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suitable conditions (Allen 1995). They recycle through 
chemical and biological mediators within the water col-
umn and then contribute to bioaccumulation (Wang and 
Chen 2000) and biotransfer (Al-Ansari et al. 2017; Elsayed 
et al. 2020) in the food web. Enriching metals in marine 
sediments is controlled by local hydrography, redox condi-
tions, and biological activity (Smrzka et al. 2019). Heavy 
metals are one of the major anthropogenic pollutants in the 
marine environment, which accumulate mostly in oxides, 
clay, and sulphides (Ruilian et al. 2008). Metals such as 
Cd, Cu, Ba, Ni, and Zn are recognised as significant marine 
contaminants due to their inherent toxicity and prolonged 
persistence in the environment (Huber et al. 2016). Due to 
physico-chemical properties such as particle characteristics, 
precipitation, and adsorption, the deposited sediments are 
considered a major pathway of sink and transporter of heavy 
metals from the seawater (Al-Mur et al. 2017).

Introduction

Metals in sediments have significant roles in marine life 
through their interactions with overlying water (Burden 
et al. 2002). They reach the marine environment through 
natural and anthropogenic sources and tend to deposit in the 
bottom sediments (Zhang et al. 2019). Even though sedi-
ments perform as ultimate sinks for heavy metals, they do 
not always adhere to sediments as they move to the water 
column through several remobilization processes under 
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Abstract
This research investigates the present status and decadal variability of element distributions in the marine sediments off 
Doha, on the east coast of Qatar. Twenty elements were considered from 11 sediment sampling stations and 3 dust sam-
pling stations by grouping them into major elements, toxic elements, and other trace elements. The results show elevated 
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hand, the dust deposits have caused significant contributions to the Al, As, Mg, Ca, Sr, Fe, Zn, and Cd concentrations. 
Decadal variability is evident in element concentrations, which are linked to the urbanisation of the capital city in the State 
of Qatar. The Cu, Ni, V, Zn, and Cd concentrations indicate a notable increase in recent years compared to the last two 
decades, with values of about 20.7, 17.9, 25.0, 25.9, 0.66 ppm in 2022. In contrast, a few other elements fluctuate between 
the decades/years. The results pointed out the increased elemental concentrations in the bay due to the vast expansion of 
infrastructure facilities in the vicinity of Doha Bay in recent years. The Geoaccumulation Index resulted in a slight pol-
lution of Cd, while other elements are unpolluted. The Degree of Contamination reveals low degree of contamination of 
sediments, and the Pollution Load Index illustrates no significant pollution in the sediments off Doha.
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Industrialisation and urbanisation in coastal areas have 
led to a significant rise in metal concentrations within the 
marine environment (Shriadah et al. 2004). In line with the 
increasing urbanisation in maritime countries, the Arabian 
Gulf (hereafter, the Gulf) has also witnessed a substantial 
rise in developments in the last few decades. This has led to 
changes in the coastal morphology and nearshore dynamics 
(Al-Dalamah and Al-Hurban 2019). Reclamation, dredging, 
industrial and sewage effluents, oil pollution, and hypersa-
line water discharges from desalination plants are anthro-
pogenic stressors that contribute to sea degradation in the 
Gulf (Naser 2013; Al-Ghadban et al. 1994). These activities 
contribute to shifts in the Gulf’s ocean circulation patterns, 
impacting the movement of sediments, biological matter, 
and energy (Bishop et al. 2017; Martín-Antón et al. 2016). 
Several aquatic organisms, like benthic organisms, make 
sediment their habitats and provide a storehouse for most of 
the organic and inorganic chemicals, especially toxic chem-
icals, which accumulate through anthropogenic as well as 
natural activities.

The Gulf sediments consist of primarily terrigenous 
materials and carbonates (Sheppard et al. 2010; Basaham 
2010). Heavy metals present in the sewage effluents reach 
the marine sediments through discharges. In the coastal 
regions of GCC nations around the Gulf, wastewater dis-
charges are identified as a major contributor to marine pol-
lution (Naser 2013). Despite stringent sewage treatment 
regulations, a significant volume of untreated domestic 
wastewater has been directly discharged to the marine envi-
ronment through sea outfalls (Al Mamoon et al. 2019a). As 
a result of complex hydrodynamic patterns and dust storms, 
terrestrial runoff, and increased anthropogenic activities, the 
biogeochemical processes in the Gulf are intricate, which 
might alter the stoichiometry of essential elements with det-
rimental effects (Amin and Almahasheer 2022; Elhabab and 
Adsani 2013).

In Qatar, outfalls are situated adjacent to the shore and 
directly discharge the untreated water from stormwater and 
non-stormwater into the sea, especially into Doha Bay (Al 
Mamoon et al. 2019a, 2019b). The wastewater in Qatar 
has been reused for irrigation purposes. On the other hand, 
the groundwater collection and dewatering systems have 
been integrated into the stormwater networks. However, 
there is a potential public health risk to recreational users 
from accumulated pollutants due to shallow depths near 
the stormwater discharge outlets in Doha Bay (Fig. 1). The 
first flush occurs during the initial stage of rainfall after a 
long dry period, which carries the urban runoff with high 
loads of contaminants, and ultimately reaches Doha Bay (Al 
Mamoon et al. 2019a). Consequently, slight contamination 
has been identified in the marine sediments of Doha Bay 
(Al-Naimi et al. 2015).

The morphological and biogeochemical conditions of the 
bay have been frequently modified in the last two decades 
due to population growth, urbanisation, industrial devel-
opments, transportation, anthropogenic activities, natural 
weathering, and other increased developments. Therefore, 
it is important to evaluate the present status of the elemental 
distributions in the marine sediments off Doha to provide a 
comprehensive understanding of the environmental dynam-
ics, shedding light on both natural and anthropogenic fac-
tors influencing the element concentration. This has been 
attained by characterising element concentrations at 11 sta-
tions inside and outside Doha Bay, analysing their spatial 
variability, and assessing their decadal changes by compar-
ing them with earlier investigations. The study analysed 
twenty element concentrations, which have been catego-
rised into major elements: Aluminium (Al), Calcium (Ca), 
Potassium (K), Magnesium (Mg), Sodium (Na), Phospho-
rous (P) and Strontium (Sr); toxic elements: Arsenic (As), 
Cadmium (Cd), Copper (Cu), Chromium (Cr), Zinc (Zn) 
and Nickel (Ni); and other trace elements: Barium (Ba), 
Beryllium (Be), Cobalt (Co), Iron (Fe), Manganese (Mn), 
Vanadium (V) and Titanium (Ti). Earlier studies (Al Naimi 
et al. 2015; Al Mamoon et al. 2019a) assessed the above 
metals and found contaminated levels in a few of them. For 
a useful comparison, these elements have been considered 
in the present investigation. Due to bioaccumulation, toxic-
ity, biomagnification, and non-biodegradability, certain ele-
ments are considered major environmental contaminants. 
In addition, rapid industrialization and economic growth in 
recent years, there has been a significant increase in elemen-
tal concentrations in marine sediments (Mashiatullah et al. 
2013; Sharifuzzaman et al. 2016; Cardoso et al. 2001). With 
the help of historical data obtained from the literature, the 
present study assessed the decadal variability of element 
concentrations off Doha. The study also critically evaluates 
the exceedance of element concentrations compared with 
various sediment quality standards.

The paper has been organised as follows: Sect. 2 describes 
the features of the study area; Sect. 3 briefs the data col-
lection and method of analysis; Sect. 4 highlights impor-
tant results and their discussions, and Sect. 5 concludes the 
interpretations.

Area of study

Qatar lies in the central part of the Gulf (Fig. 1). It is a 
subtropical, arid region with an extremely hot summer 
(May-September) and a moderately cold winter (Novem-
ber-March). Qatar experiences a relatively low annual 
precipitation of 70 mm, which usually occurs during the 
winter season (Projects 2019). Doha Bay is a semi-enclosed, 
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shallow water body in the central Gulf, adjacent to Doha, 
the capital city of the State of Qatar. The adjacent regions 
of the bay are The Pearl and Lusail on the north and Hamad 
International Airport on the south. The bay is approximately 
9 km long, and its maximum width is about 8 km. In the 
present study, we consider a domain that consists of Doha 
Bay, The Pearl, and part of Lusail and their offshore regions 
(17 km × 17 km). Doha Bay, in general, has poor flushing 
characteristics and very high evaporation rates (Price 1992). 

Restricted exchange with offshore waters impacts adversely 
on the physical, chemical, biological, and geochemical 
characteristics of Doha Bay (Al-Naimi et al. 2015). The 
seabed of the bay is mostly silty or muddy (Al Mamoon et 
al. 2020).

The temperature (during the summer) and salinity in the 
bay are generally higher, which strengthens the growth of 
harmful microorganisms. The average seawater tempera-
ture in the offshore regions of Doha during summer and 

Fig. 1 (a) Map of the Arabian Gulf connecting the Arabian Sea, (b) bathymetry of the Arabian Gulf and the Exclusive Economic Zone of Qatar 
(marked by a polygon), (c) the bathymetry of the east coast of Qatar and (d) the sampling and mooring locations in the Doha Bay and offshore
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increased to 150 °C untill approximately 1 mL of the sample 
was left. 1 mL of trace metal grade H2O2 oxidizer (Riedel-
de Haën 30%) was added, and the samples were continued 
to be heated at 150 °C till 1 to 2 mL of the sample was left.

The sides of the tubes were rinsed consecutively with 1 
mL HNO3 and 25 mL of double-distilled deionized (DDI) 
water. The digested solutions were placed back onto the 
HotBlock in the fume hood at 150 °C, and boiled to reduce 
the acid volume until the solution became clear (~ 15mL). 
The sides of the Teflon tubes were rinsed again with 1mL 
HNO3, and the samples were transferred to volumetric glass 
flasks, followed by rinsing the sides of the Teflon tube with 
DDI water. The final volume was brought up to 25 mL by 
adding DDI water. The analysis employs the ICP as a high-
temperature excitation source for the samples. The samples 
were ionized, aerosolized, vaporized, and finally atomized. 
The charged coupled detector monitors the spectra lines at 
specific wavelengths as dispersed by the spectrometer, and 
accordingly the concentrations are determined. The instru-
ment with CRM, PACS3 was used, and analysed the metal 
concentration with a recovery percentage of 71–124%.

Surface dust deposits from flat concrete surfaces (Cor-
niche area) near the outfall were collected using a clean 
brush and dustpan and stored in clean plastic bags for the 
metal analysis. The collected dust samples then underwent a 
drying process in a controlled, clean environment and were 
homogenised using plastic (metal-free) tools. Total acid 
digestion was carried out on a Hot Block in acid-cleaned 
Teflon tubes (Yigiterhan et al. 2018). Following the diges-
tion process, the samples were filtered and subsequently 
transferred into acid-cleaned volumetric flasks. Further, 
the analysis of metals was carried out using a PerkinElmer-
Optima 7300DV ICP-OES.

The grain size distribution of the marine sediment sam-
ples was carried out using the Mastersizer 3000 laser diffrac-
tion particle size analyzer. The samples were sieved using a 
2 mm sieve. Then, the intensity of scattered light was mea-
sured when a laser beam was passed through a dispersed 
particulate sample, and thus the particle size was estimated.

Time series current data were collected at an offshore 
location (M1, 14 m depth) and a nearshore location (M2, 
8 m depth) using an Acoustic Doppler Profiler (ADCP) and 
a Recording Current Meter (RCM), respectively. These 
have been analysed to obtain representative current patterns 
inside and outside the bay. The data at M1 was available 
during 06 Jun-14 Sep 2022, while that at M2 was available 
only for a shorter period (06–09 Feb 2023). In this study, we 
presented the current data for a period of 48 h to illustrate 
the diurnal variations and to discuss their possible links with 
the deposition of heavy metals.

Statistical analyses have been carried out to assess the 
level of contamination through the Geoaccumulation Index 

winter is about 31 °C and 23 °C, respectively, while the 
salinity is about 40 and 40.6, respectively (Al-Ansari et al. 
2022). Effluent discharges, coastal development activities, 
and dredging add up particles in the bay (Yigiterhan et al. 
2018). There are four marine outfalls along the shores of 
the bay, namely, Souq Waqif (O1), Rumailah (O2), Tennis 
Court (O3) and Diplomatic Area (O4) (Fig. 1). The Souq 
Waqif outfall is located adjacent to the Doha Harbour; the 
Rumailah outfall is close to Al-Bidda Park; the Tennis Court 
is along the Khalifa International Tennis and Squash Com-
plex; and the Diplomatic Area is between the West Bay and 
Katara Cultural Village (Al Mamoon et al. 2019a, 2020).

Within the shallow regions of Doha Bay, the currents 
are generally low, of the order of 0.1–0.2 m/s (Lecart et al. 
2024), while they are of the order of 0.3–0.6 m/s in the Doha 
offshore (Hanert et al. 2023). Higher waves generally occur 
along the east coast of Qatar during shamal and nashi wind 
events (Aboobacker et al. 2021a); however, the bay remains 
relatively calm because of fetch limitations and the obstruc-
tion created by its orography.

Data and methods

Sediment samples were collected using Van Veen Grab from 
11 stations off Doha (Fig. 1) during June 2022. For this pur-
pose, the boat owned and operated by the Environmental 
Science Center (ESC) of Qatar University was utilised. The 
nearshore station (S0) is very close to the Rumailah outfall 
(O2), while station S3 is in the mouth of the bay. The sta-
tions S9 and S10 are close to The Pearl, an artificial island, 
north of Doha Bay. The collected samples were carefully 
transferred into acid-cleaned glass jars. They were freeze-
dried under clean conditions for 3 days, grinded at -80 °C, 
and homogenised using the metal-free tool. The samples 
were taken to the Hot Block system for total acid-digestion 
and they were diluted thereafter. Further, the analysis has 
been conducted using the US EPA 6010D method, which 
uses the Inductively Coupled Optical Emission-Mass Spec-
trometer (ICP-OES) to analyse trace elements, and estab-
lishes certain standards for quality control (QC) in terms 
of calibration validity, linear dynamic range (LDR), and 
method detection limits (MDLs). A subset of dried and 
homogenised samples (250 ± 10 mg) was transferred into 
each tube, followed by the addition of reagent grade 3 mL 
HNO3 (Honeywell Fluka 65%) and 9 mL HCl (Honeywell 
Fluka ≥ 30%) (Aqua regia) to each sample. The tempera-
ture of the HotBlock was adjusted carefully, and then tubes 
were placed on the HotBlock in a fume hood with loose 
caps at 95 °C for 30 min. After that, 3 mL of HF (ARIS-
TAR 48%) was added to each sample, and the temperature 
was increased to 135 °C for 1 h. Then, the temperature was 
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The pollution can also be assessed in combination of all 
the elements in condieration through Cdeg and PLI.

The Cdeg is calculated by adding all the Cf:Cdeg =
∑n

k=1Cf

where n is the total number of elements. Cdeg < 7 indi-
cates a low degree of contamination; 7 < Cdeg<14 indicates 
a moderate degree of contamination; 14 < Cdeg<18 indicates 
a considerable degree of contamination; and Cdeg>28 indi-
cates a very high degree of contamination.

PLI is calculated as:

PLI = (Cf1 × Cf2 × . . . .Cfn)1/n

where Cf1 , Cf2, . . . ., Cfn  indicate the contamination fac-
tors of each element in consideration. The PLI > 1 is an indi-
cation of pollution.

Results and discussion

Distribution of metals in marine sediments off Doha

The seabed sediments collected during June 2022 reveal 
varying distributions of metals. Table 1 shows the statistical 
analysis of metals collected from the 11 stations off Doha. 
The spatial variations are well pronounced in most of the 
metal concentrations. The listed toxic elements (Cr, Cu, Zn) 
and other trace elements like Ba, Be, Co, Fe, Mn, V, and 
Ti show higher concentrations at station S0 compared to 
other stations. This station is within 50 m of Rumaila Out-
fall (Fig. 1d). Three outfalls discharge groundwater from the 
city, including storm and non-storm waters, into the bay (Al 
Mamoon et al. 2020). Thus, a partial contribution of some of 
the metals through the outfalls is envisaged. Moreover, low 
current speed and high residence time in the bay (Hanert et 
al. 2023) may allow the accumulation of metals in sediments, 
either from the sources of outfall or from dust deposition. 
The distribution of heavy metals in an aquatic ecosystem is 
heavily influenced by sediment grain size (Al Naimi et al. 
2015). The grain size analysis indicates that the sediment at 
station S0 is mostly silty (with 72% silt, 25% sand, and 3% 
clay), while offshore stations are mostly sandy (50–100%), 
indicating the depositional behaviour of the land-based and 
offshore sources (Table 2). Due to the high particle size of 
sandy sediments, there is a lower accumulation of contami-
nants within the sediments (Wang et al. 2017).

The extremely high concentrations of some of the met-
als in the sediments are further confirmed by their heavy 
concentrations in the dust deposits. For example, the high 
deposition of Al is clearly evident in the marine sediments 
off Doha, with the highest concentration of 9,803 ppm at S1 
(Table 1). The analysis of surface dust deposits (Table 3) 
also indicates that the Al concentration is considerably high 

(Igeo), Contamination Factor (Cf), Degree of Contamina-
tion (Cdeg) and Pollution Load Index (PLI), considering 
toxic and trace elements As, Ba, Be, Cd, Co, Cr, Cu, Fe, 
Mn, Fe, Mn, Ni, V, and Zn. Igeo is used to assess sediment 
contamination, and it is defined as (Muller 1981):

Igeo = log2
[

Cn

1.5 × Bn

]

Where Cn is the concentration of elements and Bn is the 
elemental geochemical background values (Turekian and 
Wedepohl 1961). The level of pollution is determined as 
unpolluted (Igeo < 0), unpolluted to moderately contami-
nated (0 < Igeo < 1), moderately polluted (1 < Igeo < 2), 
moderately to strongly polluted (2 < Igeo < 3), strongly pol-
luted (3 < Igeo < 5), and extremely polluted (Igeo > 5).

The Cf determines the contamination status, which is the 
ratio of element concentration to the geochemical back-
ground values (Hakanson 1980), as given below.

Cf =
Cn

Bn

Then the contamination status is defined as low contami-
nation (Cf<1), moderate contamination (1 < Cf<3), consid-
erable contamination (3 < Cf<6), and high contamination 
(Cf<6).

Table 1 Statistics of element concentrations in seabed sediments of 11 
stations off Doha
Elements Concentration (ppm)

Min Max Mean Standard 
Deviation

Al 2,989 (S6) 9,803 (S1) 6,500 2,515
As 1.17 (S5) 4.11 (S9) 2.56 1.04
Ba 7.35 (S6) 105 (S0) 27.7 28.3
Be 0.010 (S4) 0.21 (S0) 0.085 0.062
Ca 121,044 (S0) 276,781 (S8) 232,753 44,840
Cd 0.33 (S0) 0.66 (S3) 0.52 0.099
Co 0.33 (S8) 1.77 (S0) 0.99 0.53
Cr 2.44 (S8) 33.2 (S0) 13.3 9.73
Cu 0.11 (S6) 20.7 (S0) 4.82 5.88
Fe 232 (S8) 4,580 (S0) 1,972 1,473
K 500 (S5) 3,366 (S9) 2,050 1,103
Mg 3365 (S8) 22,218 (S0) 9,719 5,239
Mn 2.80 (S8) 63.0 (S0) 28.2 21.3
Na 13,091 (S5) 19,559 (S9) 16,314 2,409
Ni 4.34 (S8) 17.9 (S7) 11.4 5.65
P 105 (S0) 393 (S7) 226 76.4
Sr 559 (S0) 5,368 (S5) 3,383 1,277
V 1.85 (S8) 25.0 (S0) 8.46 6.77
Zn 0.23 (S6) 25.9 (S0) 6.98 7.37
Ti 20.1 (S6) 388 (S0) 186 138
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including corals, outside Doha Bay. The recent decade has 
witnessed considerable degradation in the coral communi-
ties in Qatar (Burt et al. 2023).

The K concentration in the sediments off Doha varies 
between 500 and 3,366 ppm (Table 1). In the oceanic crust, 
due to the presence of basalts, the concentration of K is gen-
erally elevated (White and Klien 2014). The marine sedi-
ment may contain approximately 18,000 ppm of K (Plank 
2014). Compared to this, the K concentration off Doha is 
relatively low. The maximum observed concentration of Mg 
in the sediment is 22,218 ppm at S0, and in the dust sam-
ples, it is 23,126 ppm (Table 3). These results show that dust 
has significantly contributed to the elevated concentration 
of Mg in the marine sediments off Doha. However, long-
term deposition through the outfalls may also add Mg to the 
seabed sediments in the vicinity of the outfalls. Yigiterhan 
et al. (2018, 2020) reported that the Mg concentration in the 
Qatari dust is about 1.9 times higher than that in the upper 
continental crust. The highest observed Na concentration in 
the sediments is 19,559 ppm at S9. The dust supplies a Na 
concentration of 10,702 ppm to the seawater (Table 3). This 
indicates that the dust contributes to the elevated Na con-
centration in the sediments off Doha. Another major process 
of sodium enhancement in sediments is ion exchange, when 
clays absorb Na in exchange for Ca that is released into the 
ocean water. There are also minerals with crystal structures 
that absorb sodium from the sea water (Buick et al. 1995).

The concentration of Sr is the highest at S5 (5,368 ppm), 
which is an offshore region (Table 1). Sr is enriched in dust 
and seabed deposits (Yigiterhan et al. 2018). The concen-
tration of Sr in the dust sample reaches up to 1,028 ppm 
(Table 3). There is spatial consistency among all the sta-
tions, except at S0. The Sr concentration is the lowest at S0 
(559 ppm). This is because of the limited sediment transport 
in the vicinity of S0 under weak hydrodynamic conditions. 
Among the stations, the highest concentration of titanium 
(Ti) is observed at S0 (388 ppm), which is near the outfall. 
The effluents from the aerospace and automotive indus-
tries, stormwater runoff, sewage effluents, and manufactur-
ing processes may have caused the deposition of titanium 
(Hauser-Davis et al. 2020). The presence of organic matter 
and the low availability of phytoplankton in the region may 
have contributed to the moderate concentration of phos-
phorous (P) in the sediments. The highest concentrations of 
Ba, Cr, and V are 105, 33.2, and 25 ppm, respectively, at 
S0, which are also coming from various industrial sources 
through the outfalls.

Trace metals such as Fe, Mn, Co, Cu, Cd, Ni, and Zn 
are essential micronutrients for primary producers and play 
a critical role in marine biogeochemical cycles (Seo et al. 
2022). However, they are highly toxic at high concentra-
tions. The anthropogenic sources of Co are related to oil 

(23,929 ppm), mainly driven by the dust transported by 
strong shamal winds (Yigiterhan et al. 2020). Similarly, the 
As concentration in the sediment is the highest at S9 (4.11 
ppm). The surface dust deposit indicates a concentration of 
up to 3.45 ppm onshore. The highest concentration of Ca in 
surface dust deposits in the vicinity of the outfalls is 73,917 
ppm. This is consistent with the previous investigations of 
dust concentrations in Qatar (Yigiterhan et al. 2020). The 
dust reaching the seawater ultimately adds the particles into 
the seabed sediments, and this is evident from the highest 
concentration of Ca (276,781 ppm) observed at S8. Calcium 
is the major element concentration in Qatar’s outdoor dust. 
The highest concentration of Ca in the sediment also indi-
cates the degradation or bleaching of calcified organisms, 

Table 2 Grain size distribution of sediments of 11 stations off Doha
Station Sand (%) Silt (%) Clay (%) Sediment type
S0 24.7 72.2 3.11 Sandy silt
S1 70.3 28.3 1.36 Silty sand
S2 40.9 56.4 2.73 Sandy silt
S3 66.7 31.4 1.87 Silty sand
S4 98.6 1.43 0 Sand
S5 100 0 0 Sand
S6 100 0 0 Sand
S7 51.9 45.7 2.47 Silty sand
S8 100 0 0 Sand
S9 29.5 66.2 4.35 Sandy silt
S10 72.1 26.6 1.3 Silty sand

Table 3 Concentration of elements from surface deposits near the out-
falls
Elements Concentration (ppm) at stations

O1 O2 O3
Al 23,929 14,321 12,660
As 3.45 2.30 1.60
Ba 239 153 91.1
Be 0.44 0.25 0.20
Ca 58,180 65,724 73,917
Cd 0.04 0.03 0.01
Co 2.00 1.27 2.41
Cr 32.8 28.1 40.3
Cu 7.67 8.44 11.6
Fe 7,710 5,792 7,125
K 10,668 7,421 5,672
Mg 8,062 16,028 23,126
Mn 166 122 165
Mo 0.98 0.21 0.65
Na 6,929 10,702 7,465
Ni 18.4 15.1 21.4
P 82.6 84.1 189
Pb 0.46 5.43 0.00
Sr 867 970 1,028
V 27.8 22.1 27.5
Zn 15.4 24.8 108
Ti 1,053 702 780
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Fig. 2 Typical current speed and direction in the offshore region (a) and inside the Bay (b)
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of 0.6–1.0 m/s during high wind or spring tide conditions 
(Fig. 2). The mean current speed in the bay is 0.06 m/s, while 
that offshore is 0.33 m/s. The current directions within the 
bay are predominantly W/NW during flood tide and NE/E 
during ebb tide. Whereas the current directions in the off-
shore fluctuate between NNE and SW, which do not follow 
the tidal patterns precisely, as the currents are dominated by 
winds. Although the data represent two different seasons, 
seasonal variations in current speeds are not robust between 
M1 and M2 compared to the changes that occurred due to 
the bathymetric effects. It is evident that the winter experi-
ences higher winds compared to the summer (Aboobacker 
et al. 2021b), but that is not reflected in the current speeds 
at M2. In general, the low hydrodynamic and weak wave 
conditions within the bay together enable high residency 
for the contaminants entering the bay through the outfalls. 
Although limited concentrations of the elements are con-
sumed by the organisms due to biogeochemical interactions, 
a good quantity still remains in the surface sediments. This 
may lead to contamination of sediments and water in the 
long run unless control measures are taken to minimise the 
heavy metal discharge through the outfalls.

Temporal variability of elemental distributions off 
Doha

The variability of the element concentrations off Doha has 
been assessed by comparing the present values (maximum 
values) with those of earlier studies spread over more than 
2 decades (3 of them with approximately 10–11 years inter-
vals). This includes the data from 2000 to 2001 (De Mora et 
al. 2004), 2012 (Al-Naimi et al. 2015), 2016 (Al Mamoon 
et al. 2019a), and 2022 (the present study). A few param-
eters, which were not studied in the earlier works, have been 
ignored in the comparison. The results indicate that there is 
decadal variability in the elemental concentrations off Doha, 
with relatively higher concentrations in all the parameters 
during 2022 compared to 2012 (Al-Naimi et al. 2015). The 
concentrations of toxic elements Cr, Cu, Ni, and Zn have 
increased to 124%, 223%, 107%, and 75%, respectively, 
during this decade (Fig. 3). The highest concentrations of 
Cr, Cu, and Zn are found at Stn. S0, close to the Rumailah 
outfall. Compared to 2000–2001 (De Mora et al. 2004), the 
concentrations of Cr and Ni in 2022 have decreased by 19% 
and 24%, respectively, while the concentration of Cu has 
increased to 158%. These differences indicate that the con-
centrations of elements in surface sediments off Doha have 
been significantly modified over the decades. The higher 
increment in these element concentrations in the pres-
ent day is attributed to their accumulation over the years 
through the continuous discharges at the outfalls. The con-
centration of Cu has shown a marginal exceedance over the 

spills, boat traffic, and industrial wastes (Vetrimurugan et 
al. 2016). Co and Zn are the most frequent contaminants 
in agricultural activities, pesticides, industrial wastes, and 
anthropogenic inputs, including sewage sludge discharges, 
domestic discharges, and antifouling paints, that accumulate 
in marine waters (Looi et al. 2013). We find these elements 
in the marine sediments off Doha in definite concentrations. 
The Co concentrations measured off Doha are lower than 
those found in the central and northern parts of the Gulf 
(Sara et al. 2022), and on Amazonian oceanic beaches (Vil-
hena et al. 2021). The Mn concentration in the sediment 
reaches up to 63 ppm, while in the surface dust deposit, it 
reaches up to 166 ppm. This indicates that dust is the main 
source of Mn in the marine sediments off Doha. This is con-
sistent with the observations of Yigiterhan et al. (2020), in 
which they identified atmospheric dust as the main source of 
a few heavy metals in suspended particulate matter sampled 
in the Exclusive Economic Zone of Qatar. Compared to 
other coastal regions, including the northern part of the Gulf 
and along the southeast coast of India, the Mn concentration 
measured off Doha is relatively low (Ahmed and Abdel-
Moati 2003; Bramha et al. 2014). Cadmium is considered 
a highly toxic element. The Cd concentration in Doha Bay 
is 0.33–0.66 ppm, which is consistent with the measured 
values in Toulon Bay, France (Layglon et al. 2022) and is 
within the threshold limits. When we compare the recent 
research conducted north of Doha (Lusail), the concentra-
tions of Co, Cd, Ba, V, Mn, and Ni are found to be higher, 
and those of Cu, Cd, and Al are lower (Afzal et al. 2023), 
but As and Fe are consistent.

The concentration of toxic elements like Cu, Zn, Cd, 
and Ni in the marine sediments off Doha is relatively lower 
than those measured along the Red Sea coast (Saleh 2021), 
the Sea of Oman (Agah et al. 2016), the east coast of India 
(Brahma et al. 2014), and the Mediterranean Sea (Zohra and 
Habib 2016). However, the concentrations of Cu, Fe, Co, 
Cr, Mn, Ni, and Zn are relatively higher compared to those 
reported along the northeast coast of Qatar (Basaham and 
Al-Lihaibi 1993). The concentrations of Cu and Ni mea-
sured at Halul Island, Qatar (SARC 1994), are consistent 
with those measured off Doha. The increased levels of Zn 
and Cd could be attributed to the dust found in the Gulf 
(Yigiterhan et al. 2018).

The semi-enclosed and shallow coastal settings of Doha 
Bay reduce the severity of easterly waves generated by 
nashi winds (Aboobacker et al. 2021a). Although strong, 
northerly shamal winds have little influence in the bay due 
to fetch limitations. Therefore, the waves experienced in 
the bay do not feel the bottom in most cases, and thus the 
re-suspension is not vivid. The measured currents indicate 
the current speeds are very low (below 0.15 m/s in most 
cases) inside the bay, while those offshore are of the order 
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(Abu Khatita 2011). Domestic sewage, industrial wastes, 
ship paints, and fertilisers are the most frequent sources of 
Cd contamination (Watts et al. 2017).

The maximum concentrations of Al fluctuate among dif-
ferent years, with the highest observed values during 2016 
and the lowest value in 2012 (Fig. 4). Compared to 2016 
observations (Al-Mamoon et al. 2019b), Al concentrations 
are low in 2022. Dust contributes to the higher levels of 
Al found in the sediments of the bay due to extensive con-
struction activities in Qatar prior to the FIFA 2022 World 
Cup. Nonetheless, the Al concentrations obtained off Doha 
are far below thresholds such as PAHDC of 32,206 ppm 
(Abu Khatita 2011) and lower than those obtained off the 
Dammam coast (Mahboob et al. 2021). Compared to 2012 

US EPA threshold of 18.7 ppm (US EPA 1996), while it 
is within the limits of TEL (Mac Donald et al. 1996), and 
PEL (CCME 1995). The observed concentrations of Cr, Zn, 
and Ni are within the internationally recognised standards 
(Mac Donald et al. 1996; ADS 2018). The highest As con-
centration was observed during 2000–2001 compared to 
other years. The leaching of industrial wastes and domestic 
sewage contributed to the As concentration (Mahboob et al. 
2021). Whereas, the concentrations of As and Co obtained 
are below the threshold limits of 7.24 ppm and 10 ppm, 
respectively, as per the Canadian interim sediment quality 
guidelines (ISQG) (Ccrem 1987). The Cd concentration 
progressively increased from 2000 to 2022, from 0.08 to 
0.66 ppm (de Mora et al. 2004; Al Naimi et al. 2015); how-
ever, it is below the effective range low (ERL) of 1.2 ppm 

Fig. 3 Variation of Cr, Cu, Ni and Zn (top), and As and Cd (bottom) concentrations in sediments during the last two decades
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of Doha prior to FIFA 2022. Among the two decades, the 
highest concentrations of V and Co were observed during 
2000–2001 (De Mora et al. 2004), which were higher than 
those observed in 2012 (Al-Naimi et al. 2015) by 38% and 
62%, respectively. The observed V concentration is within 
the chronic benchmark for aquatic life (Buchman 2008). The 
authors of recent studies (Al Naimi et al. 2015; Al Mamoon 
et al. 2019a, 2020) reveal that the discharge from the outfall 
is a major contributor to the contaminants. However, fur-
ther studies are recommended for a detailed investigation of 
metal analysis in Doha Bay sediments.

In general, the increase in concentration of a few ele-
ments in the marine sediments off Doha in recent years, 
as identified, is attributed to the increased developments 
and population growth in the State of Qatar. The ecosys-
tem services are largely affected by such a change in metal 
concentrations, along with the influence of other factors in 
the marine environment. Land reclamation activities, which 
are frequently observed in the region, have been found to 
intensify the impacts, leading to the requirement for strate-
gic interventions to alleviate the adverse consequences on 
the marine environment (Al Naimi et al. 2018). However, 
the State of Qatar has taken various measures to protect 
some of the world’s most critically endangered species and 
supports many uniquely adapted organisms (Richer 2008). 
Mangrove forests are one of the best sinks for carbon and 
the development of coastal habitats (Gu et al. 2022). The 
State of Qatar has initiated a programme for large-scale for-
estation of mangroves along the Qatar coast.

observations (Al Naimi et al. 2015), K concentration is 
slightly higher in 2022.

Decadal variability of other trace elements like Be, Ba, 
Co, Mn, Fe, and V is evident in the marine sediments off 
Doha (Fig. 5). Ba and Mn concentrations off Doha vary over 
the decades (Fig. 5). We observed a maximum of 105 ppm 
only in 2022, which is higher than the values observed by 
Al Naimi et al. (2015). However, it is within the limits of 
the Dutch standard target value of 160 ppm (Dutch Stan-
dards 2000). As Ba is an abundant metal in the earth’s crust, 
due to the natural weathering of rocks, it accumulates in 
marine sediments (Fischer and Puchelt 1972). Barite is the 
principal component of drilling mud (around half the dry 
weight) (Neff 2008). The concentration of Mn in 2022 is 
marginally higher than that measured in 2012; however, it is 
lower than that of 2000–2001. Mn concentrations obtained 
in this region are far below threshold values such as TEL 
(1081 ppm) (Persaud et al. 1993). The concentration of Be 
obtained in 2022 is higher than that found in 2012 (Al Naimi 
et al. 2015). The Be can reach marine waters from treated 
wastewater effluents or by air by through the combustion 
of coal or fossil fuels (Bolan et al. 2023), however, such 
sources are limited in Qatar. It is reported that the highest Fe 
concentrations generally occur in the waters near the desert 
regions, including the Gulf and Red Sea (Mahboob et al. 
2021; Fung et al. 2000; Boyko et al. 2019). In Doha Bay, the 
Fe concentration is highest in the vicinity of the Rumailah 
outfall, which is consistent with earlier observations (Al-
Mamoon et al. 2019b). However, the year 2016 recorded the 
highest Fe concentration among the different years reported. 
This is in alignment with the elevated concentration of Al as 
well, due to increased development activities in the vicinity 

Fig. 4 Variation of Al and K concentrations in sediments during the last two decades
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Fig. 5 Variations of Be and Co (top), Ba, Mn and V (middle) and Fe (bottom) concentrations in sediments during the last two decades
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The PLI estimated from all the elements in consideration 
falls below 1, which is referred to as an unpolluted condi-
tion (Table 5). In general, the statistical analysis reveals that 
Doha Bay and its surroundings maintain an unpolluted sta-
tus. The Igeo, Cf, Cdeg, and PLI values point towards mini-
mal contamination for most elements analysed, indicating 
that these sites are generally free from significant pollution. 
However, Cd stands out as the primary element of concern 
due to its relatively higher contamination levels compared 
to other elements. Despite the moderate contamination fac-
tors for Cd, the measured concentrations remain lower than 
the SQGs, USEPA and European Community (EC) thresh-
olds (Aikaterini et al. 2010). The alignment with the inter-
national standards demonstrates that, although Cd exhibits 
moderate contamination, it does not pose an immediate or 
significant threat to the marine ecosystem. The PLI further 
supports the inference that the sites are generally unpol-
luted. Compared to international standards, the measured 
Cu off Doha has shown some exceedances. However, the 
statistics on cotamination highlight minimal levels of Cu 
contamination in the sediments off Doha.

Statistics on sediment contamination

The toxic and trace elements in the sediments off Doha are 
mostly at an unpolluted level, as the caluated Igeo is nega-
tive, except for Cd (Table 4). At S0 and S5, the Igeo of Cd 
is negative, indicating no pollution. In all other stations, the 
Igeo of Cd is between 0.02 and 0.17, which can be referred 
to as slightly polluted. This is consistent with other regions, 
such as Izmit Bay in Turkey (Tan and Aslan 2020), but 
lower than that found in the Yanbu and Alwajh areas of the 
Red Sea (El-Sorogy et al. 2021; Youssef et al. 2020).

The Cf estimated for the toxic and trace elements, except 
for Cd, is less than 0.5, which is generally categorised under 
low contamination (Table 5). However, the Cf estimated for 
Cd in all the stations is in the range of 1.1–2.2, which is 
classified as moderate contamination. But the overall Cdeg 
estimated in combination of all elements is in the range of 
1.66–3.4, which is classified as a low degree of contamina-
tion. A recent study conducted in the Al-Khafji area of the 
Gulf reveals Cdeg in the range of 5.7–11.0 (Alharbi et al. 
2023). Such moderate levels of Cdeg are found at Izmit Bay 
as well (Tan and Aslan 2020).

Table 4 Geoaccumulation Indices (Igeo) calculated for various elements in the sediments off Doha
Stations Elements

As Ba Be Cd Co Cr Cu Fe Mn Ni V Zn Ti
S0 -1.03 -0.92 -1.33 -0.13 -1.21 -0.61 -0.51 -1.19 -1.31 -0.77 -0.89 -0.74 -1.25
S1 -0.69 -1.27 -1.54 0.07 -1.26 -0.82 -0.99 -1.38 -1.39 -0.81 -1.23 -1.17 -1.34
S2 -0.81 -1.54 -1.70 0.09 -1.34 -0.89 -1.11 -1.42 -1.47 -0.84 -1.27 -1.25 -1.37
S3 -0.77 -1.54 -1.70 0.17 -1.31 -0.95 -1.07 -1.48 -1.58 -0.84 -1.32 -1.25 -1.51
S4 -1.09 -2.02 -2.65 0.03 -1.71 -1.56 -2.45 -2.13 -2.16 -1.28 -1.77 -2.12 -2.33
S5 -1.22 -2.03 0.00 -0.04 -1.88 -1.56 -2.15 -2.06 -2.32 -1.32 -1.94 -2.56 -2.47
S6 -1.15 -2.07 -2.35 0.03 -1.92 -1.69 -2.79 -2.38 -2.53 -1.36 -1.96 -2.79 -2.54
S7 -0.88 -1.51 -1.57 0.11 -1.39 -0.82 -1.13 -1.30 -1.46 -0.76 -1.23 -1.18 -1.35
S8 -1.00 -1.96 -2.35 0.02 -1.94 -1.74 -2.16 -2.48 -2.66 -1.37 -2.02 -1.98 -2.15
S9 -0.68 -1.53 -1.61 0.12 -1.34 -0.89 -1.06 -1.41 -1.55 -0.81 -1.28 -1.20 -1.40
S10 -0.78 -1.74 -1.95 0.15 -1.56 -1.10 -1.47 -1.76 -1.87 -1.00 -1.55 -1.60 -1.71

Table 5 Contamination factor (Cf), Degree of Contamination (Cd) and Pollution Load Index (PLI) calculated for various elements in the sediments 
off Doha
Stations Elements Contamination factor (Cf) Cd PLI

As Ba Be Cd Co Cr Cu Fe Mn Ni V Zn Ti
S0 0.14 0.18 0.07 1.10 0.09 0.37 0.46 0.10 0.07 0.25 0.19 0.27 0.08 3.39 < 1
S1 0.31 0.08 0.04 1.77 0.08 0.22 0.15 0.06 0.06 0.23 0.09 0.10 0.07 3.20 < 1
S2 0.23 0.04 0.03 1.83 0.07 0.19 0.12 0.06 0.05 0.22 0.08 0.08 0.06 3.07 < 1
S3 0.25 0.04 0.03 2.20 0.07 0.17 0.13 0.05 0.04 0.22 0.07 0.08 0.05 3.40 < 1
S4 0.12 0.01 0.00 1.60 0.03 0.04 0.01 0.01 0.01 0.08 0.03 0.01 0.01 1.96 < 1
S5 0.09 0.01 0.00 1.37 0.02 0.04 0.01 0.01 0.01 0.07 0.02 0.00 0.01 1.66 < 1
S6 0.11 0.01 0.01 1.60 0.02 0.03 0.00 0.01 0.00 0.06 0.02 0.00 0.00 1.88 < 1
S7 0.20 0.05 0.04 1.93 0.06 0.22 0.11 0.07 0.05 0.26 0.09 0.10 0.07 3.26 < 1
S8 0.15 0.02 0.01 1.57 0.02 0.03 0.01 0.00 0.00 0.06 0.01 0.02 0.01 1.91 < 1
S9 0.32 0.04 0.04 1.97 0.07 0.19 0.13 0.06 0.04 0.23 0.08 0.10 0.06 3.32 < 1
S10 0.25 0.03 0.02 2.13 0.04 0.12 0.05 0.03 0.02 0.15 0.04 0.04 0.03 2.95 < 1
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needed on the anthropogenic influx of certain elements to 
safeguard the region from possible pollution.
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