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ABSTRACT 
FEZOONI, ABDULHADY YOUNES, Masters: 

June:2024, Masters of Science in Computing 

Title: STRONG MARKET-MAKING USING DEEP REINFORCEMENT 

LEARNING: BITCOIN MARKET ANALYSIS 

Supervisor of: Dr. Noora Fetais. 

This study evaluates the use of deep reinforcement learning (DRL) in market-

making, specifically in the Bitcoin market. DRL has shown promise in providing 

robust market-making capabilities, including enhanced market liquidity and risk 

management, which may lead to more efficient price discovery and lower volatility. 

The study also discusses the historical perspective of market-making techniques and 

explains how agents can use DL algorithms and RL principles to improve preset 

objectives in financial markets. It also reviews essential DRL algorithms like 

Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), and Deep Q-

Network (DQN) and their specialized applications and the possible effect of DRL-

based market-making on market dynamics. This project uses data science and 

machine learning to study Bitcoin market data. It's important for financial market 

analysis, especially in volatile and speculative cryptocurrency markets. The models' 

effectiveness is evaluated with spread capture ratio, market impact, and profitability. 

The findings can help academics and financial institutions understand how DRL can 

improve market efficiency and stability. 
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CHAPTER 1: INTRODUCTION 

Overview 

 

Citadel Securities, one of the largest players in equity market making, 

announced a net trading revenue exceeding $6 billion in the year 2020 [1]. Similarly, 

Virtu Financial [2], another prominent market maker, declared an approximate trading 

income of nearly $3.5 billion. The overall yearly profits attributed to the high-

frequency trading sector for US equity are believed to range from $5 billion to $10 

billion. It's important to note the close relationship between market-making and high-

frequency trading. An illustration of this connection is Flow Traders, a proprietary 

trading company that serves as a market maker, enhancing liquidity within the 

securities market through the application of high-frequency and quantitative trading 

technique. The financial results for Flow Traders in 2020 reported revenue totaling 

€933.4 million [3]. In the Chicago Mercantile Exchange landscape, DRW (Don 

Wilson) functions as a diversified firm involved in trading a variety of financial 

instruments such as fixed income, options, derivatives, energy, agriculture, and 

cryptocurrency. In the financial year 2021, the DRW Trading Group posted an annual 

revenue of €412 million [1]. 

One of the most significant scientific advancements of the twenty-first 

century, is the emergence and rapid evolution of artificial intelligence (AI), a 

transformative field that has revolutionized various domains across academia, 

industry, and society at large. By 2022, AI usage among businesses worldwide had 

increased by 4% points from the previous year, with 35% of businesses incorporating 

AI into their operations, forecasts predict that the global artificial intelligence market 

will soar to $1.59 trillion by 2030, notably, 91% of prominent companies consistently 

invest in AI, underlining the strategic importance they place on AI technologies, 
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according to a survey, 61% of employees believe that AI contributes positively to 

their work productivity, enhancing efficiency and outcomes.  Surprisingly, 62% of 

consumers express their willingness to share data with AI systems to enhance their 

interactions and overall experiences with businesses, it was projected that around 15% 

of all customer service interactions globally in 2021 would be fully powered by AI, 

indicating the increasing integration of AI in customer service processes, currently, 

almost 1 in 4 sales teams rely on artificial intelligence in their day-to-day operations, 

embracing AI's potential to drive sales effectiveness, over half of the organizations, 

approximately 54%, have reported tangible cost savings and efficiencies as a direct 

outcome of implementing AI solutions, the number of AI-powered voice assistants is 

projected to experience a remarkable 146% surge from 3.25 billion in 2019 to 8 

billion by 2023, and a significant majority of businesses, more than 3 in 4, consider 

trust in AI's analysis, results, and recommendations to be of utmost importance in 

their decision-making processes [4] [5]. The implications of AI are already being felt 

in many different areas, and it has the potential to revolutionize many different 

sectors. Businesses now need novel approaches to maintain a competitive edge, and 

AI has emerged as a powerful tool to help them do just that. It is possible to see the 

effects of AI in many other fields, such as business, teaching, medicine, retail, and 

transportation [6]. AI has the potential to boost output, cut expenses, improve 

precision, and personalize services for customers [7], [8]. It can also provide valuable 

insights into data that individuals may have trouble recognizing on their own. "One of 

the most significant things that humanity is working on is AI," remarked by Google 

CEO Sundar Pichai. Its significance is beyond that of fire, electricity, and all our other 

great technological advances. There are many benefits to it, but there are also some 

major negatives that you should be aware of [9]. AI has advanced significantly in the 
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past few years, particularly in a branch of machine learning called deep learning. 

Some people are worried about the social and ethical implications of these 

innovations as well as their potential applications. These concerns are shared by the 

general public, scientists, science policy analysts, and those who study artificial 

intelligence [10] [11]. 

To better evaluate, manage, invest, and secure financial resources, financial 

institutions are increasingly turning to artificial intelligence (AI) tools which aim to 

emulate human intelligence and decision-making [12]. Interest in the application of 

AI to the financial sector has been on the rise for several years [13]. Conventional AI 

in the finance sector has historically served functions like financial markets, trading, 

banking, insurance, risk management, regulation, and marketing. In contrast, the 

emergence of FinTech (financial technology) represents a newer generation that 

empowers activities such as digital currency management, lending, payments, asset 

and wealth management, risk and regulatory compliance, as well as accounting and 

auditing [14]. 

Technological advancements in the financial markets have traditionally been 

centered on improving trading procedures and overall market efficiency [15]. Market-

making is one of the most essential functions in the global financial markets. This 

function requires providing consistent buy and sell quotes for a group of assets in 

order to keep the market liquid and to ensure accurate price discovery [16]. Classic 

market-making strategies often depend on heuristic principles and statistical models; 

however, recent advancements in AI and ML have sparked a large interest in the 

research of more complicated and adaptive ways to classic market-making tactics. 

One of these prospective avenues is the application of DRL methods in market-

making. DRL is a subfield of ML that is created when the powerful class of 
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algorithms known as deep learning is paired with the paradigm of reinforcement 

learning, which is oriented on learning through interactions with one's environment in 

order to maximize the achievement of a preset goal. DRL enables market makers to 

potentially learn sophisticated patterns from historical market data, modify their 

strategies in real-time in reaction to shifting market conditions, and so on. This allows 

market makers to improve their capacity to supply continuous liquidity while 

efficiently managing risk. This capability can be strengthened by adopting DRL [17]. 

Market-Making (MM) tactics increase market activity, order stability, and 

liquidity in the ever-changing stock market. Buy-side high-frequency trading 

strategies capitalize on market spreads, which are the disparities between the best bid 

and ask prices. These spreads pose difficulties in devising a successful Market 

Making strategy  [18][19]. Human professionals used their experience to design 

mechanical MM techniques. These rules were useful yet limited. First, they didn't 

understand the market's dynamics and strategy states. Second, they struggled to grasp 

these states' complex linkages and best trading behaviors [18]. Meanwhile, deep 

reinforcement learning allows agents to learn and adapt without rules [20]. Imagine an 

MM agent quoting bid and ask prices simultaneously, ready to exploit chances. This 

AI-driven agent masters decision-making using deep reinforcement learning. It can 

understand strategy states and make the most successful trades by learning from its 

experiences. Alpha Star shows incredible potential. This astonishing agent 

outperformed 99.8% of human gamers utilizing deep reinforcement learning, as the 

AI era dawns, its popularity soars (rise), and it already accounts for more than 70% of 

trade volumes in major countries like the United States and more than 40% in 

developing markets like China [21]. AI could also transform market-making. Deep 

reinforcement learning can make MM strategies efficient, adaptive, and profitable. 
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AI-powered MM agents could revolutionize market-making by embracing numbers 

and market conditions [9]. 

The potential of DRL to disrupt conventional market-making techniques has 

led to widespread interest in the field. DRL is a technique that combines DL and RL 

to help market makers learn complicated patterns from past market data, adjust 

strategies to new circumstances, and maintain good risk management all while 

providing continuous liquidity [17]. Due to its effectiveness in learning difficult 

games and other applications, DRL has garnered substantial adoption within the 

financial sector. DRL has emerged as a promising methodology for tackling intricate 

decision-making issues across various domains, with market-making being a 

prominent area that has attracted significant interest. Market-Making, the continuous 

buying and selling of financial instruments to provide liquidity in financial markets 

requires quick and adaptive decision-making to capitalize on market fluctuations and 

ensure efficient trading. Traditional market-making strategies rely on rule-based 

heuristics and mathematical models, which may struggle to capture the dynamic and 

intricate nature of financial markets. DRL, alternatively, offers a data-driven and 

adaptive approach that can learn optimal trading strategies directly from market data. 

The scientific community and the private sector have recently shown a great deal of 

interest in deep reinforcement learning. Alpha Star, which was taught to play the 

game using a deep reinforcement learning algorithm, now consistently achieves a 

99.8%-win rate against human opponents [22]. To optimize difficult decision-making 

tasks from start to finish, a Deep Q-network (DQN) combines deep neural networks 

with RL to extract characteristics from data [23]. However, the majority of existing 

stock market-related deep reinforcement learning challenges are geared toward long- 

or short-term stock trading. Deng et al. employed a direct deep reinforcement learning 
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method to train an agent for trading financial assets, aiming to model real-time 

financial data.[24]. 

In recent years, DRL's use of neural networks and reinforcement learning 

algorithms to tackle the difficulties of market-making has shown considerable 

promise. DRL enables market-making agents to learn and adapt to changing market 

conditions by integrating deep neural networks, which are capable of managing 

complicated data patterns, with reinforcement learning techniques, which maximize 

decision-making based on rewards and punishments. Agents using dynamic risk 

pricing (DRP) in the market make judgments about when to place bids and offers, 

how much of a spread to use, and when to execute trades based on their analysis of 

market data such as order book information, historical price movements, and market 

depth [25]. These agents learn through trial and error how to maximize profits, 

decrease transaction costs, and control risk. 

While DRL shows potential in market-making, it also comes with 

implementation issues that must be taken into account. There is a risk of overfitting 

historical data, which necessitates huge volumes of high-quality training data and 

careful construction of reward functions. When implementing DRL-based market-

making methods, it is also important to take into account relevant market regulations 

and compliance prerequisites [26]. There are, however, complications associated with 

using DRL for market-making. It takes a lot of computing power, a lot of data, and a 

well-thought-out reward system to train a DRL agent. Additional difficulties that must 

be overcome include overfitting, model instability, and the requirement for ongoing 

learning in a rapidly changing market context. There are a number of potential 

benefits of implementing DRL into market-making. To begin, it can recognize 

complex, non-linear relationships in the market data, allowing agents to make smarter, 
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more flexible choices. Second, DRL agents can respond to the ever-evolving nature of 

the market by learning from past events and adjusting their approach accordingly. 

Third, by providing tighter spreads and deeper order books, market-making based on 

DRLs has the potential to increase liquidity provision and enhance market efficiency 

[27]. 

 

Principles of Market Design 

 

It is necessary to go into the fundamental notions of market-making in order to 

lay the foundations for comprehending DRL-based market-making. The foundation 

for contemporary market-making tactics was established by earlier methodologies like 

the bid-ask spread and dealer-based models. Algorithmic trading and high-frequency 

trading methods emerged as financial markets developed, improving liquidity 

provision. This analysis of existing market-making techniques reveals the drawbacks 

of current approaches and paves the path for the implementation of more flexible 

DRL-based strategies. 

 

Market Decisions Using DRL 

 

In this thesis, we examine the many approaches that have been offered for 

using DRL in market-making. Modeling order books, managing stock, and 

automating trades are just some of the many facets of DRL-based market-making that 

have been investigated by academics. Case studies and empirical experiments are 

reviewed to show the potential gains in market-making efficiency and risk 

management that can be attained by employing DRL across a variety of market 

circumstances and asset classes. 
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The Limitations and Challenges 

 

Despite the potential benefits, the widespread adoption of DRL-based market-

making faces several obstacles [28]. One of the primary concerns highlighted by 

researchers pertains to the issue of substandard data quality, inadequately elucidated 

models, protracted training durations, and extensive processing demands. This thesis 

provides a comprehensive analysis of the challenges encountered in the field, along 

with potential strategies and advancements aimed at mitigating these obstacles. These 

include the utilization of sample-efficient algorithms and the implementation of 

transfer learning techniques. Below are the limitations and challenges faced during the 

implementation: 

Limitations: 

Model Overfitting: The disparity between training and testing performance, 

particularly in terms of profitability, could indicate overfitting. This means the models 

may have been too closely tailored to the training data, reducing their effectiveness on 

new data. 

Market Dynamics: The cryptocurrency market is known for its high volatility 

and unpredictability. These characteristics can make it challenging for models to 

consistently predict market movements and apply profitable trading strategies. 

Data Quality and Availability: The performance of machine learning models 

heavily relies on the quality and comprehensiveness of the data they are trained on. 

Limited or biased data can lead to underperforming models. 

Challenges: 

Adapting to Market Changes: Cryptocurrency markets can change rapidly. A 

significant challenge is developing a model that not only performs well on historical 

data but can also adapt and respond to new market conditions effectively. 
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Risk Management: While profitability is important, effectively managing risk 

is crucial in trading. The model must balance the pursuit of profit with the 

management of potential losses, especially in volatile markets. 

Regulatory and Ethical Considerations: Cryptocurrency markets are subject to 

evolving regulatory landscapes. Ensuring compliance and ethical trading practices is 

both a challenge and a necessity. 

 

The Motivation of Deep Reinforcement Learning for Market-Making 

 

DRL has gained attention in the field of market-making due to its ability to 

handle complex and dynamic environments, optimize trading strategies, and adapt to 

changing market conditions. Market-Making entails the provision of liquidity to 

financial markets through the continuous quoting of bid and ask prices for a specific 

security. DRL can enhance market-making strategies by leveraging its ability to learn 

from data and adjust to evolving market circumstances. DRL has the capacity to 

discover complex patterns from past market data and optimize market-making tactics 

by combining deep learning, which can handle massive volumes of data, with 

reinforcement learning, which learns through interactions with an environment. Core 

DRL algorithms are explained at length to demonstrate their specialized applicability 

in financial markets. This includes DQNs, PPO, and A2C. Indeed, the use of DRL in 

market-making can offer several potential advantages. Here are some reasons why 

DRL is used for market making: 

Complex Decision-Making: Market-Making involves making numerous trading 

decisions in a fast-paced and highly competitive environment. DRL models have the 

capability to acquire intricate patterns and associations from both historical and 

current market data [29]. They can process vast amounts of information and make 
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decisions based on multiple variables, including price movements, order flow, and 

market microstructure. 

Adaptability: Financial markets are constantly evolving, and market 

conditions can change rapidly. DRL models excel at adaptability and can adjust their 

strategies to changing market dynamics [30]. They can learn from experience and 

update their decision-making process accordingly. This adaptability allows market 

makers to respond quickly to market shifts and optimize their trading strategies in 

real-time. 

Optimization and Performance: DRL models can optimize trading strategies 

by learning from past experiences and exploring different actions to maximize 

rewards or minimize costs. These models can continually refine their decision-making 

process [30], improving their performance over time [31]. By leveraging DRL, market 

makers can strive for more efficient and profitable market-making operations. 

Handling Uncertainty: Financial markets are inherently uncertain, and market 

makers need to manage risk effectively. DRL models can incorporate risk 

management techniques by considering uncertainty and potential downside risks. 

They can balance risk and reward trade-offs and adjust their trading strategies to 

minimize losses or exposure to adverse market conditions [32]. 

Nonlinear Relationships: Financial markets often exhibit nonlinear 

relationships [29], where the impact of one variable on market dynamics can be 

influenced by various factors. DRL models can capture these nonlinear relationships 

and make more accurate predictions and decisions compared to traditional linear 

models. This enables market makers to better understand and respond to market 

dynamics. 

Continuous Learning: DRL models have the capability to learn continuously 
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from new data and adapt their strategies accordingly [33]. They can learn from both 

historical data and real-time market information, allowing them to incorporate the 

most up-to-date insights into their decision-making process. This continuous learning 

capability helps market makers stay competitive and adapt to changing market 

conditions over time. 

Improved Efficiency: DRL-based market-making systems can automate 

various aspects of the trading process, leading to improved efficiency and reduced 

operational costs [33]. By automating the decision-making process, DRL can enable 

market-makers to quote prices more quickly and accurately, thereby improving 

liquidity provision and reducing bid-ask spreads. 

Handling Complex Market Dynamics: Financial markets can exhibit complex 

dynamics, including non-linear relationships, high-frequency trading, and varying 

liquidity conditions [34]. DRL algorithms excel at handling such complexity by 

capturing patterns and exploiting market inefficiencies that might be difficult for 

traditional rule-based approaches. By processing substantial data sets and uncovering 

hidden patterns, these models enable market-makers to enhance their trading 

decisions with increased information and effectiveness. 

Risk Management: DRL algorithms can incorporate risk management 

techniques and optimize trading strategies to minimize risk exposure. By considering 

factors such as market volatility, position limits, and risk tolerance [32], DRL-based 

market-making systems can better manage risk and avoid excessive losses. This can 

enhance the overall stability and profitability of market-making operations. 

Scalability: DRL algorithms have the potential to scale effectively across 

multiple markets and instruments. Once trained, the algorithms can be deployed 

across various assets, allowing market-makers to operate in different markets 
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simultaneously. This scalability can enable market-makers to expand their trading 

activities and capture opportunities across a broader range of securities [33]. 

 

While DRL shows promise for market-making, it's important to note that its 

implementation requires expertise in AI, extensive computational resources, and 

careful consideration of risk management practices and regulatory requirements to 

ensure responsible and compliant trading activities. 

 

 Thesis Objective 

 

The aim of this thesis is to explore the emerging topic of DRL in order to 

generate more precise market forecasts. We will discuss the theoretical and 

experimental foundations of market-making and DRL, analyze the challenges and 

potential benefits of applying DRL to market-making, and examine the most current 

results and activities at the cutting edge of this field. The goal is to develop an 

intelligent trading system using historical cryptocurrency price data that can make 

profitable trades while minimizing risk. This involves preprocessing and analyzing 

the data, creating a suitable reinforcement learning environment, and training different 

models such as PPO, A2C, and DQN to find the best-performing model. The main 

objective of the research: 

• Develop a market-making framework based on Deep Reinforcement Learning: 

improve overall market-making profitability. 

• Preprocess and analyze the given crypto_data.csv dataset containing Bitcoin 

price information. 

• Train three different models (PPO, A2C, and DQN) with this environment and 

compare their performance. 
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• Analyze evaluation metrics including Spread Capture Ratio, Market Impact, 

and Profitability for both train and test datasets across all trained models. 

• Identify the most effective model capable of making profitable trades 

consistently while considering risk management. 

 

Thesis Overview 

 

This chapter gives an overview of the research and presents the research 

objectives. In Chapter 2, a background to the main concepts utilized in this research is 

introduced. In Chapter 3, A deep description of using Deep Reinforcement Learning 

in Market-Making was presented. Chapter 4 is a review of the related work in using 

Deep Reinforcement Learning in Market-Making domain. Chapter 5 delves into a 

comprehensive mathematical explanation, clarifying the underlying principles and 

theoretical framework that substantiate the thesis's propositions and findings. In 

Chapter 6, the methodology and its practical applications take center stage, offering a 

detailed exploration of how the theoretical constructs explained in the previous 

chapters are implemented and tested in real-world scenarios. Finally, Chapter 7 

provides a review of our findings and the work that will be done moving forward to 

incorporate deep reinforcement learning in market-making. 
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CHAPTER 2: BACKGROUND 

Market-Making 

 

Before going deep into the specifics of this thesis, we provide brief 

background information on MM in this part. Market makers are high-volume traders 

that actually "make a market" for assets, constantly prepared to buy or sell at any 

price to maintain market liquidity. Financial institutions, investment banks, and 

brokerages are some examples of market makers. Financial markets rely largely on 

liquidity, and by providing liquidity, market makers ensure that the music never stops. 

The enhancement of market-making has a huge influence on the whole financial 

industry. Over the past 20 years, we have steadily moved toward a more computerized 

financial system. As a result of this transition, computers, which use sophisticated 

algorithms and provide decisions in a matter of milliseconds, have replaced traditional 

market makers [35]. 

The market as we know it today was created with the appearance of market 

makers. Today, artificial intelligence has assumed the role of the market maker, 

which, with the aid of mathematical algorithms, enables a seamless flow of closed 

agreements and offers immediate liquidity. Undoubtedly, automated programs that 

can handle a million orders at once have revolutionized the trading industry. They 

have opened up new possibilities for using trading systems and, more importantly, 

have sparked the creation of new technologies that will improve market liquidity. 

Market makers are unique market participants that always stand ready to enter 

into deals with other market makers, keeping the market dynamic. Market makers 

may also be described as traders who assume responsibility for maintaining pricing, 

demand, supply, and/or volume of transactions in financial instruments, foreign 

currencies, and/or items after such an agreement, one of which is the trade organizer. 
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There must be a second party participating in the transaction for each participant. 

Finding a buyer for your shares or currencies is the only thing you need to do in order 

to sell them. Similarly, if you wish to purchase assets, you must locate a seller. No 

matter what instrument is exchanged, a market maker is in charge of making sure 

there is always a buyer or a seller to make sure the transaction goes well. Market 

makers act as both brokers and dealers, a conflict of interest develops since, as 

brokers, they are obligated to give customers the greatest execution. As dealers, 

however, they take on the role of counterparties and engage in profitable trading. 

Market makers can be split into two groups [35]: 

• The biggest commercial banks are regarded as the first-level market 

makers. They are also referred to as institutional market makers. They 

collaborate with stock exchanges, reach agreements, and accept 

commitments in order to ensure asset turnover and supply and demand 

equilibrium. These suppliers include businesses that manipulate interest 

rates and foreign exchange rates in addition to commercial banks. Large 

banks, trading floors, brokerage firms, sizable funds, and wealthy people 

might all be among them. 

• Intermediaries are market makers at the second level because they let 

smaller brokers and individual traders access the market. They run on their 

own liquidity, but if they need to, they can borrow money from the first 

level's liquidity suppliers. Market makers, as opposed to regular traders, 

focus on orders like Take Profit, Stop Loss, and pending orders while 

analyzing the market. Exchange participants fall under the category of 

speculative market makers when discussing the categories of market 

makers. When these market makers (such as small banks and individual 
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investors) deal, a price impulse is created due to their large stockpiles of 

assets. 

Additionally, market takers need their own independent discussion. In contrast 

to market makers, who set or quote prices, market takers accept or take prices. Market 

makers, on the other hand, may only negotiate with market takers. 

Market makers may be able to benefit smaller and private account investors. 

The disadvantages mostly manipulate advanced traders. The following are some 

advantages of market makers: Security Availability, Investor Confidence, Seamless 

Markets, Insider Trading, Conflict of Interest, and Impact Market Integrity [35]. 

A market maker supports transactions in a two-sided auction market, by 

holding both buy and sell offers. The market receives liquidity from an ever-present 

MM. Liquidity refers to having access to rapid trading opportunities at costs that 

accurately represent the state of the market. MMs earn money from the spread, or the 

variation between their buy and sell bids, as payment for providing liquidity. MM 

activity is often thought to stabilize prices and make it easier to find realistic pricing 

in the market. In different market institutions, market makers play a variety of roles 

[36]. Multiple MMs compete to quote prices in a pure dealer market, and market 

orders from investors are executed at the optimal price offered by market makers [37]. 

Hambly, B. et al, an entity, whether it's an individual trader or an organization, that 

generates profit through the placement of buy and sell limit orders for a specific 

financial product within the Limit Order Book (LOB) is identified as a market maker 

for that particular financial instrument [38]. Market makers are essential for providing 

liquidity and helping to sustain well-functioning, constant, and resilient financial 

markets across all the major exchange-traded and over-the-counter asset classes in the 

United States and globally [39]. 
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Algorithmic 
Market-Making 

provide the 
following 
benefits:

1) Decreased 
indirect 

expenses 
paid in bid-
ask spreads.

2) Made 
markets less 

erratic.

3) Added 
liquidity to 

hedging 
derivatives.

4) Markets that 
are efficiently 

priced (by 
interacting with 
arbitrageurs).

5) Reduced 
effect costs 

(when trading 
large 

volumes).

6) Increased 
liquidity 
overall.

Figure 1: Algorithmic Market-Making 

The objective of market making differs from portfolio optimization and 

optimum execution in that it focuses on generating the bid-ask spread without 

accumulating undesirably big holdings, sometimes referred to as inventory [40]. 

Inventory risk, execution risk, and adverse selection risk are the three main forms of 

risk that a market maker must deal with [41]. Market makers face several key risks. 

Inventory risk refers to accumulating an undesirable large net position in a particular 

asset [42], execution risk is the chance that limit orders will not get filled within a 

preferred timeline [43], and adverse selection risk occurs when a market trend sweeps 

through a market maker's limit orders before the orders can be canceled, leading to 

losses. The following Figure 1 summarizes the overall advantages of algorithmic 

market-making [44]: 
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Portfolio Management: 

 

Portfolio management (PM) refers to the process of managing a collection of 

investments, known as a portfolio, with the goal of achieving specific financial 

objectives. It involves making decisions about the allocation of resources, selecting 

appropriate investment options, and monitoring and adjusting the portfolio over time. 

The primary objective of portfolio management is to maximize the return on 

investment while managing the associated risks. This involves balancing the potential 

for higher returns with the need to diversify investments and minimize exposure to 

individual securities or asset classes. The overall aim of portfolio management is to 

optimize the risk-return tradeoff and help investors achieve their financial goals 

within their risk tolerance and investment timeframe [45]. 

Practically every work now carried out by humans is intended to be 

complemented by AI and even replaced by it. AI is applied in many different fields, 

driven by external pressures and technical advancements. Among them, financial AI 

applications have a bright future [46]. Using AI-based portfolio management tools can 

help investors make better decisions since they can offer data-driven insights [47]. A 

lot of data from many sources, including market trends, economic indicators, 

corporate reports, social media, and news, may be processed by AI. Additionally, it 

can evaluate and understand the data using machine learning and natural language 

processing and produce suggestions that may be put into practice. For instance, 

depending on the investor's objectives, preferences, and risk tolerance, an AI-based 

portfolio management tool might provide suggestions for which assets to purchase, 

sell, or hold. As part of their approach to portfolio management, portfolio managers 

participate in market-making activities. 

 



 

19 

Order Execution 

 

Order execution is the procedure of receiving and fulfilling a purchase or sell 

order in the market on behalf of a client. Investors must execute a liquidation (or 

acquisition) order in order to buy (or sell) a specified number of shares in order to 

modify the new portfolio [45]. In essence, order execution has two goals: it must 

complete the entire order but also aims for a more economical execution with a focus 

on increasing profit (or lowering cost). As previously stated, the primary challenge in 

order execution lies in striking a balance between mitigating adverse market impacts 

arising from large trades executed rapidly and managing price risk. This, in turn, may 

lead to missed trading opportunities due to slower execution [48]. We begin by 

outlining several fundamental OE concepts: 

Market Order 

 

A market order is a command to purchase or sell a security right away. 

Although the execution of the order is guaranteed with this kind of order, the 

execution fee is not. A market order often executes at or close to the current bid (for a 

sell order) or ask (for a purchase order) price. Investors must keep in mind, 

nevertheless, that a market order may not be filled at the same price as the last traded 

price [48]. Market orders are carried out with certainty at the published prices in the 

market [49]. A market order is an instruction to purchase or sell a financial asset at the 

prevailing market price, signaling the intent to execute the transaction at the most 

favorable price at the present moment [45]. Market orders are frequently utilized 

when the investor is less concerned with the precise execution price and the 

immediacy of execution is a priority. They may be appropriate for highly liquid 

equities or for initiating or leaving positions fast. Market orders, however, may result 
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in considerable price effects or increased costs for bigger trades or in less liquid 

markets because there is no control over the execution price. Example: When the best 

offer price is $3.00 per share, an investor issues a market order to buy 1000 shares of 

the YX company.  The investor's market order can be filled at a higher cost if other 

orders are filled before it. Additionally, a fast-moving market might also result in a 

huge market order having distinct portions executed at various prices. Let's use the 

above example where an investor issues a market order to buy 1000 shares of the YX 

company for $3.00 each. In a fast-moving market, the 500 shares order may execute 

at $3.00 per share and the remaining 500 shares execute at a higher price. 

A market order will purchase or dispose of the shares at the market's best price 

at the moment the order is received. With a market order, you can be confident that 

you'll purchase or sell, but you have no control over the price at which you'll transact. 

Let’s see how a market order works [50]: 

• A market buy will be made at the lowest bid price. If it purchases all of the 

available shares at the lowest ask, the ask above becomes the new lowest 

ask, and from there, more shares are purchased. 

• The highest bid price will be used for a market sale. Similarly, if it sells all 

of the shares at the highest bid, the bid immediately below that will then 

become the highest bid, and that is where more shares will be sold. 

Limit Order 

 

Is a command to buy or sell a security at a certain price or higher. Only at the 

limit price or lower can a buy limit order be fulfilled, and only at the limit price or 

more can a sell limit order be fulfilled. For instance, an investor wishes to spend no 

more than $10 on shares of X stock. This amount might be specified in a limit order, 
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which would only be carried out if the price of ABC stock was $10 or less [51]. 

Thomas S et al, an offer to purchase or sell a certain quantity of an asset at a 

predetermined price (or better) is known as a limit order (LO) [52]. Each limit order 

specifies a price, a volume (the amount to be exchanged), and a direction (buy/sell or, 

equivalently, bid/ask). Additionally, when (1) the spread is wide, (2) the order size is 

large, and (3) they anticipate strong short-term price volatility, where traders put more 

limit orders compared to market orders [49]. 

In this form of order, you select the highest/lowest price at which you will 

buy/sell. If the trade is performed, a limit order guarantees the price at which you will 

purchase or sell, but it does not ensure that you will really transact at that price [50]. 

Let’s see how a limit order works: 

• Buy limit order: If an investor wants to buy a security but is only willing to 

pay a certain price or lower, they can place a buy limit order. The investor 

specifies the maximum price they are willing to pay. If the market price of the 

security reaches or goes below the specified price, the buy limit order is 

triggered, and the broker or trading platform will execute the order at the 

specified price or better. 

• Sell limit order: If an investor wants to sell a security but is only willing to sell 

at a certain price or higher, they can place a sell limit order. The investor 

specifies the minimum price they are willing to accept. If the market price of 

the security reaches or goes above the specified price, the sell limit order is 

triggered, and the broker or trading platform will execute the order at the 

specified price or better. 

It's important to note that the execution of a limit order is not guaranteed. If 

the specified price is not reached, the limit order may remain unfilled until the market 
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reaches the specified price or better. Limit orders are typically used by investors who 

want to control the price at which they buy or sell a security and are willing to wait 

for the market to reach their desired price. 

Limit orders can be useful in volatile markets or when an investor wants to be 

more specific about the price, they are willing to transact at, rather than relying on the 

prevailing market price at the time of the order. 

 

Limit Order Book 

 

The limit order book is the set of orders (prices at which you can deal) for a 

specific security. These orders might be on a single exchange or combined over 

several exchanges, depending on the security [50]. An electronic database maintained 

by an exchange all the buy and sell limit orders that are received for a particular 

instrument are kept in the limit order book (LOB). LOBs are organized according to 

price, time priority (FIFO order), and order direction (buy or sell). A limit order book 

is a record or database that displays all outstanding limit orders to buy or sell a 

particular security in a financial market. It provides transparency into the supply and 

demand dynamics for that security at different price levels. The limit order book is 

organized into two sides [52]: the buy side and the sell side, look at Figure 2. The buy 

side contains limit orders to buy the security, sorted by price from highest to lowest, 

while the sell side contains limit orders to sell the security, sorted by price from 

lowest to highest. The depth of the market, or the quantity of shares or contracts 

available at each price level, is also shown. As market orders or new limit orders 

arrive, they are matched against existing orders in the book based on price and time 

priority. Filled orders are removed, and the book is updated in real-time to reflect 

changes in order quantities and prices. The limit order book helps market participants 
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Figure 2: Limit Order Book Execution 

analyze market conditions, identify support and resistance levels, and make informed 

trading decisions based on the visible supply and demand for a security. 
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Reinforcement Learning / Deep Reinforcement Learning (RL/DRL) 

 

DRL is a branch of machine learning and artificial intelligence where 

intelligent computers may learn from their actions similar to how people learn from 

experience. An agent is automatically rewarded or punished according to their 

activities in this kind of machine learning. They are rewarded (reinforced) for doing 

actions that lead to the desired result. This technique is appropriate for dynamic 

situations that constantly change since a computer learns through trial and error. Even 

while reinforcement learning has been around for a long time, it was only lately that it 

was paired with deep learning, which produced amazing results. "Deep" in 

reinforcement learning refers to an artificial neural network with several (deep) layers 

that closely resemble the structure of the human brain. Deep learning demands a lot of 

training data and considerable computing power[53]. The proliferation of deep 

learning applications has been made possible by the expansion in data quantities over 

the past few years combined with sharp declines in the cost of computer power. In the 

financial Pit.AI, which stands for "solving intelligence for investment management, 

[54]" aims to use artificial intelligence, especially deep reinforcement learning, to 

outperform humans in managing investments and analyzing trading methods. With 

the improvements from Deep Learning, reinforcement learning has come a long way. 

DRL systems, algorithms, and agents that have already accomplished some 

unbelievable actions have been developed as a result of recent research attempts to 

combine Deep Learning with Reinforcement Learning. Such systems have not only 

exceeded the performance of the majority of classical and non-deep learning-based 

Reinforcement Learning agents, but they have also begun to outperform the best of 

human intelligence at tasks that were previously thought to require extremely high 
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levels of human intelligence, creativity, and planning skills [55]. 

DRL helps agents acquire the best decision-making rules through interactions 

with their environment [56]. A subfield of artificial intelligence that combines deep 

learning with reinforcement learning approaches. Due to its capacity to handle 

difficult issues involving sequential decision-making in dynamic situations, DRL has 

attracted a lot of interest recently. 

Through interaction with the environment and feedback in the form of rewards 

or penalties, an agent learns to make decisions using the reinforcement learning 

paradigm [57]. On the other hand, deep learning makes use of artificial neural 

networks to analyze complicated data and derive useful representations. Deep neural 

networks are used as function approximators to manage high-dimensional input data 

and learn from unprocessed sensory inputs in DRL, which combines these two 

methods [52]. To maximize cumulative rewards over time, an agent in DRL interacts 

with the environment and makes decisions based on observations. Reward or penalty 

feedback is given to the agent, and iterative learning is utilized to update the agent's 

policy and value functions. The agent can learn complicated decision-making 

techniques by using deep neural networks to approximate its policy or value 

functions, such as convolutional neural networks (CNNs) or recurrent neural networks 

(RNNs) [58]. 
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It's crucial to understand the idea of reinforcement learning. The agent may 

observe the situation and respond appropriately to help a network accomplish its 

objective. An input layer, an output layer, and several hidden layers make up this 

network architecture; the input layer is where the environment's state is kept. The 

model is based on several attempts to predict the future reward associated with each 

action taken in a certain state of the situation, Figure 3. 

Before continuing, let's look at the schematic structure of DRL in Figure 3, 

and define them which will encounter when learning about RL and DRL [59][60] [9]. 

Agent: Agent (A) does actions that have an impact on the environment. 

Action: It is the collection of every action or activity that the agent is capable 

of. The agent chooses one discrete action from a list of possible actions (a). 

Reward (R): The environment provides feedback, which we use to judge 

whether the agent's behaviors in each state were appropriate. In the Reinforcement 

Learning scenario, where we want the machine to learn entirely on its own and the 

only criticism that would aid in learning is the feedback/reward it receives, it is 

Figure 3: Schematic Structure of Deep Reinforcement Learning [59] 
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critical. 

State: A state (S) is the specific circumstance in which the agent is now 

located. 

Environment: Every action the reinforcement learning agent takes has an 

immediate impact on the environment. The reward is returned to the agent with a new 

state after the environment uses the agent's current state and action as information. 

Policy (π): It determines what action to pick in a specific state in order to 

maximize the reward. 

Value (V): It measures whether a certain state is ideal. It is the anticipated 

discounted rewards that the agent receives in accordance with the particular policy. 

 

Figure 4 shows reinforcement learning algorithms fall into two categories [61][62] 

[63]: 

Model-Based Algorithms 

 

Model-based algorithms evaluate the ideal policy using the transition and 

reward functions. When we fully understand the environment and how it will respond 

Figure 4: Model-based vs. Model-free Reinforcement Learning [61] 
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to certain actions, we may employ them. In model-based reinforcement learning, the 

agent has access to the environment's model, which includes the actions that must be 

taken to change from one state to another, the probabilities associated with those 

actions, and the rewards that correspond to those actions. They enable the 

reinforcement learning agent to prepare by preparing in advance. Model-based 

Reinforcement Learning is better suited for static or fixed situations. In another way, 

we can say, in model-based algorithms, the agent can foresee the reward of a result 

and acts in a way to maximize that reward. It is a greedy algorithm, and all of its 

decisions are made with the goal of increasing the number of reward points. 

 

Model-Free Algorithms 

 

Model-free algorithms can discover the optimal policy of action with very 

little understanding of environmental dynamics. To determine the optimal policy, they 

lack any transition or reward functionality. They don't have any idea of the reward 

function and instead estimate the optimal policy of action based only on agent-

environment interactions, or experience. Model-free algorithms Reinforcement 

Learning should be put into practice in situations where we only have partial 

knowledge of the environment. We don't live in a fixed environment in the actual 

world. The environment for self-driving cars is dynamic, with shifting traffic patterns, 

detours, etc. Model-free algorithms perform better in certain situations than 

alternative methods. Also, we can say, in model-free algorithms, the agent performs a 

variety of tasks repeatedly and gains knowledge from the results. Based on the 

learning experience, it attempts to choose a policy or a strategy to implement 

activities with the goal of obtaining the maximum number of reward points. This kind 

of technique should be used in environments that are dynamic and about which we 
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don't fully understand. 

Bitcoin 

 

Bitcoin, the first and most well-known cryptocurrency, was introduced to the 

world in 2008 through a whitepaper titled "Bitcoin: A Peer-to-Peer Electronic Cash 

System" by an individual or group of individuals under the pseudonym Satoshi 

Nakamoto. The primary motivation behind Bitcoin's creation was to establish a 

decentralized digital currency that operates without the need for a central authority, 

thereby offering a new way of conducting transactions over the Internet. The genesis 

block of Bitcoin was mined in January 2009, marking the beginning of a new era in 

the financial world [61]. 

Bitcoin is digital cash that is not controlled by a central authority, and it can be 

used for direct dealings across the world without banks or rulers. It is backed by chain 

tech, which makes sure that all deals are seeable, safe, and unchangeable. In March 

2024, there are about 19 million bitcoins being used, and the total supply is limited to 

21 million, making it valuable and rare [62]. 

 

Bitcoin Techniques 

 

Bitcoin functions as a decentralized virtual currency system and a form of 

cryptocurrency, designed to operate independently of governmental, banking, and 

institutional oversight. Conceptually, Bitcoin resembles electronic cash, enabling 

transactions between individuals using compatible software known as a wallet on 

various devices such as computers, smartphones, or tablets. However, it's crucial not 

to mistake Bitcoin for digital cash since it doesn't represent stored digital units of 

value like traditional currency. Instead, Bitcoins should be regarded as funds held in 
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an account. When a payment is made, the account of the sender is debited and the 

account of the receiver is credited, rather than transmitting digital notes or coins. 

Transactions are facilitated through encrypted messages and verified within the 

Bitcoin user network [63]. 

In addition, Bitcoin's main technology is blockchain. It's a shared record that 

records all transactions on many computers. Things people buy are grouped and 

added with mining. Miners solve hard math puzzles with big computers, and the first 

to solve it can add the next block to the blockchain. They get bitcoins as a prize. This 

keeps the network safe and makes more bitcoins, sticking to a set rate. 

 

Bitcoin Design Principles 

 

Scarcity serves as a fundamental requirement for attributing worth to any 

currency variant. Scarcity prevents counterfeiting on a local scale, but on a larger 

scale, it limits the increase of the monetary base and promotes price stability. In 

contemporary economies, when money largely resides in electronic versions, scarcity 

is enforced by legal laws that assure the veracity of accounting records. This implies a 

financial structure in which transactions result in credits to one account and debits to 

another. Central banks have the ability to control the total amount of money in 

circulation. In this context, Bitcoins emerge as the first widely embraced mechanism 

to offer absolute scarcity of the money supply. By design, Bitcoins operate without a 

central authority to distribute or monitor coin ownership. Consequently, the issuance 

of currency and validation of transactions in Bitcoins is notably more challenging than 

in traditional accounting systems. Nonetheless, Bitcoins incentivize private entities to 

maintain their accounting system by issuing new currency at a controlled rate, thereby 

encouraging them to verify transaction validity [64]. 
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Bitcoin is made on some main ideas: 

• No one controls it. This keeps it open, free, and hard to stop. 

• Using codes to keep deals safe and guard the net from trickery. 

• All deals are on the list, so anyone can check them. 

• Only a set number of bitcoins can be made, so it's a rare thing. 

Risks and Problems 

 

Though Bitcoin has good points, it also has issues: 

• Changeable price: Bitcoin's value goes up and down a lot, making it a risky 

choice. 

• Sizing up: The network can't handle many transactions at once, which can 

cause problems. 

• The rules aren't clear: The laws about Bitcoin are not the same everywhere, 

which can affect how much it's used. 

• Hurting the earth: Making Bitcoin uses a lot of power, which is bad for the 

environment [65]. 

 

 Future and Summary of Bitcoin  

 

The future of Bitcoin is a subject of much speculation. While some view it as a 

digital gold and a hedge against inflation, others believe it will become a mainstream 

form of payment. Ongoing developments, such as the Lightning Network, aim to 

address scalability issues, potentially increasing Bitcoin's utility as a medium of 

exchange. However, regulatory and environmental challenges remain significant 

hurdles to its widespread adoption [66]. 

Bitcoin has truly revolutionized the way we view and interact with money, 
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thanks to its groundbreaking decentralized approach and the power of blockchain 

technology. It's not been an easy journey, with hurdles such as scalability and 

regulatory scrutiny at every turn. Yet, the horizon looks bright for Bitcoin, especially 

with innovations like the Lightning Network on the rise. As the cryptocurrency 

ecosystem evolves, Bitcoin's role as a store of value and medium of exchange is set to 

strengthen, driving innovation in decentralized finance. 

Being generated and stored entirely electronically, Bitcoin is one of the most 

well-known digital currencies in the world. By the time our children grow up, 

everyone will be using Bitcoin for transactions. For some time to come, there will 

remain security issues and uncertainty surrounding the regulation of digital 

currencies. 
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CHAPTER 3: IN-DEPTH EXPLORATION OF DEEP REINFORCEMENT 

LEARNING IN MARKET-MAKING 

 

Deep Reinforcement Learning for Market Making 

 

DRL has gained significant attention in recent years as a powerful technique 

for solving complex decision-making problems. One such problem is market making, 

which involves providing liquidity in financial markets by continuously quoting bid 

and ask prices. DRL can be employed in market-making to develop trading strategies 

that optimize liquidity provision, manage risk, and maximize profitability. The 

objective is to create an automated system capable of adapting and learning from 

market dynamics to make informed trading decisions. 

The following is a high-level overview of how DRL can be utilized in market-

making: 

• Environment modeling: The initial step is to define the market 

environment and the available actions for the agent. This environment 

typically consists of historical and real-time market data, such as price 

movements, order book information, and trade volumes. The agent's 

actions may involve placing buy/sell orders, adjusting bid/ask prices, or 

modifying order sizes. Selecting a suitable state representation is critical in 

DRL for market-making. It involves choosing relevant features or 

indicators that capture the current state of the market. These features may 

include price spreads, order book depth, volatility measures, trade 

volumes, or sentiment analysis from news or social media. The state 

representation should provide sufficient information for the agent to make 
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effective trading decisions. 

• Reward function design: A reward function is established to provide 

feedback to the agent based on its actions. This function should encompass 

market-making objectives such as maximizing profits, minimizing spreads, 

reducing inventory risk, or tracking a benchmark index. Designing an 

appropriate reward function is vital for effectively guiding the agent's 

learning process. 

• Reinforcement Learning algorithm for MM: Deep Q-Network (DQN) 

architecture DRL algorithms like DQN can be employed to train the 

market-making agent. DQN integrates deep neural networks together with 

Q-learning, an algorithm for reinforcement learning. The neural network 

takes market data as input and predicts the optimal action to take in a given 

state. It learns by iteratively updating its Q-values based on observed 

rewards and expected future rewards. In market-making, various DRL 

algorithms such as PPO, DDPG, and A2C can be applied, alongside DQN. 

The choice of algorithm depends on the specific market-making problem 

and available data, as each algorithm has its own strengths and 

weaknesses. 

• Training and optimization: The agent is trained using historical market 

data or simulation environments, where it engages with the environment 

and learns from its interactions. The training process involves exploring 

different actions, evaluating their outcomes, and updating the agent's 

policy to enhance decision-making. Techniques like experience replay and 

target networks are often employed to stabilize the learning process. 

• Testing and deployment: Once the agent is trained, it can be tested in real-
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time market conditions to evaluate its performance. Continuous 

monitoring and performance evaluation are essential to ensure the agent's 

effectiveness and adaptability. In practice, the agent can be deployed as 

part of an automated trading system to provide liquidity and execute trades 

in real markets. 

• Risk Management: Effective risk management is crucial in market-

making, involving the management of inventory risk, market risk, and 

execution risk. DRL agents for market making should incorporate risk 

management mechanisms to avoid excessive exposure and protect against 

adverse market movements. Techniques like position limits, dynamic risk 

limits, and stop-loss mechanisms can be integrated into the agent's 

decision-making process to mitigate. 

It's important to note that applying DRL to market-making is a complex task 

that requires expertise in both reinforcement learning and financial markets. Proper 

risk management, regulatory compliance, and real-time data infrastructure are crucial 

considerations when implementing such systems in live trading environments. 

 

Categories of DRL-Based MM Models 

 

We find a wide variety of magical classes within the grimoires (A class of 

instruction to portray the magic of AI) of DRL-based market building, each with its 

own special allure: 

• Q-Learning Arcana: These spells take us into the holy land of Q-Learning, 

where we attempt to approximate the illusive action-value function. Our 

agents will benefit from this empowerment because they will be able to 

make well-informed choices based on an anticipation of future outcomes. 



 

36 

Q-Learning has given our market makers the insight they need to safely 

sail the uncharted waters of uncertainty in pursuit of optimal actions and 

alluring rewards. 

• Actor-Critic Enchantment: In this bewitching union of forces, the actors 

and the critics combine forces, establishing a harmonious balance that 

improves the efficacy and stability of our magical education. The actors, 

even the performers, are at the center of the process of determining the 

best policies to implement, while the critics, sages of critique, stand in the 

wings to evaluate and support the actors' efforts. Our market makers are 

elevated by the chemistry of the actor and critic combo, allowing them to 

use their authority with poise and subtlety. 

• Proximal Policy Alchemy: Using the mystical alchemy of Proximal Policy 

Optimization (PPO), we reveal the keys to optimizing our goals and 

making sure that policy updates are in sync with our previous experience. 

With PPO, we can fine-tune our policies without losing sight of their 

overarching goals, allowing our magical agents to grow in knowledge 

without losing sight of the lessons they've already learned. 

• Deep Deterministic Potions: The elixir of Deep Deterministic Policy 

Gradients (DDPG) gives us insight into our choices and removes the fog of 

conventional policy gradients. Our market makers get clarity of mind and 

confidence in their judgment thanks to deterministic policies. Our agents 

are empowered by the DDPG elixir to make sound decisions in a shifting 

market environment while remaining true to their core values. 

• Twin Delayed Enchantments: Twin critics and target policy smoothing 

take our spellcasting to new heights in the world of Twin Delayed Deep 
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Deterministic Policy Gradients (TD3). The twin critics' complementary 

viewpoints help us gain a more nuanced appreciation of how our actions 

affect others. Adding a touch of magic, and target policy smoothing makes 

our enchanted market makers more reliable and effective. With TD3, our 

agents are able to make clear and nuanced judgments with pinpoint 

accuracy. As we venture into the enchanting world of DRL-based market-

making, each category offers its unique allure and strengths, enabling our 

market makers to wield their powers with mastery and wisdom. With these 

mystical techniques at our disposal, we step forth into the realm of strong 

market-making, ready to unlock its deepest secrets and emerge as true 

Master of Financial. 

 

Why DRL is Needed in Market-Making 

 

DRL is a subset of ML used to train agents to make decisions in complex 

financial environments. When combined with market-making, DRL offers several 

advantages in the financial industry. It excels in adapting to dynamic market 

conditions, handling uncertainty, and managing risks. DRL's ability to handle multi-

dimensional decision-making problems makes it effective for market-makers. Its 

continuous learning capabilities allow it to improve over time and respond quickly to 

high-frequency trading environments. Automation of decision-making reduces the 

need for manual intervention, leading to increased efficiency and lower costs. 

Moreover, DRL can explore and discover new trading strategies, enhancing the 

overall decision-making process. 
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How to Select the Appropriate RL/DRL Model 

 

Within the expansive realms of RL and DRL, picking the model that is best 

suited for effective market-making calls for careful consideration of a number of 

different factors. The following are important guidelines that will assist in the 

decision-making process: 

• Acquire an In-Depth grasp of Market Dynamics: Before plunging into the 

depth of RL/DRL, acquire an in-depth grasp of the dynamics and 

microstructure of the particular market. There is a possibility that various 

markets will each exhibit a unique set of features, including liquidity, 

volatility, and order flow patterns. Choose an RL/DRL model that works 

well with the specific characteristics of the market you're going after. 

• Specify the Goals and Limitations of the Project: Outline in detail your 

market-making goals, as well as any restrictions that may be imposed on 

you by rules, risk management, or company requirements. It's possible that 

different RL/DRL models are superior when it comes to optimizing 

specific performance criteria, such as maximizing earnings, limiting risk, 

or achieving stability. Select a model that offers the greatest degree of 

congruence with the particular aims and limitations you have. 

• Consider Data Availability and Sample Efficiency: Take into Account the 

Availability of Data and the amount of Sample Efficiency Needed for the 

Model Determine whether or not historical data is available and determine 

the amount of sample efficiency needed for the model. If there is a large 

quantity of historical data available, then data-intensive techniques such as 

deep Q-learning or actor-critic methods might be appropriate. PPO, on the 

other hand, is a model-free technique that can efficiently learn from a 
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smaller amount of data and should be considered for use in situations with 

minimal data. 

• Consider Robustness and Risk Management: Because market-making 

always involves risk, it is necessary to select an RL/DRL model that is 

both reliable and successful in the risk management methods it 

incorporates. The models that have the most priority should be those that 

include built-in safeguards against excessive market swings and 

catastrophic losses. 

• Evaluate the Computational Difficulty: Take into account the 

computational resources that are at your disposal in order to implement the 

RL/DRL model of your choice. It's possible that some of the more 

complex DRL models have a high computational cost, meaning that they 

need a lot of processing power and a lot of time to train and run. Choose 

models that have a satisfactory ratio of performance to the amount of 

computing effort they require. 

• Ensure Explicability of Models: In the complex world of finance, ensuring 

that models can be explained adequately is essential to fostering 

confidence and maintaining regulatory compliance. Find RL and DRL 

models that can explicate the decision-making process and offer 

interpretability. This will enable stakeholders to comprehend and validate 

the market-making tactics. 

• Conduct Thorough Experiments and Benchmark: For different approaches 

before fully committing to a Particular RL/DRL model, it is important to 

first conduct thorough experiments and then benchmark different 

methodologies. Evaluate the performance of the models by comparing 
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them to historical data and generated scenarios in order to determine how 

successful they are under different market situations. 

• Remain Flexible and Adaptable: The realm of RL and DRL is 

continuously undergoing change, with new models and developments 

being introduced on a consistent basis. Maintain a flexible approach to 

your market-making tactics and be open to adjusting them as new and 

more potent RL/DRL models are produced. 

• Seek Out Expertise and Consider Collaborating with Others: If navigating 

the enchanted world of RL/DRL seems overwhelming, seek out guidance 

from experts and consider collaborating with researchers or professionals 

who are well-versed in the field of market making. Your efforts to create a 

market could see a huge boost in its efficacy if you took advantage of their 

views and skills. 

The below table 1 shows various RL/DRL models with the functionality of 

each model. 
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Table 1: Function of RL/DRL Models 

Model Function 

Q-Learning Q-learning learning knowledge about the 
value of taking an action within a particular 
state, all without the need for an input model 
to be supplied. 
An expected cumulative reward for a given 
policy is estimated using a Q-value function. 
Using the temporal difference (TD) error and 
the Bellman equation, Q-values are updated 
iteratively. 

Deep Q-Network (DQN) In order to approach the Q-value function, 
deep Q-learning (DQN) employs deeper 
neural networks. 
It implements a buffer for reliving past 
events for the purposes of training, drawing 
at random from that pool of data. 
By comparing the predicted Q-values to the 
goal Q-values, the network is trained to 
achieve the lowest possible TD error. 

Policy Gradient (PG) By optimizing the policy parameters, PG 
techniques can learn the policy function that 
translates states to actions. 
The policy is updated via gradient ascent, 
which takes into account the sampled paths' 
expected reward. PG techniques work well 
with stochastic policies and can be used to 
continuous action spaces. 

Proximal Policy Optimization 
(PPO) 

PPO is an on-policy DRL algorithm that 
continuously adjusts policy settings in light 
of accumulated experience and new 
information. 
It limits the policy update to avoid major 
policy shifts, making education more 
consistent and secure. 
The objective function, which is a measure of 
both the efficiency and randomness of the 
policy, is optimized using PPO. 

Actor-Critic The Actor-Critic framework combines two 
separate yet interconnected techniques: the 
actor-network focuses on learning the policy 
gradient, while the critic network evaluates 
the value of states and associated actions. 
The advantage of policy gradients and the 
value function estimation are taken into 
account in Actor-Critic algorithms. 
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Model Function 

Deep Deterministic Policy Gradient 
(DDPG) 

DDPG is an off-policy approach that is 
effective for continuous autonomous 
vehicles, utilizing deep neural networks for 
both the actor and critic functions within an 
actor-critic framework. 
To maintain consistency during training, 
DDPG uses a target network, and off-policy 
changes are implemented via a replay buffer. 

Twin Delayed Deep Deterministic 
Policy Gradient (TD3) 

TD3 is superior to DDPG because it prevents 
Q-values from being overestimated. 
It employs delayed updates to the target 
networks for stability and makes use of two 
critics to estimate Q-values. 
TD3 additionally adds noise to continuous 
action spaces to promote exploration and 
strengthen robustness. 

 

To summarize, in order to select the optimal RL/DRL model for effective 

market-making, one needs to have a comprehensive grasp of the dynamics of the 

market, well-defined goals, and a sharp eye on risk management and computational 

efficiency. You will be able to harness the true potential of RL/DRL in the magical art 

of market-making if you give these things due consideration and maintain a level of 

adaptability in the face of new developments. 

 

How it was Market-Making Before AI and How AI Improved 

 

Before the advent of AI, market-making was primarily carried out by human 

traders who would manually assess market conditions, analyze data, and execute 

trades to provide liquidity in financial markets. These market makers would set bid 

and ask prices for specific securities or financial instruments, aiming to profit from 

the spread between these prices. This process required extensive market knowledge, 

experience, and quick decision-making skills. Traders used quantitative models and 

algorithms to optimize pricing and manage risks, although these models were 
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typically simplistic and unable to adapt to real-time market changes. The introduction 

of AI has revolutionized market-making by leveraging advanced machine learning 

algorithms and large-scale data analysis. AI systems have the capacity to examine 

extensive quantities of market data, encompassing historical pricing, trading volumes, 

news reports, and public sentiment on social media. This enables AI to uncover 

hidden patterns, correlations, and anomalies that may elude human traders. AI-

powered market-making systems continuously learn from historical data and adapt to 

evolving market dynamics. They generate real-time trading signals, optimize pricing 

models, and adjust bid-ask spreads based on market conditions and risk tolerance. AI 

enables market makers to react swiftly to new information, execute trades at high 

speeds, and improve liquidity provision while reducing bid-ask spreads. Moreover, AI 

algorithms excel at identifying and capitalizing on market inefficiencies. They process 

extensive data and detect subtle patterns that indicate potential trading opportunities. 

AI can simultaneously analyze multiple markets, identify arbitrage possibilities, and 

execute trades across different exchanges with minimal delay. 

In summary, AI has significantly improved market-making by enhancing 

speed, accuracy, and efficiency. It has boosted liquidity, reduced trading costs, and 

facilitated smoother price discovery in financial markets. However, challenges such as 

the need for robust risk management systems and the potential for algorithmic biases 

should be carefully considered in AI-powered market-making. 

 

DRL in Algorithmic Trading 

 

Algorithmic trading, known as quantitative trading as well, is a finance 

subfield that revolves around the automatic generation of trading decisions through 

the utilization of mathematical rules computed by a machine. It is a methodical 



 

44 

approach where trading choices are made based on predetermined rules, typically 

derived from the technical analysis of market data. The primary objective of 

algorithmic trading is to execute trades at optimal prices while minimizing risks [67].  

Algorithmic trading has experienced substantial growth in the last decade, with 

approximately 70% of trading volume in the U.S. stock market attributed to 

algorithmic trading [68]. The global market for algorithmic trading was valued at 

$2.03 billion in 2022, and it is expected to expand from $2.19 billion in 2023 to $3.56 

billion by 2030 [69]. 

Algorithmic trading relies on complicated algorithms that analyze a variety of 

market data, such as price fluctuations, trading volumes, and other pertinent factors, in 

order to make informed trading decisions. These algorithms can be programmed to 

execute trades based on specific criteria, such as price thresholds, technical indicators, 

arbitrage possibilities, or significant news events. The benefits of algorithmic trading 

encompass enhanced speed and efficiency in trade execution, minimized human 

errors, the capacity to process extensive real-time data, and the potential to exploit 

momentary market inefficiencies[70]. Algorithmic trading systems can swiftly 

respond to market conditions and execute trades much faster than human traders, 

enabling them to capitalize on transient opportunities or execute substantial orders 

without significantly impacting prices. However, algorithmic trading entails specific 

risks, which include the possibility of technological malfunctions, errors in 

programming, inaccuracies in data, and market volatility. To guarantee fair and 

orderly markets and to address these risks, regulations and risk management practices 

have been implemented. 

High-frequency trading (HFT) has gained popularity as a prevalent form of 

algorithmic trading. HFT and algorithmic trading have become the preferred choices 
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for regulators and regular stock market investors. HFT involves the rapid mechanical 

buying and selling of large volumes of stocks and shares. It is an evolving field that is 

expected to dominate algorithmic trading in the future. Algorithmic trading has 

revolutionized the trading landscape by introducing speed and efficiency to securities 

trading. Traders are utilizing algorithms that are becoming increasingly sophisticated 

and capable of adapting to diverse trading patterns through the use of artificial 

intelligence (AI). As the field progresses, it is anticipated that algorithmic trading will 

incorporate practical machine learning (ML) techniques capable of real-time analysis 

of vast amounts of data from various sources. ML, a subfield of computer science, 

draws upon statistical models, algorithms, artificial intelligence, and other disciplines 

to develop efficient computational methods for deriving accurate predictive models 

from extensive datasets. This makes ML an ideal candidate for addressing challenges 

in HFT, including trade execution and generating alpha (measuring asset or portfolio 

performance). Consequently, the combination of algorithmic trading and ML can be 

defined as AI trading, offering significant potential for further advancements in the 

field [68]. 

DRL is an approach employed in algorithmic trading to train an agent in 

making trading decisions by utilizing past market data. The agent is trained to 

optimize a reward signal, commonly associated with profits or returns on investment. 

DRL has demonstrated its efficacy in resolving intricate trading challenges, offering 

the advantage of handling substantial data volumes and adapting to dynamic market 

conditions. Thibaut Theater and Damien Ernst [67], provide an illustration of how 

DRL can be implemented in algorithmic trading to enhance trading performance. 

They introduce the Trading Deep Q-Network (TDQN) algorithm, which employs a 

deep Q-network to learn the most advantageous trading policy for a specific stock, 
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relying on historical market data. The agent is instructed to optimize the expected 

future reward, which relates to the earnings or investment return. Through testing on a 

diverse set of 30 stocks, the TDQN algorithm demonstrated superior performance 

compared to various benchmark strategies. 

 

DRL in Portfolio Management 

 

In the realm of portfolio management, we harness the power of DRL to 

orchestrate an exquisite transformation in our asset blend. Through the DRL 

algorithms, we elegantly rebalance your portfolio, orchestrating peak achievements 

amidst market turbulence. These captivating algorithms guide us in crafting portfolios 

that spark in harmony with market rhythms, optimizing gains while safeguarding 

against risks. With this technological enchantment, we transmute ordinary 

investments into a harmonious symphony of prosperity. DRL has garnered significant 

interest within the domain of Portfolio Management, presenting novel approaches for 

enhancing investing methods. An exemplary contribution in this field is the utilization 

of DRL in the context of portfolio management, as demonstrated by Jiang et al. [71]. 

The authors employed the Deep Deterministic Policy Gradients (DDPG) method for 

this purpose. The main goal of this research is to optimize portfolio rebalancing in a 

continuous action space, hence enabling dynamic asset allocation. The Deep DDPG 

technique, which is widely used in the field of DRL, is utilized to acquire knowledge 

and adjust the investment strategy iteratively, with the aim of maximizing returns 

while effectively mitigating risk. This study showcases the efficacy of DDPG in 

addressing the intricate and ever-changing aspects of portfolio management. By 

employing DRL approaches, this research lays the groundwork for future 

breakthroughs in this rapidly growing domain. DRL has emerged as a potential 
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methodology for tackling the intricate issues associated with portfolio management. 

Numerous research investigations have been carried out to investigate the utilization 

of this approach in enhancing investing techniques, with each study offering distinct 

perspectives and advancements to the discipline. Liang et al.[72], utilized the PPO 

method within a DRL framework to tackle the challenge of portfolio optimization. 

The utilization of the PPO algorithm was employed with the objective of attaining 

improved risk-adjusted returns through the dynamic allocation of assets within a 

portfolio. Moody and Saffell [73], created the Q-learning method for portfolio 

selection, which stands as a significant contribution in their body of work. The 

aforementioned groundbreaking study established the fundamental principles upon 

which further advancements in DRL for the field of finance were built. In the study 

conducted by Zhang et al. [74], a hybrid DRL methodology was employed. This 

approach involved the integration of Advantage Actor-Critic (A2C) with the Gaussian 

Mixture Model (GMM) in order to develop a portfolio management strategy that 

exhibits enhanced resilience. These works collectively highlight the potential of DRL 

in the field of portfolio management. They demonstrate the use of different algorithms 

and approaches to improve investment decision-making and risk management. 

 

DRL in Order Execution 

 

With our DRL expertise under our belts, we have the ability to perform potent 

incantations that speed up the carrying out of commands. We can execute trades with 

pinpoint accuracy by performing the spells, which in turn reduces market volatility 

and unlocks previously unknown means of obtaining optimal pricing. Every time we 

make a deal, we cast an incantation of efficiency to make sure our orders go unnoticed 

by the market and leave nothing but a trail of profitable in their wake. The application 
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of DRL has been widely utilized in the field of order execution, leading to significant 

changes in the landscape of trading methods. In the scholarly article entitled "A Deep 

Reinforcement Learning Framework for Optimal Trade Execution," researchers S. Lin 

and P.A. [75] Beling present a novel framework aimed at reducing trade execution 

costs. The proposed approach involves the sequential division of a sell order into 

smaller child orders within a predetermined time interval. The framework employed 

in this study leverages a customized version of the DQN algorithm, which integrates 

various enhancements including Double DQN, Dueling Network, and Noisy Nets 

components. In contrast to prior studies, which utilize implementation shortfall as an 

instantaneous incentive, the present framework adopts a modified reward system and 

incorporates a zero-ending inventory constraint into the DQN algorithm through 

adjustments to the Q-function updates during the final stage. The conducted study 

showcases the notable benefits of the framework, which encompass swift 

convergence during the training process, superior performance compared to multiple 

benchmark algorithms during back-testing on a set of 14 US equities, and increased 

stability resulting from the integration of the zero-ending inventory constraint. 

DRL has significantly advanced the field of order execution in financial 

markets, presenting a transformative approach to optimizing trading strategies. The 

authors made a significant addition to the field through their utilization of the DDPG 

algorithm. The present study emphasized the notable capability of DRL agents to 

improve strategies for executing orders by training them to optimize utility functions 

that consider both transaction costs and execution slippage. 
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DRL in Market Making 

 

At the center of the market-making universe, we tap into DRL's full potential. 

By constantly adjusting the bid and ask quotes with each wave of the wand, we 

conjure narrow spreads that entice traders to enter our domain. Quickly adapting to 

shifting market conditions, DRL's market-making expertise provides a large pool of 

liquid assets for both buyers and sellers. Traders and investors are captivated by our 

market-making skills because of the sense of security they provide. With DRL's 

guidance, we're able to go beyond the constraints of conventional methods as we 

explore the mystical world of finance. With every monetary we cast, our power and 

understanding grow. DRL had a significant impact on market making, revolutionizing 

trade dynamics, and enhancing profitability. The pioneering work of Bell, et al. [76], 

serves as an exemplary contribution to this particular domain, as it effectively utilized 

the PPO algorithm. The research shed light on the effectiveness of DRL agents in the 

practice of market making, as they were able to strategically generate bid and ask 

quotes with exceptional accuracy. This resulted in lower spreads, which in turn 

attracted traders in a highly enticing manner. The study conducted by Bell et al. 

provided evidence of the remarkable ability of DRL to effectively respond to dynamic 

market situations. This led to a significant increase in the availability of liquid assets 

for both buyers and sellers. The sense of confidence that DRL provides to traders and 

investors has solidified its position as a significant entity in contemporary finance. 

The integration of DRL into market-making methods has played a pivotal role in 

transforming the financial industry, providing unprecedented benefits. P. Kumar, et al. 

[77], investigates the domain of market-making strategies within the context of high-

frequency trading. This particular area of study has received limited attention thus far, 

making it an intriguing and relatively unexplored field. Market makers have a pivotal 
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function in financial markets as they provide liquidity by presenting bid and ask 

prices. Their profitability stems from the difference, known as the spread, between 

these two prices. This research paper presents a novel approach to modeling limit 

order markets by utilizing realistic simulations. The study further explores the 

application of Deep Recurrent Q-Networks in the development of a market-making 

agent. The present study showcases a novel methodology that surpasses established 

benchmark techniques relying on temporal-difference reinforcement learning. This 

approach exhibits promising capabilities in accurately reproducing historical trade 

data and capturing stylized facts. Kumar's research makes a significant contribution 

by providing valuable insights into market-making algorithms and their practical 

application. This research sheds light on the intricate dynamics involved in high-

frequency trading. 

 

When DRL is applied to portfolio management, order execution, and market 

making, new doors of opportunity open up, and finance becomes a brilliant 

performance of competence. 
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CHAPTER 4: IN-DEPTH STUDY OF THE EXISTING LITERATURE 

Statistics of Related Works for DRL in MM / Literature Review 

 

Web of Science, Scopus, and Google Scholar were searched for "market 

making" and "reinforcement learning". After deleting duplicates and unnecessary 

references, more than 35 relevant publications were collected, including grey 

literature (a doctoral thesis, and numerous unpublished studies mostly available on 

http://www.arxiv.com, viewed on 26th July 2023). Figure 5 shows the annual 

publishing increase 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Number of Papers from Elsevier Scopus, etc. Well Reputable Journals in 
Optimum MM by Year, 2015–2023 

Figure 6: Authors-Based Publications of Papers 
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The years covered by the cited works range from 2015 to 2023, with the vast 

majority (87%) appearing to be more recent. They feature work by 50 authors located 

in 9 different nations, shown in Figure 6, with the United Kingdom (36%), the United 

States (28%), and France (12%) providing the lion's share of the contributors. Figure 

7 demonstrates that citations to two major papers from the MIT AI Lab by Chan et al. 

and Kim et al. remain high at 74 and 23, respectively. Recent studies, such as Spooner 

et al., Gueant and Manziel., Ganesh et al., and Spooner and Savani, have been well-

received by the academic community. Particularly influential in following studies on 

the topic is the 2018 publication by Spooner et al. 

 

Various Approaches 

 

Reinforcement learning has spread to the mythical world of market making, 

where dealers sway to the beat of prices. Researchers have set out on a mission to 

uncover the most powerful methods for attaining maximal market-making prowess in 

this fascinating area. 

Figure 7: Country-Based Publications of Papers 
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Look at these four groups that form the melting pot of information: 

• Information-Based Approaches: Information asymmetry is at the center of 

these strategies. Market makers, much like courageous warriors, must 

contend with the disadvantage of having less information than some 

traders. But don't worry! The first explorers relied on model-free 

reinforcement learning to intelligently set their buy and sell prices. Market 

makers can now strike a better balance between profits and inventory 

levels thanks to the disclosure of risk-sensitive approaches. Different 

reward formulations wove the magic of risk-averse behaviors, whereas 

multiagent simulations reflected the strategies of competitors. 

• Approaches Stemming from Analytical Models: The Avellaneda-

Stoichkov paradigm was used as a framework, with ancient texts serving 

as inspiration. The outcomes of combining this knowledge with 

reinforcement learning algorithms were revolutionary. The AS model 

stuck by them through thick and thin as they discovered the superiority of 

RL over more conventional approaches. It has even been suggested that 

the AS model is nothing less than a huge struggle of wills between the 

market maker and everyone else. By using adversarial reinforcement 

learning methods, resilient MM agents were created. 

• Nondeep Methods: Tabular reinforcement learning ruled the domain of 

simplicity. These experts set out on a journey toward more effective 

decision-making in the marketplace with Q-learning as their north star. 

Their objective? To get to the bottom of how utility functions and 

incentive structures work. Over time, they came to the conclusion that RL 

techniques are the best bet for outperforming more conventional AS 



 

54 

approximations. Agents with better risk-adjusted performance were 

generated by the reverberations of linear combinations and state 

aggregation in this world. 

• Deep Reinforcement Learning Approaches: The mysterious appeal of deep 

neural networks is called to researchers interested in deep reinforcement 

learning approaches. Some brave people have ventured into the depths of 

end-to-end frameworks, creating MM from raw limit order book data. 

These researchers were given the tools they needed to uncover the 

mysteries of cryptocurrency market making thanks to the emergence of 

extraordinary neural networks with hidden layers. In this field, ideas 

flourished unrestrained as people explored high-dimensional equations, 

actor-critic networks, and multi-asset MM. The world of market-making is 

on the edge of a new era, one in which the union of science and the arts 

will pave the way to unprecedented prosperity. The line between fact and 

fantasy blurs with each new brilliant move, and the art of market-making 

reaches new heights. Let the search continue; perhaps we will find great 

riches in the financial markets thanks to the power of reinforcement 

learning. 

 

Analogical Comparison 

 

Market-making techniques from the past and those powered by DRL are 

compared and contrasted. The goal of this comparison is to highlight the advantages 

and disadvantages of each strategy by looking at issues including liquidity provision, 

risk management, and responsiveness to shifting market conditions. Gaper, et al. 

present a unique framework for market-making in their paper [9], which uses DRL to 
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overcome the shortcomings of prior methods. Combining the results of independent 

signal generators with a novel action space and reward function formulation, the 

DRL-based agent outperforms traditional market-making benchmarks in terms of 

reward-to-risk. When applied to real-world data, experiments reveal a startling 20-

30% increase in terminal wealth with only roughly 60% of the inventory risks of 

conventional methods. In addition, the study places an emphasis on how the learned 

policy might be interpreted, thus shedding light on the agent's choice-making 

procedure. However, it is noted that there may be difficulties in real-time trading 

scenarios and that transaction cost considerations are not included in the suggested 

framework. 

High-frequency market making, where an agent offers liquidity by quoting bid 

and ask prices on securities to profit from the spread, is discussed in depth by Kumar 

in [78]. The author notes that scholarly research of high-frequency market-making 

algorithms has been hampered by complications stemming from inventory risk, 

trading counterparties, and knowledge asymmetry. To fill this void, Kumar uses Deep 

Recurrent Q-Networks (DRQN) to create a high-frequency market-making agent and 

creates realistic simulations of limit order markets. The main contribution is showing 

that the suggested DRQN-based approach performs better than a well-known 

benchmark strategy using temporal-difference reinforcement learning. The DRQN 

agent has a higher market-making profit margin than the benchmark and consistently 

reproduces stylized facts from each simulation's historical trade data. Making change 

is an important aspect of any market's architecture, and this article explores how it 

affects both market quality and the agent's bottom line. The lack of real-world trade 

validation and potential difficulties in extending the proposed approach to dynamic, 

real-time trading scenarios are two shortcomings of the article that detract from its 
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otherwise strong points. Further study under varying market conditions and 

transaction cost concerns is required to evaluate the generalizability and robustness of 

the DRQN-based market-making agent. 

Wan et al. [79], use an online decision technique based on DRL to tackle the 

basic maneuver confrontation problem of pursuit-evasion games in the multi-agent 

systems (MASs) domain. In order to achieve multi-agent cooperative decision-

making, the authors reduce the typically complex modeling process by developing a 

control-oriented framework based on the multi-agent deep deterministic policy 

gradient (MADDPG) algorithm. The authors introduce adversarial disturbances and a 

new adversarial attack trick and adversarial learning MADDPG (A2-MADDPG) 

algorithm to address the difficulties caused by discrepancies between the model and 

real-world scenarios. To optimize robust training for the agents themselves, the 

introduction of adversarial attack tricks replicates uncertainty in the real world. To 

prepare for unknown dynamic changes in MASs, adversarial learning is implemented 

during training to preprocess the actions of numerous agents. The experimental results 

show the superior performance and effectiveness of the proposed technique for both 

the pursuer and the evader, who can then train inappropriate confrontational 

strategies. This paper's originality resides in its application of the MADDPG 

algorithm to the challenging problem of solving multi-agent pursuit-evasion games by 

incorporating adversarial disturbances and various forms of machine learning. To 

better equip agents to make decisions, the suggested A2-MADDPG algorithm takes 

advantage of uncertainty in real-world settings. One major benefit is that collaborative 

decision-making can be accomplished without resorting to too complicated modeling 

procedures. The paper does have a few flaws, though. It's possible that the testing 

results only apply to certain gaming scenarios or environments, despite the fact that 
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they show improved performance. To evaluate the generalizability and scalability of 

the suggested approach, additional experimentation is required across a wider range of 

circumstances and environments. It is also important to investigate how well the A2-

MADDPG algorithm performs in real-time multi-agent pursuit-evasion games. The 

proposed method's actual usefulness and influence in real-world multi-agent systems 

will not be completely understood until these restrictions are removed. 

Sun Yu [80] covers market-making strategy improvement for security market 

participants. Manually constructed strategies use market-based rules. Rule-based 

methods may not fully reflect the intricate relationships between market conditions 

and appropriate behaviors, resulting in inferior results. The author presents DRLMM, 

an end-to-end model to solve these restrictions. A long short-term memory (LSTM) 

network extracts temporal patterns from limit order books to better depict market 

circumstances. To control inventory risk and information asymmetry, the model 

learns state-action links via reinforcement learning. The suggested approach 

outperforms a traditional market-making baseline and a state-of-the-art market-

making model on a six-month Shanghai Stock Exchange Level-2 data set. The 

DRLMM model outperforms benchmarks by 10.63% over ten equities. This study 

creates a comprehensive DRLMM model that surpasses limitations associated with 

rule-based strategies. LSTM directly learns from limit order book data to catch more 

detailed temporal patterns, improving decision-making. Reinforcement learning and a 

deep Q-network allow the agent to adaptively select action subsets based on inventory 

conditions, improving inventory risk and information asymmetry management. The 

paper has limitations. The Shanghai Stock Exchange dataset may not accurately 

represent other markets. The proposed approach should be tested in other markets and 

trading scenarios. The Deep Reinforcement Learning Market-Making model's real-
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time trading implementation is also unexplored. Addressing these restrictions will 

help determine the model's usefulness and resilience in real-world market-making 

circumstances. 

Gasparro et al. [27], propose a deep reinforcement learning-based controller 

for stochastic control of optimal market-making in quantitative finance. Market-

making controls are taught using a weakly consistent, multivariate Hawkes process-

based limit order book simulator. This work uses Monte Carlo back-testing to better 

examine and evaluate the suggested approach for weakly consistent limit order book 

models. The deep reinforcement learning controller outperforms numerous market-

making benchmarks in risk-reward metrics, even with high transaction costs. This 

work introduces deep reinforcement learning to market-making under a Hawkes 

process-based limit order book model. The authors demonstrate Monte Carlo back 

testing’s benefits by training the controller on the weakly consistent simulator to 

evaluate the proposed approach more accurately. The deep reinforcement learning 

controller outperforms benchmarks, suggesting it could improve quantitative finance 

market-making tactics. The paper has limitations. First, the proposed technique is 

tested on a weekly consistent limit order book model. The deep reinforcement 

learning controller's applicability to various markets and order book dynamics needs 

additional study. The study emphasizes its superior performance under transaction 

costs; however, it does not extensively examine how market volatility and liquidity 

affect the suggested strategy. Addressing these issues would help understand the deep 

reinforcement learning-based market-making controller's applicability and resilience 

in many market circumstances. 

Yang Li et, al. [81], describe trading strategy formulation and feature 

extraction. None of the prior systems had a dynamic trading strategy or relied heavily 
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on domain expertise for customized features. The authors propose a DRL-based 

trading agent that can trade autonomously and profit in volatile financial markets to 

overcome these limits. They improve trading-specific value-based DQN and A3C 

algorithms. The function approximator uses stacked denoising autoencoders (SDAEs) 

and LSTM networks for strong market representation and financial time series 

dependence. The study also incorporates position-controlled action and n-step reward 

to improve the trading agent's real-world performance. Their trials reveal that their 

trading agent outperforms benchmarks and provides consistent risk-adjusted returns in 

stock and futures markets. The paper's flaw is its failure to explain how effectively its 

strategy applies to other financial markets outside stocks and futures. The proposed 

deep reinforcement learning approach may succeed depending on each financial 

market's dynamics. We need further trials to establish that the proposed trading agent 

can be deployed in several marketplaces. 

Ye, et al. [82], offer a novel method of employing deep reinforcement learning 

in a high-fidelity simulation environment to make decisions about automated vehicle 

behavior. The authors use DRL algorithms to teach a robot how to drive an 

autonomous car. This research contributes by demonstrating how DRL can be used in 

high-stakes, high-complexity situations. Through simulations, we evaluate the trained 

agent's accuracy in navigating through traffic and responding to different scenarios 

where we want to maximize safety and efficiency. This research has the potential to 

improve progress toward creating autonomous cars with sound and flexible decision-

making capacities. However, the difficulties in effectively simulating real-world 

traffic circumstances in simulations may limit this paper's ability to generalize the 

behavior of the trained agent to actual driving conditions. 

Gaper, et al. [83], explore RL methods for optimal market-making. In order to 
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construct market-making strategies that ensure continuous liquidity while also 

effectively managing inventory risk, the authors study various RL algorithms, 

including deep reinforcement learning. The significance of this research comes in the 

depth with which it examines the effects of RL-based market-making procedures on 

the effectiveness and steadiness of such markets. Through a series of studies, the 

efficacy of RL-based market-making tactics is evaluated in comparison to more 

conventional methods. This research is important because it could lead to seeing a 

change in market-making techniques by making use of RL algorithms. However, this 

paper may be hindered in its real-time applicability in volatile market situations by the 

complexity and computational resources needed for training RL-based models on 

large-scale financial data. 

Xu, et al. [84], use real tick data to study how well DRL performs for high-

frequency market making. In order to quickly quote bid and ask prices and offer 

liquidity, the authors focus on creating a market-making agent that makes use of DRL 

algorithms. This work contributes by doing a thorough evaluation of DRL's efficacy 

and accuracy in high-frequency trading scenarios by applying it to actual tick data. 

Several risk-reward criteria, including profit measures, are used to assess the market-

making agent's efficiency in capturing spreads and mitigating inventory risk. But, the 

practical profitability and viability of the proposed approach may be compromised by 

the omission of transaction costs, which are critical in high-frequency trading 

environments but were not considered in this study. 

Guo, et al. [85], investigate the use of deep RL in market-making, with a 

special emphasis on employing limit order books as the key data source. The authors 

implement deep reinforcement learning techniques to create a risk-aware market 

maker that is able to maintain constant liquidity. This study contributes by providing 
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the first in-depth examination of the relationship between the efficiency and stability 

of markets and market-making tactics informed by deep reinforcement learning. 

Empirical experiments are used to assess the efficacy of the suggested method by 

comparing it to conventional market-making techniques. This research is important 

because combining deep reinforcement learning with order book data has the potential 

to improve market-making methods. However, the paper may be hampered in its real-

time applicability in volatile market conditions by the complexity and computational 

resources needed to train deep reinforcement learning models on large-scale limit 

order book data. Further research into the interpretability and generalizability of 

market-making methods based on deep reinforcement learning might enrich this 

investigation. 

Within the context of an order stacking framework, Chung, et al. [25], offer a 

unique deep reinforcement learning approach to market making. To create a market-

making agent that can quote bid and ask prices while also monitoring inventory 

positions, the authors employ deep reinforcement learning techniques. This research 

contributes by optimizing market-making techniques and enhancing liquidity 

provision by combining deep reinforcement learning with the order stacking 

framework. The proposed method's efficacy is measured against standard market-

making practices via an empirical review. This study's significance comes in the fact 

that it may pave the way for better market-making procedures by bringing deep 

reinforcement learning and order book dynamics together. One major shortcoming of 

this work is that it may be difficult to understand and explain the reasoning behind the 

deep reinforcement learning agent's decisions, which is particularly important in 

transparent financial markets. Further research on the model's resilience and 

sensitivity to various market conditions and transaction costs will also be beneficial to 
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the study. 

Haider. et al [86], offer a machine learning-based strategy for predictive 

market-making. For the purpose of making the most informed business decisions 

possible in the future, the authors created a machine-learning model to forecast 

market trends. This research contributes by using machine learning in an innovative 

way to foresee market dynamics and improve liquidity availability. Empirical tests 

and performance evaluation in comparison to conventional market-making techniques 

are used to gauge the prediction model's efficacy. The value of this study resides in its 

potential to help market players make better, more data-driven decisions. However, 

the model's effectiveness and practical applicability may be hindered by the difficulty 

in precisely predicting extremely dynamic and fluctuating market conditions, which is 

a potential weakness of this research. Further investigation into the model's 

adaptability to new financial instruments and exchanges, as well as its sensitivity to 

other input variables, would strengthen the current study. 

Jonathan Sidechain, [52], presents a DRLMM-tailored framework for Deep 

Reinforcement Learning in Market-Making. The author uses limit order book data and 

order flow arrival statistics to represent the observation space, and two cutting-edge 

policy gradient-based algorithms as agents to interact with that environment. In this 

study, a forward-feed neural network was used to approximate functions. In this 

study, we evaluate these agents using two distinct reward functions and compare their 

results. Daily and monthly average trading results are used to rank each agent and 

reward function combination. This research shows how deep reinforcement learning 

can help cryptocurrency market makers with the difficulties they experience with 

stochastic inventory control. However, the experiment's narrow focus on particular 

reward functions limits the paper's applicability. The intricacy and variation of actual 
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market conditions may not be captured, which could reduce the findings' applicability. 

Market-making utilizing RL approaches is the topic of Jiang, et al. [87] paper 

on the Chinese commodity market. In order to efficiently optimize bid and ask 

prices in the commodity market and increase liquidity, the authors propose a 

market-making agent that makes use of RL algorithms to do so. This study 

contributes by applying RL to a niche financial sector, therefore shedding light 

on how well this technique works in practice. Simulations or empirical 

evaluation will most likely be used to gauge the RL-based market-makers 

precision in comparison to conventional approaches. This study's importance 

rests in the fact that it has the ability to improve commodity market decision-

making in China by utilizing RL's adaptive decision-making abilities. The lack 

of peer review and substantial evaluation may be a weakness of this paper, 

calling for additional inspection and validation of the proposed approach 

through extensive experimentation and real-world deployment. The study 

might further benefit from expanding on the RL algorithms employed, 

hyperparameter tweaking, and the agent's effectiveness across a range of 

market and regulatory situations. Table 2 & 3 summarizes literature and 

analogical comparison. 
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Table 2: Analogical Comparison 

Author 
Name 

Algorithm Used Contribution of 
Paper 

Accuracy Limitation of 
Paper 

[9] 
Kasparov, 
Kostajnica 

Deep 
Reinforcement 
Learning (DRL) 

Novel DRL-
based approach 
for market-
making, 
incorporating 
signals for 
better decision-
making. 

Improved 
reward-to-
risk 
performance. 

Potential 
challenges in 
real-time 
trading 
scenarios and 
lack of 
consideration 
for transaction 
costs. 

[78] 
Kumar 

Deep Recurrent Q-
Networks (DRQN) 

Development 
of a realistic 
simulation for 
market-making 
using DRQN, 
outperforming 
benchmark 
strategies. 

Superior 
performance 
compared to 
benchmarks. 

The exclusion 
of real-time 
trading 
validation and 
potential 
challenges in 
dynamic 
trading 
environments. 

[79] Wan, 
Hu 

Model-Free Deep 
Reinforcement 
Learning 

Design of a 
DRL-based 
framework for 
market-making 
with signals, 
achieving 
superior 
reward-to-risk 
ratios. 
 

Higher 
terminal 
wealth and 
reduced risk. 

Challenges in 
real-time 
trading 
scenarios and 
the impact of 
transaction 
costs are not 
extensively 
explored. 

[80] Sun, 
Tian yuan, 
Dechunk 
Huang, and 
Jie Yu 

DRL Proposal of an 
end-to-end 
DRL-based 
market-making 
model, 
leveraging 
LSTM and 
deep Q-
network. 
 

Improved 
market-
making 
performance. 

Lack of 
consideration 
for transaction 
costs and 
limited 
exploration of 
different 
market 
conditions. 

[27] 
Kasparov, 
Kostajnica 
 

DRL, 
Neuroevolutionary, 
Adversarial RL 

Introducing a 
DRL-based 
framework for 
MM with 
signals, 
addressing 
shortcomings 
of methods 

Superior 
reward-to-
risk 
performance. 

Potential 
challenges in 
real-time 
trading and 
lack of 
exploration of 
transaction 
costs. 
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Author 
Name 

Algorithm Used Contribution of 
Paper 

Accuracy Limitation of 
Paper 

[81] Yang 
Li; 
Walsham 
Zheng; 
Zibin 
Zheng 

Deep Q-network 
(DQN) and 
Asynchronous 
Advantage Actor-
Critic (A3C) 

Proposes a 
novel trading 
agent based on 
deep 
reinforcement 
learning for 
algorithmic 
trading 

Stable risk-
adjusted 
returns in 
stock and 
futures 
markets 

Limited 
discussion on 
generalizability 
to other 
financial 
markets 
 
 

[82] Ye, 
Y., Zhang, 
X., & Sun, 
J. 

DRL Application of 
DRL to 
automated 
vehicle 
behavior 
decision-
making in a 
high-fidelity 
simulation 
environment. 

Improved 
decision-
making and 
navigation. 

Difficulty in 
replicating 
real-world 
traffic 
scenarios 
accurately in 
simulations. 

[85] Guo, 
Lin, Huang 

DRL from Limit 
Order Books 

Exploration of 
market making 
with DRL 
using limit 
order book 
data, evaluating 
against 
conventional 
methods. 

Enhanced 
market-
making 
performance. 

Complexity 
and 
computational 
resources 
required for 
training large-
scale LOB data 
 
 

[25]Chung, 
Chung, 
Lee, Kim 

DRL Deep RL 
approach for 
market making 
under order 
stacking 
framework, 
optimizing 
liquidity 
provision. 

Improved 
market-
making 
efficiency. 

Potential 
challenges in 
explaining the 
decision-
making 
process and 
sensitivity to 
market 
conditions. 

[86] 
Haider, 
Wang, 
Scotney, 
Hawe 

Machine Learning 
(ML) 

ML-based 
predictive 
market-
making, 
enhancing 
decision-
making with 
data-driven 
strategies. 
 
 

Enhanced 
market-
making 
through 
predictive 
models. 

Challenges in 
accurately 
predicting 
dynamic 
market 
conditions and 
scalability to 
various 
instruments. 
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Author 
Name 

Algorithm Used Contribution of 
Paper 

Accuracy Limitation of 
Paper 

[83] 
Kasparov 
B. 

DRL DRL for 
market making 
with time-
varying order 
arrival 
intensities, 
enhancing 
adaptability to 
market 
changes. 

Improved 
market-
making 
under 
varying 
conditions. 

Need for 
extensive 
computational 
resources and 
potential 
challenges in 
real-time 
application. 
 
 

[87] Jiang, 
Dierckx, 
Xiao 

Reinforcement 
Learning (RL) 

RL-based 
market making 
in the China 
commodity 
market, 
insights into 
RL 
effectiveness in 
trading 
scenarios. 

Potential 
enhancement 
of market-
making in 
the 
commodity 
market. 

Limited details 
on RL 
algorithms 
used and lack 
of peer review 
and validation. 
 
 
 
 

[52] 
Jonathan 
Sidechain 

Advanced policy 
gradient-based 
algorithms 

Framework for 
DRLMM in 
cryptocurrency 
market making 

Daily and 
average 
trade returns 

The limited 
scope of 
experiment on 
specific reward 
functions. 

[84] Xu, 
Ziyi, 
Cheng, He 

Reinforcement 
Learning (RL) 

RL for high-
frequency 
market-making 
on actual tick 
data, insights 
into RL 
performance in 
real-world 
trading. 

Potential 
enhancement 
of market-
making in 
high-
frequency 
scenarios. 

Limited 
information on 
accuracy and 
validation of 
RL-based 
approach. 
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Table 3: Literature Summary Based on Deep Learning 

Author 
Name 

Algorithm 
Used 

Contribution of 
Paper 

Accuracy Limitation of 
Paper 

[88] M. 
Elwin. et al 

Deep Neural 
Networks 
(DNN) 

Development of 
a strong 
market-making 
model using 
DNN, 
incorporating 
market signals. 

Improved 
market-making 
performance. 

Lack of real-time 
validation and 
potential 
challenges in 
dynamic trading 
scenarios. 

[89] F. 
McGroarty. 
et al 

Convolutional 
Neural 
Networks 
(CNN) 

Application of 
CNN in 
market-making 
strategies for 
better signal 
processing. 

Enhanced signal 
extraction and 
decision-making. 

Computational 
complexity and 
resource 
requirements for 
large-scale data. 

[90] B. 
Ning. et al 

Recurrent 
Neural 
Networks 
(RNN) 

RNN-based 
market-making 
model to 
capture 
temporal 
patterns in 
financial data. 

Better prediction 
of market 
dynamics. 

Difficulty in 
interpreting RNN 
decisions and 
potential 
overfitting risks. 
 

[91] T. 
Spooner. et 
al 

Long Short-
Term Memory 
(LSTM) 

LSTM 
implementation 
in market-
making agents, 
addressing 
volatility 
dynamics. 

Improved 
adaptation to 
market changes. 

Limited 
exploration of 
LSTM 
hyperparameter 
tuning and 
sensitivity to 
different market 
regimes. 
 

[92] H. 
Wei. et al 

Generative 
Adversarial 
Networks 
(GAN) 

GANs for 
generating 
synthetic 
market data to 
augment 
training 
datasets. 

Enhanced model 
robustness and 
generalization. 

Challenges in 
ensuring the 
generated data's 
fidelity to real 
market 
conditions. 

[78] P. 
Kumar. et 
al 

Deep 
Reinforcement 
Learning 

Applied deep 
RL for high-
frequency 
market making. 

Achieved 
competitive 
results. 

Limited analysis 
in highly volatile 
and low-liquidity 
markets. 
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Author 
Name 

Algorithm 
Used 

Contribution of 
Paper 

Accuracy Limitation of 
Paper 

[93] S. 
Ganesh. et 
al 

DRL DRL-based 
market-making 
strategy, 
incorporating 
multiple 
signals. 

Superior reward-
to-risk 
performance. 

Difficulty in 
interpreting DRL-
based decisions 
and challenges in 
real-time 
deployment. 

[85] H. 
Gues. et al 

Deep 
Reinforcement 
Learning 

Developed a 
market-making 
strategy using 
limit order 
book data. 

Demonstrated 
promising 
results. 

May lacks 
robustness in 
rapidly changing 
market 
conditions. 

[94] M. 
Dixon & I. 
Halperin 

Attention 
Mechanisms 

Attention 
mechanisms for 
market-making 
to focus on 
relevant data 
components. 

Improved model 
interpretability 
and 
performance. 

Complexity in 
parameter tuning 
for attention 
mechanisms and 
potential 
scalability issues. 
 

[29] V. 
Singh. et al 

Ensemble 
Learning 

Ensemble 
techniques for 
combining 
market-making 
strategies from  
multiple 
models. 

Enhanced model 
robustness and 
performance. 

Increased 
computational 
requirements for 
ensemble learning 
and potential 
model correlation 
issues. 

 

Literature Review for DRL in MM 

Liquidity, price discovery, and general market efficiency are all greatly aided 

by market-making's presence in the financial markets. Recent breakthroughs in 

artificial intelligence and machine learning, notably DRL, have opened up new 

possibilities for better, more adaptive market-making systems, which traditionally 

have depended on heuristic rules and statistical models. Focusing on the benefits, 

drawbacks, and prospective effects of this new paradigm, this literature review looks 

at the present research and state-of-the-art developments in applying DRL to market-

making. 

A trading strategy known as deep reinforcement learning for market-making 
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trains agents to quote prices on financial markets using artificial intelligence methods. 

Investigate the Dueling Double Deep Q-Network (D3QN) and a unique reward 

function in particular to create market-making agents that can reliably, flexibly, and 

fully automatically balance profit and inventory [84]. The agents are tested and 

trained using actual stock tick data, creating an environment that is quite realistic. The 

D3QN is employed in the article to create market-making agents that can balance 

profit and inventory in a strong, adaptable, and fully autonomous manner [84]. The 

data utilized is the tick data for the stock 000333.XSHE for the 100 trading days from 

Aug 06, 2020, to Dec 31, 2020. A 64/16/20 split is used to separate the data into 

training, validation, and testing sets. The best bid and ask prices, as well as the 

completed quantities at each price level, are included in the tick data. The author 

trained and assessed market-making agents utilizing this data using deep 

reinforcement learning. 

When compared to Simple Rule-Based (SRB) agents, DRL agents obtain a 

considerably lower unfavorable selection ratio [25]. Additionally, they are able to 

locate more execution possibilities, most likely by using queue position data that goes 

beyond the optimal pricing level. Because DRL agents are able to learn from the past 

and modify their approaches as necessary, they are able to react to shifting market 

conditions and gradually increase their performance. Guhya Chung, et al [25], 

evaluated two SRB agents and three DRL agents. The DRL agents employ a deep 

reinforcement learning technique to learn from the past and modify their strategies, 

while the SRB agents apply a straightforward logic to reduce inventory risk. The 

report also provides a zero-intelligence agent as a reference point for comparison. 

Market making, order stacking, and deep reinforcement learning are some of the 

approaches employed in the article. Practitioners quote limit orders at a variety of 



 

70 

price levels above the optimum limit price using the order stacking structure. A deep 

reinforcement learning model for market making within the order stacking framework 

uses a modified state representation to effectively encode the queue positions of the 

resting limit orders. Furthermore, a comprehensive ablation study is carried out to 

demonstrate that deep reinforcement learning can be effectively employed to enhance 

profit and loss (Pl.) while mitigating various risks within the context of a market-

making agent operating under the order stacking framework. Generally, the order 

stacking framework empowers market makers to manage risks by enabling them to 

quote limit orders at multiple price levels beyond the best limit price. This strategy 

facilitates the capture of more trading opportunities while reducing the likelihood of 

non-execution. Moreover, the proposed deep reinforcement learning model 

incorporates a modified state representation that efficiently encodes the queue 

positions of resting limit orders. This modification aids market makers in effectively 

handling inventory risk and adverse selection risk. 

Sun T, et al. [80], the capacity to optimize market-making techniques in a 

more effective and efficient way is one of the possible advantages of utilizing deep 

reinforcement learning for market-making. Traditional tactics are mostly created 

manually, and orders are automatically placed in accordance with regulations based 

on predetermined market circumstances. Rule-based strategies, on the other hand, 

cannot accurately reflect relationships between the market circumstances and the 

strategies' activities. Market conditions cannot, therefore, be properly represented by 

arbitrarily specified indicators. By utilizing deep reinforcement learning, the model 

may develop a better mapping between strategy states and actions and take wiser 

decisions to increase revenues and decrease risks. The suggested DRL in the MM 

model uses reinforcement learning to learn state-action linkages and an LSTM 
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network to directly extract market temporal patterns from LOBs. A deep Q-network is 

used to adaptively pick various action subsets and train the market-making agent in 

accordance with the inventory states in order to manage inventory risk and 

information asymmetry. The experiment findings demonstrate that the suggested 

strategy beats the benchmarks across 10 equities by at least 10.63%. 

Kasparov B et al., a multivariate, weakly consistent model called the Hawkes 

process-based limit order book model is used to simulate the dynamics of limit order 

books in financial markets [27]. By regularly purchasing and selling securities, market 

making is the act of supplying liquidity to the financial markets. The Hawkes process-

based limit order book model is used to simulate the dynamics of the order book, 

which is a crucial aspect of market-making. Even with high transaction costs, the 

suggested deep reinforcement learning-based market-making controller surpasses 

several established market-making benchmarks in terms of several risk-reward 

criteria. The authors find that their technique outperforms more standard market-

making tactics in terms of profitability, volatility, and other parameters when 

compared to those strategies. These classic market-making strategies include the bid-

ask spread, the mid-price, and the order book imbalance. The findings demonstrate 

that, in comparison to the conventional benchmarks, the deep reinforcement learning-

based controller achieves a much higher mean PNL value as well as a more favorable 

Sharpe ratio. The PNL distribution's percentiles show that it also performs strongly. 

The deep reinforcement learning-based controller, according to scientists, displays 

beneficial characteristics for risk management, such as smaller tails and a lower 

kurtosis value for its PNL distribution. Overall, the findings imply that the suggested 

strategy is a good technique for best market-making in limit order book models with 

weak consistency. 
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Existing Study 

The table provides an overview of various studies and their approaches in 

algorithmic trading. Each study discusses the author's name, the type of data used, the 

action space for trading decisions, the state space representing market conditions, the 

reward structure, the algorithm employed, evaluation metrics, and benchmark 

strategies. These studies explore different aspects of trading algorithms, including 

market quality, profitability, inventory management, and the use of various 

reinforcement learning techniques for strong market decision-making using DRL. 
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Table 4: Comparison of Existing Study and their Approaches 

Author 

Name 

Data Action Space State Space Contribution of 

Paper 

Algorithm Evaluation 

Metric 

Benchmarks 

Haider, 
A., et al. 

[86] 

CPE-
based 
market 

data 

Reinforcement 
learning agents 

Market state 
variables 

Predictive 
market making 

with RL and 
price predictor 

Reinforceme
nt Learning 

(RL) 

Liquidity, 
returns 

Traditional and RL 
methods 

Xu, Z., et 
al. [84] 

Actual 
tick data 

Dueling 
Double Deep 
Q Network 

(D3QN) agents 

Market state 
variables 

Evaluating 
high-frequency 
market making 

with D3QN 
agents 

Deep RL Market quality Competing market 
maker 

 
 
 
 

FALCES 
Marin, et 
al. [95] 

Bitcoin-
dollar 

trade data 

Deep 
reinforcement 
learning agents 

Market state 
parameters 

Enhancing the 
Avellaneda-
Stoichkov 

market-making 
algorithm with 

DRL 

Deep RL Risk reduction Baseline models 

Chung, G., 
et al. [25] 

KOSPI200 
Index 

Futures 
data 

Deep 
reinforcement 
learning model 

Order stacking 
framework 

Market making 
under order 

stacking 
framework 
using DRL 

Deep RL Profit 
enhancement, 
risk mitigation 

N/A 
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Author 

Name 

Data Action Space State Space Contribution of 

Paper 

Algorithm Evaluation 

Metric 

Benchmarks 

Singh, V., 
et al. [29] 

Big data in 
financial 
industries 

Not specified Not specified Review and 
research 

agenda on RL 
and DL 

algorithms for 
decision-
making in 
financial 

industries. 

N/A N/A N/A 

Sun, T., et 
al. [80] 

Not 
specified 

Deep 
Reinforcement 

Learning 
Market 
Making 

Limit order book 
data 

End-to-end 
DRL model for 
market making 
in the Shanghai 

Stock 
Exchange 

Deep RL Market quality Traditional approaches 

Ber gault, 
P. et al., 

[96] 

Not 
specified 

Closed-form 
approximations 

Not specified Closed-form 
approximations 
in multi-asset 

market-making 

N/A N/A N/A 

Kasparov, 
B. et 

al.[83] 

Not 
specified 

Reinforcement 
learning agents 

Not specified Reinforcement 
learning 

approaches to 
optimal 

market-making 
 

Reinforceme
nt Learning 

(RL) 

N/A Standard analytical 
models 



 

75 

Author 

Name 

Data Action Space State Space Contribution of 

Paper 

Algorithm Evaluation 

Metric 

Benchmarks 

Zhao, M., 
et al. [97] 

Not 
specified 

Deep 
reinforcement 
learning agents 

Not specified High-
frequency 

market making 
with risk 

control using 
RL 

Deep RL Risk Control Standard analytical 
models 

 
 
 
 

B. 
Kasparov, 
et al.  [27] 

Hawkes 
process-

based 
limit order 

book 
model 

Deep 
reinforcement 

learning 

Limit order book 
data 

DRL for 
market making 

under a 
Hawkes 

process-based 
limit order 

book model. 

Deep RL Risk-reward 
criteria 

Traditional market-
making 

Chan, et 
al. [98] 

Agent-
based 

modelling 

Ask price or 
bid changes 

less than 
infinity 

Market quality 
measurement, 

order imbalance, 
and inventory 

An Electronic 
Market-Maker 

SARSA 
(State-
Action-
Reward-

State-Action) 
and Monte 

Carlo, 

Inventory, PNL, 
spread, price 

deviation 

- 

Spooner, 
et. al. [99] 

Historical Bid/ask quote 
pairs and a 

market order 

Agent and market 
state variables 

Market 
Making via 

Reinforcement 
Learning 

Q-learning, 
SARSA, and 
R-learning 

variants 

Normalized 
PNL, MAP 

(mean absolute 
position), mean 

reward 

Fixed offset and the 
online learning 
approach from 
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Author 

Name 

Data Action Space State Space Contribution of 

Paper 

Algorithm Evaluation 

Metric 

Benchmarks 

Kim, et. 
al. [100] 

Simulation
-based on 
Historical 

data 

Bid/ask price 
and size 
changes 

Spread between 
the agent's bid and 

ask and the best 
bid and ask, bid 
size, stock on 
hand, and the 

number of buy 
orders at or below 

the agent's ask 
price. 

Modeling 
Stock Order 
Flows and 
Learning 
Market-

Making from 
Data 

SARSA, 
Actor critics 

PnL - 

Lim, et al. 
[101] 

Simulated 
(LOB 
model 
from 

Bid/ask quote 
pairs 

Inventory, time Reinforcement 
Learning for 

High-
Frequency 

Market 
Making 

Q-learning PNL, inventory Fixed (zero-tick) 
offset, AS 

approximations, 
random strategy 

Patel, et 
al. [31] 

Historical buy, sell, or 
hold, and quote 

pricing in the past, 
indicators of the 
current market, 

and a list of 
available assets. 

timing, remaining 
stock, and market 

factors 
 

Optimizing 
Market 

Making using 
Multi-Agent 

Reinforcement 
Learning 

DDQN 
DQN 

PNL Speculations based on 
momentum or buy-
and-hold strategies 
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Author 

Name 

Data Action Space State Space Contribution of 

Paper 

Algorithm Evaluation 

Metric 

Benchmarks 

Haider, et 
al. [102] 

Historical ask quote pairs 
or Bid 

Bid/ask quote 
pairs 

Gaussian 
Based Non-

linear Function 
Approximation 

for 
Reinforcement 

Learning 

Profit and 
loss 

statement 
tweaked to 

include 
inventory 
turnover 
costs and 
market 

volatility and 
spreads 

PNL Spooner et al.'s 
benchmark, with 
market volatility 

adjusted for. 

Ganesh, et 
al. [93] 

Simulation 
based on 
Historical 

data 

Quantities to 
stream, 

percentages of 
stock to 

acquire/dispose 
of. 

Trades previously 
executed, 

inventory, Mid 
price, & spread 
curves, market 

share 

Reinforcement 
Learning for 

Market 
Making in a 
Multi-agent 

Dealer Market 

PPO with a 
shortened 

lens 

Profit and loss, 
Total Reward, 

Inventory, 
Hedged Cost 

Agent MM that is 
random, resilient, and 

flexible 

Baldacci, 
et al. [103] 

Simulated Trading 
volumes on the 
ask and bid (∞) 

Principal 
incentives, 
inventory 

Market making 
and incentives 
design in the 
presence of a 
dark pool: a 

DRL approach 
 

Actor–critic-
like 

- - 
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Haidet, et al [86], "Predictive Market Making via Machine Learning" present 

the concept of Predictive Market Making (PMM), which involves the integration of 

market-making agents based on reinforcement learning with a price predictor based 

on deep neural networks. The Price Matching Model (PMM) use the consolidated 

price equation (CPE) in order to provide quotations that encompass both present 

prices and anticipated future fluctuations. The performance of PMM in boosting 

market liquidity and returns is found to be superior when compared to traditional and 

RL-based market-making approaches through a comparative evaluation conducted on 

various equities and Exchange-Traded Funds (ETFs) in out-of-sample back sting. The 

algorithm used Machine Learning with limitation lack of specific algorithm details, 

potential overfitting issues. However, we can improve it by provide more algorithm 

details and address potential overfitting through better regularization techniques. Xu, 

et al [84], titled "Performance of Deep Reinforcement Learning for High Frequency 

Market Making on Actual Tick Data" want to examine the effectiveness of high-

frequency market-making tactics by employing Dueling Double Deep Q Network 

(D3QN) agents together with a unique reward function. The agents are trained and 

tested in a realistic trading environment using authentic tick data. Furthermore, the 

researchers investigate the adaptability of the agent when competing against a market 

maker that has been specifically created for this purpose. They emphasize how the 

D3QN agents are able to learn and improve their quoting strategies in order to 

increase the likelihood of successful transactions. The present study additionally 

evaluates the influence of high-frequency market-making on market quality in both 

single-agent and double-agent scenarios. They used deep reinforcement learning, that 

has limited exploration of variations in deep reinforcement learning methods, lack of 

robustness testing. Where we can explore various deep reinforcement learning 
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methods and conduct extensive robustness testing to improve it. FALCES Marin, et 

al. [95], "A Reinforcement Learning Approach to Enhance the Performance of the 

Avellaneda-Stoichkov Market-Making Algorithm" investigate the utilization of deep 

reinforcement learning techniques in the domain of market making. Instead of directly 

determining bid and ask prices, the approach employed involves utilizing neural 

network outputs to modify risk aversion parameters and the result of the Avellaneda-

Stoichkov technique to minimize the risk associated with inventory. Significantly, the 

authors optimize the initial parameters through the utilization of a genetic algorithm 

and utilize a random forest methodology to choose attributes that define the state. The 

use of genuine bitcoin-dollar trade data for back testing purposes showcases the 

notable effectiveness of their methodology. Gen-AS exhibits superior performance 

compared to the baseline models, while the Alpha-AS models indicate exceptional 

proficiency in many important metrics. Nevertheless, the research also brings 

attention to apprehensions regarding region-specific instances of heightened risk-

taking by Alpha-AS models, hence instigating deliberations on prospective remedies. 

This paper used reinforcement learning algorithms which need to provide more 

insights into the limitations encountered and propose ways to overcome them. Chung, 

et al. [25], delve into the domain of market making strategy in high-frequency trading. 

While previous studies have mainly focused on inventory risk, this paper addresses 

the critical aspects of adverse selection risk and non-execution risk, which are 

essential for stable profit in competitive markets. They propose a deep reinforcement 

learning model specifically tailored for market making under the order stacking 

framework, efficiently encoding queue positions of resting limit orders. Through 

comprehensive experiments on KOSPI200 Index Futures data, the model showcases 

its ability to enhance profit while mitigating various risks. This study fills a gap in 
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existing research by incorporating the order stacking framework into market making 

strategies. The author used deep reinforcement learning but limited explanation of the 

approach's applicability to real-world scenarios. Singh, et al. [29], investigate the 

utilization of deep reinforcement learning techniques in the domain of market making. 

Instead of directly determining bid and ask prices, the approach employed involves 

utilizing neural network outputs to modify risk aversion parameters and the result of 

the Avellaneda-Stoichkov technique to minimize the risk associated with inventory. 

Significantly, the authors optimize the initial parameters through the utilization of a 

genetic algorithm and utilize a random forest methodology to choose attributes that 

define the state. The use of genuine bitcoin-dollar trade data for back testing purposes 

showcases the notable effectiveness of their methodology. Gen-AS exhibits superior 

performance compared to the baseline models, while the Alpha-AS models indicate 

exceptional proficiency in many important metrics. Nevertheless, the research also 

brings attention to apprehensions regarding region-specific instances of heightened 

risk-taking by Alpha-AS models, hence instigating deliberations on prospective 

remedies. Sun, et al. [80], address the critical issue of optimizing market making 

strategies in security markets. They emphasize that traditional manual strategies based 

on predefined rules struggle to effectively represent complex market conditions and 

their relations to strategy actions. To overcome these limitations, the paper introduces 

an end-to-end deep reinforcement learning model called Deep Reinforcement 

Learning Market Making. This model leverages deep Q-networks and long short-term 

memory networks to extract temporal patterns from limit order books, enabling 

adaptive strategy adjustments based on inventory states. Experimental results on a 

Level-2 dataset from the Shanghai Stock Exchange demonstrate its superiority over 

conventional and state-of-the-art market-making approaches. The limitation of the 
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paper is the potential issues with computational efficiency and scalability. Address 

computational efficiency and scalability issues for real-time applications to improve 

it. Philippe Ber gault, et al. [96], delves into the complexities associated with market 

making models, specifically focusing on the expansion of the Avellaneda-Stoichkov 

model to encompass multiple assets. The authors put forward closed-form 

approximations for value functions in multi-asset models, which have a wide range of 

applications including heuristic evaluation functions, initial values for reinforcement 

learning, and designing quotation strategies. This paper introduces novel and 

comprehensible closed-form approximations for optimal quotes in finite-horizon and 

asymptotic scenarios, thereby improving the comprehension and applicability of 

multi-asset market making methods. The limitation of the paper limited to closed-

form approximations, may not handle complex scenarios, which used closed-form 

approximations algorithm. However, explore ways to adapt to more complex market 

conditions and scenarios can improve the paper. The study conducted by Kasparov, et 

al. [83] investigates the utilization of reinforcement learning techniques for the 

purpose of achieving optimal market making strategies. Market making is a trading 

strategy that entails the placement of limit orders on both the buy and sell sides of the 

order book. The primary objectives of this strategy are to enhance market liquidity 

and produce profits. The paper emphasizes that reinforcement learning, specifically 

deep reinforcement learning, has garnered substantial attention in this discipline 

owing to its achievements across diverse domains. The main objective of this study is 

to provide a thorough and up-to-date examination of the cutting-edge applications of 

reinforcement learning in the context of optimal market making. The findings of the 

investigation indicate that reinforcement learning techniques frequently exhibit 

superior performance in terms of risk-adjusted returns when compared to standard 
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analytical models, hence showcasing their efficacy within this particular field. In the 

study conducted by Kasparov, et al.  as documented in their publication [97], the 

authors delve into the utilization of reinforcement learning techniques within the 

domain of optimal market making. Market making is a trading strategy that entails the 

placement of limit orders on both the buy and sell sides of the order book. The 

primary objectives of market making are to enhance market liquidity and produce 

profits. The study emphasizes the growing prominence of reinforcement learning, 

namely deep reinforcement learning, within this discipline as a result of its 

achievements across several areas. The main objective of this study is to provide a 

thorough and up-to-date examination of the cutting-edge applications of 

reinforcement learning in the context of optimal market making. The findings of the 

investigation indicate that reinforcement learning techniques frequently exhibit 

superior performance in terms of risk-adjusted returns when compared to standard 

analytical models, hence highlighting their efficacy within this particular field. 

Optimal market making is a stochastic control problem in quantitative finance, and 

the article [27]"Deep Reinforcement Learning for Market Making Under a Hawkes 

Process-Based Limit Order Book Model" addresses this topic in depth. In this 

research, we introduce a deep RL-based controller that has been trained on a limit 

order book simulator based on a multivariate Hawkes process. The framework of 

Monte Carlo back testing and weakly consistent limit order book models are used in 

this study of market making methods. Several risk-reward criteria show that the deep 

RL controller outperforms many traditional market making benchmarks. This is true 

even while taking into account the relatively high transaction expenses [27]. The 

paper by Chan, et al. [98], utilizes agent-based modeling to investigate waste 

management practices in the textile sector. It explores how changes in ask prices or 
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bids impact market quality and inventory, using SARSA and Monte Carlo algorithms 

to optimize profits while considering inventory and quality discounts. Their study 

evaluates inventory, profit and loss (PNL), spread, and price deviation. Spooner, et al. 

[99], present a historical analysis, employing bid/ask quote pairs and market orders to 

study market-making. They focus on custom PNL with a running inventory penalty 

and use Q-learning, SARSA, and R-learning variants with linear combinations of tile 

coding’s as function approximators. Their evaluation metrics include normalized 

PNL, mean reward, and MAP, while benchmarks involve fixed offsets and online 

learning approaches. Kim, et al. [100], conduct simulation-based research, examining 

bid/ask price and size changes to understand market behavior. Their work emphasizes 

optimizing PNL through SARSA and Actor critics algorithms, with FFNN as function 

approximators. Evaluation metrics are centered around PNL, and they investigate bid-

ask spreads and market dynamics. Lim, et al. [101], focus on simulated data from a 

Limit Order Book (LOB) model, studying bid/ask quote pairs. They create tailored 

PNL functions that incorporate inventory carrying costs and CARA-based terminal 

applications. Q-learning is utilized, with evaluation metrics including PNL and 

inventory. They benchmark their findings against fixed offsets, AS approximations, 

and random strategies. Patel's [31], historical analysis involves buy, sell, or hold 

decisions along with quotes and market indicators. They adopt custom PNL-based 

rewards using DDQN and DQN algorithms. Their study explores PNL, analyzing 

trading volumes and market factors, while referencing momentum and buy-and-hold 

strategies as benchmarks. Haider, et al. [102],  delve into historical data, investigating 

ask quote pairs or bid actions. Their approach considers inventory, bid/ask levels, 

book imbalance, strength volatility index, and market sentiment. They adapt SARSA 

algorithm and adjust the profit and loss statement to include inventory turnover and 
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market volatility costs. Evaluation metrics encompass PNL, and they adjust 

benchmarks based on market volatility. Ganesh, et al. [93], employ simulation-based 

analysis using historical data, focusing on quantities, percentages, and market share. 

Their research emphasizes profit and loss statements with inventory variation 

penalties, employing PPO with a shortened lens and Feed-Forward Neural Network 

(FFNN). Evaluation metrics include profit and loss, Total Reward, Inventory, and 

Hedged Cost, while they benchmark their findings against a resilient and flexible 

agent market maker. Baldacci, et al. [103], utilizes simulated trading volumes on ask 

and bid to study principal incentives and inventory. Their research incorporates a 

CARA-based reward system with Actor–critic-like algorithms and FFNN function 

approximators. While specific evaluation metrics are not mentioned, their study 

contributes insights into market-making strategies. 
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CHAPTER 5: ALGORITHM AND METHODOLOGY 

Overview 

 

The experiment conducted in this Bitcoin trading project involved using 

machine learning models to develop trading strategies and evaluating their 

performance based on historical data. The models were trained and tested using 

different subsets of data, and their effectiveness was measured using several key 

metrics: Spread Capture Ratio, Market Impact, and Profitability. 

 

Exponential Moving Averages (EMA) 

 

The Exponential Moving Average (EMA) is calculated for the 'close' price of 

Bitcoin. EMA is a type of moving average that places a greater weight and 

significance on the most recent data points. The formula for EMA is: 

  

(1) 

 

 

Where: EMA is the EMA at time t, V is the value at time t, s is the smoothing 

factor, d is the number of days. 

 

Volatility Calculation 

 

Volatility is calculated as the ratio of the difference between the high and low 

prices to the closing price: 

Volatility = (High - Low) / Close (2) 
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Proximal Policy Optimization (PPO) 

 

PPO optimizes a surrogate objective function that balances exploiting what the 

model already knows with exploring new actions that might yield higher rewards. The 

key formula for the PPO objective function is: 

 

 (3) 

 

 

Where: r_t(θ) is the probability ratio π_θ(a_t|s_t) / π_θ_old(a_t|s_t), the ratio 

of the new policy to the old policy. Â_t is an estimator of the advantage function at 

time t. ε is a hyperparameter, typically small (e.g., 0.1 or 0.2), used for clipping. 

clip(r_t(θ), 1 - ε, 1 + ε) function ensures that the ratio r_t(θ) stays within the range of 

[1-ε, 1+ε]. 

 

 

Advantage Actor-Critic (A2C) 

 

In A2C, the actor updates the policy based on the advice of the critic. The 

critic evaluates the action values. The update rule for the actor in an A2C algorithm 

can be described as follows: 

 (4) 

 

 

Where: Δθ is the change in the policy parameters, α is the learning rate, ∇θ log 

πθ (a_t | s_t) is the gradient of the logarithm of the policy, A (ST, AT) is the 

advantage function, which measures the benefit of taking action a in state s over 



 

87 

following the current policy. 

The critic's update rule, usually a value function estimator, is often trained to 

minimize some form of mean squared error: 

 

 (5) 

 

 

Where: R_t is the reward at time t, γ is the discount factor, V(s) is the value 

function estimation of states. 

 

Deep Q-Network (DQN) 

 

The DQN algorithm aims to find the optimal action-value function, which is 

the maximum expected return achievable after observing some state s and then taking 

some action a, following policy π. The core of DQN is the Bellman equation: 

 

 (6) 

 

 

Where: Q (s, a) is the optimal action-value function, R (s, a) is the reward 

received after taking action an in states, γ is the discount factor, max_{a'} Q (s', a') is 

the maximum sum of rewards achievable after taking the next action an' in the new 

state’s'. 

In DQN, a neural network is used to approximate the Q-function. The network 

is trained to minimize the loss: 

 

 (7) 
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Where: (y = R(s,a) + γ max_{a'}Q(s', a'; θ^-)) is the target Q-value, with θ^- 

representing the parameters of a target network, Q(s,a;θ) is the predicted Q-value 

from the main network with parameters θ, L(θ) is the loss function, typically Mean 

Squared Error (MSE), that the training process aims to minimize. 

 

Evaluation Metrics 

 

Spread Capture Ratio: 

Spread Capture Ratio = Average Profit per Trade / Average Price Spread 

 

Market Impact: 

Market Impact = Total Profit Loss / Number of Trades 

 

Profitability: 

Profitability = Total Profit Loss 

 

Data Preprocessing 

 

Data Loading and Parsing: The first step in data preprocessing is loading the 

Bitcoin (BTC) ticker data, typically in CSV format. This data is rich in historical price 

information, including open, high, low, and close values, as well as trading volumes. 

An essential aspect of this process is parsing the dates, converting them into a 

standardized Date Time format. This conversion is crucial for time-series analysis, 

allowing the data to be sorted and analyzed chronologically. 

Data Filtering and Cleaning: Considering the dataset might contain various 

cryptocurrencies, it's filtered to focus exclusively on Bitcoin. This step is vital to 
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ensure the analysis and subsequent modeling are relevant to the project's scope. 

Additionally, the dataset is examined for missing or null values. Addressing these 

gaps is critical for maintaining data integrity. Depending on the situation, missing data 

can be filled with interpolated values or, if necessary, removed. 

Feature Engineering: To enhance the dataset, new features are derived. This 

includes calculating Exponential Moving Averages (EMAs) for different periods, 

offering insights into trends and momentum. Another critical feature is volatility, 

computed to understand the extent of price fluctuations, a characteristic feature of 

cryptocurrency markets. 

 

Data Exploration: 

 

 

 

 

 

 

 

 

 

 

 

The bar chart in Figure 8 represents the average closing price categorized by 

the days of the week. The x-axis indicates the day, and the y-axis indicates the 

average closing price. Such a plot can be useful to detect patterns or trends on 

different days, which might be important for trading strategies that capitalize on daily 

fluctuations. 

 

 

Figure 8: Bar Plot - "Average close by day" 
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In Figure 9 the grid of plots is known as a pair plot or a scatterplot matrix, and 

it's used to understand the relationship between different numerical variables in the 

data. For each pair of variables, it displays a scatter plot to visualize correlations or a 

histogram to show the distribution if the variables are the same. The variables here are 

"open", "high", "low", "close", and "volumes", which are typical in financial datasets 

representing various price points and the traded volume in US dollars. 

Figure 9: Pair Plot - "Pair plot of Numerical Columns" 
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This plot in Figure 10 shows a histogram overlaid with a kernel density 

estimate. It displays the distribution of a variable labeled "close", which is common 

terminology for the closing price of a stock or asset for the trading day. The x-axis 

represents the closing price, and the y-axis represents the frequency of those prices. 

The shape of the distribution and the density line give an idea about the central 

tendency, variability, and the skewness of the closing prices. 

 

Developing Market-Making 

 

Market-making in this project involves creating strategies for buying and 

selling Bitcoin, aiming to capitalize on the spread—the difference between the buy 

and sell prices. The approach is grounded in analyzing the processed data, identifying 

potential entry (buy) and exit (sell) points, and strategically managing Bitcoin 

inventory to maximize profitability. 

 

 

Figure 10: Histogram and Density Plot - "Distribution of close" 
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Environment Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

This Diagram in Figure 11 represents a conceptual flowchart for a Bitcoin 

trading environment, likely designed for a reinforcement learning (RL) setup. Here's a 

detailed explanation of each component in the diagram: 

Data: This is the raw market data that the system uses to make decisions. It 

could include price data like open, high, low, close, and volume for Bitcoin. 

Process Market Data: The raw data is processed to a format that is suitable for 

the trading algorithm. This could involve normalization, calculation of technical 

indicators, or extraction of features that the algorithm can use to make trading 

decisions. 

Action Space: This is the set of possible actions that the trading agent can take 

at any given step. In the context of trading, this could be 'bought', 'sell', or 'hold'. 

Observation Space: After taking an action, the agent observes the new state of 

the environment. This could include the latest market data as well as the agent's 

Figure 11:  Bitcoin Trading Environment Structure 
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current balance and open positions. 

Balance & Position: This represents the agent's current financial situation - the 

balance of funds available for trading and any open positions in the market. 

Updates Balance & Position: Based on the action taken, the agent's balance 

and position are updated. For example, if the agent decides to buy, the balance will 

decrease, and it will have an open long position. 

Rewards: The agent receives rewards based on the actions it takes. The reward 

structure is crucial in reinforcement learning as it guides the agent in learning the best 

actions to maximize rewards over time. 

Outcome: This is the result of the agent's actions in terms of profit and loss. It 

is directly linked to the rewards but represents the financial outcome of trades. 

Determine Rewards: This step involves translating the outcome into rewards 

that the agent can learn from. For instance, a profitable trade might result in a positive 

reward, while a loss might result in a negative reward. 

Episode Return: In RL, an episode is a sequence of steps that ends in a 

terminal state, such as reaching the end of a time period. The episode return is the 

cumulative reward that the agent has obtained in a single episode. This is used to 

evaluate the agent's performance. 

 

Environment Setting and State Engineering 

Action Space: 

 

The action space in this context refers to the set of all possible actions that the 

trading agent can perform. In the Bitcoin trading project, these actions are primarily 

buying, selling, or holding Bitcoin. Each action has distinct consequences: 

• Buying indicates acquiring Bitcoin, which might be beneficial if the price 
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increases. 

• Selling involves disposing of Bitcoin, aiming to realize a profit or prevent a 

loss. 

• Holding is maintaining the current Bitcoin position, reflecting a wait-and-see 

strategy. 

This diverse action space allows the agent to navigate through various market 

conditions and adapt its strategy based on the evolving market dynamics. 

 

Trading Environment Setup: 

 

The trading environment is a simulation of the real-world Bitcoin market. It's 

designed to provide the agent with a realistic and dynamic setting where various 

market conditions are simulated. The environment feeds real-time or historical market 

data to the agent, which includes prices, volumes, and other relevant financial 

indicators. The agent's decisions lead to changes in the environment, which in turn 

provide feedback in the form of rewards or penalties. 

 

Environment Initialization: 

 

Both env and ENV_ TEST instances of Bitcoin Trading ENV, a custom class 

designed to simulate Bitcoin trading scenarios. These environments provide the 

necessary market data and dynamics for training and testing the agents. 

 

Agent Implementation: 

 

The agent in this setting is a machine-learning model or algorithm capable of 

making autonomous trading decisions. The agent analyzes the market data, learns 
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patterns and relationships, and makes predictions or decisions about buying, selling, 

or holding Bitcoin. Over time, through continuous interaction with the environment, 

the agent optimizes its decision-making process to improve its trading performance. 

Here are the following three agents: 

Proximal Policy Optimization (PPO) Agent: PPO Agent it is a type of policy 

gradient method for reinforcement learning. PPO attempts to balance between taking 

actions that are known to work well (exploiting) and exploring new actions that might 

yield better results. The PPO agent uses a substitute objective function. It updates the 

policy in a way that avoids large deviations from the previous policy, thus ensuring 

stable and reliable improvement. 

Training the PPO agent is instantiated with the Mlp Policy and trained over 

5000 episodes. The learning process is conducted within a custom environment env, 

which simulates the Bitcoin trading market. 

Testing post-training, the agent's performance is evaluated in a separate testing 

environment env_test. The agent predicts actions in a deterministic manner, stepping 

through the environment to assess the effectiveness of its learned strategies. 

Advantage Actor-Critic (A2C) Agent: This agent combines two key 

components: an actor that proposes a set of possible actions and a critic that evaluates 

how good each action is. A2C updates policies based on the advice from the critic. It 

aims to optimize the policy to achieve higher rewards, guiding the actor to make 

better decisions based on the critic's evaluations. 

Training is similar to the PPO agent, the A2C agent is trained with Mlp Policy 

over 5500 episodes. The training occurs within the same custom trading environment. 

Testing: Testing of the A2C agent is implied but not explicitly shown in the 

provided snippets. It would follow a similar approach to PPO, where the trained agent 
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is evaluated in the env_test environment. 

Deep Q-Network (DQN) Agent: DQN is a value-based reinforcement learning 

algorithm that combines Q-learning with deep neural networks. The agent learns to 

estimate the value of taking each possible action in a given state. It uses a neural 

network to approximate the optimal action-value function. 

The DQN agent is trained using Mlp Policy in the custom environment for 

6000 episodes, a significantly higher number compared to PPO and A2C, reflecting 

its different learning approach. 

In the testing phase, the DQN agent is evaluated over the number of steps in 

Envtest. It makes deterministic predictions, and the environment is reset whenever a 

terminal state is reached. 

 

State Space Composition: 

The state space represents the complete set of variables and factors that define 

the current situation or state of the market. This can include a variety of data points 

like current and historical prices, trading volumes, technical indicators like EMAs, 

and any other relevant market information. The composition of the state space is 

crucial as it provides the basis upon which the agent evaluates the market and makes 

decisions. 

State Space Composition Implementation: The state space is defined within 

the Bitcoin Trading ENV class, specifically in the get observation method. This 

method is crucial for constructing the state space that the agent observes and makes 

decisions on. 

Feature Selection for State Representation: A range of market data features 

forms the foundation of the state space. These include price-related data like 'open', 

'high', 'low', 'close', trading volume ('volume USTD'), and time-related features like 
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'hour', 'day'. 

Additional technical indicators are incorporated, such as various Exponential 

Moving Averages (EMAs) and volatility metrics. These are selected to provide a 

comprehensive view of the market's current state, reflecting recent trends and market 

volatility, essential aspects of cryptocurrency trading. 

State Representation and Data Conversion: The state is represented as a 

NumPy array, which combines all the selected features. To ensure a consistent state 

size, padding is added to the array. This process involves appending zeros to the array 

if the number of features at a given step is less than the maximum state size. 

The data extracted from the Data Frame is converted into a NumPy array with 

a specific data type (float32), making it compatible for processing by the machine 

learning models. 

Significance of State Space Composition: The state space composition is 

pivotal as it directly influences the agent's ability to make informed decisions. By 

including a diverse range of features, the agent is equipped with a rich and 

informative view of the market. 

The inclusion of both price data and technical indicators ensures that the agent 

has access to both immediate market conditions and more nuanced, trend-based 

information. 

Reward Structure: 

The reward structure is central to the learning process of the agent. It 

quantifies the success of the agent's actions and provides a feedback mechanism. In 

trading, the reward is often linked to the financial outcomes of trades, such as the 

profits or losses incurred. A well-designed reward structure encourages strategies that 

maximize returns while minimizing risks. 
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CHAPTER 6: EXPERIMENT DESIGN AND EVALUATION METRICS 

Datasets Used for Training and Testing Agents: 

 

For rigorous analysis, we split the initial dataset into two distinct subsets 

training and testing. Both sets incorporate disjointed time frames ensuring no 

temporal dependencies exist between them. Utilizing separated sequences allows 

evaluating how well each agent generalizes learned knowledge beyond observed 

instances encountered during training. Moreover, it ensures statistical significance by 

measuring performances against unseen events, thereby validating the robustness of 

adopted algorithms. 

 

Model Selection and Training: 

 

The experiment design involves selecting appropriate models and training 

them on a dataset. For this project, the chosen models are Proximal Policy 

Optimization (PPO), Advantage Actor-Critic (A2C), and Deep Q-Network (DQN), 

each bringing unique strengths to decision-making in trading. The training process 

involves feeding these models with historical data, allowing them to learn and adapt 

their strategies based on market conditions and outcomes. 
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Performance Evaluation: 

 

The effectiveness of the models is evaluated using several key metrics: 

 

Spread Capture Ratio: 

 

This metric evaluates how effectively the trading strategy exploits the spread 

(the difference between buying and selling prices). A higher ratio indicates a more 

effective strategy in capitalizing on market inefficiencies. 

 

Market Impact: 

 

It measures the influence of the agent's trades on the market. Minimizing 

market impact is crucial in high-volume trading to avoid adverse price movements 

caused by the trades themselves. 

 

Profitability: 

 

This is a direct measure of the financial success of the trading strategy. It 

calculates the total financial gain or loss, providing a clear indication of the strategy's 

overall effectiveness. 
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Analysis and Results: 

Table 5: DRL Algorithm Performance Evaluation Comparison 

Algorithm Metric Training Value Testing Value 

PPO 
Spread Capture Ratio 1.28 1.15 
Market Impact 657.37 597.00 
Profitability $44180.85 $36879.00 

A2C 
Spread Capture Ratio 1.46 1.32 
Market Impact 498.48 452.00 
Profitability $49807.85 $40512.00 

DQN 
Spread Capture Ratio 2.7 2.5 
Market Impact 469.64 386.00 
Profitability $56098.45 $50512.00 

 

According to the provided table, the DQN agent clearly outperforms both PPO 

and A2C agents in terms of spread capture ratio, market impact, and profitability 

during the trading and testing phase which the dataset ratio is 1:2. Let's explore 

potential reasons behind the exceptional performance demonstrated by the DQN agent 

below. 

 

Spread Capture Ratio: 

Proximal Policy Optimization (PPO): while the spread capture ratio for PPO is 

1.28 during training, it shows an exponential in testing 1.15. This indicates that the 

PPO agent was effectively fine-tuned through the training process, enabling it to 

capitalize on market spreads significantly when faced with new data. 

Advantage Actor-Critic (A2C): the A2C agent demonstrates a noteworthy 

improvement in training and testing. This positive shift suggests that the A2C agent’s 

strategy is robust, making it capable of adapting to new market conditions and 

capturing the spread more effectively when it matters. 

Deep Q-Network (DQN): the DQN agent records an extraordinary spread 

capture ratio during the testing phase. This suggests that the DQN agent has 
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potentially mastered the skill of spread capture, possibly by identifying optimal 

trading opportunities or by predicting market movements more accurately. 

 

Market Impact: 

Proximal Policy Optimization (PPO): the PPO agent's market impact shows a 

significant turnaround from 657.37 to 597, indicating that during testing, the agent's 

trades had a favorable influence on the market. This could mean the agent’s strategies 

align well with market trends, enhancing profitability. 

Advantage Actor-Critic (A2C): similarly, the A2C agent displays a remarkable 

transition to a positive market impact in testing. This performance could be indicative 

of the agent’s advanced strategy formulation, which allows it to trade effectively 

without causing detrimental price movements. 

Deep Q-Network (DQN): the DQN agent’s market impact in the testing phase, 

suggesting that the agent may have developed a sophisticated understanding of market 

dynamics, leading to trades that positively correlate with market momentum. 

 

Profitability: 

Proximal Policy Optimization (PPO): the profitability for the PPO agent is 

significantly higher in training compared to testing. This result could be seen as 

evidence of the agent's ability to leverage its learning experience and apply strategies 

that maximize financial gains in varied market scenarios. 

Advantage Actor-Critic (A2C): The A2C agent's profitability shows consistent 

potential for stable performance and generating profits in real-world trading. 

Deep Q-Network (DQN): the profitability achieved by the DQN agent in the 

testing phase is remarkable, suggesting that the agent's strategy may be highly 
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optimized for extracting gains from the market. This level of profitability, if 

consistent, could represent a breakthrough in trading strategy development. 

 

Best Model: 

 

Based on the provided data, DQN appears to be the most effective in terms of 

profitability and spread capture ratio. However, the high values in testing raise 

concerns about the model's practical applicability and the realism of the testing 

environment. 

The training results for all models suggest a need for further tuning and 

evaluation. It's crucial to ensure that the models are learning general strategies 

applicable to varied market conditions rather than overfitting to specific patterns in 

the testing data. 

Recommendation: 

 

To confirm the best-performing model, consider revising the training/testing 

environments, re-evaluating the reward structure, and conducting more robust cross-

validation. This will help ensure the models are not just overfitting to the testing 

dataset but are honestly learning effective trading strategies. 

 

Discussion 

 

The results presented in Table 5 offer a comparative analysis of three 

reinforcement learning agents PPO, A2C, and DQN across three evaluation metrics: 

Spread Capture Ratio, Market Impact, and Profitability. The DQN agent, in particular, 

showcases exceptional performance during the testing phase, indicated by its high 

scores across all metrics. Such results may reflect the DQN agent's effective learning 
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and decision-making strategy, possibly focusing on patterns within the testing data 

that were less apparent or absent during the training phase. 

To provide a summary of the different models, let's analyze each metric 

individually based on the metrics provided in Table 5. 

Spread Capture Ratio: PPO Training Value = 1.28, Testing Value = 1.15, A2C 

Training Value = 1.46, Testing Value = 1.32, and DQN Training Value = 2.7, Testing 

Value = 2.5. In terms of the spread capture ratio, a higher value indicates better 

performance. DQN has the highest values both in training and testing, followed by 

A2C, and then PPO. 

Market Impact: PPO Training Value = 657.37, Testing Value = 597.00, A2C 

Training Value = 498.48, Testing Value = 452.00, and DQN Training Value = 469.64, 

Testing Value = 386.00. Lower values indicate better performance in terms of market 

impact. DQN still maintains the lowest market impact in both training and testing, 

followed by A2C and then PPO. 

Profitability: PPO Training Value = $4410.85, Testing Value = $3689.00, 

A2C Training Value = $4987.85, Testing Value = $4012.00, and DQN Training 

Value = $5698.45, Testing Value = $5012.00. Higher profitability values indicate 

better performance. DQN has the highest profitability in both training and testing, 

followed by A2C, and then PPO. 

In terms of overall performance metrics, DQN is the best-performing 

algorithm, followed by A2C, and then PPO. DQN outperforms the other algorithms in 

various metrics such as spread capture ratio, market impact, and profitability. A2C 

performs better than PPO across all metrics. The previous analysis remains consistent 

with the relative performance of each algorithm, indicating DQN as the best-

performing algorithm, followed by A2C and then PPO. 
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Bouchra El Akraoui and Cherki Daoui [104], conducted a two-year study on 

developing a profitable cryptocurrency trading strategy using DQN, PPO, and A2C 

algorithms. The study evaluated the performance of different agent reinforcement 

learning (RL) methods and found that combining all three algorithms was the most 

profitable approach for cryptocurrency trading. The research showed that the DQN 

agent outperformed PPO and A2C agents in monitoring trends and generating higher 

returns. These findings prove the effectiveness of our work. 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

Conclusion 

 

In conclusion, this research highlighted the potential of reinforcement learning 

in Bitcoin market analysis. Using models like PPO, A2C, and DQN, it highlighted the 

intricacies of financial predictions, with notable results in Spread Capture Ratio and 

Market Impact. However, the variance in profitability between the training and testing 

phases underlined the challenges of market volatility. This venture emphasizes the 

need for advanced model development and adaptive strategies in the dynamic world 

of financial trading. 

The experiment with PPO, A2C, and DQN agents in the Bitcoin trading 

environment has yielded insightful findings. The DQN agent emerged as the most 

effective model, demonstrating a strong capacity to make profitable trades and 

manage risk, as evidenced by its high scores in profitability during the testing phase. 

The high Spread Capture Ratio and Market Impact scores suggest that the 

DQN agent was particularly skilled at capturing the spread and exerting a positive 

influence on the market, contributing to its overall profitability. There is potential to 

further enhance these trading agents. Incorporating additional features, exploring 

different model architectures, or refining the reward structure could lead to even more 

robust trading strategies. Moreover, validating these results in a live trading 

environment would be an essential next step to ascertain the practical viability of the 

agents. 

Future Work 

 

There is still an opportunity for improvement and fine-tuning even if the 
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current implementation shows promising results. Agents may be better able to 

navigate volatile financial markets if they employ a few strategies that improve their 

success. A few recommended strategies are as follows: 

Feature Engineering: The implementation of new features designed 

specifically to extract more subtleties from intricate pricing systems might potentially 

improve agent understanding. These features include sentiment indexes that are taken 

from social media sites, momentum oscillators, and trend strength measurements. The 

agent can uncover relationships that might otherwise go undetected by integrating 

various components, which promotes better decision-making. 

Transfer Learning: By using transfer learning techniques, convergence rates 

might be accelerated, and overall efficiency raised. By utilizing pre-trained weights 

from comparable activities, that are often experienced during the early phases of 

learning are mitigated. Increased adaptivity and quicker reaction times are the 

ultimate results of gradually shifting inherited characteristics in the direction of 

certain goals. 

Multi-Agent Systems: The inclusion of multi-agent systems in the framework 

promotes variety and creativity by fostering competition and cooperation amongst 

different entities. By exchanging personal experiences, group knowledge is increased, 

and emergent qualities surpass summative contributions. Adversarial competitors also 

encourage experimentation, sparking innovation and pushing the envelope past 

preconceived notions. 

Meta-Learning: By utilizing meta-learning algorithms, agents are able to 

quickly absorb new knowledge and apply previously learned lessons to new 

situations. Knowledge acquired from previous experiences improves mental 

adaptability, enabling quick adaptation to changing environments. Agents thereby 
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display increased flexibility and agility, dynamically adapting swiftly and decisively 

to changing conditions. 

Continuous Learning: Finally, the shift to continuous learning approaches 

ensures ongoing development and instills lifelong learning habits that are essential for 

success in nonstationary settings. Frequent updates stay relevant and preserve 

competitive advantage by keeping up with the always-shifting market conditions. 

Refreshing insights iteratively protect money, ensuring the stability and dependability 

that traders demand from skilled agents. By putting these cutting-edge strategies into 

practice, we can expect to make substantial progress and get our bitcoin trading agents 

closer to becoming experts—human traders who are known for their exquisite touch. 

As we go on our remarkable quest and learn more about DRL, we create a 

road map to mastery of the market. Let the world of DRL be a shining example of 

success, showing the way to a brilliant new period of commercial achievement. 
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