
Received May 14, 2020, accepted September 14, 2020, date of publication September 29, 2020, date of current version October 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3027508

Anomalies Detection in Software
by Conceptual Learning From
Normal Executions
AHMAD QADEIB ALBAN, FAHAD ISLAM,
QUTAIBAH M. MALLUHI , (Member, IEEE), AND ALI JAOUA
Department of Computer Science and Engineering, Qatar University, Doha, Qatar

Corresponding author: Ali Jaoua (jaoua@qu.edu.qa)

This work was supported by the Qatar National Research Fund (Member of the Qatar Foundation) under Grant NPRP X-063-1-014. Open
Access funding was provided by the Qatar National Library.

ABSTRACT Could we detect anomalies during the run-time of a program by learning from the analysis
of its previous traces for normally completed executions? In this paper we create a featured data set from
program traces at run time, either during its regular life, or during its testing phase. This data set represents
execution traces of relevant variables including inputs, outputs, intermediate variables, and invariant checks.
During a learning mining step, we start from exhaustive random training input sets and map program traces
to a minimal set of conceptual patterns. We employ formal concept analysis to do this in an incremental
way, and without losing dependencies between data set features. This set of patterns becomes a reference
for checking the normality of future program executions as it captures invariant functional dependencies
between the variables that need to be preserved during execution. During the learning step, we consider
enough input classes corresponding to the different patterns by using random input selection until reaching
stability of the set of patterns (i.e. the set is almost no longer changing, and only negligible new patterns
are not reducible to it). Experimental results show that the generated patterns are significant in representing
normal program executions. They also enable the detection of different executable code contamination at
early stages. The proposed method is general and modular. If applied systematically, it enhances software
resilience against abnormal and unpredictable events.

INDEX TERMS Anomaly detection, functional dependencies, formal concept analysis (FCA), data
reduction, pattern generation, functional dependencies preservation.

I. INTRODUCTION
Data science and machine learning methods offer new meth-
ods for extracting knowledge and reducing big data while
preserving the underlying main concepts in a summarized
form. One may define a program by its preliminary specifi-
cation, and then give a formal verification for its correctness
through a mathematical analysis. But this is not sufficient. A
program-testing step is necessary as the implementation may
not accurately represent the theoretical algorithm because
of programming errors. Even if the program, representing
a mathematically proven algorithm, passes the testing step
successfully, there is no guarantee about its permanent correct
execution. In fact, the program environment might contami-
nate its state, by either transient or permanent errors, or by
malicious external actors, which may cause an abnormal or
unpredictable behavior of the program. In the case of critical

The associate editor coordinating the review of this manuscript and

approving it for publication was Junchi Yan .

systems, these errors, even if they appear once, might provoke
human or environmental disasters.Waiting until the final exe-
cution to judge the correct behavior of such a program is not
sufficient as it cannot undo wrong actions or remove the risk
of unpredictable events. For example, due to damaged elec-
trical signals or radiations, a robot may lose its equilibrium;
an airplane may have a sudden direction change, a pressure
valve may dangerously close in an industrial plant, etc.

During the last two decades, several researchers have built
anomaly detection methods based on feature definition of the
system parameters from which they learn how to recognize
inconsistent or unstable states [1], [2]. On one hand, most
empirical machine learning methods are able to provide lim-
ited accuracy in these methods. But on the other hand, strict
mathematical specification of these systems [3] and their
control states are not easy to handle completely. Some authors
even tried to repair errors in the code [4], [5]. In this paper,
instead of evaluating the state of the program on the basis of
its mathematical specification, we adopt an original machine

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 179845

https://orcid.org/0000-0003-2849-0569
https://orcid.org/0000-0001-6578-8191
https://orcid.org/0000-0001-9639-7679

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

learning approach by mining the features of a program’s exe-
cution traces to recognize future anomalies. First, we incre-
mentally generate some knowledge K containing consistent
reduced conceptual sets of patterns associated with several
correct executions of the program. For each random input,
the program execution generates a set of traces Tr . These
traces Tr are then mapped to a formal context FC that we
include into the global set of patterns in a reduced form (the
knowledgeK). Implicitly, FC represents the list of functional
dependencies between all attributes of the traces generated
by one program execution K [6]–[8]. In this research, for the
learning process, we try to find the minimum set of random
inputs after which the gathered knowledge K becomes stable
enough to be used for discovering anomalies. The stability
of K is measured by the number of new patterns added to it
over its total size after each program execution. In this work,
we propose a novel approach to detect run-time program
anomalies at the earliest stages, by first learning from its
normal completed executions. We also validate the proposed
method on several known algorithms such as sorting, search-
ing, and minimum spanning tree extraction from a graph
(i.e. Kruskal’s approach).

In the following section II, we present the state of the
art about anomalies detection in a program and show to
what extent it is similar to anomaly detection in data.
In section III, we give some background on Formal Con-
cept Analysis (FCA) as an important theoretical foundation
for data analysis and for generating functional dependencies
from formatted data [6], [7]. In section IV, we explain how
we can represent functional dependencies in a formatted
relational database with a formal context in reduced form.
After considering case studies, in section V, we develop a
methodology for anomaly detection in two phases. In the
first phase, we collect the set of patterns K reflecting the
normal behavior of a program. This is built as the union
of all conceptual patterns generated automatically by ran-
dom inputs. In the second phase, we use the set of patterns
K as a reference to find anomalies in the program. In the
same section V, we study the cases of sorting algorithms
[9] and Kruskal algorithm for a minimal spanning tree in a
graph [10]. These cases are used for evaluating our proposed
approach. In section VI, we discuss the general validation of
the proposed method. Section VII concludes the paper.

II. STATE OF THE ART ABOUT ANOMALIES DETECTION IN
PROGRAMS AND DATA
In [11], the authors propose a solution for detecting anoma-
lies in software during its execution, by controlling soft-
ware invariant preservation. The method is interesting but
suffers from the inconvenience that the number of invariants
in a piece of software is high, and their manual extrac-
tion is very time consuming. Authors in [3] wrote: ‘‘ . . . ,
the number of program invariants for large scale software is
usually large, making it unfeasible to monitor all invariants
online. Thus, an effective selection of invariants is essential.
Existing selection approaches are mainly based on the types

of invariants. . . , only invariants related to object read/write
at each method invocation are selected, while . . . the models
created from machine learning approaches are used to rank
the relevance of the invariants to being fault-revealing based
on their types’’. In [12], Jianguang Lou et al proposed a
log file analysis using learning method from data invariant
relations. Recently, other authors proposed generating traces
in amoderate way and checking some invariant, thus avoiding
excessive splits of the program with too many checkpoints.
In [4], Xi Cheng (2016) proposed anomaly detection and fault
localization using run-time state models. In the literature,
we also found research about feature extraction which consti-
tutes a major problem to solve for the learning process [13].
In general, we could not find significant theoretical foun-
dation for an automatic online analysis of software traces.
In this paper, we mapped the problem of program anomalies
detection to mining trace data sets anomalies either during the
program execution or afterwords (i.e. by using a log file).

In an instance of a database, an abnormal object (i.e. row)
is considered an outlier if it does not belong to any significant
cluster, or does not respect some integrity conditions. In the
context of supervised learning on formatted data, an object
that we cannot classify in a particular category is an outlier.
A more accurate definition of anomalies is associated to
the state of the instance of the database as a whole. When
incrementally updated, a database instance which changes its
set of functional dependencies after each additional row is
semantically unstable. It reaches a steady state if the pattern
behind the list of satisfied functional dependencies becomes
stable. This might serve as a measure for future abnormal
states. This definition of a steady state in itself is not obvious
and may only be approximate or used in some particular
assumptions. By analogy, if we consider the list of structured
traces of a program as an instance of a database, we can
use existing machine learning methods for detecting anoma-
lies in databases for finding corresponding anomalies in the
program. However, these methods are not accurate enough
because they are only based on correlations or statistics but
not on exact dependencies as can be observed in the following
two sections.

III. FORMAL CONCEPT ANALYSIS BACKGROUND
In this paper, during the learning phase, we use formal con-
cept analysis for generating patterns from traces in a reduced
form (i.e. knowledge K). An FCA-based algorithm checks
the validity of a trace during the anomaly detection step with
respect to the knowledge K . During the last three decennials,
formal concept analysis theory emerged as a mathematical
background for concepts structure representation of data,
useful for extracting knowledge and finding concepts through
‘‘formal concepts’’ [14], [15]. Since its inception, we found
an increasing number of applications for machine learning,
data analysis, implications, and associations’ extractions.
We use it to build features from texts, and to find some sig-
nificant decreasing importance order of objects or attributes
in a binary context. Recently, it has been applied for context

179846 VOLUME 8, 2020

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

reduction without losing implications corresponding to the
functional dependencies defined between the attributes of
pixels in the image [6], [7].
FCA starts from the philosophical view that a mapping

of a context to a structured space of formal concepts may
approximate real concepts representing texts or general struc-
tured or unstructured data mathematically. From the relativity
of objects defined by conceptual clusters, and the logical
structure behind the hierarchy of concepts, we can extract
implications. It is possible to map most datasets, with differ-
ent ways to a formal context by defining the spaces of objects,
attributes, and a binary relation between these two spaces.
This FCA structure is suitable for categorizing objects and
attributes in a logical way.
Definition 1 (Formal Context): A formal context is a

triplet 〈O,A,R〉, where O is a set of objects, A is a set
of attributes and R, a binary relation linking some objects
belonging to O to some attributes in A: R ⊆ O× A.
Example: Context ‘‘Divides’’, is composed of objects

O as numbers between 1 and 12, represented by the
objects o1, o2,. . . ,o12, and attributes A consisting of
the numbers 1, 2, . . . , 6 represented by the attributes
Attr1,Attr2, . . . ,Attr6, respectively. Where oi and Attrj rep-
resents integer i as an object and integer j as an attribute
respectively.
Definition 2 (Galois Connection): Galois Connection is

defined by two dual operators, γ , and λ:
X ⊆ O,
γ (X) := {α ∈ A|∀o ∈ X : (o, α) ∈ R},
Y ⊆ A,
λ(Y) := {o ∈ O|∀α ∈ Y : (o, α) ∈ R}. γ (X) is the set of all
attributes shared by all objects in X while λ(Y) is the set of
all objects that share all the attributes in Y . The two operators
γ and λ define the Galois connection between sets O and A.
Definition 3 (Formal Concept): A pair (X ,Y) is a formal

concept of the formal context (O,A,R) if and only if: X ⊆
O,Y ⊆ A, γ (X) = Y and λ(Y) = X
Remark:The closure operators γ oλ, and λoγ are important

to build formal concepts, by either completing the set of
objects X , by calculating λoγ (X), or a set of attributes Y ,
by calculating γ oλ(Y).
Illustration: For the context in Fig. 1, we may find here

below all formal concepts:
C1 = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12} x

{Attr1}
C2 = {o5, o10} x {Attr1,Attr5}
C3 = {o4, o8, o12} x {Attr1,Attr2,Attr4}
C4 = {o3, o6, o12} x {Attr1,Attr3}
C5 = {o6, o12} x {Attr1,Attr2,Attr3,Attr6}
C6 = {o12} x {Attr1,Attr2,Attr3,Attr4,Attr6}
C7 = {o10} x {Att1,Attr2,Attr5}
C8 = {o2, o4, o6, o8, o10, o12} x {Attr1,Attr2}
C9 = {}x{Attr1,Attr2,Attr3,Attr4,Attr5,Attr6}
The total number of formal concepts is 9. In Fig. 2, we rep-

resent a line diagram of the lattice of concepts. Each circle
represents a formal concept, and if two concepts are in the

FIGURE 1. Example of a formal context.

FIGURE 2. Lattice of concepts associated to Fig. 1.

two extremities of a line, the concept at an higher position in
the line diagram is "greater" than the one drawn at a lower
position in the same path. Here we define the order relation
between comparable two formal concepts. Let (X ,Y) be a for-
mal concept as in Def. 3.We call X the extension (i.e.domain)
of the formal concept, and set Y its intention (i.e. range). For-
mal concepts {(X1,Y1), (X2,Y2),, (Xn,Yn)} mined from
the formal context (O,A,R) can be structured as a lattice of
concepts. The sub-concept order relation naturally arranges
the formal concepts of a given context into a lattice; the
super-concept relationship is defined by (X1,Y1) ≤ (X2,Y2)
if and only if (X2 ⊆ X1) and (Y1 ⊆ Y2).
Remark: Intentions of concepts in the same line diagram

path increase, while their extensions shrink with respect to
the inclusion order relation.
Definition 4 (Implication Extraction): If (Y ⊆ A), then

A ⊂ γ oλ(A) (i.e. A is strictly included in γ oλ(A)) then A
⇒(γ oλ(A)− A) is an implication extracted from the formal
context (O,A,R). (γ oλ(A) − A) is the additional subset of
attributes co-occurring for all objects sharing attributes A.
A ⊆ γ oλ(A).
Illustration: We apply Galois Connection on the formal

context in Fig. 1, here above, if we assume that Attri means
that, an object is divisible by i, then,

Closure({Attr1,Attr4}) = {Attr1,Attr2,Attr4}
Closure({Attr1,Attr6}) = {Attr1,Attr2,Attr3,Attr6}
Closure({Attr1,Attr2,Attr3}) =
{Attr1,Attr2,Attr3,Attr6}

Closure({}) = {Attr1}
Consequently, we may derive the following implications:
Attr1Attr4 ⇒ Attr2;(1)

VOLUME 8, 2020 179847

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

Attr1Attr6 ⇒ Attr2Attr3;(2)
Attr1Attr2Attr3 ⇒ Attr6;(3)
{ }⇒ Attr1; (4)
Implication (4) means that any object is divisible by 1,

while implication (1) means that any object (i.e. a number
between 1 and 12) divisible by 1, and 4, is also divisible
by 2. Implication (2) means that any object divisible by 6,
and 1, is also divisible by 2 and 3. Implication (3) means
that any object divisible by 1, 2, and 3 is divisible by 6.
By following the line diagram of the lattice of concepts,
to prove implication (1), first you search for the formal
concept with the smallest intention (i.e. range) containing the
premises of the rule. In this case, in formal concept C3
(i.e. any object of the formal context satisfying attributes
{Attr1,Attr4}, satisfies Attr2).
As the number of implications and formal concepts may

grow exponentially in practice, it is not efficient to use the
lattice of concepts for mining big data. In [4], we used the
minimal conceptual coverage of a formal context for a new
conceptual machine learning method, and in [5], we use
"optimal concepts" to find the main topics in a piece of text.
In this research, we used reduction algorithms that reduces a
formal context without any loss of implications based on [16].
By keeping track of a reduced formal context, we guarantee
that we are preserving all functional dependencies between
the different features of the initial trace. In fact, in the next
section, we present recent algorithms for reducing the set of
objects, without losing any implication of the initial formal
context. In [16], we generalized these algorithms to a fuzzy
context and developed an algorithm for reducing such con-
texts without loss of implications within some approxima-
tion. Based on the paper published in 2014 [17], the authors
found a bridge between functional dependencies in the nor-
mal database and a mapped formal context, such that any
implication in the formal context is equivalent to a functional
dependency in the initial database.

By using the reduction algorithm on a formal context
without loss of implications, we found a minimal set of
patterns that represented the initial database. Starting from
these patterns, we are even able to reduce the initial database
without any loss of functional dependencies.

IV. CONCEPTUAL PATTERN EXTRACTION FROM DATA
In [18], Ganter defined a clarified formal context as shown in
Def. 5.
Definition 5: We say that a formal context is clarified if no

two objects intentions are equal, and no two of its attributes
extensions are equal.

In the next section, we give a general definition of a formal
context reduction operator.

A. FORMAL CONTEXT REDUCTION OPERATOR
Definition 6 (Formal Context Reduction): An attribute m

of a clarified context is said to be reducible if there is a subset
of attributes S ⊆ A, not containing m, such that λ(S) =
λ({m}), otherwise it is irreducible. Similarly, an object o of
a clarified context is reducible if there is a subset of objects

FIGURE 3. Fuzzy binary context R1.

FIGURE 4. Fuzzy Galois connection schema.

X ⊆ O, such that γ (X) = γ ({o}). A formal context is called
reduced if all of it’s objects and attributes are irreducible.

In [16] we extended it to a multi-level conceptual
data reduction approach for fuzzy formal contexts, based
on the Lukasiewicz implication definition. ‘‘Let U be
a set, called the universe of discourse. Elements of U
are denoted by lowercase letters. A fuzzy set E =

{x1/v1, x2/v2, . . . , xn/vn} is defined as a collection of ele-
ments xi ∈ U , i = 1 : n which includes a degree of
membership vi = µE (xi) ∈ [0, 1] for each element xi. The
membership degree may also be expressed by a membership
function.
Definition 7 (Fuzzy Binary Context): A fuzzy binary con-

text is a fuzzy set defined on the product of two sets O (set of
objects) and P (set of properties).
Example: Let us consider the fuzzy relation R1 depicted

in Fig. 3. R1 contains four objects {o1, o2, o3, o4} described
by four properties {a1, a2, a3, a4}where the values have been
set randomly.
Definition 8 (Lukasiewicz Based Fuzzy Galois Connec-

tion): Let R be a fuzzy binary relation defined on U . For two
sets X and Y such that X ⊆ O, Y is a fuzzy set defined on
A, and δ ∈ [0, 1]. We define operators γ and λδ , where λδ is
generalization of λ to fuzzy context with precision δ:

γ (X) = {d/α|α = min{µR(g, d)|g ∈ X}, d ∈ A} (1)

λδ(Y) = {g|d ∈ P⇒ (µY (d)→L µR(g, d)) > δ} (2)

where →L stands for the Lukasiewicz implication i.e. for
a, b ∈ [0, 1], a→L b = min(1, 1− a+ b).
For the objects subset X , γ (X) is the fuzzy set of their

common properties since we use themin operation. Similarly,
for the fuzzy subset Y of properties,λδ(Y) computes the set of
all objects that satisfy all properties in Y at a given level δ.
Operators γ and λδ represent a fuzzy Galois connection
between the subsets X and Y as illustrated in Fig. 4.
Definition 9 (Fuzzy Closure Operator): For two sets X

and Y such that X ⊆ O, Y a fuzzy set defined on A and δ ∈
[0, 1]. We define Closure(X) = λδ(γ (X)) and Closure(Y) =
γ (λδ(Y)).

179848 VOLUME 8, 2020

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

FIGURE 5. Reduced objects in the context.

FIGURE 6. Reduced attributes in the context.

In order to simplify the concrete applications, in this paper,
we map the fuzzy context with different precision levels
to a crisp formal context, and then we apply the reduction
operator to it. The reduction algorithm has an interesting
property making it suitable to apply in a commutative or
incremental manner to a formal context. If the algorithm
reduces an element from a subset of the formal context, it is
also removed from any set containing it, and particularly from
the full context.

An attribute m of a clarified context is said to be reducible
if there is a subset of attributes S ⊆ A,,not containingm, such
that λ(S) = λ({m}), then we may remove the attribute m, and
any superset of S satisfying the same condition would have
the same effect.
Example: First we clarify the context by removing

duplicate objects: {o7, o8, o9, o10, o11}. For reduction,
we should remove o1, replaced by {o2, o3} or any superset not
containing o1. We may also remove o2, as might be replaced
by: {o4, o6} or any superset not containing o2.

Finally, we obtain the following set of remaining objects:
As a second step, we try to remove attributes: Attr6 is
reducible because:
λ({Attr6}) = λ({Attr1,Attr2,Attr3}) = {o6, o12}
This reduction might be explained by the fact that any

object dividable by 2 and 3 is dividable by 6, and vice versa.
In Fig. 6, we find the irreducible context.

The irreducible context, should give exactly the same
implications as the initial complete context, to which we
should add:
Attr1Attr4⇒ Attr2; (1)
{ }⇒ Attr1; (4)
To which we should add:
Attr1Attr6⇒ Attr2Attr3; (2)
Attr1Attr2Attr3⇒ Attr6; (3)

B. MAPPING FUNCTIONAL DEPENDENCIES TO
IMPLICATIONS
The suggested pattern-based reduction concentrates on the
representation of conceptual data. First, the input dataset
of the formatted program traces is converted into a binary

FIGURE 7. Proposed reduction method.

FIGURE 8. Converting database instance into a formal context (set of
patterns).

association declared as a formal context. This association is
mapped into binary patterns and then, a part of each pattern
is computed and converted back to the original data. Next
Fig. 7 demonstrates the main steps. The following discussion
describes these steps in more details.

1) CONVERT DATA TO FORMAL CONTEXT
Data is transformed into the formal context by conducting
pairwise comparisons between data rows representing serial
traces as in [7]. Fig. 8 exhibits a database instance (DBI)
that is converted into a formal context FC . As an example,
Rows T1 and T2 are compared for attributes A, B, C , and D.
This comparison is translated into a different object in the
formal context FC with the same attributes, where ‘‘0’’ is
used in case the values are different, and ‘‘1’’ otherwise.
As an example, the value T1(A) = 1 is not equivalent to
T2(A) = 4; consequently, (T1,T2) (A) in the FC is ‘‘0’’.
However, T1(B) = T2(B), and therefore, (T1,T2) (B) in FC
is ‘‘1’’. Every row is also compared to itself giving a same
pattern containing only ones ("1").

One disadvantage of this transformation approach is the
precise matching between numbers, which causes informa-
tion loss. To overcome this problem, a similarity measure
is identified to process the pairwise comparison process
as discussed in [33]. It is computed as follows: Similarity
(n1, n2) = ((1 − (|n2 − n1|)/max(n2, n1)), where n1, n2
are the two numbers to compare. If two numbers are equal
then they are similar with a degree 1. Numbers (3, 4) are
less similar than (1000, 1001), while they both differ by the
same value 1. The reason is that relatively to the maximum

VOLUME 8, 2020 179849

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

FIGURE 9. Mapping FC objects to patterns.

of the two values, 1000 and 1001 are judged more similar
to each other than 3 and 4. Depending on the previous rule,
the percentage of similarity is measured through the pairwise
comparison. In case the similarity between the compared data
values is greater than a defined threshold, then the FC object
value is ‘‘1’’. Otherwise, the value of the FC object is ‘‘0’’.

2) MAP A DATABASE TO BINARY PATTERNS
From the format context FC , we generate the binary patterns.
The number of features existing in FC is equal to the number
of features in the dataset.

As an example, with a format context havingM attributes,
we obtain a binary pattern table of size 2M patterns, where
each tuple of the formal context is associated to one of these
patterns. A counter is attached with each binary pattern, and it
is incremented whenever an object of the FC is mapped with
this pattern. A specific number of FC objects is preserved
per pattern to reduce the memory consumption. Fig. 9 depicts
an example of a binary pattern table (PT) and the counter
table (CT) which are generated from FC with four attributes.
As such, since objects (T3,T6) and (T2,T3) are associated
with the pattern "0010", its corresponding counter value in
the CT will be 2.

V. METHODOLOGY FOR ANOMALY DETECTION
In this section, we start by explaining our investigation con-
cerning how to discover anomalies by using a formal context
that abstracts the knowledge about generated traces in the
program. After a preliminary analysis of generated traces,
in sectionV-A, we develop our proposedmethod for detecting
anomalies in a simple module by employing a learning step.
In section V-B, we generalize it for complex software and for
different number of features.

For anomaly detection, we start by saving the program
traces for a specific input I into a database T . Selected
program state variables are used to represent the database
features. Any anomaly occurrence in the trace is reflected as
an anomaly in T . Therefore, any used method for detecting

FIGURE 10. Execution trace (ET).

FIGURE 11. (a) Reduced formal context (i.e. patterns). (b) Abnormal
program states. (c) Abnormal patterns- case 1. (d) Abnormal patterns-
case 2. (e) Abnormal patterns- case 3. (f) Abnormal patterns- case 4.
(g) Anomaly detected in function Sum.

abnormal instances in a database becomes directly applicable
for programs.
Example:Assume that a program, should calculate the sum

of two numbers X = 9, Y = 7, then a possible algorithm is
to increment X by 1 and decrease Y by 1, until the value of Y
becomes equal to 0, and getting the sum in X :
The execution trace ET should be as in Fig. 10.
Traces in Fig. 10 are mapped to a formal context of patterns

of Fig. 11a.
From patterns in Fig. 11a, we find the only implications:

X H⇒ Y and Y H⇒ X .
An anomaly is detected as soon as we find a new pattern

that could not be reduced to the correct ones in Fig. 11a.
Traces of Fig. 11b are not correct. We can see in Fig. 11c,

the corresponding abnormal patterns containing row (0, 1).
In fact, we may only conclude implication X H⇒ Y , but
not Y H⇒ X .

179850 VOLUME 8, 2020

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

In Fig. 11d, we get an abnormal formal context correspond-
ing to (Y H⇒ X).

We may even obtain the cases of no dependencies,
as in Fig. 11e or Fig. 11f.

For the sum function, when we inject errors that contam-
inate the critical information of the program, we got the
patterns of FC outputs as in Fig. 11g. Critical information
is an invariant condition that the state of the program should
preserve for a correct execution. In the case of function Sum,
X + Y should remain unchanged at the beginning of each
iteration.While increasing X by 1, Y is decreasing by 1,
as shown in Fig.10. We may notice that row (1 0) does not
belong to the correct FC pattern mentioned as in Fig. 11g.
If (X ≥ 0 and Y = 0) we only obtain the row (1 1) included

in the correct FC patterns.

A. A GENERAL ANOMALY DETECTION ALGORITHM
Anomaly detection is modular. Each module in a com-
plex piece of software should go through two stages; first
is the learning phase which generates some knowledge K
describing regular patterns (see section V-A.1), and second
is the regular utilization of K to discover some anomalies at
run-time of the module, and in turn, alert owners about them
(see section V-A.2). In sectionV-B, we give a general descrip-
tion of the method in the context of software engineering life
cycle, and for complex software.

1) THE LEARNING PHASE
The learning phase involves a similar process for eachmodule
in the program. First, we should design the features for mod-
ule tracing to be informative enough about the state of the
program: it should contain whether the input state changed
during execution or not, working variables that might include
some input variables, and incremental solution construction
as in most dynamic programming algorithms. Checkpoints
used to generate the trace should reflect a state change,
or invariant control. During this step, we run the current
module M , using a random data set T , requiring no human
effort. For each input test t belonging to T , we run M ,
generate the list Tr of several traces, and transform it to
a reduced formal context FCt containing all dependencies
between the different features of Tr . Finally, by compiling
incrementally all FCt , for all traces t in T , we generate the
learnt knowledge database K . The learning step is applied for
correct executions of each module M . During the learning
step; we merge all generated patterns corresponding to all
inputs into one set in reduced form. This sample then becomes
our reference for detecting anomalies in the future regular life
cycle of the module.

Let F be the selected set of tracing variables (i.e. features
of the trace) of a module M . Algorithm 1 shows the learning
step.

After a sufficient number ofmodule runs, having combined
multiple patterns to set K , it reaches some stability. Here,
stability is measured as the percentage of non-reduced pat-
terns with respect to the current size of K (i.e. reflecting

Algorithm 1 Learning Step Algorithm for Building Knowl-
edge Database of Patterns K for Detecting Anomalies in a
Given ModuleM
Input: a ModuleM With Input Size n
Output: the Knowledge Dataset of Patterns K

K = empty set;
while K is still not stable do

Let S a new random input of size n;
while not end of execution of module M do

Generate Execution Trace Tr of M for input S ;
Add formal context patterns (FC) corresponding
to Tr into K , using a reduction approach for
checking consistency;

end while
end while

a form of saturation). This constitutes an excellent criteria
to assess the learning process completeness. In the sorting
algorithm example that we use to evaluate our method, we are
able to reach 100% saturation with only a few random input
selections.

Below are several examples about identifying the features
of the traces for some programs:
• In the module calculating the sum of two integers A
and B, the trace is featured by the set F including the
two variables X , and Y . Variable X , (respectively Y)
contains initially the values that the program should add
(i.e.respectively A, and B). X and Y are also the only
used variables in the program starting from the inputs
(i.e. initial values of X and Y).

• For searching for the position of a value x in an array
A of size n, set trace feature F is composed of the input
array A, the searched value x, and any browsing index.
In fact, invariant as array A, and value x, or any constant
in a program represent the most critical information in
a running program. In case of linear search, the index
I is used for comparing in each iteration A[I] with x.
For binary search, we add the lower and upper bounds
limiting the search range.

• If we use an iterative or recursive binary search, the set of
features F should contain the input A, the search value
x, and the indexes, low and high bounding the search
domain in A. Fortunately, as constants and input A are
invariant, during the learning step, they do not increase
the number of patterns, but they are essential to detect
anomalies.

• In sorting algorithms of an arrayB of size n, we changeB
by consecutive swapping of its elements until obtaining
a sorted array B. Set F should contain all positions of
the array (i.e. B0, B1, . . .B9, if the size of array B is 10),
a check of the right swap of two positions x and y using
attribute S in Table 1, is added to the feature. In fact, if all
swaps in an array are correctly executed, then "any array
state is always a permutation of the initial array B": this

VOLUME 8, 2020 179851

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

condition is not sufficient, but it is necessary for program
correctness.

• In the case of Kruskal’s greedy algorithm for extracting
a minimum spanning tree in a graph G = (E,V), a trace
is generated after each selection of an edge from the
graph. The feature F of the trace contains the weight
of the selected edge, the number of edges in variable e,
the number of nodes in variable V , and selected pairs
of vertices so far. Weights of edges should not change
in the program and their loss by contamination is fatal.
As Kruskal algorithm invokes function sorting of the
list of edges in non-decreasing order of their weights,
the control of anomalies should be done separately for
the sorting step.

In general, traces should be generated, mostly inside repeti-
tive statements at each potential change of at least one field of
trace features. As examples, for adding two numbersX and Y ,
using only an increment or a decrease by one, we generate a
trace each time we execute an iteration in the loop.

For linear search algorithm, we generate a trace after each
increase of an index by one. For binary search, we generate a
trace after each update of either the lower or the higher bound
of the searching range. For sorting, we trace after swapping
any two elements of the array to sort.

Table 1 shows knowledge set K for Quicksort, obtained
incrementally from different FCs generated from training
inputs. In fact, the number of patterns for sorting algorithms
built that way, should be mathematically 46. This is what we
obtained after only 10 random inputs, as by then, the set K
becomes stable.

2) DETECTING ANOMALIES
During the normal software life cycle, we discover an
anomaly each time we generate an unknown pattern not
reducible by knowledge K built during the learning step.
A trace is generated of a running module for some input and
a formal context FC is created from it. If a generated pattern
of FC is not reducible by K then it is considered as abnormal.
Users are alerted at real time about it.

In Table 2, we may see an example of Correct Formal
Context corresponding to mined traces of Quicksort algo-
rithm. We also notice that in each row we have only two
‘‘0’’, or all ‘‘1’’ for one case. This means that any row with
more than two ‘‘0’’ is reduced, because it may be replaced
by a concept containing only rows with two ‘‘0’’. This might
be explained logically as well: in fact, pattern (1-2) reflects
a swapping of two elements in the trace 1 giving trace 2.
Pattern (2-3) reflects a swapping of two elements in the trace
2 giving 3, then pattern (1,3) represents the two consecutive
swaps. Together patterns (1-2) and (2-3) represent the concept
corresponding to (1,3) because it included all ‘‘1’’s in (1-2)
and (2-3) only.

In each row, we only have exactly two zeros or all ones
in the last row of the Table 2. By generalization, as we have
10 elements in the array, we have 45 different possibilities
to have only two zeros in a pattern, and one pattern with all

TABLE 1. Knowledge K for quicksort.

TABLE 2. Reduced formal context corresponding to correct quicksort
traces.

features set to one. Thus, with an array of size n, we have
(n(n − 1)/2 + 1) total possible acceptable patterns after
reductions. So all other patterns should either be reduced
or correspond to some anomaly. Therefore, the program has
some anomalies that we could detect online each time the two
compared traces give a non-reducible pattern with more than
two zeros or with only one zero. This result, may be applied
to any sorting algorithm, where a trace is generated each time
we swap two elements.

When the size n = 10, as the last column S is always
set to one, then we may code each pattern by only by the
10 first columns from (B0 to B9). The 46 binary patterns

179852 VOLUME 8, 2020

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

FIGURE 12. General schema about the two steps for learning and detecting anomalies for each module.

TABLE 3. Reduced formal context corresponding to contaminated
quicksort traces.

converted to decimal numbers correspond to the following set
of codes:

Authorized patterns= {255, 383, 447, 479, 495, 503, 507,
509, 510, 639, 703, 735, 751, 759, 763, 765, 766, 831, 863,
879, 887, 891, 893, 894, 927, 943, 951, 955, 957, 958, 975,
983, 987, 989, 990, 999, 1003, 1005, 1006, 1011, 1013, 1014,
1017, 1018, 1020, 1023}.

Represented using 10 bits, each number matches a string of
only two bits equal to zeros or all bits are one (i.e. 1023). This
means that each time we generate a pattern coded by decimal
number P, we only need to check that P belongs to the set
of authorized patterns, that we could do in about the ceiling
of log2(46) = 6, and that feature S is equal to 1. When we
inject errors by damaging the array during program run time,
the following formal context in the Table 3 generated from
the new traces shows an anomaly in row (3,6) with more than
two ‘‘0’’. This might be implemented easily during pattern
generation. We can say that we learnt from normal formal
context as in Table 1, how to detect anomalies for non-similar
generated formal contexts as in Table 3.
In the current subsection, we presented some illustrations

of how our method runs. In the next subsection, we will
present the general methodology for anomalies detection of a
program during run time.

B. THE GENERALIZATION OF ANOMALY DETECTION
In this section, we describe our approach from the software
engineering life cycle perspective. The general method for

anomalies detection is as structured as the software itself in
a modular way. We can see in Fig. 12 the composition of the
two different cycles: Learning step & Anomalies detection
step. For each module of a given class, we extract all needed
features for tracing it during it’s run-time. These features
are mainly composed of inputs, outputs, and final constant
values such as the size of an array, the number of nodes in
a graph, or the value of an input that we are searching in a
list, the number of days in April, or the days of the week if
involved in the module. If the number of features is too high,
it is recommended to select a limited number of features. This
is important in order to get a solution that does not affect the
program performance heavily. For each module, we perform
the following actions for the learning step:
• Trace feature selection with limited size. Adequate fea-
tures extraction should be designed carefully by the
software designers. In fact, if a module calls another
one, input arguments defined by the caller are generally
included in the feature of the called module.

• Run the module with random inputs.
• For each trace, generate the corresponding formal
context FC .

• Reduce FC into the global consistent K of patterns
using the same reduction algorithm, Integrating anomaly
checking in the module.

• Incrementally generate traces with the same selected
features as in the learning step for a new input.

• Generate the corresponding formal context FC incre-
mentally during run-time, if a pattern in FC is not
reduced by the global knowledge K , we alert with an
anomaly.

VI. VALIDATION OF THE METHOD AND ITS LIMIT
The presented method is limited to only finding contamina-
tion related to critical information in the program i.e. the part
of code responsible for the loss of essential data is detected.
For example, the method detects anomalies caused by the

VOLUME 8, 2020 179853

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

TABLE 4. Experimental results of Sum and Quicksort .

contamination of elements in an array during the sorting pro-
cess, or the graph weights in the case of the minimum span-
ning tree program. However, as we assume that the program is
correct, we cannot detect whether it is well designed or not,
or if the solution is correct. In such cases, we might obtain
a false positive due to some algorithm design deficiency. In
fact, as a limit of the proposed approach, we only try to find
anomalies about the program states through some selected
features. We systematically obtain an alert in case of any
sudden change in the controlled invariant data or in the list
of saved partial solutions. As we observed in Table 4, in all
tested cases, whenwe do not inject errors in the programs Sum
or Quicksort , no anomaly is detected. When we inject errors
contaminating the invariant in program Sum, we got 96% of
anomalies detected. ForQuicksort , incorrect swapping of two
elements in an array gives 81.4% of real anomaly detected.
If some values in the array are overwritten, we detect 100%
of these anomalies. Added to the originality to the proposed
learning method compared to other machine learning meth-
ods, it is giving very high accuracy in general. In [1], even
not appliedwith our same tested programs, the learning-based
run-time anomaly detection in software systems detects 70%
of anomalies.

We could not observe a code or data change if it does not
contaminate the state of the program. In that case the program

TABLE 5. Experimental results of Kruskal 1.

TABLE 6. Experimental results of Kruskal 2.

might end with a correct output, as for Kruskal algorithm
when the selected edge is not creating a cycle. The method
only detects a change in the behavior of the program provoked
by a code change or data loss. No alert occurs if the contami-
nation makes a change in the algorithm which is not reflected
in the generated patterns. Through realized experience, with

179854 VOLUME 8, 2020

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

high probability, we recognize a non-reducible pattern in the
proximity of the injected errors either in the code or in the
data.

In Table 5 , for Kruskal algorithm, we got very good
accuracy (100%) with no injected errors, and 100% when
we reversed some conditions. We can also see in Table 6
that accuracy is 96% when we incorrectly changed some
values from 0 to 1 in partial results (i.e. selected edges in
the spanning tree). In the last case, when we removed the
condition checking if the selection of a new edge creates a
cycle or not, and we did not add some invariant verification
in the trace, we got only 23% of true anomalies detected.
Fortunately, after inclusion of invariant preservation tracing,
we got 100% of anomalies detected. Generally in all cases,
the anomalies are recognized almost immediately after the
damaged code or data. Anomalies detection method may be
easily applied for any software in a systematic way, and give
very good accuracy.

VII. CONCLUSION
In this paper, a novel method is presented for early discovery
of program execution anomalies after learning from "initially
correct" program executions. Such anomalies could be intro-
duced by malicious or inadvertent code change, implementa-
tion bugs and software updates that might provoke regression
errors, code security issues, and fatal or transient faults. The
program starts by building conceptual patterns (i.e. knowl-
edge K) as a reduced union set of formal concepts FCs
generated from the program traces applied to random input
sets. The process of building the patterns continues until
stability is reached. Thereafter, the learned knowledge K is
used throughout the program life cycle to find anomalies
during execution. Validation of the method was performed
on several well-known algorithms. The results demonstrate
excellent accuracy either for detecting the normality of the
program execution or anomalies when analysing the traces
generated during program execution.

The modular approach introduced during the software life
cycle gave encouraging results by successfully detecting sev-
eral categories of errors. The design of the trace features
for each module, containing variables representing its inputs,
outputs, and intermediate working variables is important
for accurate anomaly detection. We observed that the most
important features to include are program invariant checks
and permanent persistent data in the program. This study
gives the designer another view about the software while
preparing for featured trace generation. It links tracing to the
software goals.

It is worthwhile for future work to focus on extending
this research to the case of large features, corresponding to
complex software with higher number of inputs and outputs.

REFERENCES
[1] F. Huch, M. Golagha, A. Petrovska, and A. Krauss, ‘‘Machine learning-

based run-time anomaly detection in software systems: An industrial eval-
uation,’’ in Proc. IEEE Workshop Mach. Learn. Techn. Softw. Qual. Eval.
(MaLTeSQuE), Mar. 2018, pp. 13–18.

[2] K. Böhmer and S. Rinderle-Ma, ‘‘Mining association rules for anomaly
detection in dynamic process runtime behavior and explaining the root
cause to users,’’ Inf. Syst., vol. 90, May 2020, Art. no. 101438.

[3] L. Zemín, S. G. Brida, S. Bermúdez, S. P. D. Rosso, N. Aguirre, A. Mili,
A. Jaoua, and M. F. Frias, ‘‘Stryker: Scaling specification-based program
repair by pruning infeasible mutants with SAT,’’ 2019, arXiv:1910.14011.
[Online]. Available: http://arxiv.org/abs/1910.14011

[4] X. Cheng, ‘‘Anomaly detection and fault localization using runtime state
models,’’ M.S. thesis, Elect. Comp. Eng., Univ. Waterloo, Waterloo, ON,
Canada, 2016.

[5] M. Maddouri, S. Elloumi, and A. Jaoua, ‘‘An incremental learning system
for imprecise and uncertain knowledge discovery,’’ Inf. Sci., vol. 109,
nos. 1–4, pp. 149–164, 1998.

[6] E. Rezk, Z. Awan, F. Islam, A. Jaoua, S. Al Maadeed, N. Zhang, G.
Das, and N. Rajpoot, ‘‘Conceptual data sampling for breast cancer his-
tology image classification,’’ Comput. Biol. Med., vol. 89, pp. 59–67,
Oct. 2017.

[7] E. Rezk, S. Babi, F. Islam, and A. Jaoua, ‘‘Uncertain training data set
conceptual reduction: A machine learning perspective,’’ in Proc. IEEE Int.
Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2016, pp. 1842–1849.

[8] S. Al-Maadeed, F. Ferjani, S. Elloumi, and A. Jaoua, ‘‘A novel approach
for handedness detection from off-line handwriting using fuzzy conceptual
reduction,’’ EURASIP J. Image Video Process., vol. 2016, no. 1, p. 1,
Dec. 2016.

[9] C. A. Hoare, ‘‘Quicksort,’’ Comput. J., vol. 5, no. 1, pp. 10–16, 1962.
[10] G. Michael and J. David, Computers and Intractability: A Guide to the

Theory of NP-Completeness. New York, NY, USA: W. H. Freeman and
Company, 1979.

[11] Y. Chen, M. Ying, D. Liu, A. Alim, F. Chen, and M. Chen, ‘‘Effective
online software anomaly detection,’’ in Proc. Proc. 26th ACM SIGSOFT
Int. Symp. Softw. Test. Anal. (ISSTA), Jul. 2017, pp. 136–146.

[12] L. Jian-Guang, F. Qiang, Y. Shengqi, X. Ye, and L. Jiang, ‘‘Mining invari-
ants from console logs for system problem detection,’’ in Proc. USENIX
ATC, 2010, pp. 231–244.

[13] J. F. D. Addison, S. Wermter, and J. MacIntyre, ‘‘Effectiveness of feature
extraction in neural network architectures for novelty detection,’’ in Proc.
9th Int. Conf. Artif. Neural Netw. (ICANN), Sep. 1999, pp. 976–981.

[14] K. Bsaïes, F. Hammami, A. Jaoua, and W. Ksontini, ‘‘May reasoning be
reduced to an information retrieval problem,’’ in Proc. Relational Methods
(RelMiCS), Warsaw, Poland, 1998, pp. 29–32.

[15] B. Ganter, G. Stumme, and R. Wille, Eds., Formal Concept Analysis:
Foundations and Applications (Lecture Notes in Artificial Intelligence),
vol. 3626. Berlin, Germany: Springer-Verlag, 2005.

[16] S. Elloumi, J. Jaam, A. Hasnah, A. Jaoua, and I. Nafkha, ‘‘A multi-level
conceptual data reduction approach based on the Lukasiewicz implica-
tion,’’ Inf. Sci., vol. 163, no. 4, pp. 253–262, Jun. 2004.

[17] J. Baixeries, M. Kaytoue, and A. Napoli, ‘‘Characterizing functional
dependencies in formal concept analysis with pattern structures,’’ Ann.
Math. Artif. Intell., vol. 72, nos. 1–2, pp. 129–149, Oct. 2014.

[18] B. Ganter, G. Stumme, and R. Wille, ‘‘Formal concept analysis: Methods
and applications in computer science,’’ Dept. Math., TUDresden, Dresden,
Germany, Tech. Rep., 2003.

AHMAD QADEIB ALBAN is currently pursuing
themaster’s degree in computer science with Qatar
University (QU). Besides, he is a Research Assis-
tant with the QU on a granted-research project
which aims at the development of a new secure
computer model called the garbled computer (GC)
as well as detecting the anomalies that may occur
in the runtime of the code. His research interests
include cybersecurity, cloud computing, machine
learning, and deep leaning as well as distributed

systems. He is also interested in blockchain and edge data structures.

VOLUME 8, 2020 179855

A. Q. Alban et al.: Anomalies Detection in Software by Conceptual Learning From Normal Executions

FAHAD ISLAM received the B.Sc. degree in
computer science from Carnegie Mellon Univer-
sity. He has worked as a Research Assistant with
Qatar University on a granted research project that
focuses on extracting analytical information from
deep-web databases and automatically construct-
ing new interfaces to assist the user with their
search process. His primary research experience is
in the fields of formal context analysis and data
analysis through machine learning. He has also

experience with software development in various environments such as the
GPGPU, Web, and mobile.

QUTAIBAH M. MALLUHI (Member, IEEE)
received the B.S. and M.S. degrees in computer
engineering from the KFUPM, Saudi Arabia, and
the M.S. and Ph.D. degrees in computer sci-
ence from the University of Louisiana, Lafayette.
He was the Head of the Department from 2006 to
2012 and the Director of the KINDI Center for
Computing Research at the QU from 2012 to 2016.
He is a Professor with theDepartment of Computer
Science and Engineering, Qatar University (QU).

His experience includes serving as a Professor with Jackson State University
and a Research Faculty with the Lawrence Berkeley National Laboratory.
He was the Co-Founder and the CTO of Data Reliability Inc. He has received
several honors and awards including the QU Research Award, the JSU
Technology Transfer Award, the Mississippi MURA, and the JSU Faculty
Excellence Award.

ALI JAOUA received the Engineering degree in
computer science from the ENSEEIHT, Toulouse,
in 1977, and theDr.Eng. and Ph.D. degrees in com-
puter science from the University Paul Sabatier
of Toulouse, France, in 1979 and 1987, respec-
tively. He was a Professor in computer science
at Qatar University from 2000 to 2019, where he
has been an Adjunct Professor/Researcher since
2019, was an Associate Professor in computer sci-
ence at Laval University, Canada, from 1989 to

1992, and a Professor in computer science at Al-Manar University, Tunisia,
from 1995 to 2008, and an invited professor at different universities and
conferences. He was a coordinator of graduate programs for the last six
years. He has published 50 articles in international journals, presented about
100 conferences, and contributed to several books, and is a leader of several
granted research projects. His main research domains are data science and
software engineering. He is a member of the ACM Society.

179856 VOLUME 8, 2020

