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Abstract

Shale reservoirs are highly complex and are difficult to study using conventional

reservoir simulation tools. This study introduces a novel methodology for

estimating production from complex shale gas reservoirs by coupling decline

curve analysis (DCA) with computational fluid dynamics (CFD) simulations.

The proposed method uses exponential DCA to analyze production data from

a dual porosity–permeability shale gas transport model. These complexities

include fracture characteristics, geomechanical properties, nanopore confine-

ment effects, and multiple flow mechanisms contributing to the total production

performance. The shale gas transport model is validated through historical pro-

duction data from Marcellus shale. The new methodology also tests fracture

characteristics. It shows that increased porosity and permeability will increase

the recoverable reserves but will have varying effects on the decline rate. The

paper demonstrates the advantages of the proposed methodology over conven-

tional reservoir simulation tools. It provides insights into the factors affecting

shale gas production performance through the inclusion of the complexities

of an unconventional shale gas reservoir. The paper provides a proof of concept

on the particular reservoir of which the field data is provided—Barnett and

Marcellus Shale.
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1 | INTRODUCTION

Shale gas reservoirs are unconventional hydrocarbon
resources that have become increasingly important due to
advancements in hydraulic fracturing and horizontal dril-
ling technologies.[1] The shift towards unconventional
resources is observed globally, notably in the USA, China,

Russia, Canada, and others.[2] These technologies have
made it possible to extract hydrocarbons from shale forma-
tions that were previously uneconomical to produce. The oil
and gas industry focuses on these unconventional reservoirs
due to their abundance and lower overall expenditure.[3]

Shale gas reservoirs are known for their complexity
due to several factors, such as the presence of nanopores,
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vast heterogeneity in rock morphology, and natural
fractures.[4] Due to these complexities, conventional
means of reserve estimation typically underestimate or
overestimate the asset. The presence of nanopores and
organic matter kerogen may influence the estimation of
the original gas in place as it is present as an adsorbed
gas.[5–7] Shales are characterized by very low porosity
(typically less than 5%) and very low permeability
(usually less than 1000 nD), which make them challenging
for the recovery of economically viable hydrocarbons.[8,9]

Increased porosity is attributed to the number of natural
fractures. The mode of production from organic pores
would be dominated by desorption and diffusion, while
diffusion is observed in inorganic pores. Furthermore, the
nanoscale aspect of these types of pores does not conform
to the conventional transport model defined by Darcy’s
law; therefore, the estimation of the production data is not
accurate. The presence of natural and hydraulic fractures
further adds to the complexity of the flow in these types of
reservoirs.[10] These fractures are on a micropore scale,
represented by Darcy flow; however, they must be coupled
to the transport model in the shale matrix to estimate
production from these reservoirs accurately.

Fundamental flow mechanisms in these types of
reservoirs are characterized as a non-Darcy flow regime,
which is non-linear. As mentioned, diffusion (Knudsen
and surface), desorption, viscous, and slip flow are
dominantly observed in nanopores. The gas stored in
shale reservoirs is generally determined to be either free
or adsorbed. Both quantities are related to a particular
flow mechanism, such as free gas being transported
through the surface and Knudsen flow, and in macropores,
through slip and viscous flow. In comparison, adsorbed gas
turns to free gas by reducing pressure in the matrix by
desorption and diffusion.[11]

Various models are implemented, ranging from
molecular simulations to provide an understanding of
flow mechanisms and their weightage in the estimation
of reserves, implementation of confinement effects,
pore network modelling, and modifying the continuity
equation by implementing different flow mechanisms
and permeability correction (apparent permeability
models) in the mass continuity equation.[3,12–15] The
addition of apparent permeability models and the influence
of different flow mechanisms are simpler and more
accurate than other proposed models in the literature.
However, it is recognized that fracture–matrix interaction
has associated challenges. Micheal et al.[16] studied such
interaction of both hydraulic and natural fractures with
matrix by implementing a coupled dual porosity gas
transport model with geomechanics of the formation by
utilizing the discrete fracture model (DFM). The presence
of both hydraulic and natural fractures provides a positive

effect on production performance. Real field data from
reservoirs, such as Marcellus Shale and Barnett Shale,
validate these models.[16]

The complex gas transport mechanisms affect the
production performance and gas reserve estimation.
Decline curve analysis (DCA) is a simple and widely used
technique for forecasting future production rates from
historical data. Still, it has limitations when applied to
shale gas reservoirs, such as assuming constant pressure
and neglecting adsorption/desorption effects. Shale gas
transport models (SGTM) are mathematical models that
account for the physics of gas flow in shale reservoirs
more accurately. Still, they require more data and
computational resources than DCA.[17] Therefore, there
is a need for a method that can combine the advantages
of DCA and SGTM to improve the estimation and prediction
of shale gas production. Coutry et al.[18] analyzed different
DCA models on field data of Marcellus Shale to determine
which are the suitable models for transient analysis. The
study concluded that multiple models must be utilized to
verify results.[18]

This paper proposes a novel method that performs
DCA for shale gas reservoirs using data from an SGTM
developed in COMSOL. The accuracy and efficiency of
the SGTM are tested using field data from Marcellus
shale gas reservoirs in North America. The inclusion of
DCA to conduct reserve estimation is with the injunction
of current SGTM. With higher efficiency of results
provided by representative SGTM, a virtual twin of a
reservoir with limited ability can be utilized for DCA.
The proposed methodology in the following section may
assist in estimating the reserves for complex, unconventional
reservoirs.

The main objectives of this study are to:

• Develop a novel methodology for reserve estimation of
shale gas reservoirs using computational fluid dynam-
ics (CFD).

• Integrate different flow mechanisms to determine
shale gas reservoirs’ ultimate recovery, production,
and reserves.

• Conduct production analysis using the exponential
DCA method.

• Investigate the influence of various reservoir parame-
ters such as porosity, fracture, and matrix permeability
on the reserve estimation.

2 | METHODOLOGY

A quantitative approach was used in this study to
investigate the production performance of shale gas
reservoirs. A dual porosity–permeability model is
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developed to simulate the gas flow and transport
mechanisms in shale formations using COMSOL
Multiphysics software. Field data from a shale gas
reservoir in North America was used for calibration,
and field data from the Marcellus shale reservoir is
used for validation. Synthetic production data for
different scenarios of reservoir properties and operational
parameters are generated using the model. DCA is applied
to the synthetic data to estimate the recoverable reserves
and forecast the production rates of shale gas reservoirs.
Figure 1 represents an overview of the proposed meth-
odology in the study while also incorporating the
desired results from each method (SGTM and DCA).

2.1 | Transport model for shale

SGTMs are essential in understanding flow in shale
nanopores. The studies under this research segment
focus mainly on the flow mechanisms occurring in these
channels. These flow mechanisms directly influence the
hydrocarbon recovery performance from these reservoirs
while also depending on the other reservoir characteristics,
such as geomechanics and pressure, volume and tempera-
ture (PVT) conditions (gas density and viscosity). Multiple
models attempt to represent the reservoir performance
depending on the scale of the study. However, this study
will use a mass continuity equation in a DFM. Other
models similar to these methodologies in the literature
include dual porosity–dual permeability–local grid refine-
ment (DP-DK-LR),[19] equivalent continuity model
(ECM),[20] and multiple porosity model.[21,22]

According to the study proposed by Civan et al.,[23]

DFM is extensively utilized in the fracture scale and is
relatively robust compared to other models.[23] However,
it is not used for a macroscale reservoir size model, which
could be attributed to the high computational power
and time, with inadequate knowledge about the fracture

distribution potential and influence. Micheal et al.[16]

studied such influences through different fracture
models. However, they focused on the criss-cross fracture
model in general due to its more substantial impact on
production.[16]

2.1.1 | Gas apparent permeability for rock
matrix and fracture based on corresponding
flow mechanisms

Gas apparent permeability models are mathematical tools
that describe the effective permeability of gas flow in
porous media, considering the effects of gas rarefaction,
gas slippage, gas sorption, and surface diffusion. These
effects become significant when the pore size is comparable
to or smaller than the mean free path of gas molecules,
which is common in shale reservoirs. Gas apparent
permeability models could be applied to pores and
fractures, but they may differ in some aspects. For pores,
the pore size distribution, pore shape, connectivity,
and porosity are essential factors that affect the gas’s
apparent permeability. For fractures, the fracture
aperture, roughness, tortuosity, and density are important
factors that affect the apparent permeability.

Moreover, the gas flow regimes in pores and fractures
may differ depending on the Knudsen number, which
is defined as the ratio of the mean free path of gas
molecules to the characteristic length of the flow channel.
For pores, the characteristic length is usually the pore
diameter, while for fractures, it is typically the fracture
aperture. Therefore, different flow regimes may coexist
in pores and fractures, such as viscous flow, slip flow,
Knudsen diffusion, and free flow.[24–27] The Klinkenberg
gas apparent permeability model is a classical model
that describes the gas flow behaviour in porous media,
considering the effect of gas slippage or rarefaction.
Gas slippage occurs when the pore size is comparable to

FIGURE 1 Proposed methodology

of reserve estimation through

production data synthesis and rate

transient analysis.

KHADRI ET AL. 3

 1939019x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjce.25359 by Q

atar U
niversity, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



or smaller than the mean free path of gas molecules,
which causes the gas molecules to collide more frequently
with the pore wall than with each other. This slippage
reduces the resistance to gas flow and increases the effective
permeability of the porous medium. It is applied to fracture
pore network to incorporate gas slippage effects in the per-
formance of the reservoir by the following expressions[6,16]:

kf ¼ kfi
pf þbf
pf

� �
ð1Þ

where bf is the fracture’s Klinkenberg coefficient, pf is the
fracture network’s pressure, kfi is its intrinsic permeability,
and bf is determined by the following correlation[28]:

bf ¼ μfDkf

kfi
ð2Þ

where μf is the viscosity of the gas in the crack and Dkf is
the fracture network’s Knudsen diffusion coefficient,
both of which are reported by the following[28]:

Dkf ¼
4kfi

ffiffiffiffiffi
φf

p
2:8284

ffiffiffiffiffi
kfi

p :

ffiffiffiffiffiffiffiffiffi
TpR
2M

r
ð3Þ

A similar methodology is implemented for matrix;
however, the Knudsen diffusion coefficient is modified to
ascertain the higher influence of the flow mechanism.[16]

The following expression defines the apparent gas
permeability for the matrix:

km ¼ kmi
pkmiþmDm

pkmi

� �
ð4Þ

where km is the apparent gas permeability of the matrix,
kmi is the intrinsic permeability, mD, and Dm is the
Knudsen diffusion coefficient for diffusion in the matrix.
The following expression defines the diffusion coefficient:

Dm ¼ 4kmi
ffiffiffiffiffiffiffi
φm

p
2:81708

ffiffiffiffiffiffiffi
kmi

p :

ffiffiffiffiffiffiffiffiffi
TπR
2M

r
ð5Þ

where M is the molar mass of methane gas, 16 g/mol.

2.1.2 | Gas viscosity and real gas expression

Shale gas transport is a complex phenomenon that involves
different mechanisms, such as bulk diffusion, Knudsen dif-
fusion, surface diffusion, and convective flow. These mech-
anisms are influenced by various factors such as pore
size, pressure, temperature, adsorption, and real gas
effect.[3,26,29–32] The real gas effect refers to the deviation of

gas behaviour from the ideal gas law due to high-pressure
and low-temperature conditions. The real gas effect affects
the thermodynamic parameters of the free gas, and the
adsorption and the transport capacity of the adsorbed
gas.[33,34]

One of the challenges in modelling shale gas trans-
port is to account for the real gas effect and its impact
on the effective permeability and apparent permeability
of the shale matrix. Effective permeability is the intrin-
sic property of the porous medium that reflects its abil-
ity to transmit fluid under a given pressure gradient.
Apparent permeability is the evident property of the
fluid that reflects and demonstrates its ability to flow
under a given pressure gradient. Both effective perme-
ability and apparent permeability are affected by the
real gas effect, as well as by gas slippage and surface dif-
fusion. Gas slippage is the phenomenon of gas mole-
cules slipping along the pore wall due to a low Knudsen
number. Surface diffusion is the phenomenon of gas
molecules diffusing along the adsorbed layer due to a
concentration gradient.[27,35,36]

Based on the findings from experimental studies,[37,38]

methane is usually confined within the tight shale forma-
tion in the form of high pressure. With the change in res-
ervoir pressure, resulting properties also vary. Therefore,
based on the real gas law,[32,39] the pressure-dependent
density is calculated by the following equation:

ρm ¼ pM
ZRT

ð6Þ

where ρm is the density of methane, p is the reservoir
pressure, M is the molar mass of natural gas (16 g/mol),
Z is the real gas compressibility factor, R is the universal
gas constant (8.3142 J/K/mol), and T is the reservoir tem-
perature. The real gas compressibility factor Z can be
obtained through either equation of state, such as Peng–
Robinson or Redlich–Suave. However, the explicit empir-
ical equation for methane is utilized for this study due to
its accuracy.[40] The expression is as follows:

Z¼ 0:702e�2:5Tpr
� �

P2
pr� 5:524e�2:5Tpr

� �
Ppr

þ 0:044T2
pr�0:164Tprþ1:15

� �
ð7Þ

where Tpr and Ppr are referred to as reduced pseudo tem-
perature and pressure of the methane gas, respectively.
The following expressions define the pseudo parameters:

Tpr ¼ T
Tc

ð8Þ

Ppr ¼ P
Pc

ð9Þ
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where Tc and Pc are the critical temperature and pressure
of the natural gas (methane). For single-phase methane
gas, Tc ¼ 191K; Pc ¼ 4:64MPa:[16] After defining the
real gas density of methane; viscosity change is also
considered in the model. However, it might cause a circular
dependency on the pressure of the matrix or fracture as it is
a dependent variable in the equations of continuity and
mass flow. An empirical correlation proposed by Lee et al.
is utilized for this model, and expressed as follows[41]:

μ¼ 10�7KeX 0:001ρmð ÞY ð10Þ

where X, Y, and K are the empirical parameters and are
defined by the following expressions:

Y ¼ 0:2Xþ2:4

X ¼ 3:5þ10Mþ547:8=T

K ¼ 22:7þ48:3Mð ÞT1:5= 209þ19000Mþ1:8Tð Þ

8><
>: ð11Þ

2.1.3 | Governing equation for gas flow in
the rock matrix

SGTMs are mathematical tools that aim to predict the
gas flow behaviour in shale reservoirs characterized by
complex pore structures, diverse gas occurrence forms,
and multiple transport mechanisms. Different models
have been developed based on different assumptions,
methods, and scales, such as analytical solutions,[27]

numerical simulations,[42] and artificial intelligence
methods.[43] The main transport mechanisms that affect
shale gas transport and production are viscous flow, slip
flow, Knudsen diffusion, surface diffusion, free flow,
adsorption, and desorption. These mechanisms depend
on pore size, shape, surface type, thermal maturity,
displacement pressure, and gas thermodynamics. The
contribution of each mechanism varies with the effective
pore diameter, the gas–wall interactions, the Knudsen
number, and the gas sorption capacity. Understanding
these mechanisms and their interactions is essential for
accurately evaluating shale gas production and recovery.

Based on earlier studies, the shale matrix is a
microporous/nanoporous medium with a large number
of micro/nanopores, some of which may be smaller than
10 nm and exhibit a strong nano-confined effect.[44–46] As
a result, Darcy’s law and other classical flow theories
based on continuous assumptions need to be revised to
accurately explain the transport behaviour of methane
gas in a shale matrix. Additionally, because most methane
gas is stored as an adsorption gas, the impacts of
adsorption and desorption on the process of transporting
gas should also be considered.[15]

Initially, the mass continuity equation is utilized for the
matrix flow. However, there are some limitations as it needs
to include the flow mechanisms associated with fluid flow in
shale nanopores. Therefore, by determining the processes of
all the flow mechanisms by replacing the mass cm ¼ caþ cg
(where cm is total concentration, cg is the concentration
of free gas, and ca is the concentration of adsorbed gas)
by its source (Knudsen diffusion and desorption)[5,28]:

r: ρmvmð Þþ ∂cm
∂t

¼ q ð12Þ

where q represents the mass of gas moving from the
matrix to the fracture, which is regarded as the source/
sink of gas, and cm stands for the concentration of gas in
the matrix pores, ρm for the density of gas stored in the
matrix, and ρf for the density of gas stored in the fracture.
It is noted that gas is present in nanopores in adsorbed
and free phases. The concentration of the adsorbed phase
can be determined by the following expression[32]:

ca ¼ ρgs
VL p
pþpL

1�φð Þρs ð13Þ

where VL stands for the Langmuir volume, p for reservoir
pressure, pL for Langmuir pressure, ρs for standard cir-
cumstances gas density, and ρgs for shale matrix density.
The equation of continuity for gas flowing in the matrix
is expressed as follows[28]:

r: ρmφmð Þþ ∂

∂t
ρs

VLp
pþpL

1�φð Þρsþρmφm

	 

�q¼ 0 ð14Þ

For incorporating adsorption induced surface
diffusion effect, the gas adsorption mass per volume is
given by Micheal et al.[16]. Equation (16) represents the
final form of the gas transport mode in matrix domain.

qads ¼
VLp
pþpL

ρmM
V std

ð15Þ

∂

∂t
ρmφmþqads 1�φmð Þð Þþr: �ρmDm

p
�ρmkmi

μ

� �
rp

	 

¼ 0

ð16Þ

2.1.4 | Governing equation for gas flow in
fractures

Gas flow in fracture has a more significant influence on the
production than the matrix properties.[16] During shale gas
production, the reservoir pressure continuously decreases,
thus affecting the matrix and fracture properties such as

KHADRI ET AL. 5
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pressure. The production occurs from the organic and
inorganic pores (adsorbed and free gas), and diffuses into
larger channels due to pressure differences. These larger
channels are fractures that comprise higher permeability. In
this study, only hydraulic fractures are considered; in this
case, the sink term refers to gas flow from the fracture
network to the wellbore. The equation of diffusion of free
gas in the fracture is provided by the following[3,16,47]:

df
∂ ρmφfð Þ

∂t
�rT �df

ρmkf
μ

rpf

� �
¼ dfQm ð17Þ

where Qm is the source term, df is the fracture aperture,
and pf is the fracture reservoir pressure. The resulting source
term is defined to be the difference between the gas produc-
tion from the wellbore (sink) Qp and the gas diffusion into
fracture G, which the following expression can define:

Qm ¼G�Qp ð18Þ

The gas diffusion from the matrix into fracture is
expressed as follows[28]:

G¼ ρmωkm
μf

Pm�Pwð Þ ð19Þ

ω¼ 4
L2xL

2
y þL2

yL
2
x

L2xL
2
y

 !
ð20Þ

where ω is the coefficient of flow between the matrix and
fractures, and Lx and L y are considered to be fracture
spacing in the x and y directions The expression is
modified from its parent equation for 3D fractures.[48]

2.2 | DCA–production data analysis

Exponential decline curve analysis (EDCA) is one of the
empirical methods of DCA that could be used to estimate
the reserves and forecast the production of shale gas
reservoirs. EDCA assumes that the production rate
declines exponentially with time, which means that the
decline rate is constant and independent of time. EDCA
is utilized when b (decline exponent of Arps equation) is
considered or assumed to be 0.[49,50] The basic equation
of EDCA is as follows:

qt ¼ qie
�Dit ð21Þ

where qt is the production rate at time t, and qi and Di

are the initial production and decline rates, respectively.
EDCA can be applied to shale gas reservoirs when

the production data shows a linear trend on a semi-log

plot. EDCA is simple and easy to use, but it has some
limitations. First, it may not be suitable for shale gas
reservoirs with complex flow regimes and mechanisms,
such as boundary-dominated flow, adsorption/desorption,
and Knudsen diffusion. Second, it may not capture the
long-tailed behaviour of shale gas production, so it may
underestimate the reserves and overestimate the decline
rate. Third, it may not account for the effects of well
operation changes on shale gas production, such as pressure
control and shut-in periods.

Some case studies of applying EDCA to shale gas
reservoirs include that of Wang et al.,[8] who used EDCA to
analyze the production patterns of Eagle Ford shale gas wells
and found that the average decline rate was 0.004 per day
the average estimated ultimate recovery (EUR) was 1.5 BCF
per well; and Liang et al.,[7] who used EDCA to evaluate the
EUR of Barnett and Marcellus shale gas wells under different
production modes and found that controlling the BHP could
increase the EUR by 10%–20% compared with the constant
flow rate mode1. Tang et al.[51] also used EDCA to forecast
the production of shale gas wells in the Sichuan Basin,
China, and found that the average decline rate was 0.003 per
day and the average EUR was 0.8 BCF per well.[51] Tan
et al.[17] further recommended EEDCA, a form of EDCA for
shale gas reservoirs, for which early and late production data
are available.

During this study, EDCA is applied to obtain net
recoverable reserves through forecasting production until
an economic limit of 1000 m3/day. This method provides
a more straightforward option while also including
influences of variation in the reservoir characteristics.
The following equations express it:

GpdataþReserves¼EUR TRRð Þ ð22Þ

where Gpdata is the cumulative production of the histori-
cal data, Reserves is the forecasted cumulative produc-
tion, and Nt is the total recoverable reserves (TRR).
Figure 2 depicts the method of reserve estimation
employed here.

2.3 | Model development

2.3.1 | Model parameters and assumptions

The COMSOL Multiphysics platform develops the reservoir
model using a partial differential equation (PDE) solver
module. Fine meshing is done to increase the accuracy
of results, but it increases the computational time. The
fracture flow module incorporated in the tool included the
equation representing gas transport in fractures. Figure 3
represents a schematic of the model prepared for both the
validation and reservoir base models, while Table 1 depicts

6 KHADRI ET AL.
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the parameters for the base case model. The model was
developed based on the following assumptions:

a. Single component gas flow through fractures and
pores occurs;

b. The model ignores the effect of gravity and heterogeneity
of the pore network;

c. Geomechanics and its influence on gas transport is
ignored;

d. The flow process is assumed to be isothermal throughout
the field life;

e. Gas adsorption kinetics is assumed to obey the
Langmuir curve and can achieve equilibrium at any
reservoir pressure;

f. Only hydraulic fractures are considered in the
simulation.[52–55]

2.3.2 | Model meshing sensitivity

The production flow rate was used as the parameter in the
mesh sensitivity analysis for the single porosity model. The
sensitivity study was carried out on the parameters that
define the specific mesh sizing: maximum element size,
minimum element size, maximum growth rate, resolution
of curvature, and resolution of narrow sections. This was
done based on the parametric studies’ built-in option.
An overview of the instances used is given in Table 2. The
findings indicate that when the maximum element size is
increased, the calculation time decreases, and the results
diverge from the initial findings.

Figure 4 shows Cases 1 and 3, where cumulative output
with different mesh sizes yielded definitive results—while
Cases 2 and 4 showed very low cumulative production since
the model stops converging beyond 3000–4000 days. These
outcomes lead to the use of fine mesh (case 1). The entire
parametric analysis took 14.8 min on the computing
machine with a 2.9 GHz Intel® Xeon® Gold 6226R CPU
and 192 GB of RAM.

2.3.3 | Convergence criteria

PARDISO iterative solver was utilized for the proposed
model in COMSOL, for which its M value = LU
which are factors computed by the solver. Using the
following equation, the error estimate is calculated.

FIGURE 2 Method of determining estimated ultimate recovery

(EUR) or total recoverable reserves (TRR).

FIGURE 3 Schematic of base model for parametric investigation of reservoir characteristics.

KHADRI ET AL. 7

 1939019x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjce.25359 by Q

atar U
niversity, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



When the error estimate is small enough, this model is
then converged.

ρ M�1 b�Axð Þ�� ��< tol: jM�1b j ð23Þ

The iterations end when the relative (preconditioned)
residual times the factor ρ is less than a tolerance tol,
according to the Equation (22) convergence criterion. If
the system matrix A is ill-conditioned, the iterations
for solvers where M is equal to the identity matrix may
occasionally end too soon and produce the wrong
answer. If M is a weak preconditioner, the iterations
for solvers where M is not equal to the identity
matrix may occasionally end too soon. Increase the
factor ρ to a number of the order of the condition
number for the matrix M�1A if the iterations end too
soon because of an ill-conditioned system matrix or a
subpar preconditioner. The convergence criterion
indicates that the relative error is less than tol if ρ is
and more significant than the condition number for
the matrix M�1 b�Axð Þ�� ��< tol: jM�1b j.

3 | DISCUSSION AND RESULTS

3.1 | Model validation

Model validation uses real-field data from Marcellus
shale gas production.[16] Different studies utilize this data
as a benchmark due to its availability, and various other
shale models can also represent it. Table 2 provides the
required parameters to validate the gas transport model.
Compared to the study of Micheal et al.,[16] which fol-
lowed similar validation, geomechanical influence is
ignored due to a slight error in the production profiles.
Figure 4 depicts that the gas transport model is in good
agreement with the real-field data, with a maximum error
of up to 9%, which is expected due to certain assumptions
made with the model.[16]

A good agreement is observed between the validation
model and Marcellus Shale’s historical data. The gas
production rate decreases from 9 � 104 m3/day to
3.7 � 104 m3/day over 250 days. The errors observed
can be attributed to the heterogeneity of the shale
formation. Micheal et al.[16] proposed a quadruple
continuum model, providing a similar outcome. Cao et al.[5]

also utilized Marcellus shale historical data and also had a
good agreement. There are inconsistencies in the validation
model as it did not show much influence from the
adsorption characteristics.[5]

An additional parametric study was conducted to
define different parameters for further parametric
study through DCA to validate it. It is observed that
Langmuir volume depicted negligible influence on the
cumulative production as examined in other
studies.[16,52]

3.2 | Production results of base case
model and study of fracture characteristics

Figure 5 depicts the production performance of the
base case model based on the parameters mentioned
in Table 1. The production declines rapidly from
383216.7 m3/day to 114470.3 m3/day, which is justified
by similar trends observed in historical performance

TABLE 1 Reservoir parameters for the base model.

Reservoir parameters Values Units

Langmuir pressure 3 � 106 Pa

Langmuir volume 2.5 � 10�3 m3/kg

Initial reservoir pressure 34.5 � 106 Pa

Bottom hole pressure 2.4 � 106 Pa

Reservoir temperature 352 K

Hydraulic fracture width 0.003 m

Initial fracture permeability 30 mD

Hydraulic fracture spacing 30.5 m

Hydraulic fracture half-length 85.3 m

Number of fractures 14 -

Initial matrix permeability 1 � 10�19 m2

Initial fracture porosity 0.03 -

Possion’s ratio 0.2 -

Matrix permeability 0.021 -

TABLE 2 Summary of observable results based on different mesh sizes.

Cases In-built type
Maximum
element size

Minimum
element size

Maximum element
growth rate

Curvature
factor

Resolution of
narrow regions

Case 1 Fine 10.6 0.06 1.3 20 1

Case 2 Normal 13.4 0.06 1.3 0.4 1

Case 3 Coarse 20 0.4 1.4 1.4 1

Case 4 Coarser 66 10 2 2 0.9

8 KHADRI ET AL.
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FIGURE 4 Mesh sensitivity.

FIGURE 5 Historical data

of Marcellus shale and

validation model.

FIGURE 6 Production performance

of base case model.
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data from shale gas, reservoirs, and other SGTMs.[17,21,50,56]

In this case, the gas phase influencing the production
performance was free gas content in the matrix. The free
gas diffuses into the hydraulic fractures and then to the
wellbore. For this particular study, hydraulic fractures are
considered from a horizontal well.

The trends observed in Figures 6 and 7 are similar
to other complex reservoirs with an initial production
spike and fast dying-out rate due to lower reservoir
energy. These formations generally have lower produc-
tion energy due to inadequate flow channels. Addi-
tional analysis is done to determine the reservoir’s
fracture characteristics that can influence production.
Fracture porosity and fracture permeability were
selected for the parametric analysis using DCA. Fig-
ures 6 and 7 represent different production profiles cor-
responding to different fracture porosities and

permeabilities. With an increase in fracture porosity
and permeability, there is a resulting increase in the
production rates and decline rates. The objective is to
obtain similar trends during the production data analy-
sis of these scenarios. The fracture permeability has a
more significant influence on the production rate of the
reservoir than the porosity. A similar ratio of increase
between the parameters of the fracture domain and gas
production performance is observed; however, doubling
the permeability of the reservoir results in a doubling
of the production rate (32,772 to 74,662 m3/day).
Other parameters such as adsorption/desorption,
matrix properties, and temperature change have not
been studied in this work as the purpose was to propose
a novel method of coupling CFD for reservoir model-
ling to DCA for reserve estimation.

FIGURE 7 (A) Production performance of hypothetical during

fracture permeability of 10 mD; (B) Production performance

during fracture permeability of 20 mD; (C) Production performance

during fracture permeability of 50 mD.

FIGURE 8 (A) Production performance of hypothetical

during fracture porosity of 0.01; (B) Production performance during

fracture porosity of 0.05; (C) Production performance during

fracture porosity of 0.12.
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3.3 | Estimation of recoverable reserves

A Python model is developed for curve-fitting to obtain
the DCA parameters for the forecasting. As mentioned
earlier, forecasting is required to determine the production
when it reaches an economic limit. In this study, the
economic limit is capped at 10,000 m3/day to eradicate
any errors or complexity in the results. Nevertheless, it
can be reduced to a reasonable rate after a comprehensive
economic analysis. This analysis aims to validate and

predict the recoverable reserves and the influence of varia-
tion of reservoir characteristics. Initially, there was a
minor change in the variation of Langmuir volume due
to its lower volume in this study; therefore, adsorbed gas
still needs to be studied. However, with other shale
gas reservoirs, it is essential to note that Langmuir volume
is the defining characteristic of estimating adsorbed gas
and would have a higher impact.

Figures 8 and 9 represent the curve-fitting process
to determine the decline parameters that will be utilized

FIGURE 9 Curve fitting and prediction of production using exponential decline curve analysis (EDCA) for fracture permeabilities of

(A) 10 mD; (B) 20 mD; (C) 50 mD (where FETK refers to predicted data from the model).

FIGURE 10 Curve fitting and prediction of production using exponential decline curve analysis (EDCA) for fracture porosities of

(A) 1%; (B) 5%; (C) 12% mD (where FETK refers predicted data from the model).

FIGURE 11 Total recoverable reserves up to economic limit for fracture permeabilities of (A)10 mD; (B) 20 mD; (C) 50 mD.
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for forecasting. Figures 10 and 11 represent different
production forecasts obtained using the Arps model, while
Table 3 includes different decline curve parameters
obtained. A Python model is implemented to make it
easy to determine them (the source code utilized for this
purpose is in the Data S1).

Table 4 shows that with the increase in initial fracture
permeability and porosity, there is a significant increase
in recoverable reserves. However, with the increase in

permeability, the decline rate decreases, while the
increase in porosity causes the decline rate to increase.
This decline is also represented in the days required to
reach the assumed economic limit for this study
(10,000 m3/day).

Based on the results observed in Table 4 and
Figures 10 and 11, it can be determined that DCA can
also be utilized for complex reservoirs. However,
additional validation with reservoir volumetric data is
further required. Section the validation that was done
in Section 3.1 based solely on the production data
observed from Marcellus shale. Further, the model
was limited to the dimensions assumed, which was
why these results were observed. It is to be noted that
the fitting of the DCA model itself is a proof of concept
that it can be utilized for these types of reservoirs.
Additionally, future work can include correcting the
under or over-predictions of DCA for complex reser-
voirs. The complexity of these unconventional reser-
voirs arises from comprising more than a single
domain of fluid flow (matrix and fracture) and more
than a single flow mechanism (diffusion and desorp-
tion).[16,57,58] The study thus can be an initial step
in the easement of quantification of reserves for com-
plex reservoirs using conventional means—DCA
(Table 5).

Additional uncertainties observed during the study
included variations in results due to variations in
the fracture properties, as shown in Figures 10 and 11.
The assumed model properties, such as isothermal field
life, restricted any uncertainties in the observed result;
however, while dealing with the non-isothermal model,
SGTM must be modified to account for the variations
(Figure 12).

TABLE 3 Reservoir parameters for validation model.

Parameters Marcellus shale Units

Reservoir dimension 1219.2 � 304.8 � 52.7 m3

Langmuir pressure 3 � 106 Pa

Langmuir volume 2.5 � 10�3 m3/kg

Initial reservoir pressure 34.5 � 106 Pa

Bottom hole pressure 2.4 � 106 Pa

Reservoir temperature 352 K

Gas viscosity 2 � 10�5 m � s
Hydraulic fracture width 0.003 m

Initial fracture
permeability

30 mD

Hydraulic fracture
spacing

30.5 m

Hydraulic fracture half-
length

85.3 m

Number of fractures 14 -

Initial matrix
permeability

1 � 10�19 m2

Initial fracture porosity 0.03 -

Possion’s ratio 0.2 -

TABLE 4 Obtained fitting parameters through exponential decline curve analysis (EDCA).

Parameters Symbols Units

Fracture permeability Fracture porosity

10 mD 20 mD 50 mD 0.01 0.05 0.12

Initial production rate qi m3/d 38,401 76,772 192,500 122,700 122,860 122,930

Decline exponent parameter b - 0.22 0.16 0.13 0.12 0.18 0.24

Nominal decline rate Di 1/day 0.33 0.47 0.55 0.63 0.42 0.30

TABLE 5 Recoverable reserves based on variations of reservoir characteristics.

Reserve estimation results Units

Fracture permeability Fracture porosity

10 mD 20 mD 50 mD 0.01 0.05 0.12

Days to reach economic limit days 594.85 8416 451,290 76,836 9654.2 6970

Total recoverable reserves m3 83120.31 156,031 333,238 188,039 349,166 454,785

12 KHADRI ET AL.
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4 | CONCLUSION

This study introduces an innovative approach combining
DCA with SGTM, aiming to optimize performance
evaluation and characterize reservoirs. Unlike traditional
market-available reservoir simulation tools, our method-
ology integrates intricate flow mechanisms into SGTM,
offering insights into production dynamics and total
recoverable reserves. This integration holds promise for
enhancing field development planning of unconventional
shale gas reservoirs.

Key advantages of our outlined methodology include:

• Reduced computational cost and time: Leveraging the
COMSOL Multiphysics software enables efficient
modelling and simulation of shale gas transport with
minimal input parameters.

• Accurate representation of transport mechanisms:
Incorporating a dual porosity and DP model for the
matrix alongside a linear flow model for fractures
accounts for complex shale gas transport mechanisms
and dispersed kerogen distribution.

• Reliable reserves estimation: Utilizing exponential
DCA based on production data from the reservoir
model ensures dependable reserves estimation.

• While EDCA serves as the foundation of this study,
we acknowledge the potential for incorporating
additional methods and alternative production data
analysis techniques. Through this methodology, res-
ervoir simulations conducted via CFD tools facili-
tate the implementation of diverse complex flow
mechanisms, aiding in the estimation of recoverable
reserves.

Recommendations for future research prospects include:

• Benchmarking with conventional simulation software:
Validating our results against established reservoir
simulation software.

• Exploration of alternate transport models: Employing
alternative SGTM with higher degrees of freedom for
enhanced sensitivity analysis.

• Comparative analysis with other complex reservoir
data: Benchmarking our findings against diverse
reservoir datasets.

• Refinement of DCA models: Correcting DCA models
based on reservoir geological data, including matrix
and fracture properties.

AUTHOR CONTRIBUTIONS
Syed Oubee Khadri: Conceptualization; data curation;
formal analysis; writing – original draft; software;
validation; methodology. Mohammed J. Al-Marri:
Conceptualization; writing – original draft; methodology;
writing – review and editing. Mustafa Nasser:
Conceptualization; writing – original draft; methodology;
funding acquisition; writing – review and editing.
Fadhil Sadooni: Conceptualization; writing – original
draft; writing – review and editing; supervision; funding
acquisition. Ezeddin Shirif: Conceptualization; method-
ology; formal analysis; writing – review and editing;
validation. Ibnelwaleed A. Hussein: Conceptualization;
funding acquisition; supervision; project administration;
writing – review and editing; formal analysis.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the support of the
Qatar National Research Fund (amember of the Qatar Foun-
dation) through Grant NPRP12S-0130-190023 and NPRP12S-
0305-190235. The findings achieved herein are solely the
responsibility of the authors. Qatar University Open Access
publishing facilitated by the Qatar National Library, as part of
theWileyQatar National Library agreement.

PEER REVIEW
The peer review history for this article is available at
https://www.webofscience.com/api/gateway/wos/peer-re
view/10.1002/cjce.25359.

FIGURE 12 Total recoverable reserves until economic limit of 10,000 m3/day for fracture porosities of (A) 0.01; (B) 0.05; (C) 0.12.

KHADRI ET AL. 13

 1939019x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjce.25359 by Q

atar U
niversity, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/cjce.25359
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/cjce.25359


DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able upon request from the corresponding author. The
data are not publicly available due to privacy or ethical
restrictions.

ORCID
Ibnelwaleed A. Hussein https://orcid.org/0000-0002-
6672-8649

REFERENCES
[1] W. Shen, X. Li, Y. Xu, Y. Sun, W. Huang, Energies 2017,

10, 751.
[2] K. Liu, M. Ostadhassan, J. Zhou, T. Gentzis, R. Rezaee, Fuel

2017, 209, 567.
[3] H. Wang, L. Chen, Z. Qu, Y. Yin, Q. Kang, B. Yu, W. Q. Tao,

Appl. Energy 2020, 262, 114575.
[4] H. Zhang, W. Peng, P. Hao, M. du, Int. J. Oil, Gas Coal

Technol. 2019, 20, 397.
[5] P. Cao, J. Liu, Y. K. Leong, Fuel 2016, 178, 103.
[6] C. M. Freeman, G. J. Moridis, T. A. Blasingame, Transp.

Porous Media 2011, 90, 253.
[7] L. Liang, D. Luo, X. Liu, J. Xiong, J. Nat. Gas Sci. Eng.

2016, 33, 1107.
[8] L. Wang, A. Torres, L. Xiang, X. Fei, A. Naido, W. Wu, Nat.

Resour. 2015, 06, 141.
[9] S. Zendehboudi, Shale Oil and Gas Handbook, Elsevier,

Houston, TX 2017.
[10] Y. Liu, L. Liu, J. Y. Leung, K. Wu, G. Moridis, SPE J.

2021, 26, 1.
[11] D. S. Berawala, P. Andersen, J. Pet. Sci. Eng. 2020, 190, 107114.
[12] M. B. Asadi, M. Dejam, S. Zendehboudi, J. Hydrol. 2020,

581, 124288.
[13] C. M. Freeman, G. Moridis, D. Ilk, T. A. Blasingame, J. Pet.

Sci. Eng. 2013, 108, 22.
[14] W. Zhang, W. Chen, T. Wang, Y. Yang, J. Nat. Gas Sci. Eng.

2020, 81, 103471.
[15] Y. Zhao, C. Wang, J. Bi, Energy Science and Engineering

2020, 8, 1220.
[16] M. Micheal, W. L. Xu, H. Y. Xu, J. N. Zhang, H. J. Jin, H. Yu,

H. A. Wu, J. Nat. Gas Sci. Eng. 2021, 95, 104156.
[17] L. Tan, L. Zuo, B. Wang, Energies 2018b, 11, 552.
[18] S. Coutry, M. Tantawy, S. Fadel, J. Eng. Appl. Sci.

2023, 70, 69.
[19] P. Thararoop, Z. T. Karpyn, T. Ertekin, J. Nat. Gas Sci. Eng.

2012, 8, 121.
[20] O. Vorobiev, T. Antoun, International Journal for Numerical

Methods in Engineering 2011, 86, 1101.
[21] D. Y. Ding, N. Farah, B. Bourbiaux, Y. S. S. Wu, I. Mestiri,

SPE J. 2018, 23, 1389.
[22] T. Zhang, S. Sun, H. Song, Transp. Porous Media 2019,

126, 655.
[23] F. Civan, C. S. S. Rai, C. H. H. Sondergeld, SPE J.

2012, 17, 717.
[24] D. Chai, X. Li, presented at the SPE Western Regional

Meeting, Virtual. April 2021.
[25] Q. Gao, S. Han, Y. Cheng, X. Shi, C. Yan, Z. Han, Energy

2022, 257, 124727.

[26] K. Wu, X. Li, C. Wang, W. Yu, Z. Chen, presented at the
SPE/CSUR Unconventional Resources Conf, Calgary, AB,
Canada. October 2015.

[27] J. Zeng, J. Liu, J. Guo, Chem. Eng. J. 2022, 438, 135604.
[28] C. Guo, M. Wei, H. Liu, PLoS One 2015, 10, 1.
[29] S. A. Abubakar, S. Mori, J. Sumner, Metals 2022, 12, 1397.
[30] L. Germanou, M. T. Ho, Y. Zhang, L. Wu, J. Nat. Gas Sci. Eng.

2018, 60, 271.
[31] W. Guo, X. Zhang, R. Yu, L. Kang, J. Gao, Y. Liu, Frontiers in

Earth Science 2022, 9, 1.
[32] Y. Li, A. Kalantari-Dahaghi, A. Zolfaghari, P. Dong,

S. Negahban, D. Zhou, Int. J. Heat Mass Transfer 2020,
148, 119026.

[33] L. Geng, G. Li, S. Tian, M. Sheng, W. Ren, P. Zitha, AIChE J.
2017, 63, 1430.

[34] L. Zhang, K. Wu, Z. Chen, X. Yu, J. Li, S. Yang, G. Hui,
M. Yang, Planet. Space Sci. 2021, 204, 105283.

[35] F. Tian, X. Luo, W. Zhang, Mar. Pet. Geol. 2019, 99, 292.
[36] H. Yin, J. Zhou, X. Xian, Y. Jiang, Z. Lu, J. Tan, G. Liu, Energy

2017, 132, 84.
[37] F. Du, B. Nojabaei, Energies 2019, 12, 2355.
[38] C. W. Neil, M. Mehana, R. P. Hjelm, M. E. Hawley,

E. B. Watkins, Y. Mao, H. Viswanathan, Q. Kang, H. Xu,
Communications Earth & Environment 2020, 1, 49.

[39] K. Wu, Z. Chen, X. Li, Chem. Eng. J. 2015, 281, 813.
[40] M. Mahmoud, J. Energy Resour. Technol. 2014, 136,

012903.
[41] A. L. Lee, M. H. Gonzalez, B. E. Eakin, J. Pet. Technol.

1966, 18, 997.

[42] Z. Jiang, W. Wang, H. Zhu, Y. Yin, Z. Qu, Energy Fuels
2023, 37, 2520.

[43] R. Cui, S. M. Hassanizadeh, S. Sun, Earth-Sci. Rev. 2022,
234, 104203.

[44] Z. Jin, A. Firoozabadi, Fluid Phase Equilib. 2014, 382, 10.

[45] D. J. K. Ross, R. Marc Bustin, Mar. Pet. Geol. 2009,
26, 916.

[46] S. Zhan, Y. Su, M. Lu, M. Cai, J. Fu, Z. Liu, K. Wang, Q. Han,
Geofluids 2021, 2021, 1.

[47] C. Afagwu, M. A. Mahmoud, S. Alafnan, S. Patil, J. Pet. Sci.
Eng. 2022, 208, 109518.

[48] J. E. Warren, P. J. Root, Soc. Pet. Eng. J. 1963, 3, 245.
[49] K. Guo, B. Zhang, K. Aleklett, M. Höök, Sustainability

2016, 8, 973.
[50] H. Zhang, D. Rietz, A. Cagle, M. Cocco, J. Lee, J. Nat. Gas Sci.

Eng. 2016, 36, 402.
[51] H. Tang, B. Zhang, S. Liu, H. Li, D. Huo, Y. S. Wu, J. Nat. Gas

Sci. Eng. 2021, 88, 103818.
[52] C. Guo, M. Wei, H. Liu, PLoS One 2018, 13, 1.
[53] B. Hu, J. G. Wang, K. Zhang, Z. Ye, J. Nat. Gas Sci. Eng.

2020, 78, 103335.
[54] Y. Lu, S. Wei, Y. Xia, Y. Jin, J. Pet. Sci. Eng. 2021,

196, 107576.
[55] W. Yu, K. Sepehrnoori, T. W. Patzek, presented at the SPE

Annual Technical Conf and Exhibition, Amsterdam, The
Netherlands. October 2014.

[56] K. Wang, B. Jiang, H. Li, Q. Liu, C. Bu, Z. Wang, Y. Tan, Int.
J. Coal Geol. 2020, 218, 103359.

[57] F. Aminzadeh, S. N. Dasgupta, Dev. Pet. Sci. 2013,
60, 247.

14 KHADRI ET AL.

 1939019x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjce.25359 by Q

atar U
niversity, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-6672-8649
https://orcid.org/0000-0002-6672-8649
https://orcid.org/0000-0002-6672-8649


[58] A. Vafaie, I. R. Kivi, S. A. Moallemi, B. Habibnia, Unconven-
tional Resources 2021, 1, 9.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: S. O. Khadri,
M. J. Al-Marri, M. Nasser, F. Sadooni, E. Shirif,
I. A. Hussein, Can. J. Chem. Eng. 2024, 1. https://
doi.org/10.1002/cjce.25359

KHADRI ET AL. 15

 1939019x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjce.25359 by Q

atar U
niversity, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/cjce.25359
https://doi.org/10.1002/cjce.25359

	Novel methodology to couple decline curve analysis with CFD reservoir simulations for complex shale gas reservoirs
	1  INTRODUCTION
	2  METHODOLOGY
	2.1  Transport model for shale
	2.1.1  Gas apparent permeability for rock matrix and fracture based on corresponding flow mechanisms
	2.1.2  Gas viscosity and real gas expression
	2.1.3  Governing equation for gas flow in the rock matrix
	2.1.4  Governing equation for gas flow in fractures

	2.2  DCA-production data analysis
	2.3  Model development
	2.3.1  Model parameters and assumptions
	2.3.2  Model meshing sensitivity
	2.3.3  Convergence criteria


	3  DISCUSSION AND RESULTS
	3.1  Model validation
	3.2  Production results of base case model and study of fracture characteristics
	3.3  Estimation of recoverable reserves

	4  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


