In the reactive

approach, the crash history can be used to predict the likelihood of future deaths and

serious injuries [26], also crime data can be used to provide safe urban navigation

[27]. However, in the proactive approach, the characteristics of the road and traffic

can be examined in order to identify the parts of road network which have the greatest

potential risk [28]. In the following, an overview of some works that proposed

approaches and algorithms for providing safe routing services.

In [27] an algorithm was proposed in building novel application that utilizes

crime data to provide safe urban navigation system. The algorithm aims to generate a

small set of paths that provide tradeoffs between distance and safety. The work

represents the road network using an undirected graph G= (V, E) where the set of

nodes V, represents intersections, and the set of edges E represents streets between the

intersections. Each road segment 𝑒 ∈ 𝐸 is associated with two (unrelated) types of

weights: its length, denoted by 𝑙(𝑒), and its risk, denoted by 𝑟(𝑒). 𝑙(𝑒) gives the

distance between the two intersections connected by the street e, and 𝑟(𝑒) gives the

probability that a crime will be committed on that segment. Starting from the fact the

problem here is a bi-criteria optimization problem, the algorithm searches for the no

dominated safe solution 𝑃𝑟
∗ (safest) and the non-dominated length solution 𝑃𝑙

∗

23

(quickest), in another step, the algorithm searches for all solutions in the region

specified by the 2-dimensional representation of the two solutions as shown in Figure

10.

Figure 10 – Solution Space in [27]

The work in [28] is a part of the project SAFEWAY2SCHOOL [29], which

suggests a new method to solve the School Bus Routing Problem (SBRP) with

consideration for the safety of the children while on board. The method advises to

define an assessment criteria which can be used to define a safety score for each link

in the transportation network. For example, a systematic examination can be made of

the accident statistics to find out which parts of the network have a record of

accidents. Another approach is to examine the characteristics of the road and traffic in

order to identify the parts of road network which have the greatest potential risk; as an

example of features which can be responsible for safety risks in rural and urban road

environments are:

Rural areas:

 Sharp bends

 Lack of protective barriers on the road shoulder

24

 A narrow two way roads without a central partition

Urban areas:

 Lack of good visibility for making turns (due to buildings or on street parking)

 Fast roundabouts

 Complex intersections

In the suggested method, each risk factor has a weight from 0 to 5 (5 indicates

a strong influence and 0 no influences), and of this risk factor each road section is

assigned with a score from 1 to 5. The method then can provide a risk category for

each road, the proposed categories are:

 Green means the road is considered relatively safe.

 Yellow, means the road is considered borderline.

 Red means the road involves a significant safety risk.

The research in [30] compares two road risk assessment methodologies for

building the risk model in a vehicle routing service. The first method is a predictive

risk assessment from the Economic Evaluation Manual (EEM), which includes

procedures to calculate the safety benefits and costs of transport projects (New

Zealand Transport Agency, 2013). This risk assessment relies on regression

algorithms that explain crash performance based on physical and operational

variables, such as intersection form and traffic volumes. The second method tested is

the Urban KiwiRAP methodology, which relies on crash history to predict the

likelihood of future deaths and serious injuries if current crash trends continue. As a

result, through testing it was evident that Urban KiwiRAP was the preferable choice

25

for determining the risk of roads. It was noticed that the EEM risk metric tended to

route onto low volume local roads because fewer crashes would be expected to occur

in these environments; however, these are often impractical for routing purposes. The

EEM models avoided high volume roads (such as motorways) even when there were

comparatively fewer crashes, which is not unexpected as the models return average

values for safety performance based on the sample of data from which they were

created. The personal risk metric from Urban KiwiRAP contrasted the results from

the EEM. It analyzed many roads with a high AADT as low risk due to them having a

relatively low number of crashes for the amount of road use. Some lower volume

roads with a low number of crashes were classed as higher risk as the ratio of crashes

to vehicle volume was greater.

In [31] an algorithm was proposed to find the shortest safe path between two

nodes, and also it suggests the best trip starting time to reduce the overall travel time

between the two nodes. The algorithm works in two steps. First, it follows a

continuous-time approach to identify the arrival times for each node in the graph. For

each starting point of time during the provided start time period, there will be an

arrival time for an edge. Second, it selects the arrival times to the target point, sort the

time in an ascending order to get the best arrival time to the target node. Then, it

determines the predecessor of a node on the route utilizing the backward manner from

the target node to the starting node.

26

2.4 Quickest path problem using V2V communicatoins

In [32] a VANET-based A* route planning algorithm was introduced to

dynamically calculate the route that meets the shortest travelling time or the lowest

fuel consumption criteria, the algorithm uses Google Maps to access the real-time

traffic data of road segments and the data collected from the neighboring vehicles

using VANET networks. This algorithm uses an improved version of A* algorithm.

The work in [33] designed an algorithm that can be used in navigation systems to

provide real time traffic information in Tabriz, Tabariz is Iran’s fourth largest city

with a population of about 1.400.000, the work proposed a scheme for acquiring real-

time traffic information based on an amalgamation of VANET networks and both

inter-vehicle communication (IVC) and vehicle road-side device communication

(VRC) and conventional systems, the work used the A* algorithm with an appropriate

cost function.

Table 2 presents all the routing algorithms discussed in this section

27

Table 2 - Summary of Some Routing Algorithms

Work Graph

type

Factors in

weight function

Consider

Safety

Safety level

approach

Algorithm Applications

[16] dynamic travel time - - Dijkstra

and

Label

Correcting

Algorithm

route planning

& computing

early arrival

time

[21] static road length &

traffic

congestion &

road quality

considered - Dijkstra route planning

[22] static steering angles

& travel time

along the road

- - Dijkstra cargo route

planning

 [23] static travel time - - Dijkstra route planning

 [27] static travel time &

safety level

considered Crime statistics Dijkstra urban-

navigation

[28] static road distance &

safety level of

the road

considered Proactive - safe door-to-

door school $

bus

transportation

services

[30] - - considered iRap

classification in

Dijkstra -

28

Urban KiwiRAP

[31] dynamic travel time &

safety level on

the road

considered - - route planning

[32] static travel time or

fuel

consumption

- - A* route planning

[33] static travel time - - A* route planning

29

2.5 Strategies for solving the Bi-criteria Shortest Path Problem

The shortest path problem in road network is one of the classical single-

objective optimization problems that have gained attention from researchers

worldwide. However, in some real application there is a set of constraints that should

be considered when finding the optimal route, which means the necessity of taking

more than one objective into account, resulting in biobjective shortest path (BSP)

problems that have been addressed by many multi-objective optimization methods

and algorithms. Instances of optimization problem with single objective are resolved

in polynomial complexity bound, while (BSP) is classified as NP-complete [35]. This

section reviews some methods to resolve the biobjective shortest path problem, i.e.

the scalarization technique, label correcting technique, two phases method and a

genetic algorithm based technique.

2.5.1 Scalarization Technique

Also called the weighted-sum technique. This technique solves the multi-

objective problem by combining the objectives into a single-objective scalar function,

and then it minimizes the new objective [36]. This technique uses the concept of

Pareto optimal to define the set of optimal solutions.

2.5.1.1 Bi-objective Shortest Path and Pareto-optimal Solutions

A single-objective optimization problem is formulated as follows:

min 𝑓(𝑥)

𝑥𝜖𝑆,

Where f is a scalar function and S is the set of objectives that can be defined as:

𝑆 = {𝑥 ∈ 𝑅𝑚 ∶ ℎ(𝑥) = 0,𝑔(𝑥) ≥ 0}

30

Multi-objective optimization is formulated as follows:

min[𝑓1(𝑥),𝑓2(𝑥), . . . , 𝑓𝑛(𝑥)]

𝑥𝜖𝑆,

Where n>1and S is the set of objectives. In this context, the objective space is defined

as the space in which the objective vector belongs. Also, the attained set is defined as

the image of the feasible set under F.

𝐶 = {𝑦 ∈ 𝑅𝑛 ∶ 𝑦 = 𝑓 (𝑥),𝑥 ∈ 𝑆}

The notion of Pareto optimality in multi-objective optimization is defined as the

following:

A solution with a vector of constraints x∗ ∈ S in a multi-objective problem is Pareto

optimal, if all other vectors of constraints x ∈ S , in the other solutions, have a higher

value for at least one of the objective functions fi, this leads to define the weak Pareto

optimum and strict Pareto optimum as the following:

 A weak efficient solution or a weak Pareto optimum if there is no 𝑥 ∈ 𝑆 such that

𝑓𝑖(𝑥) < 𝑓𝑖(𝑥*) for all 𝑖 ∈ {1, 2, … ,𝑛}

 A strict efficient solution or a strict Pareto optimum if there is no 𝑥 ∈ 𝑆 such that

𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥*) for all 𝑖 ∈ {1, 2, … ,𝑛} with at least one strict inequality.

Now Pareto front is defined as the set of all efficient solutions. The shape of the

Pareto front identify the trade-off between the objective functions. Figure 11 is an

example of a Pareto front which is defined by the points between (𝑓2(𝑥̅), 𝑓1(𝑥̅)) and

(𝑓2(𝑥̿), 𝑓1(𝑥̿)), these points are called the non-dominated points.

31

Figure 11 – Example of a Pareto curve [36]

Also shows two weak Pareto optimum that are p1 and p5 and three strict Pareto

optimum that are p2, p3 and p4

Figure 12 - Example of weak and strict Pareto optimum [36]

32

2.5.1.2 Solving biobjective shortest path using scalarization technique

This scalarization technique solves the multi-objective problem by combining

the objectives into a single-objective scalar function, and then it minimizes the new

objective function that is:

min ∑ 𝑦𝑖

𝑛

𝑖=1

. 𝑓𝑖(𝑥)

∑ 𝑦𝑖

𝑛

𝑖=1

= 1

y𝑖 > 0, 𝑖 = 1, … , 𝑛

𝑥𝜖𝑆,

Where n is the number of constraints, S is the set of constraints, f is a scalar function

and y is a weighting factor. The new optimization problem is denoted by: 𝑃𝑠(𝑦).

For any multi-objective problem there is more than one optimal solution. According

to [36] that solution of the 𝑃𝑠(𝑦) problem is an efficient solution for the original

problem, i.e. it belongs to the Pareto front. This technique generates both the strict

Pareto optimum and the weak Pareto optimum solutions according the following

conditions:

min ∑ 𝑦𝑖

𝑛

𝑖=1

. 𝑓𝑖(𝑥)

∑ 𝑦𝑖

𝑛

𝑖=1

= 1

y𝑖 ≥ 0, 𝑖 = 1, … , 𝑛

𝑥𝜖𝑆,

33

A strict Pareto optimum solution is generated when all the weights in vector y are

greater than zero, while a weak Pareto optimum solution is generated when at least

one of the weights in the vector y is equal to zero. The negative side of this technique

is that it is not clear how to change the weights in order to generate an optimal

solution. Which means it is not easy to develop an algorithm that can finds the

optimal weight factors to reach a point in the Pareto front. This leads to the result that

in order to find other optimal solutions it requires that more optimizations with

different weight values should be performed. However, this approach can produce a

considerable computational load.

A shortcoming of this technique is that a uniform spread of weight parameters may

not produce a uniform spread of points in the Pareto front. It is observed that all

solution is grouped in some parts of the Pareto front and other parts of the curve have

not been produced. As an overall evaluation for this technique, if a single-objective

scalar function with O(1) time complexity is used with a polynomial algorithm, like

any of the shortest path problem algorithms, then this method can be used to find only

one optimal solution in the Pareto font in polynomial time.

2.5.2 Biobjective label correcting

This method is an extension of the single-objective version. The difference

between the two methods is that there are several labels at each node; each label

corresponds to one path. Skriver and Andersen [37] found that the best approach to

solve BSP problems is the label correcting with node-selection.

34

2.5.2.1 Formal definitions

A directed network G = (N, A) consists of a set of nodes N and a set of arcs A

c N × N, with a length function len: A → ℝ2. The length vector for an arc a contains

the constraints len1(a) and len2(a), respectively. In this network, a path P which

contains a list of distinct nodes is a sequence of arcs [a1, a2, … , ak] with ai =

 (wi ,wi+1), i = 1, … K. The length vector of the path is denoted by the equation

𝑑(𝑝) = (𝑑1(𝑝),𝑑2(𝑝))

𝑑𝑗(𝑃) = ∑ 𝑙𝑒𝑛𝑗 (𝑎𝑖), 𝑗 = 1,2

𝑖

𝑖=1

In this network, let’s 𝒫𝑗 be a set of paths designated from the source s to the

destination j. A vector of constraints 𝑥 = (𝑥1,𝑥2) at an arc is said to dominate the

vector 𝑦 = (𝑦1,𝑦2), if 𝑥 ≤ 𝑦 i.e. 𝑥1 ≤ 𝑦1 and 𝑥2 ≤ 𝑦2 .

Let’s 𝑋 be a set of vectors where not element in this set is dominated by another

(distinct) element in the same set. In this case, the set 𝑋 is defined as undominated set.

This definition is used to define the undominated path as the following:

A path 𝑃1 ∈ 𝒫𝑗 dominates path 𝑃2 ∈ 𝒫𝑗 if vector for 𝑃1 dominates the vector for 𝑃2

and the length of the two vectors are different.

The set ℰ𝑗 of efficient (𝑠, 𝑗) paths contains all paths 𝑃 ∈ 𝒫𝑗not dominated by another

path in 𝒫𝑗 , also the corresponding set of efficient path length vectors is denoted by

ℱ𝑗. Skriver and Andersen [37] consider that the BSP problem here is finding the set

ℰ𝑗 for all ∈ 𝑁 . Their approach is to find the sets ℱ𝑗 which represents the distinct path

length vectors of the paths in ℰ𝑗 . A backtracking scheme can be used to find the paths

corresponding to a path vector in ℱ𝑗 .

35

2.5.2.2 Biobjective label correcting algorithm

Each node i has a set of labels. A label l at node i is extended by all edges (i, j

) with start node i. The extended label l + cij is added to the label set at node j if it is

not dominated. The labels dominated by the new label at node j are deleted. Also, a

non-dominated extended label l + cij at j has to be reconsidered in a later iteration.

The pseudo code of Skriver and Andersen algorithm is shown in Algorithm 1 and

described below.

Initially, the list of nodes that should be expanded, i.e. modNodes, is initialized with

the source node s. The labels node s is initialized with 0: Labels(s) = {(0, 0)}. When

running the algorithm, the labels at a particular node i are extended along the edge (i,

j), if the extended label is dominated by already presented labels at the end node j,

then the edge (i,j) is removed from the list of adjacent of node i . If the label set of

node j is changed, then the node is marked to be expanded again. The algorithm

terminates when modNodes is empty. Merging is the most expensive operation in the

algorithm; the operation is executed when traversing an outgoing arc from a node

with multiple labels. All labels should be extended along that arc and verified for

dominance. In this algorithm, the number of non-dominated labels grows

exponentially in the number of nodes. That is, all the efficient paths have a distinct

non-dominated value, which means that the node-labeling algorithms have

exponential complexity.

36

Algorithm 2 - Biobjective Label Correcting

1. input: network (N,A), cost function c = (c1, c2), source node s

2. modNodes = {s}: list of nodes with modified labels that have not yet been
reconsidered, treated in FIFO order

3. Labels(s) = {(0, 0)} and Labels(i)= ∅, i ∈ N\{s}: Labels(i) is the list of labels at a
particular node i

4. while modNodes is nonempty do
5. remove first node i from modNodes /∗ FIFO ∗/

6. for all (i, j) with j ∈ {k ∈ N|(i, k) ∈ A} do

7. merge(Labels(i) + cij , Labels(j)) /∗ extend all labels at i by cij and merge
with labels at j, eliminating all dominated labels ∗/

8. if the label set of j has changed and j ∉ modNodes then

9. append j to modNodes /∗ FIFO ∗/

10. end if

11. end for

12. end while

13. output: efficient route length from the node s to all other nodes

The bicriterion path problem is inherently difficult [38], where in a worst case

scenario the process of calculating the efficient paths grows exponentially with the

network size, in contrast to the single objective shortest path problem for which many

polynomial algorithms exist [39].

2.5.3 Two phase method

The method is suggested in [40] to solve the bicriteria optimization problem.

This method finds the optimal solutions in two phases. The first phase will generate

the extreme optimal solutions based on a weighted sum problem technique, an

example of the output of this phase is shown in Figure 13 where lex(1, 2)-best and

lex(2, 1)-best are extreme optimal solut8ions. The first phase is started after

generating one or two optimal solutions using an initial phase.

37

Figure 13 – Ditchotomic method, first iteration [41]

The second phase generates the remaining efficient solutions using an

enumerative approach. In general, the search space in the second phase is highly

restricted due to the bounds obtained in first phase. As shown in Figure 14, the search

space in this phase is restricted to triangles defined by two consecutive extreme

optimal points. The first phase is started after generating one or two optimal solutions

using an initial phase.

Figure 14 – Dichotomic method, second iteration [41]

38

2.5.4 Genetic-algorithm based approach

A bicriteria genetic algorithm to solve bicriteria shortest path problems is

proposed in [42].The work proposed that each edge in a direct graph carries two

attributes denoted by (cij
1, cij

2) . The objective is to find the optimal path between a

source node s ∈ N and a destination node t ∈ N. An example of this representation is

provided in Figure 15.

Figure 15 – Road Network [42]

2.5.4.1 Genetic representation

A chromosome is represented using a fixed-length string, and each locus of

the chromosome represents a node in the graph. The value of each gene is 0 or 1, (1 if

the corresponding node exists in the path, 0 if not).The gene of the first locus is

always reserved for the source node and its value is one and the last locus is always

reserved to the destination node and its value is one. Figure 16 shows a chromosome

representation in this method.

39

Locus 1 2 3 4 5 6 7 8 9 10

chromosome 1 0 1 0 1 0 0 1 0 1

Figure 16 – Chromosome Representation [42]

2.5.4.2 Initial Population

As shown in Figure 17, initial population is divided into a number of sub-

populations; one population for each objective. A sub-population is selected base on

the value of the objective Ck. In those sub-populations, the first individual represents

the extreme optimal solution which is generated using Dijkstra algorithm, while

reminder of the population is generated randomly.

Figure 17 - Initial population composition [42]

2.5.4.3 Crossover

The crossover concerns each sub-population separately, and the offspring

produced by this phase represents complete routes. Any two chromosomes, chosen for

crossover, should have at least one common (node) except for source and destination

nodes, and the generated offspring should have less cost than their parents.

40

Figure 18 is an example of crossover of 2 parents. When optimizaing C2 , the

parital route from source node 1 to the intermediate node 5 in the crossover is relative

to the parent 1 that have the best C2 = 13 < 14. The partial route from the intermediate

node 5 to the destination node 10 is relative to the parent 2 that have the best C2 = 6 <

8. As a rule, every offspring improves an objective Ck. For the creation of the

offspring a partial path which improves the objective Ck is taken.

2.5.4.4 Mutation

This phase generates a new random solution from each offspring. Then next step is to

cross the solutions on the objectives optimized by the offspring. The objective here is

to generate new genes of good quality in order to find the solutions in the Pareto

optimal front. As a result, one of the two parents is replaced by the offspring.

parent1

parent 2

offsprings

(18,21)

(23,20)

(19,19)

Figure 18 – Example of crossover

41

2.5.5 Conclusion

This section provides an overview of some methods and techniques to solve

the biobjective shortest path problem. All reviwed approaches to solve this problem

classified as NP-complete [35] except the Scalarization Technique which is classified

as polynomial complexity technique. As seen in this section, the Scalarization

Technique can find only one nondominated solutions, while other techniques find

many solutions.

3 FORMAL DEFINITION

The main problem tackled by this work is the SQPP problem. The work deals

also with the QPP problem and the Safest Path Problem (SFPP), as the research looks

to the SQPP problem as a variant of the two problems. This section provides formal

definition for the optimal path (e.g. quickest, safest, easiest, etc...), then formally

defines the SQPP problem.

3.1 Optimal Path Definition

The problem this work dealing with, is finding the optimal route between two

locations in a road network; the optimal route can be defined in a number of ways: it

can be the shortest route, the quickest route, the easiest route, or the route that would

emit the least amount of air pollution. To formalize this problem, the road network is

represented as a directed graph G= (V, E) where V is a set of nodes and E is a set of

edges between the nodes. A path 𝑃 on G is defined as a connected sequence of edges.

A path 𝑃𝑢,𝑣 denotes a path that has a connected sequence of edges, the first edge starts

from node 𝑢, and the last edge ends at node 𝑣. A weight function is used to define the

cost of moving between two edges, it donated by 𝑊𝑢,𝑣 .The weight of path 𝑃𝑣0,𝑣𝑘 =

42

(v0, v1, … , vk) is the sum of the weights of its constitute edges as shown in the

following equation:

𝑤(𝑝) = ∑ 𝑤(𝑣𝑖−1, 𝑣𝑖)

𝑘

𝑖=1

 (1)

The weight of an optimal solution to travel from 𝑢 to v, denoted by 𝛿(𝑢, 𝑣), can be

defined as the solution with the minimum weight, more specifically :

𝛿(𝑢, 𝑣) = 𝑚𝑖𝑛{ 𝑤(𝑝) } (2)

The weight function can be the length of the road, the required time to pass the road,

the fuel consumption on the road, or any other metric.

3.2 Quick Path Problem

One way to approach the QPP problem is by applying a version of the weight

function that returns the travel time on the edge (𝑢, 𝑣), donated by: 𝑡𝑡𝑢,𝑣 ; the travel

time can be calculated using the equation (3).

𝑡𝑡𝑢,𝑣 =
𝑙𝑢,𝑣

𝑚𝑢,𝑣

 (3)

Where 𝑙𝑢,𝑣 is the length of the edge and 𝑚𝑢,𝑣 is the maximum allowed speed

on the edge. And the travel time of path 𝑃𝑣0,𝑣𝑘 = (v0, v1, … , vk) is the sum of the

travel times of its constitue edges :

𝑡𝑡(𝑝) = ∑ 𝑡𝑡(𝑣𝑖−1, 𝑣𝑖)

𝑘

𝑖=1

 (4)

By applying the definition of the optimal solution, the quickest path to pass

the edge is given using equation (5)

43

𝑃𝑢,𝑣
𝑞 = min{ 𝑡𝑡(𝑝) } (5)

In the real word, travel time varies over time (e.g. day and night, weekend,

season), and the equation (3) will not give the accurate travel time. To overcome the

limitation in calculating the real travel time, this work models road networks using

time-dependent graphs. Following is the formal definition for time-dependent graph:

Definition 1: A time-dependent graph is given by a directed graph 𝐺 = (𝑉, 𝐸, 𝑡𝑡),

that has an edge-delay function 𝑡𝑡𝑢,𝑣 (𝑡) associated with each edge (𝑢, 𝑣). The

function gives the required traveling time between 𝑢 𝑎𝑛𝑑 𝑣 if one departs from 𝑢 at

time 𝑡.

Definition 2: An edge (u,v) has First-In First-Out (FIFO) property, if and only if

𝑡𝑡𝑢,𝑣 (𝑡0) ≤ 𝑡𝑡 (𝑡0 + 𝑡δ) for tδ ≥ 0 , or 𝑡1 + 𝑡𝑡𝑢,𝑣(𝑡1) ≤ 𝑡2 + 𝑡𝑡𝑢,𝑣(𝑡2) for

𝑡1 ≤ 𝑡2.

In other words, FIFO property of the edge (𝑢,𝑣) implies that if departing

earlier from 𝑢, one arrives earlier at 𝑣. A Time-dependent network graph is a FIFO

graph, if and only if all edges have FIFO property. TDSP problem in FIFO networks

is polynomially solvable [43], while it is NP-hard in non-FIFO networks [44]. This

concludes that finding the shortest and safest path in FIFO networks is polynomially

solvable.

It is worthwhile to point out that a time-dependent graph constructed from a

transportation network is a FIFO network [25] if the waiting on nodes is not allowed.

44

3.3 Safest Path Problem

SFPP is a variant of SPP problem, it can be solved using a weight function that

considers the level of risk of the edge (𝑢, 𝑣), the function is denoted by 𝑟𝑢,𝑣 , and the

risk level of path 𝑃𝑣0,𝑣𝑘 = (v0, v1, … , vk) is the maximum level of risk through its

constitue edges, that is :

𝑟(𝑝) = max
𝑖→0,𝑘

(𝑟(𝑣𝑖−1, 𝑣𝑖))
(6)

By applying the definition of the optimal solution, the safest path to pass the

edge is given using equation (7):

𝑃𝑢,𝑣
𝑠 = min{ 𝑟(𝑝) } (7)

The work has extended the definition of time-dependent graph to introduce the

risk-factor function 𝑟𝑢,𝑣 which is the risk factor associated with the edge (𝑢, 𝑣). The

main difference between the travel time function and the risk function is that the

former is subject to time and edge, while the other is subject to edge only. The used

time-dependent graph is denoted by 𝐺 = (𝑉, 𝐸, 𝑡𝑡, 𝑟)

3.4 The Safest and Quickest Path Problem

Each road segment is associated with two types of weights that are totally

different, i.e. the travel time on the edge, and the risk factor on that edge. The travel-

time of an edge corresponds to the required time to travel between the two

intersections connected by that edge, while the risk factor on an edge is a measure of

the safety level on the edge. At a high level, SQPP takes as input the time-dependent

graph 𝐺 = (𝑉, 𝐸, 𝑡𝑡, 𝑟) together with a pair of source-destination nodes 𝑠, 𝑡. And the

45

objective is to provide the user with the safest and quickest path between denoted as

𝑃𝑠,𝑡
𝑠𝑞

 .

The difficulty with this problem is that, the quickest path is not necessarily the

one with the smallest risk and vice versa. Therefore, the problem is a bi-criteria

optimization problem, where the objective is to minimize both the travel time as well

as the risk. As mentioned before, there are multiple ways of formalizing, and

subsequently, solving such a bi-criteria optimization problem. To solve the bi-criteria

problem, this work used a hybrid technique that combines the two objectives, the

travel-time and the safety level, into a single objective and ask for the path 𝑃𝑠,𝑡
𝑠𝑞

minimizing the weighted combination as shown in equation (8) :

𝑤(𝑢, 𝑣) = ∞ × (𝑡𝑡𝑢,𝑣(t)/ max
𝐸

(𝑡𝑡)) + 𝛽 × (𝑟𝑢,𝑣 /5)

∞ + 𝛽 = 1

(8)

Where ∞ is the weighting factor for the travel-time, and 𝛽 is the weighting

factor for the road’s safety level, with the constraint that

∞ + 𝛽 = 1. The two objectives are normalized by dividing the travel time by the

maximum travel time between any two edges in E, and dividing the risk factor by the

maximum risk factor in the road assessment method.

The weighting approach allows to give priority for one factor over the other,

for example, when generating the shortest path between two locations, if 𝛽 = 0. 7

then the algorithm may give longer route, comparing to the one generated using a

lower value for 𝛽, however, the former will have a better safety level.

It is clear that the final weight is impacted by the parameters ∞ and 𝛽, having

an appropriate tuned values for those coefficients is crucial to find the optimal

46

solution for the problem, the following sections suggest the appropriate values for

each objective :

Finding the quickest path: In this case, SFPP problem turned into quick path

problem, and can be solved by assigning 𝛽 with 0, and giving priority to the travel

time by assigning ∞ with 1.

Finding the safest path: In this case, the SFPP problem turned into safe path

problem, and can be solved by assigning ∞ with 0, and giving priority to the risk

factor by assigning 𝛽 with 1.

Finding the quickest and safest path: In this case, an input parameter should be

used to specify the accepted risk level in the route (this parameter is referred to as

ACCEPTED_RISK_FACTOR), the value assigned to each weighting factor will vary

according to the priority of each objective. For example, Table 3 contains the list of

paths to travel between two nodes. P1, P2 and P3 have different travel times and level

of risk. If the quickest and safest path is requested, and ACCEPTED_RISK_FACTOR

is assigned with 3, then the optimal route will be P2.

Table 3 - Routes with Different Risk Factors

path travel time (s) maximum risk in the path (1 to 5)

P1 100 2

P2 150 3

P3 200 1

47

4 RESEARCH METHODOLOGY

The objective of this project was to develop an algorithm that solve the SQPP

problem by generating the quickest and safest route within an accepted period of time

(online routing services such as Google and OSM provide the optimal route within 1-

2 seconds, so the algorithm should not exceed this time threshold). The first step of

this two-step project was to develop an algorithm to find the quickest path, and the

second step was to modify the algorithm to consider safety when generating the

optimal route.

In the first step, the work extended the Dijkstra and A* algorithms by

designing QPA and QPHA algorithms to find the quickest routes between two places.

QPA follows the Dijkstra approach in finding the optimal route; however, it uses

travel time on the road as a weighting function. QPHA follows the heuristic approach

defined in A* algorithm to find the optimal route and also uses travel time on the road

as a weighting function. The heuristic function in QPHA estimates the travel time to

pass the airline distance between a junction and the target node. The performance of

the new algorithms was evaluated, and the winner algorithm was used to implement

the SAA algorithm.

In the second step, the SAA algorithm was implemented, using a hybrid

technique to combine the travel time and safety level to represent the weight of an

edge. After that, an experiment was conducted to verify the ability of the new

algorithm to output the optimal route.

48

4.1 Algorithms Performance Evaluation Metrics

The performance of QPA and QPHA for different trip lengths and road

network sizes was evaluated and compared. In the first step, the algorithms were used

to generate the quickest routes between multiple origin-destination pairs in different

network sizes. In the next step, the simulation environment was used to verify the

generated solutions, and simulation output results were used to evaluate the

performance of each algorithm. The evaluation metrics included the computation time

and the travel time. Computation time is an important metric, especially when routes

are being recalculated while the car is moving to make sure that the current route is

still the optimum one. An algorithm that needs a long time to calculate the best route

may not be useful, as the car will have reached a new starting point by the time the

results are generated. Travel time is the estimated time to reach the destination; the

best route is calculated by considering the distance of the route and the real-time flow

of traffic on that route.

4.2 Safety Level Definition

This work assumes that the safety levels of the roads are estimated using iRAP

Star Ratings methods, where five-star roads are the safest while one-star roads are the

least safe. The safety level on a road is reflected by the risk factor edge attribute. The

value of this attribute ranges from one to five, with the safest edges having the

minimum risk factor and unsafe edges having higher risk factors.

49

5 ALGORITHMS

This section explains in details Dijkstra and A* algorithms, then it explains the

algorithms proposed by this work.

5.1 Dijkstra Algorithm

The classical Dijkstra algorithm, solves the problem of finding the shortest path

between two nodes in a weighted directed graph in which the weights of all edges are

nonnegative, hence, in the weighted graph 𝐺 = (𝑉,𝐸) and for each edge (𝑢, 𝑣) ∈ 𝐸

the weight should be 𝑤(𝑢, 𝑣) ≥ 0.

Dijkstra algorithm divides graph’s nodes into two distinct sets, labeled S and

unlabeled Q, initially all nodes are in Q, e.g. they must be still evaluated. A node is

moved to S if a shortest path from the source to this node has been found. Initially the

distance of each node to the source is set to ∞ as an indication that there is no direct

path between the two nodes. The original algorithm runs until Q becomes empty,

however, it can be terminated once the target node has been found. In each iteration it

selects the node with the lowest distance from the source out the unlabeled nodes, it

reads the edges and find the destination nodes of those edges, for the unlabeled

destination points, the algorithm checks whether the known distance from the source to

the destination point can be reduced if the selected edge is used, if this can be done

then the distance is updated and the node is added to Q.

For each vertex v∈ V, we maintain an attribute d[v], which is an upper bound

on the weight of a shortest path from source s to v. We call d[v] a shortest-path

50

estimate. We initialize the shortest-path estimates and predecessors by the following

Θ(V)-time procedure.

The time complexity of this algorithm depends on the implementation of the

queue Q, when implemented using an unordered array, then the time complexity will

be ((V2), when a Fibonacci heap is used to implement the queue then the complexity

will be ((V lg V + E).

5.2 A* Algorithm

It is an extension of Dijkstra algorithm, A* achieves better performance (with

respect to time) by using heuristics. A* follow the best-first search technique used to

find the shortest path, it evaluates the cost to reach a destination node n using the

function f(n) = g(n) + h(n), where g(n) is the path cost from the start node to the node

n, and h(n) is a heuristic function which estimates the cost to get from the node n to the

goal [45]. A typical heuristic evaluation function is the air-line distance from the start

node to the goal node.

 Algorithm 3 - Dijkstra

1. for each vertex v∈ V[G] do
2. d[v] ← ∞
3. π[v] ← NIL

4. d[s] ←0
5. S ← Ø

6. Q ← V[G]
7. while Q ≠ Ø do
8. u ← EXTRACT-MIN(Q)

9. S ← S∪{u}
10. for each vertex v∈ Adj[u] do

11. if d[v] > d[u] + w(u, v) then
12. d[v] ← d[u] + w(u, v)
13. π [v] ← u

51

Like Dijkstra algorithm, A* divides graph’s nodes into two distinct sets.

Labeled S and unlabeled Q, initially the start node s is in Q. A node is moved to S if a

shortest path from the source to this node has been found. The algorithm runs until Q

becomes empty or the target node has been found. In each iteration it selects the

nearest node to the destination, it reads the edges and find the destination nodes of

those edges, for the unlabeled destination points, the algorithm checks whether the

known distance from the source to the destination point can be reduced if the selected

edge is used, if this can be done then the distance is updated, the distance from this

destination point to the target point v is estimated and the node is added to Q. If this

destination point was not checked before, then the distance from the source node to

this destination node is calculated, the distance from this destination point to the target

point v is estimated and the node is added to Q.

Like Dijkstra, an attribute d[v] is maintained, which is an upper bound on the

weight of a shortest path from source s to v. We call d[v] a shortest-path estimate.

Another attribute is maintained which is h[v], it is the estimated distance from the node

v to the target point, the distance is calculated using the heuristic function h().

A* always finds an optimal solution to a problem if the heuristic function is

admissible, i.e. never overestimates the actual cost of solution.

In the context of graph search, the complexity of A* is 𝑂(𝑏𝑑), where b is the average

number of successors (children) per node, and d is the depth of the generated path.

52

5.2.1 Critical Analysis for the Heuristic Function

In A* algorithm the heuristic function controls the behavior of the function,

the following cases explains the behavior of the algorithm for different values of the

heuristic function [46] :

 If ℎ(𝑛) is 0, then A* turns into Dijkstra, as only 𝑔(𝑛) has the role, which is

guaranteed to find the shortest path.

 If ℎ(𝑛) is lower than (or equal) to the cost of traveling from the node n to the goal,

then A* is guaranteed to find the shortest path. The lower ℎ(𝑛) is, the more node

A* expands, and consequently making it slower.

1. S ← Ø

2. Q ← s
3. h ← Ø

4. d[s] ← 0
5.
6. while Q ≠ Ø do

7. u ← EXTRACT-MIN(Q)
8. If (u is the target)

9. stop;
10. S ← S∪{u}
11. for each vertex v∈ Adj[u] do

12. if v ∈ Q then

13. if d[v] > d[u] + w(u, v) then

14. d[v] ← d[u] + w(u, v)
15. h[v] ← h(v)
16. π [v] ← u

17. else

18. d[v] ← d[u] + w(u, v)

19. h[v] ← h(v)
20. π [v] ← u
21. Q ← v

 Algorithm 4 - A*

53

 If ℎ(𝑛) is exactly equal to the cost of traveling from 𝑛 to the goal (which can’t be

happened), then A* will only follow the best path and will never expand other

nodes, hence, it will be very fast.

 If ℎ(𝑛) is greater than the real cost of traveling from n to the goal, then A* is not

guaranteed to find the shortest path, but it can run faster.

5.3 Quickest Path Algorithm

This algorithm is a variant of Dijkstra algorithm; this algorithm provides the

quickest path from a source junction 𝑠 to a taget junction, the algorithm stops when it

finds the target junction, while standard Dijkstra finds the shortest path between the

source edge and all other edges in the graph. The weight function 𝑤(𝑢, 𝑣) in Dijkstra

calculates the distance between the edges , 𝑣 , while in the new algorithm, the weight

of an edge is given using the function 𝑡𝑡𝑢,𝑣 (𝑡) which gives the required time to travel

from 𝑢 to 𝑣 at time 𝑡. More specific, if 𝑢 is arrived at time 𝑡1 , then the 𝑣 is arrived at

time 𝑡1 + 𝑡𝑡𝑢,𝑣 (𝑡1) . As shown in the pseudo code of this algorithm, the array 𝑡[] is

used to store the travel time between the source edge 𝑠 and other edges in the graph.

Also, the function EXTRACT-MIN gives the edge with the smallest travel time from

the source edge, while, in Dijkstra, the function returns the nearest edge from the

source. The unlabeled set Q is implemented as Fibonacci Heap which helps to

achieve a complexity of 𝑂(1) in the function EXTRACT-MIN.

The time complexity of QPA is ((V lg V + E) as long as the time complexity

of 𝑡𝑡𝑢,𝑣 (𝑡) is in O(1) .

54

Algorithm 5 – QPA

1. for each vertex v∈ V[G] do
2. t[v] ← ∞
3. π[v] ← NIL

4. t[s] ←0
5. S ← Ø

6. Q ← V[G]
7. while Q ≠ Ø do
8. u ← EXTRACT-MIN(Q)

9. If (u is the target)
10. stop;

11. S ← S∪{u}
12. for each vertex v∈ Adj[u] do
13. if t[v] > t[u] + 𝑡𝑡𝑢,𝑣 (𝑡[𝑢]) then

14. t[v] ← t[u] + 𝑡𝑡𝑢,𝑣 (𝑡[𝑢])

15. π [v] ← u

5.4 Quickest Path Algorithm – Heuristic

This algorithm is a variant of A* algorithm; this algorithm provides the

quickest path from a source junction 𝑠 to a taget junction. The weight function

𝑤(𝑢,𝑣) in A* calculates the distance between the edges 𝑢, 𝑣 , while in the new

algorithm, the weight of an edge is given using the function 𝑡𝑡𝑢,𝑣 (𝑡) which gives the

required time to travel from 𝑢 to 𝑣 at time 𝑡. More specific, if 𝑢 is arrived at time 𝑡1 ,

then the 𝑣 is arrived at time 𝑡1 + 𝑡𝑡𝑢,𝑣 (𝑡1) . As shown in the pseudo code of this

algorithm, the array 𝑡[] is used to store the travel time between the source edge 𝑠 and

other edges in the graph, while the array ℎ[] is used to store the value of the heuristic

function ℎ(𝑣) . Also, the function EXTRACT-MIN gives the edge with the smallest

travel time to the target edge, while, in A*, the function returns the nearest edge from

55

the target. The unlabeled set Q is implemented as Fibonacci Heap which helps to

achieve a complexity of 𝑂(1) in the function EXTRACT-MIN. As mentioned in 5.2,

the heuristic ℎ(𝑣) function controls the behavior of the algorithm, in QPHA the

function estimates the required time to pass the Manhattan distance between the

current edge and the target edge, also it take into consideration the required time to

reach the current edge, equation (9) show the definition of this function, where t[u] is

the required time to reach the edge u, 𝑚𝑑(𝑢,𝑣, 𝑡[𝑢]) calculates the Manhattan

distance between u and the target node v at time t[u] in meters, and 𝑆(𝑡[𝑢]) is the

speed estimation along the Manhattan distance at the time 𝑡[𝑢] in meter per second

(m/s). Also, Figure 19 shows how the Manhattan distance is calculated for an edge

when the optimal path between two locations in Doha, that are Landmark Mall and Al

Markiya Street, is generated by the algorithm.

Figure 19 – Manhattan Distance

The function 𝑡𝑡𝑢,𝑣 (𝑡) should returns a precalculated value in a O(1) time complexity

which can be achieved by storing the travel time of each edge in a hash table.

ℎ(𝑛) = 𝑡[𝑢] + (𝑚𝑑(𝑢, 𝑣, 𝑡[𝑢]) / 𝑆(𝑡[𝑢]) (9)

mdtt(u, v, t[u])

u

56

The time complexity of QPHA is 𝑂(𝑏𝑑), as long as the time complexity of both

𝑡𝑡𝑢,𝑣 (𝑡) and ℎ(𝑣) is in O(1), where b is the average number of successors (children)

per edge, and d is the depth of the generated path.

Algorithm 6 - QPHA

1. S ← Ø

2. Q ← s
3. h ← Ø

4. s[s] ← 0
5.
6. while Q ≠ Ø do

7. u ← EXTRACT-MIN(Q)
16. If (u is the target)

8. stop;
9. S ← S∪{u}

10. for each vertex v∈ Adj[u] do
11. if v ∈ Q then

12. if t[v] > t[u] + 𝑡𝑡𝑢,𝑣 (𝑡[𝑢])then

13. t[v] ← t[u] + 𝑡𝑡𝑢,𝑣 (𝑡[𝑢])

14. h[v] ← h(v)
15. π [v] ← u
16. else

17. Q ← u
18.

19. function h(n){
20. return 𝑡[𝑢] + (𝑚𝑑(𝑢, 𝑣, 𝑡[𝑢]) / 𝑆(𝑡[𝑢])

21. }

5.5 Safety Aware Algorithm

The SAA algorithm is variant of QPHA, it uses different method in calculating

the weight of an edge. QPHA uses the travel time on the edge, given in the equation

(10), as a weight function, while SAA combines both the travel time on the edge and

the risk factor of the edge in one value, as shown in equation (11)

57

The function maxE(tt) gives the maximum travel time between two edges in

the roadnetwork, this function should returns a precalculated value, and not calculate

the maximum travel time in the network as part of this algorithm, hence, the time

complexity of this function is O(1). Also, the time complexity of equation (11) is

O(1), as a result, SAA has the same time complexity of QPHA.

Algorithm 7 - SAA

1. S ← Ø
2. Q ← s

3. h ← Ø
4. s[s] ← 0
5.

6. while Q ≠ Ø do

7. u ← EXTRACT-MIN(Q)

17. If (u is the target)
8. stop;
9. S ← S∪{u}

10. for each vertex v∈ Adj[u] do

11. if v ∈ Q then

12. if t[v] > t[u] + 𝑡𝑡𝑢,𝑣 (𝑡[𝑢])then

13. t[v] ← t[u] + 𝑡𝑡𝑢,𝑣 (𝑡[𝑢])

14. h[v] ← h(v)
15. π [v] ← u

16. else

17. Q ← u

18.
19. function h(n){
20. return 𝑡[𝑢] + (𝑚𝑑(𝑢, 𝑣, 𝑡[𝑢]) / 𝑆(𝑡[𝑢]))/maxE(tt)
21. }

𝑤(𝑢,𝑣) = 𝑡𝑡𝑢,𝑣 (𝑡[𝑢])
(10)

𝑤(𝑢, 𝑣) = ∞ × (𝑡𝑡𝑢,𝑣 (tu)/ max
𝐸

(𝑡𝑡)) + 𝛽 × (𝑟𝑢,𝑣/5)
(11)

58

6 TRAFFIC SIMULATION

6.1 Overview

The complexity of traffic stream behavior and the difficulties in performing

experiments on real transportation networks makes computer simulation an important

analysis tool for evaluating and testing traffic solution before they are implemented in

practice. The physical propagation of traffic flows can be specifically described using

traffic flow models. These models allow to simulate large scale real-world situations

in great detail. Depending on the level of detailing, traffic flow models are classified

into microscopic, mesoscopic and macroscopic models. Microscopic models give

attention to individual vehicles and their interactions, a microscopic model of traffic

flow attempts to analyze the flow of traffic by modelling driver-driver and driver-road

interactions within a traffic stream. Macroscopic models view the traffic flow as a

whole, while the microscopic models fall in between these two. This work uses

SUMO, which is a microscopic simulation framework, to verify the validity of the

generated route in terms of following traffic directions and reaching the desired

destination, and also to obtain the required times for traveling between locations.

6.2 SUMO

SUMO, which stands for ‘Simulation of urban mobility’, is a microscopic

simulator, and it is an open source program. SUMO provides a lot of functionality

regarding importing and altering networks from different sources, creating vehicles

and defining routes for them. It also has an implementation of the well know shortest

path algorithms Dijkstra and A* that can be used to find the shortest path in the

defined networks. Of course SUMO is not the only open source traffic simulator, it

59

has been used in this work because it is free, allows importing maps from different

sources, it has a remote interface (TraCI) to communicate with the simulation through

Java, and Java is the language used for implementing the algorithms and the

experiments in this research.

6.3 When to use SUMO?

To understand SUMO in practice, the literature was consulted to understand

how to use SUMO and in which contexts, this section gives an overview about some

use cases that made use of SUMO either as a part of a final solution, or as testbed.

In [47] a dynamic route planning framework is suggested, the routing algorithm can

interact with the dynamic changing environment, like road networks, and adapts the

route assigned to a vehicle according to the new updates (i.e. change in congestions

level or incidents) received from the traffic management systems. The process of

updating the best route is triggered from time to time. The algorithm was tested by

defining a network using SUMO, also Dijkstra algorithm was implemented in a way

that allows the algorithm to access the road network to generate routes. A framework

to simulate vehicles traveling on the road network was developed. The framework

allows to define vehicles with initial routes, during the simulation, and according to the

updates received from a traffic management systems (i.e. change in congestions level,

incidents etc.), the algorithm adapts the best routes assigned to a vehicle according to

the new updates. The work uses TraCI interface that provides access to a running road

traffic simulation, and it allows to retrieve values of simulated vehicles and to

manipulate their route "on-line".

60

In [48] a hardware-in-the-loop simulation platform for emulating large-scale

intelligent transportation systems is proposed. The platform allows building large-scale

traffic simulations where the real cars on the roads can be part of that simulation; in

this platform, the data is collected from the vehicle’s gateway and sent to the server

using a smartphone. The information collected from the vehicles on the road is

processed on the server and behavioral recommendations are sent back to the vehicles

(like speeds and reroutes).

6.4 Simulation Results in SUMO

A traffic simulation scenario in SUMO is performed using a file that contains

all vehicles with their routes/trips and a road network defined in a separate file. By

running the simulation, the vehicle will depart from their starting point toward the

destination point, the required time to complete the trip is affected by many factors like

the traffic in the road, facing simulated car accident, the lights on the road, etc. By the

end of the simulation, SUMO creates an output file which contains information like

arrival time, arrival position, trip duration, waiting steps, the time loss (due to traffic

jam, waiting on signals), etc.

6.5 SUMO Road Network Definition

6.5.1 Network Format

A SUMO network file describes the traffic-related part of a map, the roads and

intersections the simulated vehicles run along or across. In SUMO a road network is

represented as a directed graph, ”nodes” usually named "junctions" and they represent

intersections, and "edges" represent roads. Specifically, the SUMO network contains

the following information:

61

 Coordinates and alignment of the original map

 Every street (edge) as a collection of lanes, including the position, shape and

speed limit of every lane

 Traffic light logics referenced by junctions

 Junctions, including their right of way regulation

 Connections between lanes at junctions (nodes)

Figure 20 shows a road network defined using SUMO, the figure shows junctions

highlighted in green, and the street crossing them. Also, the figure shows a roundabout.

Figure 20 – Road Network in SUMO

6.5.2 Coordinates and Alignment

In SUMO, the networks use Cartesian or metric coordinates where the leftmost

node is at x=0 and the node being most at the bottom is at y=0. This means that when

real road network are imported, e.g. from OSM, then NETCONVERT [49] is

http://sumo.dlr.de/wiki/NETCONVERT

62

projecting the network, first, if the original network was not using Cartesian and/or

metric coordinates. Then, they move the road network to the origin at (0,0).

6.5.3 Edges and Lanes

A normal edge is a connection between two nodes "junctions", and each edge

includes the definitions of lanes it consists of.

6.5.4 Traffic Light Program

NETCONVERT [49] generates traffic lights and programs for junctions during

the computation of the networks. These computed programs are different from the real

ones, however, it is allowed to provide the simulation with real traffic light programs.

6.5.5 Junctions

Junctions represent the area where different roads cross, including the right-of-

way rules vehicles have to follow when crossing the intersection.

6.5.6 Plain Connections

Plain connections describe how streets crossed in an intersection are connected

together. By linking together the incoming lanes and the outcoming lanes in the two

streets.

6.6 Vehicle Interaction

The relation between the simulated vehicles is defined using a car-following

model and a lane changing model [50]. The car-following model specifies how a car

adapts its speed according to the distance to the car in front of it.The lane change

model defines when a vehicle should change lanes, this happens whenever the current

lane of the vehicle has no connection to the next edge of the route. SUMO is designed

http://sumo.dlr.de/wiki/NETCONVERT

63

to be collision free, which means that any vehicle is able to avoid a collision with the

cars in front of it.

6.7 Vehicle Configuration Parameters

Vehicles defined in SUMO have many configuration parameters; following is a

short overview of important parameters:

 Id: the name of the vehicle.

 Route: the id of the assigned route. Routes are defined in a separate file; each

route is a set of connected edges.

 Depart: the time step at which the vehicle should enter the network

 DepartLane: the lane on which the vehicle should enter the network

 DepartSpeed: the speed with which the vehicle should enter the network

 ArrivalSpeed: the speed with which the vehicle should leave the network

 Type: the type defines both, vehicle's physical parameters (like length, color), and

also the used car-following model's parameters.

64

7 EXPERIMENTS

This chapter presents an experimental assessment of the algorithms QPA,

QPHA and SAA. The objectives of the experiments were: (1) Evaluate the

performance of QPA and QPHA in generating the quickest route between two

locations using different performance metrics, thereby indicating whether SAA should

use the Dijkstra approach or A* approach for generating the quickest and safest route.

(2) Verify the ability of the SAA algorithm to select a safe route without sacrificing

travel time by testing SAA with different combinations of 𝛽 and ∞ . It was expected

that the higher the value of 𝛽, the longer the generated route would be. We began by

developing a method to integrate any road network with the algorithm through the

following steps: (1) obtaining a real road network from OSM as an xml file, (2)

parsing the xml file to generate a digital map in SUMO format and (3) parsing and

loading the digital map as a Java object using a third-party library.

7.1 Obtaining Road Networks

SUMO provides several ways to obtain road networks: simple networks can

be defined by hand, and real world maps can be imported from different sources such

as OpenStreetMap, VISUM, VISSIM and Navteq. In this work, the map of Qatar was

imported from OSM [44]. OSM is a free editable map of the world that is being built

by imports from different sources [45] and has been released with an open-content

license. A disadvantage of OSM is that the data can be inaccurate, because the map

can be updated by anyone. For this project, we verified some areas in Doha using

Google Maps and found the OSM to be highly accurate. OSM maps contain the

65

required data for this work, including speed limits, the number of lanes in each road,

traffic lights, junctions and turn restrictions.

This work used fours maps to evaluate the perofrmacne of QPA, QPHA

algorithms, the maps are: a central area in Doha, a remote area in Doha, Doha city map

and Glasgow city map (Glasgow, UK).

7.2 Parsing and Loading Road Networks

In this step, the aim was to make a SUMO road network accessible to the

algorithms by representing them as vertices and edges. To achieve this, a third-party

library was used [46] to parse the road network file generated through SUMO. The

road network was then stored in a data structure representing the vertices, edges,

lanes, maximum speed on the road, turn directions, safety level, and other factors.

7.3 Algorithms Performantce Evaluation

The performance of QPA and QPHA was evaluated using metrics such as

scalability and computation time. The algorithms were used to generate the quickest

routes between multiple origin-destination pairs in different network sizes. In the next

step, the generated routes were verified using SUMO, and simulation results were

used to evaluate the performance of the algorithm. The following sections explain the

maps used and routes in more detail.

7.4 Maps with Different Scalability Levels

The work uses some maps with different sizes, that are : a central area in Doha,

a remote area in Doha, Doha city map and Glasgow city map. Figure 21, Figure 22,

66

Figure 23 and Figure 24 respectively show those maps, and Table 4 shows the number

of junctions and roads in each map

Figure 21 – Doha - Center Area

Figure 22 – Doha - Remote Area

67

Figure 23 – Doha Map

Figure 24 – Glasgow Map

68

Table 4 - Number of junctions and roads in the maps

Map Number of junctions Number of roads

Doha - central area 11615 26502

Doha - remote area 3693 8869

Doha city 35669 82418

Glasgow city 122491 261700

7.4.1 Road Length

To investigate the impact of trip length on the algorithms’ performance, the

quickest route for four trips of different lengths were generated, with length defined as

the airline distance between the start location and the destination. In the case of the

central and remote areas in Doha , the lengths of the trips were 4 km, 6 km, 8 km and

10 km, and the trips were defined in the central area and the remote area. Figure 25

and Figure 26 respectively show the trips in the two areas.

Figure 25 – Four Routes in Central Area

10 KM 8 KM

4 KM

6 KM

69

Figure 26 – Four Routes in Remote Area

In the case of Doha cotu and Glasgow city, the length of the routes are : 10

km, 12 km, 14 km and 16 km.

7.4.2 Performance Analysis

7.4.2.1 Generated Routes Validity

7.4.2.1.1 CENTRAL AREA

In the central area, both QPA and QPHA generated the same routes for the

trips of length 4 km, 6 km, 8 km and 10 km. Figure 27 shows the generated routes.

The generated routes were verified using SUMO, and the outputs of this simulation,

including trip duration, are shown in Table 5 (s=second, m = meter).

Table 5 - Trips Duration and Length in Central Area

 4 KM 6 KM 8 KM 10 KM

Algorithm Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

QPA 276 4524 375 7014 522 8610 701 11691

QPHA 276 4524 375 7014 522 8610 701 11691

10 KM
8 KM 4 KM

6 KM

70

(a) Quickest Path using QPHA - 4KM (b) Quickest Path using QPA - 4KM

(c) Quickest Path using QPHA - 6KM (d) Quickest Path using QPA - 6KM

(e) Quickest Path using QPHA - 8KM (f) Quickest Path using QPA - 8KM

(g) Quickest Path using QPHA - 10KM (h) Quickest Path using QPA - 10KM

Figure 27 – The Generted Routes in Central Area

71

7.4.2.1.2 REMOTE AREA

In the remote area, both QPA and QPHA generated the same routes for the

trips of length 4 km, 6 km, 8 km and 10 km. Figure 27 shows the generated routes.

The generated routes were verified using SUMO, and the outputs of this simulation,

including trip duration, are shown in Table 6 (s=second, m=meter).

Table 6- Trips Duration and Length in Remote Area

 4 KM 6 KM 8 KM 10 KM

Algorithm

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

QPA 276 4524 375 7014 522 8610 701 11691

QPHA 276 4524 375 7014 522 8610 701 11691

72

a) Quickest Path using QPHA - 4KM b) Quickest Path using QPA - 4KM

c) Quickest Path using QPHA - 6KM
 d) Quickest Path using QPA - 6KM

e) Quickest Path using QPHA - 8KM
 f) Quickest Path using QPA - 8KM

g) Quickest Path using QPHA - 10KM
 h) Quickest Path using QPA - 10KM

Figure 28 – The Generted Routes in Remote Area

73

7.4.2.1.3 DOHA

In the map of Doha city, both QPA and QPHA generated the same routes for

the trips of length 10 km, 12 km, 14 km and 16 km. Figure 29 shows the generated

routes. The generated routes were verified using SUMO, and the output result of this

simulation, including trip duration, are shown in Table 7 (s=second, m=meter).

 Table 7 - Trips Duration and Length in Doha

 9 KM 11 KM 14 KM 16 KM

Algorithm Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

QPA 680 14097 873 20377 968 21114 1204 25250

QPHA 680 14097 873 20377 968 21114 1204 25250

74

a) Quickest Path using QPHA - 10KM b) Quickest Path using QPA - 10KM

c) Quickest Path using QPHA - 12KM
 d) Quickest Path using QPA - 12KM

e) Quickest Path using QPHA - 14KM
 f) Quickest Path using QPA - 14KM

g) Quickest Path using QPHA - 16KM
 h) Quickest Path using QPA - 16KM

Figure 29 – The Generated Routes in Doha Map

75

7.4.2.1.4 GLASGOW

In the map of Glasgow city, both QPA and QPHA generated the same routes

for the trips of length 12 km, 16 km, however, the generated routes were different for

the trips of length 14 km and 16 km. Figure 30 shows the generated routes. The

generated routes were verified using SUMO, and the output result of this simulation ,

including trip duration, are shown in Table 8 (s=second, m=meter).

 Table 8 - Trips Duration and Length in Glasgow

 9 KM 11 KM 14 KM 16 KM

Algorithm Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

Duration

(s)

Length

(m)

QPA 1120 18563 1079 18558 1327 21346 1701 23654

QPHA 1029 17180 1079 18558 1237 19964 1701 23654

76

a) Quickest Path using QPHA - 10KM b) Quickest Path using QPA - 10KM

c) Quickest Path using QPHA - 12KM
 d) Quickest Path using QPA - 12KM

e) Quickest Path using QPHA - 14KM
 f) Quickest Path using QPA - 14KM

g) Quickest Path using QPHA - 16KM
 h) Quickest Path using QPA - 16KM

Figure 30 - The Generated Routes in Glasgow Map

77

7.4.2.2 Computation Time

This section describes the required time for QPA and QPHA to generate the quickest

route. As mentioned in section 5.2.1, the heuristic function has a major impact on both

the computation time and the result of the algorithm. Hence, this experiment used

three versions of the QPHA algorithm, with each version using a different equation to

estimate the required time to reach the destination and the three equations different in

their assumed travel speeds. Table 10 shows the used equations (m/s = meter per

second, k/h=kilometer per hour)

 Table 9 - QPHA Versions

Figure 31, Figure 32, Figure 33 and Figure 34 show the required times to generate the

routes in the central area and the remote area, respectively, using QPA and the three

versions of QPHA.

Algorithm Version Heuristic Function’s Equation

QPHA_V1

ℎ(𝑛) = 𝑡[𝑢] + (𝑚𝑑 (𝑢, 𝑣, 𝑡[𝑢]) / 5.55556)

 5.55556 m/s ~ 20 k/h

QPHA_V2

ℎ(𝑛) = 𝑡[𝑢] + (𝑚𝑑 (𝑢, 𝑣, 𝑡[𝑢]) / 2.77778)

 2.77778 m/s ~ 10 k/h

QPHA_V3

ℎ(𝑛) = 𝑡[𝑢] + (𝑚𝑑 (𝑢, 𝑣, 𝑡[𝑢]) / 1.38889)

1.38889 m/s ~ 5 k/h

78

Figure 31 – Algorithms Computation Time in Central Area

Figure 32 - Algorithms Computation Time in Remote Area

0

5000

10000

15000

20000

25000

30000

35000

40000

4 6 8 10

C
o

m
p

u
ta

ti
o

n
 T

im
e

 in
 m

s
fo

r
1

0
0

0

Se
ar

ch
 O

p
e

ra
ti

o
n

Route Length

QPAH QPAH-V2 QPAH-V3 QPA

0

2000

4000

6000

8000

10000

12000

4 6 8 10

C
o

m
p

u
ta

ti
o

n
 T

im
e

 in
 m

s
fo

r
1

0
0

0

Se
ar

ch
 O

p
e

ra
ti

o
n

Route Length

QPAH QPAH-V2 QPAH-V3 QPA

79

Figure 33 - Algorithms Computation Time in Doha

Figure 34 - Algorithms Computation Time in Glasgow

0

50000

100000

150000

200000

250000

10 12 14 16

C
o

m
p

u
ta

ti
o

n
 T

im
e

 in
 m

s
fo

r
1

0
0

0

Se
ar

ch
 O

p
e

ra
ti

o
n

Route Length

QPAH-V1 QPAH-V2 QPAH-V3 QPA

0

100000

200000

300000

400000

500000

600000

10 12 14 16

C
o

m
p

u
ta

ti
o

n
 T

im
e

 in
 m

s
fo

r
1

0
0

0

Se
ar

ch
 O

p
e

ra
ti

o
n

Route Length

QPAH-V1 QPAH-V2 QPAH-V3 QPA

80

7.4.2.3 Results Anlysis

Figure 31 and Figure 32 illustrate the impact of the heuristic function on the

performance of QPHA: the lower the estimated cost to reach the destination, the

slower the algorithm becomes as it expands more nodes to find the optimal route. The

figure also shows that the smallest computation time is reached using the third version

of the algorithm. Comparing the performance of QPA and QPHA with regard to

computation time, the third version of QPHA is two times faster than QPA in finding

the quickest path in the central area. QPHA also outperforms QPA in finding the

optimal routes in the remote area. As shown in Figure 32, QPHA was thirteen times

faster at calculating the route of the 4 km trip, around ten times faster for the 6 km and

8 km trips, and five times faster for the 10 km trip.

Comparing the required times to find the best route for trips of the same length

in the central area and the remote area, it is of note that the size of the map impacts

the computation time. The more junctions there are in the map, the more time is

required to find the optimal route. In general, the third version of QPHA was around

twenty times faster at finding the quickest routes in the remote area than in the central

area. However, even for the longest trip in the central area, search time did not exceed

13 milliseconds, a reasonable time compared to that of the Google routing service and

OSM routing service.

In the case of Doha map and Glasgow map, QPHA outperform QPA in all trip

scenarios. As show in Figure 35 and Figure 36 QPHA is able to find the fastest route

in a short time comparing to QPA which is due to the heuristic approach in QPHA.

The results indicate that QPHA outperforms QPA in finding the optimal routes in

both the central and remote areas. QPHA performs well for both long and short trips

81

due to its heuristic nature and the optimal travel time estimation provided by the

heuristic function.

7.5 Verifying SAA Routes

7.5.1 Approach

The objective of this experiment was to verify the ability of the SAA algorithm to

select safe routes without sacrificing travel time. The experiment began by generating

the quickest route using the QPHA algorithm, and then used the SAA algorithm to

generate the optimal route using different combinations of 𝛽 and ∞ to show the

impact of high values of 𝛽 on the generated route. It was expected that higher values

of 𝛽 would result in longer and safer routes.

7.5.2 Details

The experiment was conducted on three maps that are : the map of the central area,

Doha map and Glasgow map.

7.5.2.1 Central Area

In the first step, the algorithm QPHA was used to generate the quickest route

between two locations in the center area (route1). Figure 35 shows route1 with an

edge (e1) with risk factor of 5. In the next step, the algorithm SAA was used to

generate the optimal route (route2) with the objective of obtaining the quickest route

without regard to safety level. The quickest route was generated using SAA by

assigning 𝛽 with 0, and ∞ with 1. Figure 36 shows route2; route2 and route1 use the

same edges, including e1, because neither considers safety level.

The next step was to generate a route that avoided e1. SAA was used to

generate a route between the two locations many times, with the value of 𝛽 increasing

82

gradually. Figure 37 shows the route generated when (route3). As presented in the

figure, SAA selected different edges to generate route3. The edge e1 was excluded in

the new route; however, route3 has an edge e2 with a risk factor of 4, lower than the

risk factor of e1. To generate a safer road that excludes e1 and e2, the value of 𝛽 was

gradually increased, and at the value of 0.5, the generated route (route4), shown in

Figure 38 , excluded the edges.

Figure 35 – Safety Aware Experiment – Central Area - Route1

𝑟 = 5

83

Figure 36 – Safety Aware Experiment – Central Area - Route2

Figure 37 – Safety Aware Experiment – Central Area - Route3

SSA output using, 𝛽 = 0 𝑎𝑛𝑑 ∞ = 1

𝑟𝑒1 = 5

𝑟𝑒2 = 4

SSA output using, 𝛽 = 0.33 𝑎𝑛𝑑 ∞ = 0.67

84

Figure 38 – Safety Aware Experiment – Central Area - Route4

7.5.2.2 Central Area Result Analysis

Table 10 shows the collected information from the simulation of route1,

route2, route3 and route4. The results show that in central area, the high values of

𝛽 increase the travel time and the safety level along the route.

Table 10- Safety Aware Experiment – Central Area - Routes Information

Route Duration Length 𝜷 Max. Risk Factor

route1 355.00 6517.11 not supported by QPHA 1

route2 355.00 6517.11 0 5

route3 422.00 5937.56 0.33 4

route4 449.00 5458.32 0.5 1

SSA output using, 𝛽 = 0.5 𝑎𝑛𝑑 ∞ = 0.5

85

7.5.2.2.1 DOHA

In the first step, the algorithm QPHA was used to generate the quickest route

between two locations in Doha (route1). The route has a group of consecutive edges

with risk factor of four (e1 group). The route has also another group of consecutive

edges with risk factor of five (e2 group). Figure 39 shows route1 and the two groups

of edges.

The objective now is to generate a safer route which avoid the group e2 and

includes the group e1. SAA is used to generate the safer route by increasing the value

of 𝛽 gradually. Figure 39Figure 37 shows that the group e2 was replaced by a new

group of edges when the value of 𝛽 is 0.16.

To generate a safer route which excludes both e1 and e2. This result was

achived when increasing the value of 𝛽 to reach 0.22. Figure 41 shows that the group

e1 was replaced by a new group of edges.

86

Figure 39 – Safety Aware Experiment – Doha - Route1

Figure 40 – Safety Aware Experiment – Doha – Route2

𝑒1 = 5

𝑒1 = 5

the new group of edges

the generated route

𝑒2 =4

87

Figure 41 - Safety Aware Experiment – Doha – Route3

7.5.2.3 Doha Result Analysis

Table 11 shows the collected information from the simulation of route1,

route2, and route3. The result shows that the high values of

𝛽 increased the travel time between and the safety level along the route.

Table 11- Safety Aware Experiment – Doha – Routes Information

Route Duration Length 𝜷 Max. Risk Factor

route1 686 14098 not supported by QPHA 1

route2 701 14102 0.22 5

route3 720 15083 0.16 5

𝑒2 = 4

The new group of edges
to avoid e2

the route before excluding 𝑒2

88

8 CONCLUSIONS

This work provides a thorough performance evaluation of two vehicle routing

algorithms followed by analysis and comparison of the results. This evaluation of

quickest routing algorithms was carried out using data from real transportation

networks. The performance assessments for different scalability levels and trip

lengths were used to identify the most suitable algorithms; the results showed that

QPHA outperformed QPA in finding the optimal routes. QPHA performed well due

to its heuristic nature and the optimal travel time estimation provided by the heuristic

function. This project also formalized the SQPP problem as a bi-objective

optimization problem and provided a solution to generating the optimal route by

combining the two objectives, the travel time and the risk of the route, into a single

objective. The work used the iRap road assessment method to quantify the risk on the

streets and the information provided by OSM to predict the travel time. The algorithm

SAA was designed to solve the SQPP problem, generating the safest path without

sacrificing travel time given specification of the accepted safety level. The algorithm

was implemented and tested in different scenarios. The results showed the efficacy

and the efficiency of SAA in selecting edges from different risk groups to balance the

safety and travel time objectives according to their respective specified weighting

factors. By synthesizing safety data, traffic data, and algorithmic solutions, the

research developed an algorithm that can help people drive more safely and thereby

reduce the number of accidents and deaths and injuries from road accidents.

89

9 FUTURE WORK

Future work can further optimize the performance of the algorithm and add

useful features. Integration with research centers would help obtain real-time data.

Specifically, integration with QTTSC and QMIC would help obtain road safety levels

and travel times on the roads, respectively. The algorithm could be improved by

adding the option of finding a shortest path with the best departure time. Future

research could also evaluate speed-up techniques to deal with large networks. For

example, an efficient hierarchical routing algorithm in which a given road network is

organized as a multiple-layer hierarchy has been proposed [47], and another study has

suggested an efficient hierarchical routing algorithm that finds a near-optimal route,

with a network pruning technique incorporated into the algorithm to reduce the search

space [48].

90

References

[1] eea.europa.eu, "Car ownership rates projections," 10 9 2010. [Online]. Available:

http://www.eea.europa.eu/data-and-maps/figures/car-ownership-rates-projections.

[Accessed 23 11 2015].

[2] W. H. Organization, "Global status report on road safety 2015," [Online].

Available:

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/.

[Accessed 24 10 2016].

[3] F. H. Administration, "FHWA Road Safety Audit Guidelines," Federal Highway

Administration, [Online]. Available:

http://safety.fhwa.dot.gov/rsa/guidelines/appendix_a.htm. [Accessed 24 September

2016].

[4] S. Kumar and D. Toshniwal, "A data mining approach to characterize road

accident locations," Journal of Modern Transportation, vol. 24, no. 1, pp. 62-72,

2016.

[5] U. F. H. A. R. a. Technology, "Prediction of the Expected Safety Performance of

Rural Two-Lane Highways," Federal Highway Administration, 13 August 2016.

[Online]. Available:

https://www.fhwa.dot.gov/publications/research/safety/99207/02.cfm. [Accessed

24 September 2016].

[6] "Introduction to Road Safety Assessments," Maricopa Association of Governments

(MAG), 3 December 2010. [Online]. Available:

91

http://azmag.gov/Documents/TSC_2010-12-03_Introduction-to-Road-Safety-

Assessments.pdf. [Accessed 5 July 2016].

[7] "iRAP," [Online]. Available: http://www.irap.net/. [Accessed 01 May 2015].

[8] Ashghal, "Signing a MoU with the International Road Assessment Programme,"

Ashghal, December 2014. [Online]. Available:

http://www.ashghal.gov.qa/en/MediaHub/News/Pages/Signing-a-Memorandum-of-

Understanding-with-the-International-Road-Assessment-Programme.aspx.

[Accessed 11 07 2016].

[9] S. Djahel, J. Murphy and V. T. Ngoc Nha, "A Comparative Study of Vehicles’

Routing Algorithms for Route Planning in Smart Cities," 2012 First International

Workshop on Vehicular Traffic Management for Smart Cities (VTM), 2012.

[10] K. L. Cooke and E. Halsey, "The shortest route through a network with time-

dependent internodal transit times," Journal of Mathematical Analysis and

Applications, vol. 14, no. 3, pp. 493-498, 1966.

[11] N. T. S. Committee, "National Road Safety Strategy," National Traffic Safety

Committee, Doha, 2013.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,

Introduction to Algorithms, Cambridge (Massachusetts): The MIT press, 2007, pp.

492-508.

[13] P. N. a. E. D. S. Russell, Artificial intelligence, Upper Saddle River, NJ: Pearson,

2009.

[14] F. B. Zhan and C. E. Noon, "Shortest Path Algorithms: An Evaluation Using Real

92

Road Networks," Transportation Science, vol. 32, pp. 65-73, 1998.

[15] S. Wang, S. Djahel, J. McMains, C. McKenna and L. Murphy, "Comprehensive

performance analysis and comparison of vehicles routing algorithms in smart

cities," in Global Information Infrastructure Symposium, 2013, Trento, 2013.

[16] I. Chabini, "Discrete Dynamic Shortest Path Problems in Transportation

Applications: Complexity and Algorithms with Optimal Run Time,"

Transportation Research Record: Journal of the Transportation Research Board,

vol. 1645, pp. 170-175, 1999.

[17] S. E. Dreyfus, "An Appraisal of Some Shortest-Path Algorithms," Operations

Research, vol. 16, no. 3, pp. 395-412, 1969.

[18] B. C. Dean, "Shortest Paths in FIFO Time-Dependent Networks: Theory and

Algorithms," 2004.

[19] S. Felix and J. Galtier, "Shortest paths and probabilities on time-dependent graphs

— Applications to transport networks," in ITS Telecommunications (ITST), 2011

11th International Conference on, St. Petersburg, 2011.

[20] F. Benjamin Zhan, "Three Fastest Shortest Path Algorithms on Real Road

Networks: Data Structures and Procedures," Journal of Geographic Information

and Decision Analysis, vol. 1, no. 1, pp. 69-82.

[21] Mingjun Wei and Yu Meng, "Research On The Optimal Route Choice Based On

Improved Dijkstra," in IEEE Workshop on Advanced Research and Technology in

Industry Applications (WARTIA), 2014.

[22] Lingkui Meng, Zhenghua Hu, Changqing Huang, Wen Zhang and Tao Jia,

93

"Optimized Route Selection Method based on the Turns of Road Intersections: A

Case Study on Oversized Cargo Transportation," ISPRS International Journal of

Geo-Information, vol. 4, pp. 2428-2445, 2015.

[23] L. Rosyidi, H. Pradityo, D. Gunawan and R. Sari, "Timebase dynamic weight for

Dijkstra Algorithm implementation in route planning software," in Intelligent

Green Building and Smart Grid (IGBSG), Taipei, 2014.

[24] R. Btllman, "ON A ROOTING PROBLEM," 20 December 1956. [Online].

Available: http://www.dtic.mil/dtic/tr/fulltext/u2/606258.pdf. [Accessed 20 July

2016].

[25] B. Ding, J. Xu Yu and L. Qin, "Finding time-dependent shortest paths over large

graphs," in EDBT '08 Proceedings of the 11th international conference on

Extending database technology, New York, 2008.

[26] H. Kingsbury, D. Harris and P. Durdin, "Journey Optimisation by Safest Route," in

Australian Road Safety Conference, Queensland, 2015.

[27] E. Galbrun, K. Pelechrinis and E. Terzi, "Safe Navigation in Urban Environments,"

in The 3rd International Workshop on Urban Computing, New Your, 2014.

[28] J. M. S. Grau, E. Chalkia, E. Bekiaris, G. Ayfandopoulou, C. Ferarini and E.

Mitsakis, "Transport Research Arena," in Routing Algorithms for the Safe

Transportation of Pupils to School Using School Buses, Paris, 2014.

[29] "SAFEWAY2SCHOOL," [Online]. Available: http://www.safeway2school-

eu.org/. [Accessed 25 August 2016].

[30] H. Kingsbury, D. Harris and P. Durdin, "Journey Optimisation by Safest Route," in

94

Australasian Road Safety Conference , Perth, 2015.

[31] W. Jigang, S. Jin, H. Ji and T. Srikanthan, "Algorithm for Time-dependent Shortest

Safe Path on Transportation Networks," in The International Conference on

Computational Science, Singapore, 2011.

[32] I.-C. Chang, H.-T. Tai, F.-H. Yeh, D.-L. Hsieh and S.-H. Chang, "A VANET-

Based Route Planning Algorithm for Travelling Time- and Energy-Efficient GPS

Navigation App," International Journal of Distributed Sensor Networks, vol. 2013,

pp. 1-14, 2013.

[33] A. H. Khosroshahi, P. Keshavarzi, Z. D. KoozehKanani and J. Sobhi, "Acquiring

real time traffic information using VANET and dynamic route guidance," 2011

IEEE 2nd International Conference on Computing, Control and Industrial

Engineering, 2011.

[34] A. Skriver and K. Andersen, "A label correcting approach for solving bicriterion

shortest-path problems," Computers & Operations Research, vol. 27, no. 6, pp.

507-524, 2000.

[35] M. R.Gary and D. S.Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, New York: W. H. Freeman & Co, 1979.

[36] C. Massimiliano and D. Paolo, Multi-objective Management in Freight Logistics,

Springer, 2008.

[37] A. Skriver and K. Andersen, "A label correcting approach for solving bicriterion

shortest path problem," Computera & Operations Research, vol. 27, no. 6, pp. 507-

524, 2000.

95

[38] P. Hansen, "Bicriterion Path Problems," in Multiple Criteria Decision Making

Theory and Application, vol. 177, Springer Berlin Heidelberg, 1980, pp. 109-127.

[39] R. Dial, F. Glover, D. Karney and D. Klingman, "A computational analysis of

alternative algorithms and labeling techniques for finding shortest path trees,"

Networks, vol. 9, no. 3, pp. 215-248, 1979.

[40] J. Mote, I. Murthy and D. L. Olson, "A parametric approach to solving bicriterion

shortest path problems," European Journal of Operational Research, vol. 53, no. 1,

pp. 81-92, 1991.

[41] A. Raith and M. Ehrgott, "A comparison of solution strategies for biobjective

shortest path problems," Computers & Operations Research, vol. 36, no. 4, pp.

1299-1331, 2009.

[42] C. Mohamed, J. Bassem and L. Taicir, "A genetic algorithms to solve the bicriteria

shortest path problem," Electronic Notes in Discrete Mathematics, vol. 36, pp.

851-858, 2010.

[43] D. E. Kaufman and R. L. Smith, "Fastest Paths in Time-Dependent Networks for

Intelligent Vehicle-Highway Systems Application," Journal of Intelligent

Transportation Systems, vol. 1, no. 1, pp. 1-11, 1993.

[44] A. orda and R. rom, "Shortest-Path and Minimum-Delay Algorithms in Networks

with Time-Dependent Edge-Length," Journal of the ACM, vol. 37, no. 3, pp. 607-

625, 1990.

[45] I. Chabini and S. Lan, "Adaptations of the A* algorithm for the computation of

fastest paths in deterministic discrete-time dynamic," Intelligent Transportation

Systems, IEEE Transactions on, vol. 3, no. 1, pp. 60-74, 2002.

96

[46] A. Patel, "Amit’s A* Pages," 2010. [Online]. Available:

http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html. [Accessed 1

June 2016].

[47] V. T. N. N. S. Djahel and J. Murphy, "A comparative study of vehicles' routing

algorithms for route planning in smart cities," in Vehicular Traffic Management for

Smart Cities (VTM), Dublin, 2012.

[48] "A Large-Scale SUMO-Based Emulation Platform".

[49] "http://sumo.dlr.de/wiki/NETCONVERT," SUMO, 30 09 2014. [Online].

Available: http://sumo.dlr.de/wiki/NETCONVERT. [Accessed 30 10 2015].

[50] "Definition of Vehicles, Vehicle Types, and Routes," SUMO, 20 9 2014. [Online].

Available:

http://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes#Car-

Following_Models. [Accessed 15 5 2016].

[51] "About OpenStreetMap," [Online]. Available:

http://wiki.openstreetmap.org/wiki/About_OpenStreetMap. [Accessed 29 3 2016].

[52] "Import/Catalogue," [Online]. Available:

http://wiki.openstreetmap.org/wiki/Import/Catalogue. [Accessed 29 3 2016].

[53] S. Wiki, "Contributed/SUMO Traffic Modeler," SUMO, 12 September 2011.

[Online]. Available: http://sumo.dlr.de/wiki/Contributed/SUMO_Traffic_Modeler.

[Accessed 5 May 2015].

[54] G. Jagadeesh and T. Srikanthan, "Route computation in large road networks: a

hierarchical approach," IET Intelligent Transport Systems, vol. 2, no. 3, p. 219,

97

2008.

[55] G. Jagadeesh, T. Srikanthan and K. Quek, "Heuristic techniques for accelerating

hierarchical routing on road networks," IEEE Transactions on Intelligent

Transportation Systems, vol. 4, no. 301-309, p. 3, 2002.

98

APPENDIX A: ALGORITHMS

Quickest Path Algorithm

The java code of QPA Algorithm

public class QPA implements RoutingAlgorithm{

// The road network
private SimulationNetwork simulationNetwork;

// The set of settled junctions
private Set<Junction> settledJunctions;

// The set of un settled junctions
private FibonacciHeap<JunctionKey, Junction> unSettledJunctions;

// A map to access FibonacciHeap entries in the 'unSettledJunctions' by

junction id
private Map<String, Heap.Entry<JunctionKey, Junction>> fibonacciEntries;

// A map to store the predecessor for each junction.
private Map<Junction, Junction> predecessors;

// A map to store the cost from the source point to a junction.
private Map<Junction, Double> nodesCost;

public QPA(SimulationNetwork simulationNetwork) throws Exception {
 this.simulationNetwork = simulationNetwork;
}

/**
 * Calculate the lowest cost between the source node and all other nodes in

the map.
 * @return
 */
public QPA execute(String junctionId, String destinationId) {

Junction source =
simulationNetwork.getJunctionsByIdMap().get(junctionId);

settledJunctions = new HashSet<Junction>();
nodesCost = new HashMap<Junction, Double>();
predecessors = new HashMap<Junction, Junction>();
unSettledJunctions = new FibonacciHeap<JunctionKey, Junction>(new
JunctionKeyComparator());
fibonacciEntries = new HashMap<String,
Heap.Entry<JunctionKey,Junction>>();

99

 fibonacciEntries.put(source.getId(), entry);

 for(Junction junction:simulationNetwork.getJunctions()){
 entry = unSettledJunctions.insert(new

JunctionKey(junction.getId(), Double.MAX_VALUE, null), junction);
 fibonacciEntries.put(junction.getId(), entry);
 nodesCost.put(junction, Double.MAX_VALUE);
 }

 nodesCost.put(source, 0d);

 while (unSettledJunctions.getSize() > 0) {
 entry = unSettledJunctions.extractMinimum();

 if (entry.getValue().getId().equals(destinationId)){
 // Done
 break;
 }

 settledJunctions.add(entry.getValue());
 extractMin(entry.getValue(),

entry.getKey().getFollowedEdgeId());
 }

 return this;
}

/**
 * Finds the edge, in the unSettledJunctions, with the minimum cost to each

the destination
*/
private void extractMin(Junction node, String fromEdge) {
 List<Edge> adjacentNodes = getNeighbors(node, fromEdge);

for (Edge edge : adjacentNodes) {
 Double newCost = nodesCost.get(node) + getEdgeCost(edge);

// Check if the current known cost to reach the adjacent
// node is better/worst than the calculated one.
if (nodesCost.get(edge.getToJunction()) > newCost) {
 nodesCost.put(edge.getToJunction(), newCost);
 unSettledJunctions.decreaseKey(fibonacciEntries.get(edge.getTo

Junction().getId()), new
JunctionKey(edge.getToJunction().getId(), newCost,
edge.getId()));

 predecessors.put(edge.getToJunction(), node);
}

}

}

100

public Double getEdgeCost(Edge edge) {
return edge.getTravelTimeInSeconds() +
edge.getToJunction().getAvgTravelTime(edge.getId());

}

/**
 * Returns the adjacent junctions to the parameter 'node'
 */
private List<Edge> getNeighbors(Junction node, String fromEdge) {
 List<Edge> edges = new ArrayList<Edge>();
 for(Edge edge: node.getFromEdges()){

if (!settledJunctions.contains(edge.getToJunction()) &&
(fromEdge == null ||
simulationNetwork.getConnections().contains(
new Connection(fromEdge, edge.getId())))){

 edges.add(edge);
 }
 }
 return edges;
}

public Set<Junction> getSettledJunctions() {
 return settledJunctions;
}

public Map<Junction, Junction> getPredecessors() {
 return predecessors;
}

}

101

Quickest Path Algorithm-Heuristic

The java code of QPHA V1 Algorithm

public class QPHAV1 implements RoutingAlgorithm {
// The road network
private SimulationNetwork simulationNetwork;

// The set of settled junctions
private Set<Junction> settledJunctions;

// The set of unsettled junctions
private FibonacciHeap<AStarJunctionKey, Junction> unSettledJunctions;

// A map to access Fibonacci Heap entries in the 'unSettledJunctions' by
junction id
private Map<String, Heap.Entry<AStarJunctionKey, Junction>>
fibonacciEntries;

// A map to store the predecessor for each junction.
private Map<Junction, Junction> predecessors;

// A map to store the cost from the source point to a junction.
private Map<Junction, Double> nodeCosts;

private static final double SPEED_IN_METER_PER_SECOND = 5.55556; //20KPH

public QPHAV1(SimulationNetwork simulationNetwork) throws Exception {
 this.simulationNetwork = simulationNetwork;
}

@Override
public QPHAV1 execute(String sourceId, String destinationId) {
 Junction source =

simulationNetwork.getJunctionsByIdMap().get(sourceId);
Junction target =
simulationNetwork.getJunctionsByIdMap().get(destinationId);

 settledJunctions = new HashSet<Junction>();
 nodeCosts = new HashMap<Junction, Double>();
 predecessors = new HashMap<Junction, Junction>();

unSettledJunctions = new FibonacciHeap<AStarJunctionKey, Junction>
(new AStarJunctionKeyComparator());

fibonacciEntries = new HashMap<String,
Heap.Entry<AStarJunctionKey,Junction>>();

Heap.Entry<AStarJunctionKey,Junction> entry =
unSettledJunctions.insert(new AStarJunctionKey(source.getId(), 0D,
null), source);

 while (unSettledJunctions.getSize() > 0) {
 entry = unSettledJunctions.extractMinimum();
 if (entry.getValue().getId().equals(target.getId())){
 // Done
 break;
 }
 settledJunctions.add(entry.getValue());
 extractMin(entry.getValue(),
entry.getKey().getFollowedEdgeId(), target);
 }

102

fibonacciEntries.put(source.getId(), entry);
nodeCosts.put(source, 0d);
while (unSettledJunctions.getSize() > 0) {

 entry = unSettledJunctions.extractMinimum();
 if (entry.getValue().getId().equals(target.getId())){
 // Done
 break;
 }
 settledJunctions.add(entry.getValue());

extractMin(entry.getValue(),
entry.getKey().getFollowedEdgeId(), target);

 }

 return this;
}

/**
 * Finds the edge, in the unSettledJunctions, with the minimum cost to
reach the destination
 */
private void extractMin(Junction fromNode, String fromEdge, Junction
target) {
 List<Edge> adjacentNodes = getNeighbors(fromNode, fromEdge);
 for (Edge edge : adjacentNodes) {
 Double newCost = nodeCosts.get(fromNode) + getEdgeCost(edge);

if
(fibonacciEntries.containsKey(edge.getToJunction().getId())){

 // Check if the current known cost to reach the adjacent
 // node is better/worst than the calculated one.
 if (nodeCosts.get(edge.getToJunction()) > newCost) {
 nodeCosts.put(edge.getToJunction(), newCost);

unSettledJunctions.delete(fibonacciEntries.get(
edge.getToJunction().getId()));

 predecessors.put(edge.getToJunction(), fromNode);
 }
 }else{
 nodeCosts.put(edge.getToJunction(), newCost);
 predecessors.put(edge.getToJunction(), fromNode);
 }

Heap.Entry<AStarJunctionKey,Junction> entry =
unSettledJunctions.insert(new
AStarJunctionKey(edge.getToJunction().getId(),
getHeuristicValue(fromNode, target, newCost, edge),
edge.getId()), edge.getToJunction());

 fibonacciEntries.put(edge.getToJunction().getId(), entry);
 }
}

103

/**
 * Returns the cost to reach 'fromNode' + the heuristic cost to the target
junction
 */
public double getHeuristicValue(Junction fromNode, Junction target,
 Double newCost, Edge edge) {

return newCost + (getManhattanDistance(fromNode, target)/
SPEED_IN_METER_PER_SECOND);
}

public Double getEdgeCost(Edge edge) {

return edge.getTravelTimeInSeconds() +
edge.getToJunction().getAvgTravelTime(edge.getId());

}

public Double getManhattanDistance(Junction source, Junction target) {
 return Math.abs(target.getBounds().x - source.getBounds().x)
 + Math.abs(target.getBounds().y - target.getBounds().y) ;
}

/**
 * Returns the adjacent junctions to the parameter 'node'
 */
private List<Edge> getNeighbors(Junction node, String fromEdge) {
 List<Edge> edges = new ArrayList<Edge>();
 for(Edge edge: node.getFromEdges()){

if (!settledJunctions.contains(edge.getToJunction()) &&
(fromEdge == null ||
simulationNetwork.getConnections().contains(new
Connection(fromEdge, edge.getId())))){

 edges.add(edge);
 }
 }

 return edges;
}

}

104

The java code of QPHA V2 Algorithm

The java code of QPHA V3 Algorithm

public class QPHAV2 extends QPHAV1 {

private static final double SPEED_IN_METER_PER_SECOND = 2.77778; //10KPH

public QPHAV2(SimulationNetwork simulationNetwork) throws Exception {
 super(simulationNetwork);
}

@Override
public double getHeuristicValue(Junction fromNode, Junction target,
 Double newCost, Edge edge) {

return newCost + (getManhattanDistance(fromNode, target)/
SPEED_IN_METER_PER_SECOND);

}
}

public class QPHAV3 extends QPHAV1 {

private static final double SPEED_IN_METER_PER_SECOND = 1.38889; //5KPH

public QPHAV3(SimulationNetwork simulationNetwork) throws Exception {
 super(simulationNetwork);
}

@Override
public double getHeuristicValue(Junction fromNode, Junction target,
 Double newCost, Edge edge) {

return newCost + (getManhattanDistance(fromNode, target)/
SPEED_IN_METER_PER_SECOND);

}
}

105

Safety Aware Algorithm

The java code of SAA Algorithm

public class SafetyAwareAStar extends QPHAV3{

private float travelTimeWeight;
private float riskFactorWeight;
private int maxRiskFactor;

private static final Integer MAX_TRAVEL_TIME_IN_SECONDS = 1500;
private static final Integer MAX_RISK_FACTOR = 5;
private static final double SPEED_IN_METER_PER_SECOND = 1.38889; //5KPH

public SafetyAwareAStar(SimulationNetwork simulationNetwork,

float travelTimeWeight, float riskFactorWeight, int
maxRiskFactor) throws Exception {

 super(simulationNetwork);
 this.travelTimeWeight = travelTimeWeight;
 this.riskFactorWeight = riskFactorWeight;
 this.maxRiskFactor = maxRiskFactor;
}

public Map<String, Double> weights = new HashMap<String, Double>();
 @Override
 public Double getEdgeCost(Edge edge) {

return
(((double)super.getEdgeCost(edge)/MAX_TRAVEL_TIME_IN_SECONDS)
* travelTimeWeight) +
((new Double(edge.getRiskFactor())/MAX_RISK_FACTOR) *
riskFactorWeight);

 }

@Override
public double getHeuristicValue(Junction fromNode, Junction target,
 Double newCost, Edge edge) {
 double weight = Integer.MAX_VALUE;

 if (edge.getRiskFactor() <= maxRiskFactor){

weight = newCost + ((getManhattanDistance(fromNode,
target)/ SPEED_IN_METER_PER_SECOND)/
MAX_TRAVEL_TIME_IN_SECONDS);

 }

 return weight;
 }
}

106

APPENDIX B: SUMO UTILITIES

Generating Road networks

OSM allows downloading maps for different cities, and SUMO provides a tool to

parse OSM files and generate network files, the tool is Netconvert. In this work,

Netconvert is used to generate the road network for both the central area and the

remote area. The following steps describe the process of generating the road network

of the central area:

 In the page https://www.openstreetmap.org/export, the central area is selected,

then the button ‘Export’ is used to export the map and store it in the file

central_area.osm

Figure 42 – OSM – Central Area

107

 The following command is used to run Netconvert and generate the road

network file central_area.net.xml

Running Simulations

Traffic simulation is achieved using a configuration file, .sumo.cfg, which specifies

the input files of the scenario, the required input files are

 The road network file that will be used in the simulation.

 The vehicles, the type of the vehicles and their routes.

 Simulation time period, where the period is specified by a number of steps.

The following example shows a simulation scenario in the central area

SUMO>netconvert --osm-files --output-file central_area.net.xml

<?xml version="1.0" encoding="iso-8859-1"?>

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.sf.net/xsd/sumoConfiguration.xsd">

 <input>

 <net-file value="central_area.net.xml"/>

 <route-files value="central_area.rou.xml"/>

 </input>

 <time>

 <begin value="4990"/>

 <end value="6000"/>

 </time>

 <time-to-teleport value="-1"/>

</configuration>

108

A traffic simulation in SUMO can be conducted either using the GUI or with

command line. The following example, shows how to run the simulation scenario

described in the file central_area.sumo.cfg and stores simulation results in the file

simulation_result.xml

The next figure shows how the same simulation can be conducted using the GUI

SUMO>sumo -c central_area.sumo.cfg --tripinfo-output simulation_result.xml

