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ABSTRACT In the evolving urban transportation, the emergence of Micro-Mobility (MM), symbolized by
Electric Scooters (ESs), has become a pivotal response to private automobiles’ environmental and logistical
challenges. However, the limited battery capacity of ESs presents a challenge in realizing their full potential.
This paper addresses the problem of optimizing energy consumption in ESs by jointly considering path
and speed selection all while considering user dissatisfaction levels. Our approach considers two types of
ESs, one with regenerative braking (i.e., able to recharge the battery from kinetic energy of movement) and
the other without regenerative braking. In order to build a realistic environment, we considered dynamic
factors such as time-varying road congestion, road conditions, and ambient temperature. We considered a
comprehensive energy consumption model for the ES that includes parameters such as rolling resistance, air
friction, road gradient, auxiliary power and ambient temperature influence. Moreover, we introduced a user
dissatisfaction model that accounts for traffic conditions, congestion, and ambient temperature to enhance
the user experience. The optimization problem was then formulated and solved with Deep Reinforcement
Learning (DRL-DQN) approach considering the time-varying environment, road-specific parameters (i.e.,
road angle, road shading, road speed limit, and road condition), and user dissatisfaction levels. The DRL
approach was designed to make timely and context-aware decisions the minimize the energy consumption
of the ES. Rigorous validation and comprehensive testing demonstrate the effectiveness of our approach.
We evaluated the proposed solution’s performance against alternative methodologies used by fleet operators
in different tests, including energy consumption, average user dissatisfaction, and average trip duration.
The results showed that the proposed approach saved nearly 53-67% of energy for regenerative braking
cases and 25-55% for non-regenerative braking cases when compared with other approaches and offers high
adaptability to the environment and less complexity when compared with the exhaustive solution.

INDEX TERMS Electric scooters, reinforcement learning, energy minimization, user dissatisfaction, route
and speed selection.

I. INTRODUCTION
Over the past few years, Micro-Mobility (MM) has sur-
faced as a promising approach to urban transportation
that prioritizes the needs of passengers on short-distance
journeys, such as those within a city’s first and final
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kilometre [1], [2], [3]. The appeal of MM lies in its
on-demand transportation option that is flexible, sustainable,
affordable, and easy to use. Moreover, MM represents one
of the solutions to reduce reliance on private automobiles
for transportation over short distances, ultimately mitigating
traffic congestion problems [4]. Access to motorized private
or public transportation for underprivileged communities
can be improved through shared MM services. Therefore,
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MM has become a top priority for countries worldwide
to address transportation challenges and provide equitable
mobility solutions for their citizens. MM refers to a range of
compact vehicles or micro-vehicles that generally travel at
speeds less than 45 kilometres per hour [4]. These vehicles
include two- to four-wheelers and other equipment such
as scooters, skateboards, bicycles, and tricycles [5]. They
are typically shared or privately owned and can be either
motorized or human-powered. Figure 1 provides an overview
of the various types and sizes of MM vehicles, ranging from
two-wheelers to four-wheelers. These vehicles are suitable
for a wide range of users, including active individuals, those
with partial mobility impairment, and even those who are
fully disabled. This paper focuses on the two-wheel Electric
Scooter (ES), highlighted in red.

In light of the favourable aspects of ESs as a subset of
electric vehicles (EVs), it is crucial to address the persistent
challenge of limited driving range, necessitating substantial
enhancements. Numerous methodologies have been pro-
posed in the literature to mitigate the energy consumption
limitations associated with typical electric-type vehicles.
One prominent approach involves the implementation of
regenerative braking (i.e., converting the kinetic energy
of movement into electrical energy to be stored in the
battery) as illustrated by studies [6], [7], [8], [9], [10]. The
primary objective here is to maximize the energy harvested
from regenerative braking, consequently minimizing overall
energy consumption. This is achieved through the application
of optimal brake allocation and efficient braking control,
employing advanced optimization and machine learning
algorithms. Another way to minimize energy consumption
centres around energy management strategies, leveraging
sophisticated algorithms and control mechanisms to optimize
power distribution among different energy sources (e.g., bat-
teries) and components within the vehicle. For instance, [11]
introduced strategies that optimize speed profiles and control
parameters, resulting in reduced energy consumption. The
work in [12] delves into battery management, incorporating
strategy switching between power flow and thermostat con-
trol. Predictive control stands out as another effective method
for minimizing energy consumption. This technique utilizes
information about the road ahead, traffic conditions, and other
pertinent data to anticipate power demand. Subsequently,
it adjusts the energy flow and driving pattern (acceleration,
deceleration) accordingly, as explored in [13], [14], [15],
[16], [17], and [18]. Furthermore, energy minimization is
attainable through the design of lightweight and low-drag
vehicles, as shown in [19], and also by designing optimal
multi-speed transmission systems as in [20]. Authors in [21]
incorporated EV energy minimization by investigating the
battery health and state of charge prediction techniques to
enable a correct energy minimization. In addition, one of the
common methods to minimize energy consumption is known
as the energy-efficient routing problem, where it is required
to optimally find the best route (or trajectory) that minimizes
the energy of a vehicle considering environmental factors

such as road link speed limit, slope, and external factors
such as the forces affecting on the vehicle [22], [23], [24],
[25]. Some interesting papers adopted a scheme to control
a fleet of agents through intermittent communication (rather
than continuous communication) in case of a fault to save
energy [26], [27]. Finally [28] discussed the different RL
algorithms for optimal EV dispatch problems in which one
of the applications (Grid to Vehicle) is to concerned with
maintaining a healthy recharge of the EV from the grid
and eventually conserving the battery state of health, which
affects the state of charge of the battery.

To summarize, we have reviewed the different methods
used for minimizing the consumption of a typical electric
vehicle. In addition, we reviewed the routing optimization
to minimize energy use for EVs. Our analysis has led us to
observe the following research gaps:

• Most of the energy minimization methods for EVs/MM
in the literature do not include the effect of the
temperature on the battery state of charge.

• Most of the energy minimization techniques associated
with routing consider only the energy-efficient path and
lack the speed selection per each road segment.

• Limited contributions on energy consumption models
for MM vehicles (especially ESs), Furthermore, there
is a scarcity of research on energy-efficient routing
strategies for these vehicles.

• Regenerative braking was not considered together with
the speed and route selection in EVs and was not
addressed in MM vehicles (especially two-wheel ES).

• Different from road slopes & angles, road type and
quality were not considered for the routing problem
in energy minimization for EVs in general and ESs in
particular.

Therefore, this paper presents an approach for minimizing
ES’s energy consumption through optimized routing and
optimal speed selection, using reinforcement learning, while
considering user dissatisfaction as a constraint. The problem
considers a graph composed of bi-directional roads and road
segments, where each road segment has a different speed
limit, road angle, road shading, traffic congestion, and road
quality. To provide a more realistic problem, we modelled the
system to be time dynamic, meaning that some parameters
change with time, as in the case of temperature, road
congestion and auxiliary power of ES. More details on
the problem are discussed in the next chapter. The main
contributions of this paper can be listed as follows:

• Modelling the problem of energy consumption opti-
mization in ESs by jointly addressing path and
speed selection. This comprehensive approach considers
dynamic factors such as temperature fluctuations, time
zones and road conditions. In addition, it considers both
regenerative and non-regenerative braking in ES.

• Proposing an exhaustive energy consumption model that
incorporates all energies affecting ESs and resulting
from rolling resistance, air friction, road gradient, aux-
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FIGURE 1. Micro mobility vehicles, with the focus on the two-wheel ES
highlighted in red.

iliary and temperature/pressure. In addition, proposing
a user dissatisfaction model that incorporates factors
affecting the user’s experience and includes traffic
conditions, congestion and temperature.

• Proposing a DRL approach for addressing the optimiza-
tion problem, taking into account time constraints, road
constraints, and user dissatisfaction.

Considering how important ESs are as MM vehicles
in shaping the world, their energy capacity is essential;
thus, this paper aims to reduce the amount of energy ESs
use, especially in commuting, through optimized routing
and speed selection, considering user dissatisfaction and
stochastic environment.

II. SYSTEM MODEL
In this section, we present the system model adopted for
analysis. As depicted in Figure 2, the system encompasses
an educational city graph, wherein autonomous ESs are
deployed for student/faculty transportation. These ESs have
been leased by an operator and strategically positioned
across the grid. The primary objective of the operator is to
minimize the energy consumption of ESs during each trip,
all while considering user dissatisfaction. This optimization
is realized through the appropriate selection of optimal paths
and speeds. By proposing an energy-efficient approach to
path-speed selection for ESs, the operator can enhance the
ES’s trip capacity, thereby increasing revenue generation and
establishing a more sustainable business model.

A. SYSTEM DESCRIPTION
The educational city graph, denoted as G, comprises inter-
connected blocks linked by bidirectional roads. Furthermore,
a set of L locations representing the most frequently
visited campus buildings is considered. These locations are
interconnected through I distinct paths, each comprising
J road segments with lengths denoted as Dj. Each road
segment is characterized by diverse parameters, including
Road Speed Limit (RSL), Road Slope (RS ), Road Condition

FIGURE 2. System grid overview, showing the different locations and
bi-directional roads.

(RC ), and Road Shading (RSH ), as illustrated in 2. The system
operates in a dynamic temporal context, wherein certain
parameters, such as temperature and Traffic Congestion
(TCO), vary over time. The objective is to identify the most
energy-efficient route and corresponding speed for travelling
between locations within this dynamic grid while taking into
account user dissatisfaction.

B. SYSTEM CONFIGURATION AND USER INTERACTION
Figure 3 provides a comprehensive representation of the
system configuration. It is assumed that there exist L
locations, for example, (A, B, C), interconnected by a
network of paths (e.g., Path A-F2-K3-B connecting location
A to B), with (A-F2), (F2-K3), and (K3-B) representing
two-way road segments. For simplicity, vehicles traversing
this grid are restricted from halting or altering their direction
within a road segment after selecting a specific path between
two locations. Additionally, it is assumed that speed remains
constant along a road segment, and any deviations due to
factors such as traffic congestion or road conditions are
neglected, given the relatively low speeds of ESs. The adopted
system in Figure 3 is referred to as the origin-destination
graph, which shows all possible destinations from and to a set
of locations. However, for generality, the adopted modelling
and solution can be used on any type of graph or grid.

C. ES DEPLOYMENT AND OPERATION
The study takes into account a collection of scattered Electric
Scooters (ESs), denoted as S, where S is a finite integer
within the set of positive integers (S ∈ Z+). These ESs
establish connectivity with a central server through base
stations distributed across the grid. A scenario can be stated
as follows: at a specific time instant t , a set of users U
is defined as U = {1, 2, . . . , S}, representing individuals
requesting transportation from their current location (e.g., A,
B, or C) to another predefined destination. ESs facilitate user
requests through a mobile application that gathers essential
user information. Subsequently, ESs transmit their current
(source) location ωt = (xt , yt ), intended destination ωd =
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FIGURE 3. An example of a system graph showing L locations (e.g. A, B,

and C) with all the intermediate road segments.

(xd , yd ), and their current SoC ζt to the central server via
base stations strategically positioned within the grid. The
central server then undertakes the task of determining the
optimal routePi and segment-specific speedsVi,j to minimize
the total energy consumption ET while adhering to the User
DissatisfactionUDS constraint and environment fluctuations.
To accomplish this, we propose a comprehensive energy
consumption model for ESs that accounts for all relevant
energy factors across the terrain. Furthermore, we formulate a
UDS model that encompasses the factors contributing to user
discomfort. Both models are presented later in this paper.

D. SYSTEM DYNAMICS
In this sub-section, we delve into the dynamic aspects
of the system, highlighting the dynamic and uncertain
nature of temperature, traffic congestion, and auxiliary
energy for electric scooters (ESs) over time. Our analysis
considers a dynamic temperature model for the entire grid,
where temperature fluctuations occur both stochastically
and location-wise. Temperature variations are influenced
by several factors, including shading effects within distinct
areas. In addition to temperature fluctuations, the system
experiences dynamic changes in traffic congestion over
time. These changes result from varying user demand
and travel patterns throughout the day. We consider these
temporal fluctuations in traffic congestion as a critical factor
influencing the selection of optimal paths and speeds for
ESs. Furthermore, the auxiliary energy required by ESs is
subject to time-dependent variations. This auxiliary energy
accounts for factors such as environmental lighting, which
differ during different time periods.

To facilitate a simplified analysis, we focused on a prede-
fined time frame of 12 hours. This time frame corresponds
to the operational hours of the operator, spanning from 8:00
AM to 8:00 PM.Within this timewindow, we further partition
the system dynamics into three equal time periods, each
encompassing 4 hours, as outlined below in Equation (1),

where we consider a number of K trips done per time zone.

Time Zones =


Zone1, 8 : 00 ⩽ t < 12 : 00
Zone2, 12 : 00 ⩽ t < 16 : 00
Zone3, 16 : 00 ⩽ t < 20 : 00

(1)

E. EXHAUSTIVE ENERGY CONSUMPTION MODEL
This section discusses the exhaustive energy model, which
includes mechanical and electrical energies affecting ESs.
It is defined as follows:

ET = Eroli + Eaf + Egr + Eaux + Etemp + Eadd (2)

where ET is the total energy consumption, Eroli is the
energy consumed to overcome rolling resistance, Eaf is the
energy consumed to overcome air friction, Egr is the energy
consumed or regenerated due to road slope angle, Eaux is
the energy consumed due to the powering of auxiliary loads,
Etemp is the energy loss due to influence of temperature
and, Eadd is the additional energy due to losses of moving
parts. All these energies are to be calculated per 1-kilometre
distance.

1) ENERGY DUE TO ROLLING RESISTANCE
Rolling resistance is defined as a loss of energy per unit
of travelled distance [29]. It comprises mechanical energy
loss owing to aerodynamic drag, friction between the terrain
and tire, and contact between tire and rim, generating heat
energy in the tire’s material and leading to high energy
consumption [30]. Rolling resistance may account for up
to 30% of the vehicle’s energy usage under specific traffic
situations and fixed travelling velocity [31], [32]. The energy
consumption due to rolling resistance Erol can be calculated
by multiplying rolling force Frol in line with the distance D
as follows:

Erol = Frol D (3)

rolling resistance’s force can be formulated as follows [33]
and [34]:

Frol = τ m g cos(θ) (4)

where τ depicts the coefficient of rolling resistance, m is the
vehicle mass loaded (with driver), g represents the gravita-
tional acceleration constant, and θ denotes the road slope
angle. τ can be represented by the following formula [35]

τ =
Ci
r

+
1
pt
(0.01 + 0.095(

V
100

)2) (5)

in which Ci represents the rolling resistance constant, r is the
radius of the vehicle’s wheel, pt symbolises the tire pressure,
and V is the travelling velocity. Therefore, Erol can be written
as follows:

Erol =

[
Ci
r

+
1
pt

(
0.01 + 0.095

(
V
100

)2
)]

m g D cos(θ)

(6)
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2) ENERGY DUE TO AIR FRICTION
Air friction energy consumption Eaf can be calculated by
multiplying force Faf in line with the distance D as follows:

Eaf = Faf D (7)

air friction force can be represented by the following equation
[33], [34], [36].

Faf =
1
2
q Af Cd V 2 (8)

such that q is the air density, Af is the frontal area of
the vehicles, including the riding passenger, Cd is the air
drag coefficient. Air density q can be determined by the
subsequent formula [37]

q =
pd
RdTk

+
pv
RvTk

(9)

in which pd is the pressure of dry air, pv is the pressure of
water vapour present in the atmosphere,Rd is the gas constant
of dry air, Rv is the gas constant of water vapour, and Tk is
the atmospheric temperature in Kelvin. pv can be formulated
in equation (10) [37], such that px represents the saturation
vapour’s pressure, and rh is the relative humidity present in
the atmosphere. px can be estimated by equation (11) [37],
where Tc is the atmospheric temperature in Celsius.

pv = px rh (10)

px = 6.1078(10)
7.5 Tc

Tc + 237.3 (11)

Therefore, Eaf can be represented as follows:

Eaf =
1
2

 pd
RdTk

+
6.1078(10)

7.5 Tc
Tc + 237.3 rh

RvTk

 Af Cd V 2 D

(12)

3) ENERGY DUE TO ROAD GRADIENT
Egr is the energy consumed or regenerated due to the slope of
the terrain and formulated as follows:

Egr = Fgr D (13)

where Fgr is the gravitational force experienced when driving
on non-horizontal roads, or in other words, the additional
force experienced while driving uphill or downhill [34], and
is calculated in equation (14) [36]. This equation consists of
three functions: When the vehicle goes uphill, energy will
be consumed regardless of the slope and speed. However,
if the vehicle is travelling downhill (meaning the slope of
the road is negative) and with a speed exceeding 20 km

h , the
kinetic energy will be harvested and sent back as regenerated
energy to the battery, but with an assumed efficiency of only
60% due to the light weight of the vehicle (considering ES)
and the low speed, which contributes to the lower energy
regeneration, as discussed by [36]. Fgr will equal zero for
full horizontal terrain, i.e., θ = 0. Furthermore, in this paper,

FIGURE 4. Auxiliary power of e-scooter throughout the day.

we assume the road angle Rag varies between −3◦ and +3◦,
i.e.,

{
−3◦

≤ Rag ≤ +3◦
}

Fgr =


mg sin(θ ), θ > 0 and vmin > 0

0.6mg sin(θ), θ < 0 and vmin ⩾ 20
km
h

0, θ = 0

(14)

therefore Egr can be represented as follows

Egr =


mg sin(θ)D, θ > 0 and vmin > 0

0.6mg sin(θ )D, θ < 0 and vmin ⩾ 20
km
h

0, θ = 0

(15)

4) ENERGY DUE TO AUXILIARY DEVICES
Auxiliary Energy Eaux is the energy required to run the
vehicle’s electronics such as the additional power needed for
lighting, heating/cooling (in closed MM vehicles), radio, and
other functions based on the surrounding conditions (ambient
light, temperature, etc.) [36], [38], [39]. As we consider a
light 2-wheel ES, Eaux accounts only for the lighting and is
given by the following equation:

Eaux = Pe(t) t = Pe(t)
D
V

(16)

such that Pe(t) is the auxiliary power mainly consumed by
lighting and is variable with time, traveling time t represents
the trip time determined by the traveled distance D and the
ES’s traveling velocity V . Figure 4 illustrates an averaged
Pe(t) of a scooter throughout a week. Pe(t) is influenced by
two primary factors: Time of day and environmental light
intensity. The variation in power throughout the day can be
segmented into three distinct periods.

• During the early morning period, which spans from
00:00 to 12:00, Pe(t) fluctuates around 10±2W . This is
attributed to the moderate sunlight intensity experienced
during these hours.

• In the afternoon, from 12:00 to 15:00, the lighting
conditions are at their brightest. Consequently, Pe(t)
fluctuates at a minimum value of 5± 2W , reflecting the
reduced electrical power required during these hours.
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FIGURE 5. Temperature fluctuations during the day for shaded road
segments for several days and their average.

• The evening period, extending from 15:00 to 24:00,
witnesses the highest light intensity of the day. Conse-
quently, the power consumption of Pe(t) rises to 15W ±

2W during this time.
The reason behind the fluctuations of Pe(t) values is related
to the environmental light intensity, since the lighting at the
same spot, at the same time, varies throughout a week.

5) ENERGY DUE TO TEMPERATURE
Etemp refers to the energy loss that occurs due to experiencing
high ambient temperature. Earlier research mentioned that
Etemp is the energy loss brought on by the electric motor’s
power output fluctuating, owing to the impact of the
surrounding temperature [33], while in [40], Etemp was
defined as the increase in the battery’s energy intensity that
occurs due to the presence of a heated environment which
causes a speed-up in the battery chemical reactions and
eventually causing losses. In addition, both authors have
modelled Etemp as a third-order polynomial function, based
on sedan electric vehicles travelling on different terrains
and at different temperatures. Typical MM vehicles such as
e-scooters are usually left in open areas with direct sunlight,
and thus, it is crucial to include Etemp effect on the energy
consumption of these vehicles. Furthermore, Etemp in this
paper was formulated using [40], and scaled-down, taking
into consideration the battery capacity between EVs and ESs,
and is shown as follows:

Etemp =
287 − 16Tc + 0.502T 2

c − 0.00439T 3
c

218
(17)

To simulate a realistic system, we used realistic temper-
ature data in Doha-Qatar for March 2023 [41], in which
the temperature varies throughout the day, with the lowest
temperature occurring during the early morning hours and
peaking at noon before dropping again at night. In addition,
we assumed that some roads are shaded (i.e. roads that
are shaded by buildings or trees next to them), while
some roads are in open areas with no shade. Temperature
varies in different areas, with shaded roads having lower
temperatures than open areas by 15%. Figure 5 shows the
temperature fluctuation over 1 day period in shaded roads for
1 week and the average temperature for the same. The same

TABLE 1. Traffic congestion.

pattern applies to non-shaded areas with a 15% increase in
temperature as stated previously.

6) ADDITIONAL ENERGY
Eadd refers to the additional loss of energy that is lost during
a process and cannot be attributed to any specific cause [34],
[36]. Eadd can be assumed as follows:

Eadd = 1
Wh
km

(18)

F. USER DISSATISFACTION MODEL
User Dissatisfaction UDS is defined as a combination of
factors that could cause discomfort to the users while
driving. These factors include high ambient temperature, road
congestion, and poor road conditions. High temperatures
can lead to discomfort and heat stress, which can affect
the drivers’ mortality or mental health [42], [43], while
road congestion can increase travel time and eventually
frustrate the user causing aggressive driving pattern [44].
Poor road conditions, such as potholes and uneven surfaces,
can cause an increase in the risk of accidents to the users [45].
Considering these factors, the proposed approach seeks to
optimize routing and speed selection to minimize energy
consumption while keeping user dissatisfaction within an
acceptable range.

It is always preferable for ES users to operate their vehicles
in a shaded area to avoid heat strokes and exhaustion.
Specifically, excessive temperatures & hot weather have a
substantial negative impact on human health, raising the
likelihood of respiratory death and morbidity [46]; thus, it is
well considered. In addition, navigating the vehicle through
roads with better conditions other than unpaved roads that can
cause injuries is desirable. According to [47], the growth of
scooter-sharing firms has led to an increase in recent reports
of injuries involving motorized scooters, with more than 50%
injuries affecting the lower arm, lower leg, and wrist in their
study, which involved nearly 8400 electric scooter driver’s
injuries.
UDS is defined in equation (19), where Tcn is the

normalized temperature, Tcon is the normalized traffic con-
gestion, and Rcn designates the normalized road condition.
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FIGURE 6. Traffic congestion variation throughout the day per 1 road
segment.

Normalization was applied since the UDS adds different
factors with different units.

UDS = Tcn + Rcn + Tcon =
TC

TCmax
+

Rc
Rcmax

+
TCO
Tcomax

(19)

Tcn represents the percentage of the road segment’s ambient
temperature TC to the grid’s maximum temperature TCmax .
Rcn designates the normalized road condition, which is
basically the percentage of the road condition Rc per segment
to themaximum road condition in the gridRcmax .Rc describes
the quality factor of the road and is mainly divided into four
levels which are excellent, good, fair, and poor conditioned
roads, that are ranging from the paved road (excellent for
ESs to travel such as asphalt roads) to unpaved road that is
not barely suitable for travelling. Rc ranges from a value of
1 to 4, with excellent roads having a value of 1 and worst
roads with a Rc value of 4. Tcon refers to the percentage
of traffic congestion of a road segment to the maximum
traffic congestion in the grid Tcomax . Tco is related to car
density per road segment. We consider the roads to have six
different levels of traffic congestion, ranging from 0 (Clear
road) to 5 (stand-still congestion). Traffic congestion can be
seen in table 1. In order to simulate a realistic environment,
we considered that Tco changes with time and location.
As seen in 6 where the traffic congestion varies throughout
the day of a single road segment while other road segments
have a time-shifted replica of the same.

III. PROBLEM FORMULATION
As mentioned previously, we consider a number of scattered
ESs denoted as S, where S is a finite integer, i.e., S ∈ Z+.
These ESs are connected to a central server via base stations
scattered throughout the grid. At a specific time moment
t , a number of users U is defined as U = {1, 2, . . . , S}

request to be transported from their current location to
any other saved location. All ESs then send their current
location, intended destination, and their current SoC to the
central server through the base stations located in the grid.
Afterwards, the central server will choose the optimal path Pi

and speed per each segment Vi,j to minimize the trip’s Total
Energy ET while abiding by theUDS constraint. We consider
two types of ESs, where the first type has a regenerative
braking feature (can recover energy Egr ), while the other
type does not. The central server will solve the formulated
optimization problem P as follows:

P: min
Pi,t ,Vi,j,t

I∑
i=1

T∑
t=1

(
Ei,t · Pi,t

)
(20)

Ei,t =

J (i)∑
j=1

(Eroli,j,t + Eaf ,j,t + Egr,j,t+

Eaux,j,t + Etemp,j,t + Eadd,j,t ) (21)

such that:

Pi,t ∈ {0, 1} (22)
I∑
i=1

Pi,t = 1, ∀t (23)

UDSi,t =
∑J

j=1
1
J (i)

(
TC,j,t
TCmax

+
TCO,j,t
Tcomax

+
Rc,j,t
Rcmax

)
(24)

UDSi,t ≤ UDSmax , ∀t (25)

ti,t ≤ tmax , ∀t (26)

TC,i,j,t ≤ TCmax , ∀j ∈ J , ∀t (27)

Vi,j,t ≤ V (j)max , ∀j ∈ J , ∀t (28)

Pi,t = 1 ⇒ Vi,1,t > 0, ∀t (29)

Vi,j,t > 0 ⇒ Vi,j−1,t > 0, ∀j > 1, ∀t (30)

where equation (20) is the optimization problem that
corresponds to minimization of energy Ei,t for all paths i ∈ I ,
for all time steps t ∈ T , considering each path i contains
number of road segments j ∈ J . Ei,t is the total energy per
path i and is defined in (21).
We introduce a path selector Pi,t which serves as a

decision variable for selecting a path per time step, where
Pi,t = 1 for selecting a path and zero otherwise as
seen in (22). Since we wish to find the only optimal
path per time step, constraint (23) guarantees the selection
of one path. Constraints (24) and (25) ensure that the
average user dissatisfaction per path per time step does not
exceed a maximum value UDSmax . To avoid long trip times,
constraint (26) was added to ensure the trip time along
the path does not exceed a specific maximum time tmax .
In addition, Constraint (27) ensures that the central server
shall not choose any road segment j that exceeds a certain
maximum temperature TCmax . Furthermore, constraint (28)
ensures that the selected speed per each road segment does not
exceed the speed limit for the road segment for all time steps.
Constraint (29) and (30) are flow rule constraints, where (29)
is the starting segment constraint that ensures the first road
segment is guaranteed to be connected to the starting location
for all times; that is for each chosen path i, the first road
segment j = 1 must be connected to the starting location for
each time a trip starts; this is to ensure that the vehicle starts
its journey from the chosen path. On the other hand, (30) is
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the intermediate segment connectivity constraint that ensures
there are no gaps between road segments on the chosen path,
and they are connected in a continuous manner, that is; for
each chosen path i and each road segment j along the path
(excluding the first segment j = 1), if the road segment j is
used (i.e., Vi,j,t > 0), the previous road segment j − 1 must
also be used (i.e., Vi,j−1,t > 0).

IV. DEEP REINFORCEMENT LEARNING (DRL)
This section is dedicated to examining the proposed solution.
This approach considers both environmental dynamics and
the requirements of the problem, aiming to provide an
efficient resolution. First, we will highlight the advantages of
employingDeep Reinforcement Learning as our optimization
method, comparing it with other approaches. Subsequently,
we will delve deeper into the process of transforming
the problem into a Markov Decision Process (MDP) and
utilizing the DQN algorithm for its solution. The rationale
behind incorporating DRL in this problem stems from its
capacity to address sequential decision-making. Actions
taken during a specific time instant t have a lasting
impact on subsequent trips at t + 1 due to the cumulative
nature of energy consumption. Moreover, DRL excels in
handling uncertainties and stochastic parameters, particularly
temperature and road congestion in our context. Notably,
DRL’s adaptability to dynamic environmental changes and
its ability to facilitate real-time decision-making distinguish
it from other optimization techniques.

A. ADVANTAGES OF DRL
DRL can offer several advantages over MINLP, LP, and
GA for solving our optimization problem, particularly
when dealing with complex, dynamic, and high-dimensional
scenarios like route optimization with discrete decision
variables (path selection and discrete speed combination).
The following reasons illustrate the advantages of DRL over
other optimization approaches in the case of our problem:

• Dynamic Adaptation: DRL can adapt to changing
conditions in real time. As conditions on the road change
(e.g., due to traffic or weather), DRL agents can adjust
their strategies, whereas LP and GA require re-running,
which may not be feasible in real-time scenarios.

• Exploration and Exploitation: DRL naturally balances
exploration (trying different paths and speeds) and
exploitation (choosing known good strategies), allowing
it to discover alternative newly-made routes when
applicable.

• Handling Discrete Actions: DRL can naturally handle
discrete action spaces, such as selecting paths and
discrete speed levels. In contrast, LP and traditional
optimization techniques are typically designed for
continuous decision variables.

• Transfer Learning: DRL models can potentially be
transferred or fine-tuned for different road networks or

locations, saving computational resources compared to
re-optimizing LP or GA models.

• Scalability: DRL algorithms are scalable and can handle
problems with high-dimensional state and action spaces.
This is important for large-scale route optimization
problems.

• Real-Time Decision Making: Since DRL at the testing
phase can have low complexity, it is well-suited for
real-time decision-making, such as route planning,
where decisions need to be made quickly based on
current information. LP and GA may not provide timely
solutions in such scenarios.

B. MARKOV’S DECISION PROCESS (MDP)
MDP is represented as a tuple of 5 elements as (S,A,T ,R,γ ),
such that S depicts a list of potential states, whereas A
represents the possible action list at specific state St , and
R represents the reduced reward by a reduction/discounted
factor γ ∈ [0, 1]. The training process of DRL initiates with a
DRL agent obtaining environment state representation s ∈ S
at each time increment t . Then, by employing a policy π (a|s),
the agent performs an action a ∈ A and, in return, obtains a
reward rt ∈ R then transits with a probability of P(s′|s, a)
to new/next state s′. The accumulated sum of discounted
rewards up to some horizon X is given asRt =

∑X
t ′=t γ

t ′−trt
[48], [49].

For the agent to determine how good it is to execute
a specific action in a state s following some policy π ,
it follows a state-action value function (alternatively named as
Q function) which is represented as Qπ (s, a) = Eπ [Rt |St =

s, at = a]. This essentially pertains to the rewards
accumulated by performing an action a in a state s and then
obeying a policy π . In order to evaluate a state’s quality when
following a policy π , a state value function is applied. The
state value function is formulated as V π (s) = Eπ [Qπ (s, a)].

C. ADOPTED ALGORITHM
Among different DRL algorithms, we opt to use Deep Q-
Network (DQN) [50], [51], which is a variant of the classic
Q-Learning algorithm. Q-Learning and Deep Q-Network
(DQN) are two popular reinforcement learning techniques
used to solve complex decision-making problems. Q-learning
is a model-free, off-policy algorithm that learns the optimal
action-value function Q for a given policy. It works by
estimating the expected future rewards for each action in a
given state and updating the action-value function based on
the observed rewards. The action-value function Q represents
the expected reward for taking a specific action in a given
state. It can be calculated as follows:

Q(s, a) = E[r + γ max
a′

Q(s′, a′)|s, a]

where r is the immediate reward, s′ is the next state,
and a′ is the next action. γ is the discount factor that
determines the importance of future rewards. Q-Learning
updates the action-value function iteratively by employing
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the Bellman equation [52]. Q-Learning continues to update
the action-value function until convergence is reached. Unlike
Q-Learning, DQN uses a deep neural network to approximate
the Q-function, thus handling high-dimensional state spaces
and is more stable than traditional Q-Learning. There
have been many extensions and variations of Q-Learning
and DQN. Double Q-Learning [53] and Dueling DQN
are two examples of improved algorithms that have been
shown to outperform the original Q-Learning and DQN.
Distributional reinforcement learning and Rainbow are other
recent developments that combine multiple techniques to
achieve state-of-the-art results in various domains [54], [55],
[56]. In our specific case, the choice of DQN stems from
its favourable attributes, including ease of implementation
owing to its simplicity, its proven stability and robustness in
training, and alignment with the discrete nature of our action
space.

V. SYSTEM’S STATE, ACTION AND REWARD
After modelling the system and all its time dynamic changes,
we intend to solve the problem presented in this paper using
DRL. As discussed previously, to solve our optimization
problem P using DRL, we are required to translate our
problem to MDP where we introduce our states, actions, and
rewards as follows:

A. ENVIRONMENT STATE
As DRL algorithms require awareness of the environmental
state and the ability to respond to it, it was imperative
to include sufficient information for the agent to make
decisions at each time step, denoted as t . Firstly, because
determining the scooter’s path and speed relies on its current
position, we incorporated the coordinates of the electric
scooter’s location at time t , denoted as ωt , such that ωt =

(xt , yt ). This information enables the agent to deduce its next
destination. Secondly, to enable the agent to consider the
temporal aspect of its actions and assess the effectiveness
of its chosen path and speed under varying environmental
conditions (e.g., weather, shading, etc.), we introduced a time
clock variable denoted asCt . Lastly, we provided information
about the remaining battery capacity in Watt-hours (Wh)
at time t , denoted as Bt . This variable assists the agent in
making decisions that stay within the battery’s limits and
understanding the relationship between its actions and the
battery’s status. Furthermore, it prompts the agent to adjust
its strategy when the battery is running low to maximize the
number of trips the electric scooter can complete. Compiling
the above, the environmental state at each time step can be
defined as in eq.(31)

st = (ωt , Ct , Bt ) (31)

B. ACTION
After evaluating the environmental state, denoted as st ,
the agent takes action at to induce a transition in the
environmental state. In this context, each action corresponds

to a specific trip, such as moving from location A to B. As our
primary objective revolves around selecting the optimal route
and the appropriate speeds for that route, the action must
encompass both these critical elements. Thus, the action is
defined as in eq. (32):

at = (Pt ,Vt (i, j)) (32)

where Pt represents the chosen path at time t and Vt (i, j)
signifies the selected speeds for each road segment j along
path i at time t. In this formulation, Pt is an integer
variable indicating the path ID leading to the destination.
Simultaneously, Vt (i, j) is a vector containing the speeds
applied to different street segments within the chosen path
Pt . As an example, if a user requests to be transported from
location A to location C at time 9:00; then if there are
three possible paths from location A to location C (i.e., path
A−S1−N2−C , pathA−S2−N1−C , and pathA−S3−N1−C),
then the DRL should choose the best combination of path and
segment speeds that will result in lowest energy consumption,
taking into consideration the time-varying environment and
user dissatisfaction levels. An example of the chosen path and
speed can be path A−S2−N1−C with speeds of 20km/h for
segment A − S2, 25 km/h for segment S2 − N1, and a speed
of 30 km/h for segment N1 − C .
It’s important to note that the choice of path impacts

the energy consumption of the battery and the user’s
level of dissatisfaction, while the speed directly influences
energy consumption. Moreover, the dynamic nature of
the grid introduces variability into the decision-making
process, as different times may necessitate distinct optimal
path-speed combinations. Additionally, the road segments
exhibit varying angles,

{
−3◦

≤ Rag ≤ +3◦
}
, meaning that

the optimal path from one location to another may not be the
same in the reverse direction. Furthermore, different paths
come with specific speed limits that must not be exceeded,
further complicating the problem’s complexity.

C. REWARD
After applying an action at per trip, the agent is rewarded
with a scalar value rt that identifies the goodness of the
action taken. To better judge the performance of the agent,
our reward function is divided into an immediate reward,
given after each trip in the different time zones, and a
final reward, provided after completing all trips. While the
former influences the agent to abide by the constraints
and search for a better low-energy configuration, the latter
focuses on the long-term goal of conserving energy for
the ES battery. For immediate rewards, we keep track of
the lowest energy configuration achieved by the agent for
each trip and zone, denoted as E(T ,Z )min because there
can be multiple configurations per trip and zone. This
helps us measure how close the agent is to finding the
best configuration for a specific zone and trip. In our
reward system, the agent receives the maximum reward if it
discovers a new minimum-energy configuration that meets
user dissatisfaction and time constraints, indicated as U = 1
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TABLE 2. Road segment parameters.

& T = 1 (a value of 1 is given when the UDS and Trip time
constraints are within boundaries). If the agent explores an
action that is not better than the current minimum energy
configuration, it incurs a penalty equal to the difference
between the current obtained energy consumption and the
minimum energy consumption, multiplied by a scaling factor
λ, represented as −λ|E(T ,Z ) − E(T ,Z )min|. Additionally,
if the agent does not satisfy any of the constraints for a
trip, it receives no reward. Furthermore, if the agent doesn’t
complete the required trips because of battery depletion,
it receives a significant penalty of -100, which will encourage
the agent to complete as many trips as possible to reduce or
avoid this penalty. Now, regarding the final rewards: Since
we have a specific number of trips the agent must complete,
it’s crucial to ensure that all of them meet the requirements
and reward the agent when they are successfully fulfilled,
especially if there’s remaining battery capacity. Therefore,
we assign a penalty ranging from 0 to -10 based on the
number of satisfied trips FT . Satisfying all trips results in
no penalty, achieving none results in a -10 penalty, and other
cases receive penalties proportionally. Moreover, if the agent
meets all trips with some battery capacity left, it gets this
remaining battery as a reward. This encourages the agent to
adopt a policy that conserves energy effectively. Compiling
all of the above, creates the reward function rt as follows:

rt =



1 if E(T ,Z ) ≤ E(T ,Z )min & U = 1, T = 1
−λ|E(T ,Z ) − E(T ,Z )min| if E(T ,Z ) > E(T ,Z )min & U = 1, T = 1
−1 if T = 0 or U = 0
−100 if B = 0
(0, · · · , −10) if 18 > FT > 0
Bremain ∗ 10 Episode over

(33)

TABLE 3. System parameters.

VI. EVALUATION AND TESTING
In order to evaluate the proposed solution, we consider
a system graph illustrated in Figure 3, our system graph
consists of three central locations (A, B, and C) with three
distinct paths from and to each location. Each path consists
of three segments, each with different road parameters, speed
limit, road slope, road condition, traffic congestion and
road shading, as seen in Table 2. In addition, the grid is
time dynamic, meaning that some parameters change with
time, as in the case of temperature (see Figure 5) and road
congestion.

In this section, we present our testing experiments
along with different evaluation and comparison methods
to ensure the correctness of the obtained results. We first
ran convergence tests, followed by three distinct tests: the
energy consumption test, user dissatisfaction test, and total
trip time test. In each test, we compared our solution with
four distinct solutions (more on that later). Lastly, we justified
the use of an DRL-based solution by introducing a sudden
disturbance in the grid and showing how quickly the DRL
agent converged to the optimal solution. Our simulation
parameters and simulation constrants can be found in Table 3.

A. CONVERGENCE TESTS
Considering the state, action, and reward mentioned pre-
viously, we ran the convergence tests to ensure that our
DRL-based solution converges correctly to a specific answer
every time, thus ensuring the correctness of the employed
DRL training technique. We ran two different convergent
tests. The first considers the Non-Regenerative Braking
(NRB) (see Equation 14). The second test considers the
regeneration braking (RB) factor, where the ES will have the
capability to regenerate some of the lost energy by means of
Regenerative braking. As previously mentioned, the system
runs from 8:00 to 20:00, where we assume that the day is
divided into three zones as depicted in equation 1. Therefore,
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FIGURE 7. Convergence of DRL for the case of non-regenerative Braking.

we train our DRL agent based on the three zones with and
without RB and plot the agent’s cumulative reward. We ran
the agent for 70,000 to 100,000 episodes, each containing six
trips. For DRL training we considered a battery of 1000 Wh
capacity, while in testing we used a typical battery capacity
of 275 Wh

1) CONVERGENCE TEST FOR NRB CASE
Figure 7 shows how our agent converges successfully for all
zones in the cases of NRB, where these graphs are smoothed
over a window of 500 episodes. From the same graph, it is
observable that the amount of energy consumption is different
in each zone due to the dynamic nature of the system (i.e.
temperature, traffic congestion, and auxiliary power change
with time). All sub-graphs have a small energy consumption
dip (about 3-5 Wh only) near the final convergence, and this
is due to the random exploration of the DRL agent as it
continuously explores new solutions due to the fixed final
epsilon value of 5%. Nevertheless, the outcomes are quite
similar between the zones, such that zone 2 had the lowest
energy consumption of around 105 WH, followed by zone 1
with an energy consumption of 110 WH and zone 3 with
the highest energy consumption of 117.5 WH. In addition,
we observed that the energy consumption pattern between
zones matches exactly the auxiliary energy pattern rather
than the temperature pattern (i.e., the lowest auxiliary energy
consumption in zone 2 is the lowest followed by zone 1 and
zone 3), meaning that the auxiliary energy had a larger impact
on the energy consumption than temperature effect despite
the huge temperature difference between the zones especially
in zone 1 and 2, reaching about 15oC in un-shaded areas and
10oC in shaded areas.

2) CONVERGENCE TEST FOR RB CASE
Figure 8 illustrates the convergence with the RB in action.
We remind that there is a specific condition for RB, such as
negative road gradient and speed threshold (see equation 14).
Similar to the NRB case, we notice the exact energy
consumption pattern. However, the energy consumption is
reduced significantly due to the regeneration action in which
zone 2 had the lowest energy consumption of nearly 72 WH,

followed by zone 1 with a total consumption of 77 WH and
then zone 3 with a consumption of 82 WH. In addition,
it should be noted that there were relatively small energy
consumption dips (as in 7). However, it did not appear in this
case due to the smoothing of the graph.

B. SIMULATION RESULTS
After ensuring the DRL agent had been properly trained,
we ran three tests to validate the results. Then, we compare
our solution to other solutions in terms of 1) Energy
consumption, 2) Average user dissatisfaction and 3) Average
time for all trips. We compare our solution to four different
realistic solutions, namely: optimal, random, Fixed Lowest
Speed (FLS) and aggressive. Firstly, the optimal solution is
obtained by an exhaustive method (i.e., trying all possible
paths and speeds at all locations); this method is not always
applicable but was considered a baseline. Secondly, the fully
random solution, which means random path and random
speed selection at each location, this solution simulates no
given control policy by the ES operator, where a commuter
can choose any path and velocities, which is common.
Thirdly, the FLS solution, which is an energy-conservative
solution that considers an operator policy limit on the
maximum running speed to be the lowest speed but offers
no guidance about routes. Finally, the aggressive solution is
an energy-greedy solution that considers ES running on the
maximum speed without guidance to the routes. The tests
were conducted across all three zones, utilizing ES speed
limits of 15km/h and up to 25km/h in a discrete form.

The tests were done on a PC with an Intel processor (I7-
9700k), graphics card (RTX-2080 TI), and 32 GB of RAM.
The computational time of the whole simulation to find the
best paths/speeds for a total number of 18 Trips (i.e., the best
path/speeds from and to each location, for each time zone)
was 30-35 minutes, followed by a DRL inference of less than
0.1 seconds, which means that upon training the model, it can
find the best paths and speeds instantly.

C. ENERGY CONSUMPTION TEST
First, we conducted an Energy consumption test, where we
examined the least and most energy-efficient approaches. For
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FIGURE 8. Convergence of DRL for the case of regenerative braking in different zones.

FIGURE 9. (a) Energy Consumption for a different solution
(non-Regenerative case) (b) Energy Consumption for a different solution
(Regenerative case).

each of the three zones, we carried out two distinct energy
consumption tests, with each zone comprising six trips. The
first test involved RB, while the second did not. The results
presented here represent the average energy consumption
across the six trips in each respective zone. As shown
in 9(a), which illustrates the scenario without RB, our
DRL solution consistently matched the exhaustive/optimal
solution for all three zones, indicating its correctness.
Additionally, we observed a consistent energy consumption
pattern, with Zone 2 exhibiting the lowest consumption,
followed by Zone 1 and then Zone 3, as previously noted
during the convergence test. Furthermore, our observations
revealed that the second-lowest energy consumption was
associated with the Fixed lowest Speed (FLS) approach,
which aligns with our expectations, considering that speed
significantly contributes to energy consumption. In contrast,
aggressive driving behaviour consistently led to higher
energy consumption, regardless of the route selected. On the
other hand, the random solution fell somewhere in between
the FLS approach and the aggressive approach in terms of
energy consumption. Figure 9 (b) illustrates the RB scenario
where all the approaches show less energy consumption and
thus verify the regeneration. In addition, our DRL-based
solution matched the exhaustive solution with an energy
consumption of only 76 WH rather than 113 WH, with an
overall efficiency increase of approximately 33% in all zones.
Moreover, the same pattern of the NRB case appears here,

FIGURE 10. (a) Average user dissatisfaction per zone for different
solutions (non-Regenerative case). (b) Average user dissatisfaction per
zone for different solutions (Regenerative case).

where the second minimum energy is obtained by the FLS
approach, followed by the random and aggressive approach.

D. AVERAGE USER DISSATISFACTION TEST
Second, the average user dissatisfaction comparison.
We compared the average user dissatisfaction of 6 trips for
each zone. Figure 10 (a) depicts the average UDS for each
zone for the NRB case, while Figure 10 (b) shows the same
but for the RB case. In Figure 10 (a) we noticed that despite
our DRL-based solution matching the optimal solution with
UDS = 2.11 in zone 1, UDS = 2.93 in zone 2 and
UDS = 2.41 in zone 3, it did not yield the minimum UDS.
However, it is within the boundaries (i.e., 1 ⩽ UDS ⩽ 3).
In addition, we found a fluctuating trend of UDS where
sometimes the random approach results in the minimum
value while other times, the aggressive solution and FLS
solution have the minimum value, which is expected since
these approaches include randomness. Figure 10 (b) showed a
similar trend compared to Figure 10 (a), with nearly the same
values of UDS in zones 2 and 3, and a slight improvement in
zone 1 with UDS = 2.07. This result is due to the DRL agent
choosing alternative paths for zone 1 to enable the RB, and
these paths happen to have low congestion and more shading.

E. AVERAGE TIME TEST
Thirdly, Average time comparison. We compared the
average time taken for all zones using the different
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FIGURE 11. (a) Average time comparison (Non Regenerative braking
Scenario). (b) Average time comparison (Regenerative braking Scenario).

approaches/solutions in two scenarioswhich are RB andNRB
scenarios. Figure 11 (a) depicts the average time of 6 trips
per zone for all solutions. Considering the non-regeneration,
the DRL tends to fix the speed to the lowest value while
looking for the best path in each time zone to avoid wasting
energy, which is the reason why DRL based solution matched
the exhaustive and FLS solutions with 12 minutes per trip
(i.e., 4 min per segment, corresponding to a speed of 15 kmh ).
In addition, the aggressive approach showed nearly 50% less
time due to high speeds while commuting. On the other hand,
Figure 11 (b) illustrates the average time when considering
the RB scenario. Regarding this case, the DRL chose the best
path while taking advantage of the regeneration to increase
the speed in some road segments without losing much energy,
which justifies a nearly 18% time improvement.

F. ADDITIONAL ANALYSIS
In this subsection, three additional tests were done, which
are limiting trip time, limiting UDS and adaptability test.
We illustrate how limiting both the time and dissatisfac-
tion thresholds affects energy consumption. Additionally,
we show the adaptability and flexibility of the DRL solution
when a sudden change occurs in the environment (graph).

1) EFFECT OF LIMITING TRIP TIME ON ENERGY
CONSUMPTION
We conducted an experiment to assess the impact of limiting
trip duration on energy consumption. We began by gradually
reducing the trip time constraint, going from 12 minutes
to 9 minutes, which represented a 25% reduction in trip
duration. Figure 12 provides a visual representation of this
relationship for both scenarios, RB and NRB. From the
graph, a clear trend emerges: as the trip time constraint
decreases, energy consumption tends to increase. This trend
can be attributed to the shorter trip duration, which compels
the DRL (Deep Reinforcement Learning) agent to opt for
higher speeds. Consequently, the agent selects paths with
higher speed limits and pushes the electric scooter to travel
faster, even on roads with suboptimal conditions. While this
behaviour is aimed at achieving shorter trip times, it is
less energy-efficient overall. Specifically, we observed that
energy consumption increased by nearly 5Wh (7%) when
the trip duration was reduced for RB scenarios. However,

FIGURE 12. Effect of reducing trip time threshold on energy consumption
for RB and NRB cases.

for electric scooters with NRB, the energy consumption
increased by about 16Wh (15%). This difference can be
explained by the fact that when the trip time was shortened,
the DRL agent tended to choose paths with more negative
slopes, allowing for regenerative braking. This analysis
highlights the trade-off between trip duration and energy
consumption in our study and shows the DRL’s adaptability
in choosing paths and speeds.

2) EFFECT OF LIMITING USER DISSATISFACTION ON
ENERGY CONSUMPTION
In this experiment, we systematically reduced the user
dissatisfaction threshold (UDS) from 2.93 to 2.43, and the
results unveiled a noteworthy relationship between user
dissatisfaction and energy consumption. As we lowered
the UDS threshold, user dissatisfaction decreased, but we
observed that this also led to a higher energy draw from
the battery. This outcome can be attributed to the DRL
agent’s decision-making process, which seeks to minimize
user dissatisfaction by avoiding congested roads, low-quality
road conditions, and high-temperature areas. Consequently,
the DRL agent tends to select paths that, while potentially of
higher quality, also entail greater energy consumption, such
as inclined roads (as depicted in Figure 13). We specifically
chose to showcase this effect in Zone 2 because it was
the most impacted by the gradual reduction of UDS. This
zone experiences the highest temperatures (resulting in higher
UDS values), requiring the DRL agent to expend more effort
to find shaded paths. However, this quest for relief from
high temperatures may lead to the selection of paths that are
not energy-efficient. In our observations, decreasing UDS by
0.5 (a 17% reduction) had a substantial impact on energy
consumption. In the RB case, energy consumption increased
from 72Wh to 108Wh (a 50% rise), and in the NRB case,
it increased from 107Wh to 128Wh (a 19.6% increase). This
increase can be attributed to the fact that the chosen paths
often have a positive slope that doesn’t allow for regenerative
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FIGURE 13. Effect of reducing user dissatisfaction on energy
consumption.

action to take place, resulting in a significant impact on
energy consumption.

3) ENVIRONMENT ADAPTABILITY
In this experiment, we aimed to showcase the versatility
of our DRL-based solution by simulating a scenario that
reflects real-world challenges. Initially, we allowed DRL
algorithm to converge to the optimal route-speed solution
for energy efficiency using a training battery with a capacity
of 1000 Wh. The initial DRL convergence resulted in an
energy consumption of 113Wh. Once the initial convergence
was achieved, we introduced sudden and significant changes
in traffic congestion levels on various paths. This abrupt
shift in traffic congestion was depicted in Figure 14, illus-
trating the adaptability test. Our findings demonstrated the
remarkable adaptability of the DRL algorithm to these sudden
environmental changes. The algorithm swiftly re-converged
and adjusted its route choices and speed selection in response
to the new conditions, with the DRL convergence after
the sudden change resulting in an energy consumption
of 123Wh. This reaffirmed the robustness and adaptability of
our solution in the face of dynamic environmental challenges.
An interesting observation from the same graph was that
the newly adapted solution, while highly adaptive, was less
energy-efficient compared to the initial configuration. This is
due to the changes made to the environment,

Our previous observations have demonstrated that our
DRL solution consistently achieves an optimal solution, just
like the exhaustive solution. However, DRL offers several
advantages over the exhaustive solution. One significant
benefit of our solution is its ability to work under the uncer-
tainty of temperature traffic congestion and take sub-optimal
solutions achieving the best overall solution. Moreover, its
ability to adapt to changes in the environment and learn the
dynamics of the environment without prior knowledge. This
contrasts the exhaustive solution, which lacks memory and
must evaluate all possible scenarios at each time step. DRL’s
relative simplicity makes it a more efficient and scalable
solution than the exhaustive approach, which can become
increasingly complex as the system expands.

FIGURE 14. Adaptability test: Introducing traffic congestion.

G. SENSITIVITY ANALYSIS TESTS
In this sub-section, we conduct a series of sensitivity
analysis tests with the primary objective of understanding the
effects of uncertainties in road parameters on both energy
consumption and user dissatisfaction. These uncertainties
may arise from factors such as sensor inaccuracies or
potential exaggerations in user-reported data. A total of four
sensitivity tests were performed, where two tests considered
the DRL solution, while the other two tests considered the
aggressive solution. All these tests were carried out in time
zone 1 on the NRB case, specifically for trips from location
A to B. The tests are explained in detail as follows.

1) ENERGY CONSUMPTION SENSITIVITY TESTS
For these tests, we specifically examined the influence of
errors in road angle and temperature on energy consumption
for both our DRL solution and aggressive solution. We fixed
the chosen path and speeds for both solutions from location
A to location B. For the first test, road angle errors were
systematically increased from 10% to 50% within one of
the road segments along this path. For the second test,
road temperature was increased gradually from 10% to
50% and for the third test, both parameters were increased
simultaneously from 10% to 50%, indicating a more severe
scenario of having two sensors with failures. The results of
both tests are illustrated in 17 and 18, where the former
illustrates the energy consumption test for the DRL solution
while the latter illustrates the energy consumption test for the
aggressive solution. For both tests, introducing an error in
the road angle seems to have a slightly more negative impact
on energy consumption when compared with the impact of
temperature errors. For the DRL case, varying the road angle
by 50% has resulted in an energy consumption increase
from 27Wh to 32Wh (about 18.5% or 5Wh increase). This is
due to the presence of road angle in the gradient energy, which
is one of the dominant energies affecting vehicles moving
in inclined streets. Varying the temperature by 50% resulted
in an energy increase from 27 Wh to 27.5 Wh (about 1.6%
or 0.5 Wh increase). This is due to three reasons, one being
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FIGURE 15. Sensitivity test for energy consumption (DRL case).

FIGURE 16. Sensitivity test for energy consumption (aggressive case).

that the ES has a low battery capacity and is, therefore, less
responsive to temperature fluctuation, and the second reason
is that the temperature equation is a polynomial of third
order with the lowest energy intensity due to temperatures
at the range of 15◦C − 35◦C [40], which is the case in this
test and finally, the temperature variation was introduced to
only one road segment. However, this effect could become
much larger for the case of larger battery-capacity scooters,
high-temperature areas and variations in more road segments.
Varying the road angle from 10% to 50% resulted in an energy
increase from 47.8 Wh to 53.2 Wh (about 11.28% or 5.4 Wh
increase). This increase can be seen as small. However,
it should be noted that the aggressive solution consumes
nearly 77% more energy than the DRL approach. Finally,
for the third test, varying both road angle and temperature
simultaneously in both approaches (DRL-Aggressive) has
resulted in only 1%-5% energy increase compared with
varying road angle alone; this is because the road angle
effect is dominant in our case, and the temperature has a
slight contribution to the energy consumption as explained
previously.

FIGURE 17. Sensitivity test for user dissatisfaction (DRL case).

FIGURE 18. Sensitivity test for user dissatisfaction (aggressive case).

2) USER DISSATISFACTION SENSITIVITY TESTS
In contrast to the previous tests, which primarily examined
energy consumption, this test focuses on the impact of errors
in temperature, traffic congestion, and road conditions on user
dissatisfaction in both the DRL solution and the aggressive
approach. As mentioned earlier, we kept the chosen paths and
speeds fixed, while introducing an increasing error ranging
from 10% to 50% in temperature, traffic congestion, and
road condition for one of the road segments. Figures 17
and 18 depict the variations in both the DRL solution and the
aggressive approach. From these graphs, it becomes evident
that temperature plays the most significant role in influencing
user dissatisfaction, followed by traffic congestion and road
conditions, in that order. In the case of the DRL solution,
user dissatisfaction increased only slightly, from 2.67 to
nearly 2.9. Conversely, for the aggressive approach, the user
dissatisfaction level rose from approximately 2.2 to 2.46.
Comparing the two approaches, the aggressive one exhibited
a slight improvement in user dissatisfaction, with a range
of approximately 15% to 18% in all tests. It is essential to
note that this improvement in user dissatisfaction occurred
primarily because the aggressive approach selected routes
that were shaded and had better road quality, albeit at the cost
of higher energy consumption.
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FIGURE 19. Effect of driver’s mass on energy consumption for DRL and
aggressive approaches.

3) DRIVER MASS AGAINST ENERGY CONSUMPTION
Unlike the previous sensitivity tests that investigated the
effect of road parameters on energy consumption and user
dissatisfaction, this additional test focuses on the variation
of one user parameter affecting ES energy consumption:
the driver’s mass. In this test, we varied the driver’s mass
from 10% up to 50%, i.e., from 75kg to 112.5kg. This test
was conducted for both the DRL and aggressive approaches,
as depicted in Figure 19. The results revealed a substantial
impact of the driver’s mass on energy consumption, par-
ticularly on inclined road segments. When comparing the
DRL approach to the aggressive approach, we observed a
29% increase in energy (8 Wh) for the DRL approach,
primarily due to its preference for negatively inclined roads.
Conversely, the aggressive approach exhibited a 25% increase
in energy consumption (13.3 Wh). ESs, with their small size
and light weight, are highly sensitive to both user parameters
and ES-specific factors, such as mass, tire pressure, frontal
area, and more

VII. CONCLUSION
This paper focused on minimizing ES energy consump-
tion by optimally choosing energy-efficient paths and
speeds, all while accommodating the inherent variability
in time-dynamic environmental conditions and user dissat-
isfaction levels. Many parameters were considered, such
as road condition, road angle, speed limit, road shading,
traffic congestion, and temperature fluctuations. In addition,
two types of ESs were considered RB and NRB. Three
comprehensive validation tests were executed to evaluate
our approach, such as energy consumption, average user
dissatisfaction, and average trip duration. For each test,
we assessed our DRL-based approach against four distinct
operational policies closely mirroring strategies commonly
employed by ES fleet operators: Optimal(brute force),
Random, FLS, and Aggressive solutions. The results of the
proposed DRL approach matched the brute force solution
for both RB and NRB cases. In the RB case, the energy

consumption was averaged 76 Wh, while in the NRB case it
was averaged 113 Wh. Notably, the DRL approach exhibited
a significant energy consumption reduction of 53-67% in RB
case and 25-55% in NRB case when compared to the other
solutions.

Furthermore, we conducted three additional tests to
thoroughly assess the flexibility of the DRL solution. The
first two tests examined the impact of limiting trip time
and user dissatisfaction on energy consumption. The third
test introduced abrupt traffic congestion, spotlighting the
solution’s adeptness in adapting to dynamic environmental
changes. Following that, we implemented three sensitivity
tests to evaluate the consequences of inaccuracies in reading
specific road parameters on both energy consumption and
user dissatisfaction, considering our DRL and aggressive
approaches. The initial test explored the implications of
introducing errors in road angle and temperature on energy
consumption, while the second test analyzed the effects
of errors in road temperature, traffic congestion, and road
conditions on user dissatisfaction. The third test appraised the
influence of introducing errors in the driver’s mass on energy
consumption. All tests confirm the robustness of our solution
against environmental changes.

A. POTENTIAL LIMITATIONS AND FUTURE WORK
When extending the solution methodology to other types of
MM, there are several critical considerations:

1) The vehicle’s frontal area, whether the driver is
standing, sitting, or in a closed MM vehicle. Each MM
vehicle has a distinct frontal area, impacting the energy
required to overcome air friction and overall energy
consumption. The solution should account for these
variations to optimize energy usage accurately.

2) The auxiliary energy of the vehicle, as some MM vehi-
cles are closed and require heating/cooling, eventually
affecting the battery range. In addition, historical data
of their energy consumption should be obtained for
higher accuracy.

3) Energy consumption due to temperature influence shall
not pose a problem, as the battery capacity of such
vehicles is considerably small (i.e., less than 1KWh);
therefore, the temperature effect shall be minimal and
eventually neglected.

4) User dissatisfaction model can be customized based on
the user preference of each MM vehicle, as example,
closed MM vehicles are not much affected by the tem-
perature factor as they might have an air conditioning
system, therefore the temperature factor can be omitted
or has a less weight compared to other factors, and the
same for other MM vehicles.

As for future work, many enhancements can be considered as
follows:

1) Considering and investigating of multi-agent deep
reinforcement learning in managing fleets of ES and
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optimizing their communication and sharing network
updates instead of relying on a global SDN control.

2) Including the constraints that are related to the battery
life cycle and depth of discharge.

3) Collaborating with e-mobility companies to obtain
energy consumption data of MM and build a more
detailed energy consumption model for MM that
combines motion dynamic consumption, traffic, and
environmental impact.

4) Surveying regular users of e-mobility services to
identify the causes of their dissatisfaction and factoring
those findings into the aforementioned constraints.
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