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Private Function Evaluation (PFE) is the problem of evaluating one party’s private data using a private function owned by another
party. Existing solutions for PFE are based on universal circuits evaluated in secure multiparty computations or on hiding the
circuit’s topology and the gate’s functionality through additive homomorphic encryption. +ese solutions, however, are not
efficient enough for practical use; hence there is a need for more efficient techniques.+is work looks at utilizing the Intel Software
Guard Extensions platform (SGX) to provide a more practical solution for PFE where the privacy of the data and the function are
both preserved. Notably, our solution carefully avoids the pitfalls of side-channel attacks on SGX. We present solutions for two
different scenarios: the first is when the function’s owner has an SGX-enabled device and the other is when a third party (or one of
the data owners) has the SGX capability. Our results show a clear expected advantage in terms of running time for the first case
over the second. Investigating the slowdown in the second case leads to the garbling time which constitutes more than 60% of the
consumed time. Both solutions clearly outperform FairplayPF in our tests.

1. Introduction

In Private Function Evaluation (PFE), a participant S0
holds some private function f, while participants S1, S2, . . .,
Sm each have their own private input xi.+ese parties would
like to work together to find f (x1, x2, . . ., xm) while
retaining the confidentiality of their respective inputs and
of S0’s function.

+is problem is useful when an entity holding a pro-
prietary piece of software would like to offer some service
using that software to other entities that have confidential
data. One typical example would be a privacy-centric rec-
ommendation system. Using PFE, a company can run their
proprietary algorithms to recommend products to con-
sumers while maintaining privacy of consumers data even
from the company itself.

+is problem is similar to Secure Multiparty Compu-
tation (SMPC) in that both problems require the input data

to remain hidden. However, PFE additionally requires the
function to be private while SMPC assumes a publicly
known function. +e performance of SMPC solutions has
improved a lot over the years making SMPC more practical
and thereby more widely adopted. +is is not the case with
PFE as the additional requirement of function privacy adds
more complexity to the problem. Although not very prac-
tical, solutions for PFE do exist and are mostly adapted from
techniques used in SMPC.

One such solution involves running a universal circuit in
SMPC that takes x1, x2, . . ., xm in addition to Cf, a circuit
representation of f, as inputs. +e idea is that SMPC insures
the privacy of all inputs; hence the privacy of the function is
insured since it is part of the input. +e issue, however, is
that a universal circuit that can run Cf will be of size Ω (|Cf|
log |Cf|) according to the state of the art [1]. Different
universal circuits must be constructed depending on |Cf|
adding further cost to this solution.

Hindawi
Security and Communication Networks
Volume 2020, Article ID 3042642, 10 pages
https://doi.org/10.1155/2020/3042642

mailto:maan.rachid@scilifelab.se
https://orcid.org/0000-0002-6380-209X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3042642
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2020%2F3042642&domain=pdf&date_stamp=2020-09-15


More recent solutions involve modifying the garbled
circuits used in SMPC in order to hide the gates functionality
and circuit topology of Cf. +ese approaches can actually
achieve a linear cost of |Cf |, but with an additional cost of a
linear amount of asymmetric key operations which are not
practical. Without asymmetric key operations, the best
solution still takes O (|Cf | log |Cf |) time. Hence, these ap-
proaches are also not very practical.

In this article, we propose a practical solution to the PFE
problem which builds on Intel Software Guard Extensions
(SGX). SGX is a set of CPU instructions provided by Intel to
allow hardware-based protection of the running software.
SGX provides this protection through the use of enclaves,
which are protected areas of execution in memory. Code and
data in an enclave will be encrypted and hidden from even
the operating system. SGX provides powerful tools that can
help in developing a more practical PFE solution. However,
we note that SGX does not hide memory accesses and in-
struction trace; hence it is vulnerable to side-channel attacks
which we should carefully consider.

+is work looks at developing protocols that make use of
SGX to create more practical solutions for PFE.

Our key contributions can be summarized as follows:

(i) We propose the first approach built on SGX to offer
efficient PFE.

(ii) We consider two scenarios for our solution: one
where the function owner has the SGX-enabled
device and amore challenging scenario where a data
owner or any third party has SGX that assists in
performing PFE.

(iii) We analyze the security and the performance of our
scheme theoretically. We also implement a proof-
of-concept of our solutions in both scenarios to
benchmark the efficiency of our approach and show
that it outperforms current existing solutions.

2. Preliminary Definitions and Background

In this section, we present an overview about concepts and
technologies which are needed to build our solutions.

2.1. SGX. SGX is a new set of instructions which were
provided by Intel in order to enable developers to create
enclaves which are protected areas in memory. SGX guar-
antees both integrity and confidentiality to data and code
inside the enclave. Intel provided an API for developers to
create applications with enclaves. SGX supports multiple
enclaves with a limited total size of 128MB. Unfortunately,
SGX does not hide the memory access of the enclave which
opens the door for both deterministic and probabilistic side-
channel attacks [2].

Remote SGX attestation provides a hardware-based
guarantee that a certain software is running on another
server’s enclave. +is means that a client will be able to gain
confidence that the server it is communicating with is
running a legitimate enclave. Attestation also provides a
secure communication channel by establishing shared keys

between the client and the enclave which enables the client to
encrypt messages that can only be read by the enclave itself
but not by the host of the enclave.

2.2.GarbledCircuits (GC). Originally introduced by Yao [3],
GC is a technique that performs secure multiparty com-
putation in the two-party setting. A formal description of
GC can be found in [4].

In GC, the function is assumed to be public and rep-
resented by a circuit. +e two parties work together to
evaluate the result of the function on their respective private
inputs. One party assumes the role of garbling the circuit and
is denoted by the garbler, while the other party evaluates the
garbled circuits and is referred to as the evaluator.

Garbling means blurring the circuit in a way, and it
implies replacing the wire values which are 0 or 1 prior to
garbling to pseudorandom values of a size defined by the
security parameter k. For each wire wi, the garbler picks two
random k-bit values w0

i and w1
i to denote its new 0 and 1

values. For each gate whose input wire labels are wl and wr,
output wire label is wo, and truth table is T; the garbler
replaces Twith the garbled table GT such that if T (a, b)� c,
then GT(wa

l , wb
r) � Ewl

(Ewr
(wc

o)).
After garbling, the garbler sends the garbled circuit and

his garbled inputs to the evaluator. +e evaluator must also
receive his garbled input representation from the garbler.
+is is done through Oblivious Transfer (OT). OT is a
method that allows the garbler to present two choices w0

i and
w1

i to the evaluator and the evaluator has to pick one of these
two choices without learning the other choice and without
allowing the garbler to learn the choice which was picked by
the evaluator.

Given all garbled input and garbled circuit, the evaluator
evaluates the garbled gates in topological order until the final
output is reached. Each garbled gate is evaluated by
decrypting each ciphertext in its garbled table using the two
gate inputs wa

l and wb
r and checking if the decrypted value is

a valid gate output (could be done by padding the valid gate
output with zeros). +e final output of the circuit can be sent
back to the garbler to decode it.

2.3. GC Optimizations. +ere have been many presented
optimizations for GC that greatly improved its practicality.
+ese optimizations generally follow two different
directions:

(i) Reducing the number of ciphertexts per gate in order
to reduce network transfer time [5–8]

(ii) Improving the computational efficiency of garbling
and the evaluation of the circuit [9, 10]

+e first direction involves a specific process of gener-
ating the garblings which, as a consequence, creates a de-
pendency between gates’ input wires and the corresponding
output wire. +ese dependencies do not leak information
and are proven secure.

+e second direction for optimizations aims to make the
garbling and evaluation computation more efficient without
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paying any cost in terms of the security of the overall garbled
circuits. +is work makes use of two of these optimizations:
Point and Permute and Fixed-key block cipher.

Point and permute [10] assigns a bit to each wire garbling
and permutes the truth table in a way that makes it possible
for the evaluator to realize which ciphertext from the truth
table he should be decrypting, thereby removing the need of
further decryption to make sure that the correct one is
decrypted.

Fixed-key block cipher [9] notes that fixing the key used
during garbling and evaluating makes the block cipher op-
eration a simple permutation that is executed much faster
than evaluating the full block cipher since the computations
that only depend on the key can be precomputed before hand.

2.4. Universal Circuits. A universal circuit UC is a circuit
that takes other circuits as input and evaluates them. If C is
some circuit that UC supports and x is some input to C, then,
UC (C, x)�C (x). +e main issue is the size of the universal
circuit, and recently researchers have proposed solutions to
obtain smaller universal circuits. For the class of size n
circuits, Valiant’s universal circuit [11] is of size 19 nlogn
with depth O (n) and Kolesnikov and Schneider’s universal
circuit [1] is of size 1.5 nlog2 n though it has smaller universal
circuits for circuit sizes less than 5000. Kiss and Schneider
[12] further reduced Valiant’s bound by constructing uni-
versal circuit where the number of AND gates is bounded by
5 nlogn and where the number of total gates is bounded by
20 nlogn. Although Kiss and Schneider [12] showed that it is
practical to implement PFE using Valiant’s size-optimized
universal circuits, they claimed that “universal circuits are
not the most efficient solution to perform PFE.” Despite the
fact that implementations for Secure Function Evaluation
(SFE) protocol with billions of gates have been reported in
the literature, the best reported implementation for a uni-
versal circuit based PFE protocol [12] is for simulated cir-
cuits of 300,000 gates, which results in a universal circuit of
at most 245,627,140 gates (at most 61,406,785 AND gates).

2.5. Terminology. We define the “circuit owner” as the party
who has a private function, while a “data owner” is a party
who owns private data. +e terms program owner and the
circuit owner are used interchangeably.+e “enclave parent”
is the party that creates an enclave in which all sensitive
computations are done.We also use the terms enclave parent
and the enclave host interchangeably.

3. Related Work

In this section, we review related work on secure multiparty
computations and give an overview for the development of
garbled computing. We also discuss SGX applications and
the advantages of using SGX in solving PFE.

3.1. GC with Universal Circuits. GC provides secure multi-
party computation (SMPC) and hides the input data but
assumes a public function. If, additionally, the function that

the program owner wishes to evaluate is passed as part of the
input to SMPC, then the function will be hidden together
with the input data. +us, one way to achieve PFE is by
running a UC using GC whose input is Cf and x. Note that
any kind of GC optimization is applicable here because it is
not required to hide the functionality of the UC (which is
actually publicly known). However, there will be an addi-
tional logarithmic cost incurred since a UC will be of size Ω
(|Cf| log |Cf|). Additionally, a UC has to be constructed
specifically to run a certain set of possible circuits. If the UC
construction cost was pushed to offline, then the produced
UC needs to be big enough to evaluate any possible circuit
input which will create a very big UC. Nevertheless, this
approach does have some benefits as it supports multiple
data owners. +e current state-of-the-art UC construction
for small circuit was proposed by Kiss and Schneider in [12]
and achieves an upper bound of 1.5 nlog2 n. One may also
use TinyGarble [13] techniques to construct smaller circuit
for PFE. Most existing garbled circuit techniques convert a
function/program to a combinational Boolean function with
a directed acyclic graph (DAG) of binary gates. +e authors
in [13] analyzed the approach which first converts a func-
tion/program to a sequential circuit, which allows having
feedback from the output to the input by adding the notion
of a state (memory). +en, one can convert each sequential
cycle to a Boolean combinational logic.

+e results in [13] show that this approach can reduce
the size of the garbled circuit significantly. FairplayPF [1] is a
well-documented framework for secure evaluation of private
functions using universal circuits. It is an extension of the
classical Fairplay [14], which is a tool for secure two-party
computation with a publicly known function. Most of the
proposed PFE techniques have been of theoretical interest.
+ey lacked implementation and lacked tools for program
(private function) development. +is is attributed to the fact
that PFE is still very slow to provide performance thatmeets the
time requirements of real applications. FairplayFE was unique
in the sense that it provided a tool and an implementation of
PFE. +erefore, we used FairplayFE as the baseline to evaluate
the performance of our proposed techniques.

3.2. Modified GC: Nonuniversal Circuit-Based PFE. In the
modified GC, we try to hide both the individual gate
functions and the topology of the circuit Cf. +e gate
functions can be hidden by using only universal gates such as
the NAND. Indeed the result will be that all gates have the
same function which does not leak information. Hiding the
topology is a bit more tricky though. To do so, existing
solutions make a distinction between outgoing wires and
ingoing wires. Outgoing wires are gate output wires and the
circuit input wires. Assuming that the input size is n, then
the number of outgoing wires is n+ |Cf|. Ingoing wires are
gate input wires which means that the number of ingoing
wires is 2 |Cf| (as we assume that all gates are NAND which
are binary gates). Ingoing wires and outgoing wires have
different wire labels and in order to connect an outgoing
wire like a gate output to an ingoing wire, some translation
needs to take place. +is translation needs to be oblivious to
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the data owner but can be known to the program owner.
+ere are currently two solutions that achieve this, one that
uses additive homomorphic encryption [15] and another
that uses switching networks [16].

Katz and Malka also introduced a more efficient variant
PFE protocol with provable security in the random oracle
model. +e second protocol is roughly twice as efficient as the
first one. PFE protocols in [15, 16] use a singly homomorphic
public-key encryption scheme such as the additive homo-
morphic Paillier encryption scheme. Let Cf be a circuit that
computes P2’s function f and that Cf contains only NAND
gates. Assume that Cf have n gates and it take l-bit inputs. In a
high level, the PFE protocol proceeds as follows.

(1) Given the pair (n, l), P1 generates a sequence of n+ l
pairs of labels which are encrypted using singly
homomorphic encryption scheme and sent to P2

(2) P2 obliviously groups these labels in gates to form a
circuit Cf using a linear transformation compatible
with the singly homomorphic encryption scheme
and sends the gates to P1

(3) After decrypting the gates, P1 produces a garbled
circuit corresponding to the circuit Cf by garbling
the n gates received from P2 independently (and P1
does not learn the circuit in this way)

(4) P1 gives an encoded version of the input x to P2 and
P2 evaluates the garbled circuit to obtain the circuit
output Cf (x)� f (x)

+e PFE protocols in [15, 16] were described with P2
learning the output f (x). +e limitation of this approach is
that the server P2 is allowed to compute any function of his
choice. Hence, a malicious P2 can just provide a function to
output the data owner inputs without violating the privacy
definitions of the authors. For this reason, in our settings of
the PFE protocols, we do not allow the function owner to get
any output. Katz and Malka explain how to modify their
protocol at no additional cost to achieve this. +e modified
version is the closest solution to our setting.

+e PFE protocols in Katz and Malka [15] have provable
security in the semihonest security model with the assumption
of semantic security for homomorphic encryption schemes
and linear-related key security for symmetric encryption
schemes. It is also worth noting that Mohassel et al. proposed
later a solution for PFE protocols which is secure against
malicious adversaries [17]. +e latter, however, relies heavily
on zero-knowledge proofs and is therefore much more costly.

3.3. ORAM with GC. Based on the physically shielded
Central Processing Unit (CPU) technique [18], Goldreich
and Ostrovsky [19] proposed a theoretical treatment of
software protection by formulating the problem in the
setting of learning a program structure by observing its
execution. Using this new formulation, they reduced this
problem to online simulation of any programs on oblivious
RAMs (random access machines). A machine is oblivious if
its access to memory locations is independent of the input
values and is processed with the same running time. Lu and

Ostrovsky [20] showed how to design garbled ORAMs by
constructing t pairs of garbled circuits (Oi

ORAM, O
i
CPU) for

i� 1, . . ., t, where t is the maximum runtime of the ORAM,
Oi

ORAM simulates the ith-step memory read/write command,
and Oi

CPU simulates the ith-step shielded CPU operation.
Gentry et al. [21] showed that in order to prove the security
for the garbled RAM scheme in [20], an additional circularity
assumption is required. Gentry et al. [21] then proposed two
new constructions to avoid this additional assumption.

3.4. SGX. SGX has been used in several applications such as
private membership testing [2], oblivious RAM [22], and
secure indexing [23]. SGX has also been used for secure
multiparty computation. For example, Bahmani et al.
[24, 25] designed practical secure multiparty computation
(SMP) using SGX. As mentioned above, SGX may leak
information about the program running through side-
channel attacks. References [26, 27] use Intel SGX to achieve
secure function evaluation, with the former trying to hide
the function.

3.5. Benefit over RelatedWork. In both cases, using SGX can
keep the cost linear to the |Cf| which makes this solutionmore
scalable to larger circuits in comparison with UC or the
modified GC using switching networks. Compared to the
nonuniversal circuit based PFE protocols in Katz and Malka
[15] (see also [16]), our approach has two advantages. First,
our approach allowsmore than one data owners to participate
in the private function evaluation while the PFE in [15] has
only two participants: one data owner and one circuit owner.
Secondly, our approach only uses symmetric key ciphers
while the PFE protocols in [15, 16] requires an additive
homomorphic encryption scheme to obliviously connect each
of the gates. +at is, at least two extra additive homomorphic
encryption operations for each wire are required for each
participant. +ese additive homomorphic encryption oper-
ations are the major cost for the PFE schemes in [15, 16].
+us, our scheme is significantly more efficient.

4. PFE Leveraging SGX

A trivial design of PFE with SGX may run a private program
within an SGX enclave directly. One might think for ex-
ample to run the program in an enclave and interpret it
there. +e attestation can show that the enclave is running a
trusted interpreter (e.g., Java Virtual Machine), and keys to
decrypt the data to perform the computation can be securely
shared with the enclave and not with the developer of the
private function. However, this approach is vulnerable to
several attacks. For example, one may use the program’s
runtime or the memory access pattern to infer some in-
formation about private inputs (see, e.g., [25]). A number of
research studies have actually shown that utilizing a cache
can reveal details about the execution of a program [28–32].

To defeat these side-channel data leakage attacks that
SGX is susceptible to, the program is represented as a circuit.
+is is because circuits perform the same memory accesses
regardless of the input data and hence are memory access
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oblivious. Accordingly, the words “circuit” and “program”
are used interchangeably.

While SGX is available on most modern Intel CPUs, it
may still be the case that a machine does not have SGX
support; hence we propose two solutions that cover different
assumptions:

(i) +e program owner has an SGX supported CPU.
+is is the simpler of the two cases.

(ii) +e program owner’s machine does not support
SGX. In this case, SGX support is available either on
the data owner’s machine, or on the machine of an
untrusted third party other than the data or program
owners. +e technique to address this second sce-
nario is the same regardless of whether SGX is
available on the machine of a third party, or the
machine of the data owner (in this case, the data
owner takes the role of the third party).

4.1.Technique1:CircuitOwnerHasSGX. In the first case, the
circuit owner creates an enclave with a specific list of tasks.
+is enclave must first attest to the data owners that it is a
valid enclave and that it is performing the right protocol. For
example, the enclave should attest to the data owners that the
enclave will only issue Ocall at the end of the function
evaluation and the Ocall should only return encrypted
output value under an established key with the data owner.
Furthermore, the enclave should also attest to the data
owners that the enclave will only accept circuit description
(instead of general program descriptions with loops, etc.)
from the program owner. During the attestation phase, a
secret key between each data owner and the enclave will be
established using the Diffie–Hellman key agreement pro-
tocol. +is key will be used to encrypt all future commu-
nication content between the data owner and the enclave.
Specifically, the data input will be encrypted using this key.
+is concludes the initialization phase. Starting the online
phase:

(i) +e data owners encrypt their input using the
established secret keys and send it to the enclave via
the enclave’s parent.

(ii) +e enclave also receives the circuit from the
program owner who is also its host (parent).

(iii) Since both data and circuit are in the enclave, it
performs the evaluation and obtains an output. +e
output is encrypted and then sent to the data owners
so that only they can learn the output and not the
program owner.

Figure 1 demonstrates case 1. Data owner and enclave
are trusted parties while program owner who is the enclave’s
parent is an untrusted party.

Note that this case is simpler than the next one, as the
function does not need to be private with regard to the
enclave. +e function is indeed executed at the function
owner side, but in an enclave, and the function owner
naturally knows the function.

4.2. Technique 2: <e Circuit Owner Does Not Have SGX.
In the second case, the circuit owner does not have an SGX
but a data owner or a third party has an SGX-enabled
hardware. In the following, we consider the case in which a
third party has an SGX equivalent to the case where a data
owner has an SGX. In this case, the participants may jointly
use the SGX enclave to evaluate the circuit on the data
inputs. In order to hide the memory access patterns from the
SGX owner, one can implement the ORAM within the
enclave. However, this approach is not as efficient as the
following fixed-key based garbled circuit technique since it is
more efficient to garble a circuit obliviously than to im-
plement the ORAM within an enclave. In a high level de-
scription, the data owners and the program owner submit
their data/program to the enclave. +e enclave garbles the
data/program and delivers the garbled circuit/data to the
program owner who will evaluate it. Finally, the program
owner sends the encrypted garbled circuit output to the
enclave which decodes the garbled output, encrypts the
output, and sends it to the data owners to decrypt. Note that
this case works if any of the data owners have an SGX too, so
it is not necessary for the enclave’s parent to be a third party.

+e initialization phase is almost identical to the one in
the first case but with the program owner also sharing a
secret key with the enclave using the attestation phase. +e
online phase, however, differs as the job of this enclave is to
garble Cf and not to evaluate it, because evaluating can leak
some information about Cf’s topology through memory
access patterns. When garbling, however, care must be taken
as not to leak the functionality of the gates through side
channels or the topology of the circuit. To hide the func-
tionality, the garbling scheme must garble each gate in the
same way regardless of the gate type; therefore, gate type
dependent optimizations such as FreeXOR cannot be used.
Instead Garbled Row Reduction techniques can be used
together with fixed-key block cipher and point and permute.
To hide the circuit topology, gates should be garbled in-
dependently from one another. +is can be done by gen-
erating wire garblings on the fly during garbling on each gate
even if they were generated before. Specifically, assume that
the circuit C has n gates G� {g1, . . ., gn} and l inputs w1, . . .,
wl. Let W� {w1, . . ., wn+l} be the collection of wires. Each
gate gi is a tuple<wi1, wi2, wi3, Tgi >where wi1, wi2 are the

Enclave

Data owner 1

Data owner 2

ProgramData

Figure 1: Technique 1. +e program owner which is the enclave’s
parent is an untrusted party.
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input wires, wi3 is the output wire, and Tgi is the gate type
(that is, AND, OR, or NAND). By using the fixed-key garbling
technique, the labels K0

wi1
, K1

wi1
, K0

wi2
, K1

wi2
, K0

wi3
, K1

wi3
for

the wires wi1, wi2, wi3 can be computed on the fly as Kb
wij

�

F(R, wb
ij) for b� 0, 1 and j� 1, 2, 3, where F is a fixed function

and R is a fixed entropy string.+us given a description of the
circuit C� (W, G), one can obtain the garbled circuit by
garbling each of the gates g1, . . ., gn in a sequence inde-
pendently (obliviously). It is noted that for each gate with two
incoming wires and one outgoing wire, the garbling scheme
needs to compute six labels. For a gate with one incoming
wire (e.g., a negation gate) and one outgoing wire, the garbling
scheme only needs to compute four labels. +us, an attacker
could use the timing channel to guess whether a gate under
garbling process contains two incoming wires or a single
incoming wire. To avoid this attack, our above discussion
assumes that each gate in circuit C has two incoming wires. In
case that the circuit contains gates with a single incoming
wire, the garbling scheme should introduce time-delays when
garbling such kind of gates.

Accordingly, technique 2 works as follows:

(i) +e data owner Si chooses a random string Ri,
encrypts its data input and the Ri using its secret
key with the enclave (established during the at-
testation phase) and sends it to the enclave’s parent
(third party).

(ii) +e circuit owner S0 chooses a random string R0,
encrypts the circuit and the R0 using its secret key
with the enclave (established during the attestation
phase) and sends it to the enclave’s parent.

(iii) +e enclave’s parent (untrusted third party) passes
the encrypted data, the encrypted circuit, and the
encrypted random strings to the enclave (third
party).

(iv) +e enclave computes the entropy string R�H (R0,
R1, . . ., Rm) for the garbling process where H is a
secure hash function.

(v) +e enclave garbles the circuit and the input data as
explained above.

(vi) +e enclave encrypts the garbled circuit and the
garbled input data using the secret key shared with
the circuit owner (established during the attesta-
tion phase) and sends the encrypted values to the
circuit owner.

(vii) +e circuit owner decrypts the garbled circuit and
the garbled input data and evaluates the garbled
circuit on the garbled input data.

(viii) +e circuit owner encrypts the garbled output
using the secret key shared with the enclave and
sends it back to the enclave via the enclave’s parent.

(ix) +e enclave decrypts the garbled output, creates
copies of the output for data owners, and encrypts
each copy with its appropriate key and sends these
encrypted copies to the data owners. Figure 2
explains the technique.

4.3. Encryption. +e communication between the data
owners and the enclave is encrypted using AES-CBC using
the keys that are generated by the attestation process. Initial
vectors (IV) are incremented with every encryption in order
to eliminate the possibility of having the same cipher when
encrypting the same value more than once. +e same en-
cryption algorithm is used to secure the communication
between the circuit owner and the enclave. Clearly, the
enclave should use the appropriate key to decrypt the re-
ceived data (or circuit) while maintaining a corresponding
incrementing for each IV.

5. Security

Our adversary on the enclave’s host machine is high-priv-
ileged. Accordingly, he can watch all memory access.
However, we assume semihonest adversary who has no
intention in modifying messages coming from and to the
enclave. We assume that the number of parties, the number
and size of inputs, and the size of the circuit are known to all
parties. We also assume that the inputs, the circuit, and the
garbled circuit can all be fit inside the enclave. Enabling
paging would allow an enclave to exceed the limitation of
128MBwith an expected slowdown. Despite the fact that the
problem of converting a function into a circuit is not a trivial
problem, we consider it out of scope since this procedure can
be done completely on the program owner before executing
the technique.

+e security of the two proposed protocols depends on
the security of SGX. If the hardware has no faults and
performs as intended then SGX should guarantee that the
memory of the enclave and the registers used by it as well as
the instructions performed by the CPU remain hidden from
the host and its operating system in particular. SGX,
however, does not protect from side-channel attacks. Hence
if something can be observed through measuring the time
that certain instructions take, or through the access made to
memory or through other indirect means, then the two
proposed protocols should protect against that information
leakage.

In the first protocol that uses the program owner’s SGX,
the program stays hidden from the data owners. +is is
because the program never leaves the program owner’s
machine and the SGX as created by the program owner
himself will not leak information about the program to
others. On the other hand, the data is encrypted using an
established secret key between the enclave and each data
owner using the attestation process. +us the encrypted data

Enclave

Data owner 1

Data owner 2

Circuit owner cuit owne

ve

ProgramData

Figure 2: Technique 2. A third party has SGX.
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could only be decrypted by the enclave but not by the
program owner. By running a directed acyclic circuit, the
enclave executes memory access instructions. +e time these
instructions take and any other observable side-channel
issues will look the same regardless of what the input data
was. +erefore the data stays hidden from the program
owner. After evaluating the circuit the enclave returns the
result only to the data owners to prevent the program owner
from writing an identity function and learning all the data.
Lastly, since the enclave is attested by the data owners they
can be sure that the enclave is executing the correct protocol.

In the second protocol, each data owner receives the
evaluation output of the garbled circuit on the garbled input
data, and the program owner receives the garbled circuit and
its garbled input. Since a garbled circuit hides the input
throughout computation, the program owner cannot learn
anything about the input data. Looking at enclave host, just
like in the first protocol all communications between the
enclave and the other servers are hidden from the enclave
host through encryption. Additionally, the data of the other
data owners also remain hidden because they are evaluated
in a directed acyclic circuit that produces the same memory
accesses and timings regardless of the input data. Since
garbling a gate is done in the same way regardless of the gate
type, then side channels cannot leak the gate type. In ad-
dition, generating the garbling from a permutation (fixed-
key block cipher) of the wire labels every time will hide the
topology of the circuit and avoid leaking information
through memory accesses. Using both a garbling technique
that is independent of the gate type and generating wire
garblings independently at each gate, ensures that the circuit
stays hidden during garbling. +erefore, the program does
not leak to any of the data owners and as mentioned before
the individual data does not leak to other servers.

6. Experimental Evaluation

In this section, we first explain the setup for our experiments
and then we discuss the results of these experiments. We
compare the performance of our techniques with Fair-
playFP, and we analyze the effect of the number of parties
(i.e., data owners) on the performance. We also identify the
bottleneck step of the second technique that is responsible
for the biggest time overhead.

6.1. Experimental Setup. We present two C++ imple-
mentations for multiparty private function evaluation using
SGX. +e source code of our implementations can be
downloaded from https://github.com/maanrachid/PFE-
SGX:

(i) +e first implementation has one circuit owner and
an arbitrary number of data owners np which is
known to all parties. +e circuit owner is the parent
of the enclave so it creates the enclave, then passes
the circuit to it using one ECALL. +e data owners
send their encrypted data in an arbitrary order to the
enclave via its parent. Using a list of np different keys,
the enclave decrypts the data. +e enclave evaluates

the circuit and sends encrypted output to the data
owners via its parent using one OCALL for each data
owner.

(ii) +e second implementation has several data owners
(np data owners), one circuit owner and a server
which is the enclave’s parent. Both data owners and
circuit owner send their data and circuit, respec-
tively, in an arbitrary order to the server. +e server
passes them to the enclave which decrypts the data
and the circuit using a list of np +1 keys and
performs the garbling for the circuit and the data.
Wire’s garblings are generated every time they are
needed (rather than saving the garbling of a gate’s
output wire to be used for another gate’s input).
Two keys were used for garbling: one to generate
the 0 garbling and another to generate the 1 gar-
bling. Only point-and-permute is used in this
implementation. +e enclave sends the garbled
circuit and the garbled input back to the circuit
owner with all needed keys.

+e circuit owner evaluates the garbled circuit on the
garbled input and sends the garbled output back to the
enclave. +e enclave finally decodes the garbled output and
sends the output to the data owners.

Our implementations are tested with SGX’s SDK version
1.9. +e communication between the data owners and the
enclave is encrypted using AES-CBC offered by Intel’s IPP
cryptography library. +e same encryption is used for the
communication between the enclave and the circuit owner
in the second implementation.

Our experiments were run on amachine with 8GB RAM
and Intel(R) Core(TM) i7-6770HQ 2.60GHz CPU with an
enclave’s maximum size of 128MB. +e sizes of the input,
the output, and the circuit are known to all parties. Data
owners, the circuit owner, and the server (enclave’s parent)
were run on the same machine in all experiments; never-
theless, each program takes the machine name and a port as
parameters. Accordingly, they can be run on different
machines.

+e circuits which we used in our experiments are
downloaded from https://homes.esat.kuleuven.be/nsmart/
MPC/. +e descriptions for these circuits are shown in
Table 1. +e circuits are well-known and they show a di-
versity in terms of circuit size. We slightly modified the
format of each circuit in order to enable an arbitrary number
of data owners with arbitrary input shares.

6.2. Results. We compare our implementations with Fair-
playPF in terms of time consumption. Since FairplayPF has
different input format (Secure Function definition Language
(SFDL)) than ours, we only run our tests using simple
circuits. We study the effect of the number of clients on the
performance, and we also analyze the cause of the relative
slowdown in our second implementation.

Table 2 shows the elapsed times for one complete round
of each technique. +ese numbers are obtained by running
each round 1000 times and recording the average. Time
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command is applied on one of the data owners in order to
obtain the time for each round.

We compared the performance of technique 1 and
technique 2 and the relationship with the size of the circuit
by sorting the circuits by size (wires and gates). It turns out
that with the adder, technique 1 has a speedup 415 times
over technique 2, while with the multiplication, technique 1
has a speedup of 23 times. With SHA-1 (the largest), there
is a speed up of 13 times which suggests a negative cor-
relation between the size of the circuits and the superiority
of technique 1 over technique 2. Figure 3 shows the time
consumption for technique 1, technique 2, and FairplayFP.
As mentioned before, we restrict our comparisons to these
circuits because they are the only circuits which we have in
both formats: SFDL (for FairplayFP) and Bristol (for our
work). For MD5, for example, An SFDL version of MD5
has to be implemented which is beyond the scope of this
work.

We investigate the effect of the number of data owners by
running the same experiments using 4 data owners instead
of 2 owners. We got the same time consumption for all
rounds suggesting that the number of clients has no effect on
the performance of any of the techniques.

We studied the major reason behind the slowdown in
technique 2. Table 3 shows that garbling is responsible for
60% to 80% of the total time consumption in most of the
circuits except for the adder since it is a relatively small
circuit and the communication cost has a relatively high
cost.

7. Conclusion

+is work provides a novel method of solving PFE with Intel
Software Guard Extension. +is method allows for a much
more efficient and therefore more practical approach to
performing PFE in comparison to previous solutions. +e
practicality of this solution will open the door to some
interesting applications of PFE. Our future work will involve
looking at some of these applications and developing a
simpler full fledged system that can be used by regular
developers to create PFE applications.

Data Availability

+e source code of our implementations can be downloaded
from https://github.com/maanrachid/PFE-SGX.

Disclosure

+e work was mainly performed while the author was
working at Qatar University. Contents of the research are
solely the responsibility of the authors and do not necessarily
represent the official views of the Qatar National Research
Fund.

Table 1: Descriptions of the circuits used in our experiments.

Circuit # of # of Circuit Garbled
Name Wires Gates Size Circuit size
Adder32 439 375 6,164 29,692
Multi32 12,438 12,374 198,272 941,740
AES-expanded 29,228 27,692 443,616 2,129,716
AES-nonexpanded 33,872 33,616 538,400 2,559,460
Sha-1 107,113 106,601 1,706,288 8,110,544
DES-expanded 31,233 30,401 486,704 2,324,080
DES-nonexpanded 30,441 30,313 485,296 2,306,128
Md5 78,373 77,861 1,246,320 5,926,176
Circuit size and garbled circuit size are shown in bytes.

Table 2: +e elapsed times for one evaluation using both
techniques.

Circuit Technique 1 Technique 2
Adder32 0.0002 0.083
Multi32 0.004 0.1
AES-expanded 0.01 0.173
AES-nonexpanded 0.013 0.195
Sha-1 0.0394 0.528
DES-expanded 0.011 0.181
DES-nonexpanded 0.011 0.169
Md5 0.029 0.37
Time is shown in seconds.

Time conumptions for technique 1, technique 2, and 
FairPlayPF 

And32 And64 Adder32 Adder64 Comparator32
Circuit

0.0001
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Figure 3: Time consumption for technique 1, technique 2, and
FairplayPF.

Table 3: +e distribution of time consumption in technique 2.

Total Garbling Reading Evaluation
Adder32 0.083 0.005 0.0005 0.0006
Multi32 0.1 0.05 0.005 0.005
AES-expanded 0.175 0.11 0.01 0.01
AES-nonexpanded 0.19 0.14 0.01 0.02
Sha-1 0.52 0.42 0.04 0.04
DES-expanded 0.18 0.12 0.014 0.013
DES-nonexpanded 0.17 0.11 0.01 0.01
Md5 0.37 0.29 0.03 0.036
Time is shown in seconds. Reading time is the time required for reading a
circuit from a file. Evaluation time is the time required to evaluate the
garbled circuit.

8 Security and Communication Networks

 2037, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/3042642 by Q

atar U
niversity, W

iley O
nline L

ibrary on [17/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/maanrachid/PFE-SGX


Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is publication was made possible by a grant from the
Qatar National Research Fund (project number NPRP
X-063-1-014).

References

[1] V. Kolesnikov and T. Schneider, “A practical universal circuit
construction and secure evaluation of private functions,” in
Proceedings of the International Conference on Financial
Cryptography and Data Security, pp. 83–97, Cozumel, Mexico,
January 2008.

[2] S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and
N. Asokan, “+e circle game: scalable private membership test
using trusted hardware,” in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security,
pp. 31–44, Abu Dhabi, United Arab Emirates, April 2017.

[3] A. C.-C. Yao, “How to generate and exchange secrets,” in
Proceedings of the 27th Annual Symposium on Foundations of
Computer Science, pp. 162–167, Washington, DC, USA, 1986.

[4] Y. Lindell and B. Pinkas, “A proof of security of Yaoʼ protocol
for two-party computation,” Journal of Cryptology, vol. 22,
no. 2, pp. 161–188, 2009.

[5] V. Kolesnikov and T. Schneider, “Improved garbled circuit:
free XOR gates and applications,” in Proceedings of the In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, pp. 486–498, Reykjavik, Iceland, July 2008.

[6] D. Beaver, S. Micali, and P. Rogaway, “+e round complexity
of secure protocols,” in Proceedings of the Twenty-Second
Annual ACM Symposium on <eory of Computing, pp. 503–
513, Baltimore, MD, USA, May 1990.

[7] V. Kolesnikov, P. Mohassel, and M. Rosulek, “Flexor: flexible
garbling for XOR gates that beats free-XOR,” in Proceedings of
the International Cryptology Conference on Advances in
Cryptology - CRYPTO 2014, pp. 440–457, Santa Barbara, CA,
USA, August 2014.

[8] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a
whole,” in Proceedings of the Annual International Conference
on the <eory and Applications of Cryptographic Techniques,
pp. 220–250, Sofia, Bulgaria, April 2015.

[9] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway,
“Efficient garbling from a fixed-key blockcipher,” in Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy
(SP), pp. 478–492, Berkeley, CA, USA, May 2013.

[10] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams,
“Secure two-party computation is practical,” in Proceedings of
the International Conference on the <eory and Application of
Cryptology and Information Security, pp. 250–267, Tokyo,
Japan, December 2009.

[11] L. G. Valiant, “Universal circuits (preliminary report),” in
Proceedings of the eighth annual ACM symposium on<eory of
computing, pp. 196–203, Hershey, PA, USA, May 1976.
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