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Anoxybacillus kamchatkensis NASTPD13 isolated from Paudwar hot spring of Myagdi, Nepal, upon morphological and
biochemical analysis revealed to be Gram-positive, straight or slightly curved, rod-shaped, spore-forming, catalase, and oxidase-
positive facultative anaerobes. It grows over a wide range of pH (5.0-11) and temperature (37-75°C), which showed growth in
different reduced carbon sources such as starch raffinose, glucose, fructose, inositol, trehalose, sorbitol, mellobiose, and mannitol
in aerobic conditions. Furthermore, the partial sequence obtained upon sequencing showed 99% sequence similarity in 16S
rRNA gene sequence with A. kamchatkensis JW/VK-KG4 and was suggested to be Anoxybacillus kamchatkensis. Moreover,
whole-genome analysis of NASTPD13 revealed 2,866,796 bp genome with a G+C content of 41.6%. Analysis of the genome
revealed the presence of 102 RNA genes, which includes sequences coding for 19 rRNA and 79 tRNA genes. While the 16S
rRNA gene sequence of strain NASTPD13 showed high similarity (>99%) to those of A. kamchatkensis JW/VK-KG4, RAST
analysis of NASTPD13 genome suggested that A. kamchatkensis G10 is actually the closest neighbor in terms of sequence
similarity. The genome annotation by RAST revealed various genes encoding glycoside hydrolases supporting that it can utilize
several reduced carbon sources as observed and these genes could be important for carbohydrate-related industries. Xylanase
pathway, particularly the genomic region encoding key enzymes for xylan depolymerization and xylose metabolism, further
confirmed the presence of the complete gene in xylan metabolism. In addition, the complete xylose utilization gene locus
analysis of NASTPD13 genome revealed all including D-xylose transport ATP-binding protein XylG and XylF, the xylose
isomerase encoding gene XylA, and the gene XylB coding for a xylulokinase supported the fact that the isolate contains a
complete set of genes related to xylan degradation, pentose transport, and metabolism. The results of the present study suggest
that the isolated A. kamchatkensis NASTPD13 containing xylanase-producing genes could be useful in lignocellulosic biomass-
utilizing industries where pentose polymers could also be utilized along with the hexose polymers.

1. Introduction

Anoxybacillus was first described as a separate genus by
Pikuta et al. [1] in contrast to Bacillus and Geobacillus based
on their phenotypic properties, 16S rDNA sequence, and

DNA–DNA hybridization experiments. They are defined as
rod-shaped, present in pairs or short chains with terminal
endospores, Gram-positive, aerotolerant or facultative anaer-
obe, thermophilic, and alkalophilic or alkalitolerant and grew
at a temperature of 37-62°C [2]. Mostly, Anoxybacillus spp.
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have been reported from hot springs but it has also been iso-
lated from different environments such as animal manure,
dairy products, and guts of animals ([3]).

The only genome of A. flavithermusWK1 (PRJNA59135)
[4] is completely sequenced, while the draft genomes of other
species, including A. ayderensis AB04T (PRJNA258494), A.
thermarum AF/04T (PRJNA260786), A. gonensis G2T
(PRJNA264351), A. tepidamans PS2 (PRJNA214279), A.
kamchatkensisG10 ((PRJNA170961), and 5 strains of A. fla-
vithermus, 25 (PRJNA258119), Kn10 (PRJDB1085), TNO-
09.006 (PRJNA169174), and E13T (PRJNA213809), and
many more has been reported [5].

Several studies has reported regarding the importance
of Anoxybacillus sp., and mostly, the enzymes produced
by bacilli that can tolerate the harsh industrial conditions
such as alkaline pH and high temperature[2]. Many
researches are seeking an alternative for renewable energy
generation [6]. Certain features of Anoxybacillus spp. such
as able to grow fast, tolerating extreme conditions, and
producing various thermozymes are getting attention of
many researchers as it can resolve the issues related to
biomass hydrolysis [7]. In addition, Anoxybacillus sp.
genomes are relatively small in size and can be used as a
microbial cell factory for minimizing the difficulty during
genome engineering and also serve as a host for certain
thermostable enzyme applications [8].

Anoxybacillus kamchatkensis have first been reported
from Geyser valley located in Kamchatka peninsula [9].
In the current work, we describe the features of Anoxyba-
cillus kamchatkensis NASTPD13 isolated from Paudwar
hot spring of Myagdi, Nepal, [10] and present its anno-
tated draft genome. Additionally, we provide a compara-
tive analysis of the GHs of strain NASTPD13 with four
other sequenced Anoxybacillus spp. The current study
describes the genomic level of thermophilic bacteria from
the hot spring of Nepal and explores its cellular and
molecular features in detail.

2. Materials and Methods

2.1. Isolation Details of NASTPD13. 1 g of biomat sample col-
lected from Paudwar hot spring [10] was suspended in 10ml
of nutrient broth (Himedia) and incubated at 60°C water
bath, The diluted cultures (100μl) were spread on nutrient
agar (HiMedia) plate and incubated at 60°C for 24 to 48
hours [11]. Single colony was picked, and the pure cultures
were stored as glycerol stocks for further study.

2.2. Growth Conditions. A. kamchatkensis NASTPD13 was
cultured on nutrient agar at 60°C for 18 h. Single colony
was transferred into the nutrient broth and incubated at
60°C at 200 rpm for 18 h. Cells were harvested by centrifuga-
tion at 10,000× g for 5min using a Microfuge® 16 centrifuge
(Beckman Coulter, Brea, CA, USA).

2.3. Biochemical Characterization. Apart from some manual
biochemical characteristics of NASTPD13 explained in
[12], Biolog MicroPlates technique was used for detail bio-
chemical characteristics of NASTPD13. In Biolog Micro-

Plates technique, each well is coated with a single carbon
source and after incubation of the culture shows the detail
biochemical characteristics of individual bacteria in a sin-
gle test. Biolog GN microplates (Biolog, Hayward, CA,
USA) were used for NASTPD13. As per the manufacturer
protocol, pure colonies of NASTPD13 from nutrient agar
were suspended in GN/GP fluid to a specified density.
150μl of bacterial suspension was pipetted into each well,
and the plates were incubated at 60°C up to 24 h. After
incubation, plates were read in Biolog MicroStation™
system.

2.4. Antibiotic Susceptibility Testing. The antibiotic suscepti-
bility test of NASTPD13 was performed by standard Kirby
Bauer’s disc diffusion tested as per CSLI guidelines [13].
The antibiotics tested were vancomycin, erythromycin,
gentamycin, chloramphenicol, penicillin G, cefixime,
rifampicin, kanamycin, azithromycin, novobiocin, lome-
floxacin, and bacitracin. The antibiotic discs (6mm diam-
eter) were purchased from HiMedia Laboratory Ltd.,
Mumbai (India).

2.5. Transmission Electron Microscope (TEM). NASTPD13
grown in minimum salt medium [10] containing 0.5% of
beechwood xylan and for control in nutrient broth were indi-
vidually harvested. Cells were centrifuged at 12,000 × g for 10
min. After centrifugation, the pellets were washed twice with
PBS and then diluted with PBS to a cell density of 108

CFU/ml. Washed cells were further stained with 0.1%
(wt/vol) sodium phosphotungstate (PTA; Sigma, 32 USA)
for 1 minute. Washed cells were negatively stained with
0.1% (wt/vol) sodium phosphotungstate (PTA; Sigma,
USA) in water for 1min on a carbon-coated copper grid
(300 mesh; PolyScience cat# 71150). Grids were observed
under JEOL JEM 2100, 200 kV transmission electron micro-
scope (TEM) at a resolution of 0.1 to 0.2m, and the TEM
images were captured [14].

2.6. The Phylogenetic Analysis. NASTPD13 chromosomal
DNA was extracted using the DNA Purification Kit (Pro-
mega Inc., Madison, WI, USA), and the 16S rRNA gene
was amplified using universal primers 27f (5′-AGAGTT
TGATCCTGGCTCAG-3′) and 1492r (5′-GGTTACCTT
GTTACGACTT-3′). The amplified product was purified,
using a QIA quick PCR purification kit (Qiagen Inc., San
Diego, CA, USA), and sequenced in an ABI Prism 3700 auto-
matic DNA sequencer by the use of a BigDye Terminator
Cycle Sequencing kit (Applied Biosystems, Inc., Palo Alto,
CA, USA). The sequence obtained was analyzed by the
National Center for Biotechnology Information (NCBI)
(http://www.ncbi.nlm.nih.gov/). The neighbor-joining phy-
logenetic tree was constructed with some species of the genus
Anoxybacillus based on the 16S rDNA sequences by MEGA
6.0 [15].

2.7. Whole-Genome Sequencing, Assembly, and Annotation.
Whole-genome sequence analysis of Anoxybacillus kamchat-
kensis NASTPD13 was done at CSIR-Institute of Microbial
Technology, Chandigarh, India. Genomic DNA was
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extracted from the isolates using ZR Fungal/Bacterial DNA
MiniPrep Kit (Zymo Research Corporation, Orange, CA,
USA) as per the manufacturer’s guidelines. Contamina-
tions, quality, and concentration of genomic DNA were
checked by using NanoDrop (Thermo Fisher Scientific,
MA, USA), and quantification was done by Qubit 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA). Library
preparation was done by using the Nextera XT sample
preparation kit (Illumina, Inc., San Diego, CA, USA) with
dual indexing adaptors as per the instruction manual.
Sequencing of libraries was done on in-house Illumina
MiSeq sequencing platform (Illumina, Inc., San Diego,
CA, USA), in a 2 × 250 paired end run. Adapter trimming
was done by MiSeq Control software (MCS). Quality of
obtained reads was checked by using FastQC. Obtained
reads were assembled using CLC Genomics Workbench
v7 (CLC Bio-Qiagen, Aarhus, Denmark) with minimum
contig length as 500 bp. 16S rRNA sequences were
extracted from the assembled genomes using RNAmmer
1.2 server [16] and were characterized by Ez-taxon server
[17], and tRNA was calculated by tRNAScan-SE ([18])
and CRISPRFinder [19] for finding CRISPR in the
genome. The GHs were identified and verified using the
dbCAN CAZy ([20]). Average nucleotide identity (ANI)
was calculated by JSpecies [21], and Digital DNA-DNA
hybridization (dDDH) was calculated by GGDC 2.0,
DSMZ [22]. Assembled genomes were then annotated
using Rapid Annotation using Subsystem Technology
(RAST) [23] and BASys (a web server for automated bac-
terial genome annotation) [24]. BLAST Ring Image Gener-
ator (BRIG) software was used for comparison and
visualization of genomes [25].

2.8. Comparative Genome Analysis. The comparative geno-
mics helps to visualize the results and discovers correlations
and trends in large datasets which makes understanding
and interpretation of the data easier and generate figures
for communicating results [26]. Venn Painter [26] and
BLAST Ring Image Generator (BRIG) [25] were used for
the comparative genome analysis of A. kamchatkensis
NASTPD13.

3. Results and Discussions

3.1. Organism Information. Anoxybacillus kamchatkensis
NASTPD13 was isolated from Paudwar hot spring of
Myagdi district, Nepal [27]. The colonies of NASTPD13
were 1–2mm in diameter, cream-colored, and regular in
shape with round edges. The strain was Gram-positive,
rod-shaped containing spherical endospore, and catalase
and oxidase positive and has ability to reduce nitrate to
nitrite [12]. NASPD13 is a facultative anaerobe and mod-
erately thermophilic that can grow at a wide temperature
range of 37–70°C (optimum 55-60°C) and pH5.0–11.0
(optimum pH6.5–7.5) [12]. TEM image showed that cells
were 0.7–0.4μm in size (Figure 1). NASTPD13 was able to
utilize carbon sources including starch, gelatin, D-glucose,
D-raffinose, D-sucrose, D-xylose, D-fructose, L-arabinose,
maltose, and D-mannose, whereas there was no growth

in the presence of vancomycin, erythromycin, gentamycin,
chloramphenicol, penicillin G, cefixime, rifampicin, kana-
mycin, azithromycin, novobiocin, lomefloxacin, and baci-
tracin [10]. Phylogenetic analysis of 16S rRNA of
NASTPD13 showed clusters together with Anoxybacillus
kamchatkensis JW/VK-KG4 [9] (Figure 2).

3.2. TEM Imaging. The TEM image of NASTPD13 grown
in nutrient broth (Figure 1(a)) showed rod-shaped (diam-
eter 0.5μm) bacilli with no flagella, and the cell was sur-
rounded by electron-transparent extracellular zone, and
the cytoplasm was homogeneous with a terminal round
shape endospore. In the presence of xylan, the cell diame-
ter was 0.2μm with flagella (Figure 1(b)). An observable
change of the electron-transparent material and a disorga-
nized and distorted structure of cytoplasm were seen. Bac-
teria change their morphology depending on the carbon
substrate used ([28]); phenotypic changes seen in
NASTPD13 is due to the xylan present in the medium,
and utilization of xylan explains the presence of xylan-
degrading enzymes in NASTPD13. Various studies on
the flagellar system of bacteria have reported that some
bacteria have the unique property of switching on and
off their flagellar system with some unknown mechanism
for their survival in an unfavorable condition. Similar
results have also been reported by [2] suggesting that
Anoxybacillus spp. SK3-4 and DT3-1 were motile in cer-
tain media whereas nonmotile in certain growth media.
Interestingly, this study also reports the TEM image of
Anoxybacillus kamchatkensis NASTPD13 showing lots of
flagella.

3.3. Whole-Genome Sequencing and Species Identification.
The genome size of A. kamchatkensis NASTPD13 was
2,866,796 bp with GC 41.6% which assembled into 134 con-
tigs with coverage of 184x. Genome features and assembly
statistics of NASTPD13 are listed in Table 1. Species identifi-
cation and phylogenetic relatedness are best studied by phy-
logenomic markers, average nucleotide identity (ANI) [29],
and digital DNA-DNA hybridization (dDDH) [30]. Table 2
summarizes the pairwise ANI values of Anoxybacillus sp. A.
kamchatkensis NASTPD13 with 14 other species. The
whole-genome ANI value between Anoxybacillus sp. strain
NASTPD13 and close relatives including A. kamchatkensis
G10 [31], A. gonenesis G2 [32], A. mongoliensis MB4 [33],
and A. thermarum AF/04 (T) [34] as 99.4%, 98.9%, 94.3%,
and 93.6%, respectively. The dDDH of strain NASTPD13
neighbor strains was 95.1%, 85.5%, 73.9%, and 67.3%, respec-
tively. A. kamchatkensisNASTPD13 showed the highest ANI
of 99.4% and dDDH of 95.1% with A. kamchatkensis G10.
The whole-genome shotgun project was deposited at
DDBJ/EMBL/GenBank under the accession number
NQLB000000000. The NCBI BioProject accession number
is PRJNA397640, and the biosample accession number is
SAMN07482658.

3.4. Annotation of NASTPD13. RAST predicted 3169 genes
among which 2992 were coding sequences (CDS) in the
NASTPD13 genome. The subsystem distribution revealed a
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total of 436 subsystems among which amino acid and deriv-
ative subsystem featured with largest number 337 CDS.
Other major subsystems annotated were carbohydrate 330,
protein metabolism 232, cofactors, vitamins, prosthetic
groups and pigments 232, RNA metabolism 139, sulfur
metabolism 23, and motility or chemotaxis 84 (Figure 3).
BASys annotated 3160 genes that were encoding various pro-

teins and displayed in the form of circular DNA for easy rep-
resentation of genomic data (Figure 4). The highest amino
acid residue content was predicted for leucine followed by
valine, alanine, glutamic acid, and isoleucine (Figure 5).

3.5. Comparative Analysis of NASTPD13. NASTPD13
genome and other four Anoxybacillus spp. shared 1469

62 Anoxybacillus suryakundensis JS1

Anoxybacillus eryuanensis E-112

Anoxybacillus mongoliensis T4

Anoxybacillus flavithermus subsp. Yunnanensis E13

Anoxybacillus pushchinoensis K-1

Anoxybacillus tengchongensis T-11

Anoxybacillus kaynarcensis D1021

Anoxybacillus bogrovensis BT13

Anoxybacillus flavithermus subsp. flavithermus DSM 2641

Anoxybacillus flavithermus subsp. flavithermus DSM2641

Anoxybacillus kestanbolensis K4

Anoxybacillus ayderensis AB04

NASTPD13

Anoxybacillus kamchatkensis JW/VK-KG4

Anoxybacillus salavtliensis A343

Anoxybacillus contaminans LMG21881

Anoxybacillus voinovskiensis TH13

Anoxybacillus amylolyticus MR3CT
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Figure 2: Phylogenetic trees of 16S rRNA gene sequences showing the relationship between NASTPD13 and representative Anoxybacillus sp.
calculated with MEGA 6.0 software.

0.5 𝜇m

(a)

0.2 𝜇m

(b)

Figure 1: Transmission electron microscopy (TEM) micrograph of negatively stained cell of A. kamchatkensis NASTPD13. (a) Grown in
nutrient broth. (b) Grown in minimal salt medium containing xylan as a carbon source.
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genes as shown in the Venn diagram (Figure 6).
NASTPD13 and G10 shared 3237 CDS exclusively. In
addition, 421, 60, and 38 genes are shared between
NASTPD13 and G2, AF/04, and WK1, respectively, show-
ing that NASTPD13 apart from G10 are more closely
related to G2 than the other strains.

Further, comparing the genome of G10, G2, MB4, and
AF/04 (T) with NASTPD13 as a reference strain is sequenced
in this study. The output image showed similarity between
NASTPD13 and the other comparative four genomes as a
set of concentric ring where BLAST matches are seen in dif-
ferent sliding colors defining the percentage of similarity
among them. Even though small differences between the

genome are not apparent in the BRIG concentric image, but
it can be clearly seen in Figure 7 that Anoxybacillus kamchat-
kensis G10 genome is again the most similar to NASTPD13
among the strains analyzed.. The BRIG image also displays
the bacteriophage genes in the NASTPD13 genome ranging
in size between 33.7 kb and 64.8 kb. Phage 1 located at
1789826-1845786 bp, consisting of 229 ORFs, had the high-
est homology to phage Thermu_OH2_0127842 (28) of 33.7
kb; Phage 2 located at 2480822-2529216, consisting of 319
ORFs, had highest homology to Phage Bacter_Lily_NC_
028841 (12) of 48.3 kb; and Phage 3 located at 2800662-
2865493, consisting of 396 ORFs, had highest homology to
Phage Entero_Lambda_NC_001416 (35) of 64.8 kb

Table 1: General features and comparison of genomes of NASTPD13 with other Anoxybacillus genome.

Attribute NASTPD13 A. gonensis G2 A. mongoliensis MB4 A. kamchatkensis G10 A. thermarum AF/04

Genome size (bp) 2,866,796 2,803,668 2,807,516 2,858,657 2,736,908

G+C content (%) 41.6 41.7 41.7 41.3 42.0

N50 103,759 2,803,668 78,095 130,036 37,018

No. of contigs 134 1 93 65 159

Coding sequence 2992 2808 2798 2910 3004

Pseudogenes 75 56 129 107 —

Genes (RNA) 102 106 113 69 117

rRna 19 24 32 9 9

tRna 79 78 77 56 74

ncRNA 4 4 4 4 1

CRISPR arrays 1 2 1 1 2

Accession number NQLB000000000 JRZG01000000 MRZM00000000 ALJT00000000 JXTH00000000

Table 2: Genomic comparison of A. kamchatkensis NASTPD13 and 14 other sequenced Anoxybacillus spp. using ANI.

NASTPD13 AB04 AF/04
BAA-
2555

BC01 DSM15939 DSM27374 G2 G10 K1 P3H1B PS2 MB4
SK3-
4

WK1

NASTPD13 100 94.29 93.6 72.8 94.2 74.9 87.0 98.9 99.4 85.5 72.7 72.9 94.3 93.7 88.2

AB04 94.3 100 94.4 73.1 97.3 75.2 87.4 94.2 94.1 86.4 72.7 72.9 97.2 97.4 88.0

AF/04 93.7 94.6 100 73.9 93.9 74.8 87.1 93.6 93.5 86.6 72.7 73.0 93.9 94.1 88.0

BAA-2555 71.6 71.8 71.9 100 71.8 73.9 71.2 71.6 71.6 71.9 88.2 75.2 71.8 71.8 71.8

BC01 94.2 97.4 98.9 73.0 100 74.9 87.2 93.9 94.0 86.2 72.5 72.8 96.5 96.8 87.7

DSM15939 74.8 75.0 74.8 75.8 74.8 100 74.2 74.6 74.9 74.4 75.9 76.9 75.0 74.9 75.1

DSM27374 87.1 87.4 87.1 72.3 87.3 74.0 100 87.2 87.0 85.9 72.3 72.6 88.2 87.4 88.4

G2 98.8 94.3 93.7 72.8 94.2 74.5 87.3 100 98.7 85.9 72.6 72.8 94.4 94.0 88.4

G10 99.4 94.2 93.5 72.8 94.2 74.8 87.0 98.7 100 85.5 72.8 72.9 94.3 93.7 88.1

K1 85.5 86.4 86.3 73.2 86.3 74.6 86.0 85.8 85.6 100 72.3 72.6 86.0 86.4 86.4

P3H1B 72.4 72.3 72.5 98.1 72.2 75.4 72.2 72.2 72.5 72.3 100 78.2 72.2 72.4 72.4

PS2 72.7 72.6 72.8 77.8 72.7 76.6 72.4 72.7 72.7 72.6 78.3 100 72.7 72.6 72.7

MB4 94.2 97.2 93.6 72.9 96.5 75.0 88.2 94.1 94.1 86.0 72.7 72.9 100 96.6 88.0

SK3-4 93.6 97.5 94.0 73.2 96.8 74.6 87.4 93.8 93.5 86.4 72.6 72.9 96.7 100 88.1

WK1 88.3 87.9 87.8 73.0 87.7 75.3 88.4 88.2 88.2 86.3 73.0 72.9 88.0 8.1 100

The reference protein sequence is denoted as 100%. AB04: A. ayderensis AB04 [5]; AF/04: A. thermarum AF/04 [42]; BAA-2555: Anoxybacillus geothermalis
[43]; BCO1: Anoxybacillus sp. BCO1 [44]; DSM15939: Anoxybacillus amylolyticus DSM15939 [42]; DSM27374: Anoxybacillus suryakundensis strain DSM
27374 [45]; G2: A. gonensis G2 [32]; G10: A. kamchatkensis G10 [31]; K1: Anoxybacillus pushchinoensis K1 [46]; P3H1B: Anoxybacillus sp. P3H1B [47];
PS2: A. tepidamans PS2 [48]; MB4: Anoxybacillus mongoliensis MB4 [33]; SK3-4: Anoxybacillus sp. SK3-4 [49]; WK1: A. flavithermus WK1 [4].

5BioMed Research International

 2738, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/1869748 by Q

atar U
niversity, W

iley O
nline L

ibrary on [07/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Figure 7). Phage contributes to the evolution of their host
bacteria by horizontal transfer of genes [35].

3.6. Analysis of the GHs in A. kamchatkensis NASTPD13 and
Other Anoxybacillus Genomes. The photosynthetically fixed
carbon in the plant cell wall is rich in organic carbon
compound that can be converted to renewal biofuel. The
degradation of plant polymers for various biotechnological
uses requires combined action of several enzymes [36].
Glycoside hydrolase are potentially involved in the degra-
dation of plant biomass [37]. The dbCAN CAZy database
detected 21 genes in NASTPD13 genome encoding GH
enzyme that belongs to GH families: 13, 23, 31, 32, 36,
42, 52, 65, and 109.The GHs are grouped based on their
catalytic ability (Table 3). In NASTPD13, nine GH
enzymes were active 275 on α-chain polysaccharides
whereas five were specific for β-linked polysaccharides
(i.e., cellulose and xylan). Along with GH families that
hydrolyze the β-1,4-xyloside linkages of xylan, the CAZy
database showed that NASTPD13 contains many other
genes encoding for lignocellulose-degrading enzymes. The
result showed 107 different CAZyme genes, encompassing
all six CAZy families: 21 glycoside hydrolases (GHs), 21
glycosyltransferases (GTs), 15 carbohydrate esterases
(CEs), 1 polysaccharide lyases (PLs), 4 auxiliary activities
(AAs), and 23 carbohydrate-binding modules (CBMs).

CBM (carbohydrate binding modules) families are capable
of binding to xylan. The finding suggests that presences of
various glycohydrolase genes in NASTPD13 hydrolyze the
glycosidic bonds present in complex sugars.

3.7. Xylose Metabolism by A. kamchatkensis NASTPD13.
Hemicellulosic sugars, especially D-xylose, are abundant in
lignocellulosic biomass that can be recovered from by various
physical and chemical pretreatments of the biomass, and
also, D-xylose yields better from the biomass than D-glucose
from cellulose. Xylose is one of the major fermentable sugars
in nature after glucose; therefore, fermentation of xylose is
necessary for producing biofuels, such as ethanol, from ligno-
cellulosic biomass [38].

Hemicellulosic sugars has also been reported as a
feedstock for production of ethanol and other chemicals
but D-xylose is not so readily utilized as D-glucose due
to the complex biochemical pathways for pentose and
hexose metabolisms [39]. Various pathways have been
employed by prokaryotes and eukaryotes for pentose
assimilation [40].

Thermophilic bacteria capable of fermenting both glu-
cose and xylose are on high industrial demand (Yejun
[41]). Thermophiles like Anoxybacillus sp. are relevant to
the industry, because they produce thermozymes that
match the harsh industrial process [2]. The observed

Subsystem converage

53%
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Subsystem category distribution Subsystem feature counts
Cofactors, vitamins, prosthetic groups, pigments (232)
Cell wall and capsule (73)
Virulence, disease and defense (49)
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Membrane transport (95)
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Nucleosides and nucleotides (95)
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Cell division and cell cycle (50)
Motility and chemotaxis (84)
Regulation and cell signaling (37)
Secondary metabolism (5)
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Figure 3: Distribution of major protein coding genes of Anoxybacillus kamchatkensis strain NASTPD13 annotated by Rapid Annotation
System Technology (RAST) server. The 27 most abundant subsystem categories in strain NASTPD13 are explained by the pie chart. The
bar explains about the subsystem coverage. The green color represents features that are found in RAST subsystem, and the blue color
represents features not assigned to a subsystem.
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ability of A. kamchatkensis NASTPD13 to utilize xylose in
our previous study [10] developed our keen interest in the
investigation of the xylose metabolism pathway and per-
formed the whole-genome sequence of A. kamchatkensis
NASTPD13. NASTPD13 genome revealed the presence of
genes related to xylose metabolism such as xylose-

binding protein xylG (NAST_1706), xylF (NAST_1707),
xylH (NAST_1705), ABC transporter system-associated
protein (NAST_622, NAST_623, NAST_624), transcription
regulator (NAST_627), xylose isomerase (NAST_619)
encoding gene xylA, and gene xylB coding for a xyluloki-
nase (NAST_618) (Figure 8). XylA deals with
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Forward strand

Reverse strand

Forward strand

Reverse strand

Translation, ribosomal structure and biogenesis

Transcription

DNA replication, recombination and repair

Cell division and chromosome partitioning

Post translational modification, protein turnover, chaperones
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Cell motility and secretion

Inorganic ion transport and metabolism

Signal transduction mechanisms

Energy production and conversion
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Lipid metabolism
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General function prediction only
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Figure 4: A graphical circular map of the A. kamchatkensis NASTPD13 genome by BASys (Bacterial Annotation System). From outside to
the center: genes on the forward strand (colored by COG categories), genes on forward strand (red), genes on reverse strand (blue), and genes
on the reverse strand (colored by COG categories).
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Figure 5: Amino acid compositions of Anoxybacillus kamchatkensis NASTPD13 by BASys. Amino acid composition values were extracted
from the faa file obtained for this accession from NCBI. Each bar represents the fraction of the total amino acids matching the given residue.
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isomerization of xylose to xylulose, while XylB convert
xylulose to xylulose-5-phosphate. NASTPD13 xylan ABC
transporter system and β-xylosidase continue to further
step of xylose metabolism.

To date, in the family Bacillaceae, genome sequencing of
Geobacillus (>80 projects) and Bacillus (>1500 projects) have

been undertaken and have been registered in the NCBI Bio-
Project database, whereas genomic studies on Anoxybacillus
are rather limited (16 registered projects) [5]. These findings
on A. kamchatkensis NASTPD13 genome add knowledge on
the industrially important Anoxybacillus genomes. This
study provides additional information on the xylose

4664
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Figure 6: Venn diagram showing genes shared between four Anoxybacillus species. Isolates are denoted by colors: A. kamchatkensis
NASTPD13 (yellow), A. kamchatkensis G10 (red), A. thermarum AF/04 (green), A. gonensis G2 (pink), and A. flavithermus (WK1).
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Figure 7: BRIG image showing whole genome comparison of A. kamchatkensisNASTPD13 with other members of genus Anoxybacillus spp.
using BLAST Ring Image Generator.
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metabolism in Anoxybacillus kamchatkensis that can further
help in the detailed study of the species.

4. Conclusion

Anoxybacillus kamchatkensis NASTPD13, isolated from
Paudwar hot spring of Nepal, is Gram-positive with terminal
endospore rod-shaped bacilli [10]. The TEM image of
NASTPD13 grown in the xylan-containing medium showed
major changes in their cell morphology along with the inter-
esting property of flagella production in a certain growth
medium such as xylan. The genome size of NASTPD13 is
2.8Mb. Comparison of the NASTPD13 genome with the
closely related strain of Anoxybacillus spp. against various
databases showed the closed relationship with Anoxybacillus
kamchatkensis G10. Previous study explained in [10] related
to NASTPD13 xylanase and combining the data from this
study related to presence of genes related to metabolism of
Xylan showed the presence of xylanase and β xylosidase gene
that are essential for complete degradation of xylan to pen-
tose sugar xylose. The gene related to utilization of xylose
(xylG, xylF, and xylH) is also present in Anoxybacillus kam-
chatkensis NASTPD13. The presence of all the genes related
to the metabolism of xylan in Anoxybacillus kamchatkensis
NASTPD13 genome emphasizes its industrial importance
along with promising sources of lignocellulase in second-
generation biofuel production.
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Table 3: Glycoside hydrolases (GHs) identified in A. kamchatkensis NASTPD13 and comparing NASTPD13 with other reported
Anoxybacillus genomes GHs.

GHs Enzymes NASTPD13 G10 MB4 G2 AF/04

13 1,4-Alpha-glucan branching enzyme 100.00 100.00 99.76 99.54 96.14

13 Oligo-1,6-glucosidase 100.00 100.00 96.76 99.54 96.14

13 Trehalose-6-phosphate hydrolase 100.00 100.00 98.38 99.10 98.74

13 Alpha-glucosidase 100.00 99.82 99.10 99.82 98.92

13 Cytoplasmic alpha-amylase 100.00 100.00 93.96 — —

13 Pullulanase 100.00 100.00 95.74 99.32 93.19

13 Maltodextrin glucosidase 100.00 99.45 — 98.39 —

23 Murein hydrolase 100.00 100.00 — 97.04 93.10

31 Alpha-glucosidase 100.00 99.82 99.10 99.82 98.92

32 Sucrose-6-phosphate hydrolase 100.00 100.00 97.99 97.99 91.92

36 Alpha-galactosidase 100.00 100.00 — 55.13 —

42 Beta-galactosidase 100.00 100.00 — 99.69 —

52 Beta-xylosidase 100.00 100.00 89.08 99.43 —

65 Maltose phosphorylase 100.00 100.00 96.41 99.87 —

109 Oxidoreductase 100.00 100.00 90.99 99.70 —
∗NASTPD13: A. kamchatkensis NASTPD13; G10: A. kamchatkensis G10; MB4: A. mongoliensis MB4; G2: A. gonensis G2; AF/04: A. thermarum AF/04.
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Figure 8: Genes encoding proteins for xylose metabolism located on the chromosome of Anoxybacillus kamchatkensis NASTPD13.
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