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ABSTRACT A variety of methods exist in the structural health monitoring literature that aim to combine the observed data and predicted 
outputs from physics-based models (e.g. model updating and calibration). Typically implemented on a case-by-case basis, there is currently no 
unifying procedure or method for formally synthesising this combination of information. Data-centric engineering (DCE) is an emerging class 
of analytical approaches that is aimed at studying engineered systems and assets through the synthesis of various data-driven and physics-
based models. DCE may also involve procedures for fusing sensor data from both experimental and operational systems.  This paper introduces 
a DCE-based approach using data collected from experimental and operational railway structures (bridges and sleepers), which have been 
instrumented with advanced fibre optic sensors (FOS).  This study provides a high-level definition of DCE approaches to studying instrumented 
infrastructure and discusses some of the challenges in implementing these methods in practice. An example of an implementation of a Gaussian-
process based DCE method is provided, with the goal of predicting the response of operational instrumented rail infrastructure (i.e. concrete 
sleepers) over time. Some practical issues of this implementation relate to the measurement systems, data acquisition rate, efficiently batch 
processing the data and accounting for uncertainty in the response predictions. In leveraging both the information gained from real-time 
measurement data and from traditional analytics or physics-based methods, a DCE-based modelling approach can provide unique a set 
information and insights into the operational performance of infrastructure. 

 

1. Introduction 

Newly constructed infrastructure systems and those which 
have been in operation for over 100 years, underpin both the 
social and economic well-being of societies around the world. 
The design, construction, operation, maintenance and eventual 
decommissioning phase form a life-cycle chain within which 
each link plays a crucial role in determining the whole life 
performance (and value) of an infrastructure asset.  

There are a number of challenges facing the infrastructure 
management sector. In particular, these include pressures to 
maintain adequate levels of asset performance under shrinking 
financial budgets; aging assets which require ever-increasing 
maintenance; tighter government regulations requiring greater 
accountability and risk assessment; and the unknown future 
effects of climate change (ASCE, 2017; CSCE 2016). 
Gathering of reliable operational data is the crucial link 
between assessing performance and decision-making – it 
enables infrastructure to function at its maximum efficiency 
(Bowers et al. 2016). With the advent of new sensing 
technologies which can record performance data and be readily 
integrated or retrofitted within our built environment, 
traditional civil engineering practice has added a powerful 

toolkit to its arsenal. Once acquired, this data can provide the 
information to undertake ongoing condition monitoring, be 
used for damage detection and to form the basis for predicting 
future structural health. 

Typically, engineers have utilised physics-based or numerical 
models in order to simulate (and predict) the performance of 
the variety of infrastructure assets that they are tasked with 
designing or assessing. Under more complex design and 
assessment requirements, experimental testing and simulation 
are often used to provide additional information (e.g. material 
properties, boundary conditions, loading scenarios, etc.) to 
improve the accuracy of the numerical (physics-based) model. 
Measurement data obtained from operational structures 
provides yet a third source of information for better 
understanding infrastructure assets. However, as sensing 
systems become more advanced and more pervasive across the 
built environment, the generation of larger and more complex 
data sets is inevitable. Developing robust and portable 
techniques for processing, managing and interpreting these 
vast data sets is crucial for realizing the full benefits of long-
term condition monitoring. 
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As outlined in Figure 1, there are several potential approaches 
for modelling engineered systems. These include model-driven 
approaches (e.g. closed-form physics-based, FE models, etc.), 
data-driven approaches (i.e. model free or those considering 
only information gathered from performance data), model-
updating or system identification approaches (i.e. those 
seeking to infer critical system parameters based on response 
of the system), and a new class of approaches based on data-
centric engineering.   

A variety of data-driven approaches have emerged as the 
primary means for developing performance models and for 
detecting statistically significant trends which may indicate 
deterioration or damage (Farrar and Worden 2013). Statistical 
techniques for data reduction such as principle component 
analysis (PCA) (Tibaduiza et al. 2013) and for supervised 
machine learning such as artificial neural networks (ANNs) 
(Hakim and Razak 2013) have been used for processing, 
interpretation and damage detection. In terms of model 
updating and system identification, a large body of literature 
exists pertaining specifically to structural health monitoring 
(SHM) of critical infrastructure.  Pasquier and Smith (2015) 
developed a systematic system identification framework using 
model falsification combined with knowledge-based 
reasoning.  They used an iterative approach in which they 
developed a series of physics-based candidate finite element 
(FE) models and compared their results with measured in-situ 
performance data.  By applying their framework to a full-scale 
existing highway bridge, they confirmed its validity to perform 
system identification while taking into consideration 
systematic uncertainties.  Malekzadeh et al. (2015) proposed a 
hybrid data analysis technique which combined model-driven 
and data-driven approaches. Using a small laboratory-based 
instrumented bridge structure, the framework consists of three 
sequential phases which include studying (determining 
structure-specific critical damage scenarios), training (running 
FE model simulations coupled with Monte Carlo simulations 
to learn relevant performance parameters), and monitoring 
(using trained data set to make real-time predictions).  Finally, 
they were able to demonstrate how the developed hybrid 
framework might be used in future to perform real-time 
damage detection (facilitated via the FE model) on a full-scale 
bridge. 

Data-centric engineering (DCE) is the emerging field of 
research which seeks to leverage the performance data 
obtained from sensors which have been installed on engineered 
systems and from data obtained through physics-based 
simulations to produce more robust predictive models. Past 
studies by the authors have involved developing fundamental 
statistical tools for analysing and processing live-streaming 
monitoring data and have begun to define the concept of DCE 
in the context of instrumented infrastructure (Lau et al. 2018a, 
Lau et al. 2018b).   

This paper has several primary contributions, namely, it 
defines a new class of problems related to data-centric 
engineering in the context of modelling the behaviour of 
instrumented infrastructure.  Secondly, it demonstrates a DCE 

modelling approach which utilises Gaussian processes through 
a case study involving fibre-optic based self-sensing railway 
sleepers. Emerging machine learning techniques based on 
Gaussian process (GP) regression are nonparametric, can be 
used for nonlinear regression and are ideally-suited for use in 
structural damage detection (Fuentes et al. 2013). Multi-output 
Gaussian processes (Kennedy et al. 2001) have been used in a 
recent study concerning condition monitoring where 
information from two types of physics-based models (low- and 
high- fidelity FE models) are fused together to obtain more 
accurate predictions of structural responses (Zhou et al. 2016). 
Finally, this paper discusses the future implications and 
applications of DCE-based approaches for better leveraging 
data generated from instrumented structures. 

Figure 1. Approaches for modelling engineered systems 

 

2. Instrumented Infrastructure 

DCE applications have begun to be explored within a wide-
variety of sectors including cybersecurity, ecosystem 
modelling, extreme weather event prediction and many others.  
Its application to infrastructure systems, particularly those 
deemed as being ‘smart’ is an area of increasing interest. This 
paper focuses specifically on applying DCE approaches to 
instrumented civil engineering assets.  

Case Study: Self-Sensing Railway Sleepers Installed on 
a Concrete Underbridge 
Beginning in 2015, a research project undertaken through the 
Centre for Smart Infrastructure and Construction at the 
University of Cambridge investigated the incorporation of 
fibre optic sensor (FOS) networks into new railway bridges and 
sleepers (Butler et al. 2016, Butler et al. 2017, Xu et al. 2019). 
This project investigated the feasibility of incorporating FOS 
within concrete bridge beams and sleepers during their 
construction and using the collected sensor data to reason about 
the structures’ response to passing trains. Specifically, an 11.9 
metre underbridge (owned and operated by Network Rail) 
supported by 600 mm deep prestressed concrete beams, a 200 
mm reinforced concrete deck with precast concrete parapets 
was constructed over a thirteen-month period (completed in 
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April 2016). The bridge primarily carries heavy freight trains 
via a single rail line over a diverted watercourse. The rail track 
is supported by prestressed concrete sleepers installed on 400 
mm of stone ballast.  Figure 2 depicts the several stages of data 
collected (and generated) from the self-sensing sleeper and 
track bed system. 

Figure 2 Stages of data collection for self-sensing 
sleepers 

 

To provide additional information of how the axle loads are 
supported by and distributed to the bridge superstructure, in 
addition to installing FOS within the main bridge girders and 
deck slab, three sleepers were instrumented and installed 
consecutively at the midspan of the bridge (refer to Figure 2c). 
In parallel to the structural monitoring programme, 
experimental testing was performed to simulate the loading and 
boundary conditions experienced by one of the installed 
sleepers (refer to Figure 2a).  Testing was conducted at a 
specialized laboratory facility housed at Heriot-Watt 
University. A nonlinear FE model of the prestressed concrete 

sleepers was constructed to provide additional information and 
to run parametric studies on the behaviour of the sleeper on 
ballast (refer to Figure 2b). Further details of the FE model and 
modelling process are provided in Xu et al. (2019).   

Effects of loading, ballast settlement and supporting ballast 
pressure were all assessed based on the experimental and 
numerical results. The results indicated that self-sensing 
sleepers in addition to being able to directly assess their own 
structural condition may also be used for track-level condition 
monitoring (e.g. ballast settlement, axle load estimation, train 
speed and direction indication, etc.). 

FOS were installed during the sleeper manufacturing process. 
In total, three strain-measuring FOS (fibre Bragg grating point-
based sensors) were installed along the top and bottom 
prestressing steel strands and embedded within the concrete 
(refer to To provide additional information of how the axle 
loads are supported by and distributed to the bridge 
superstructure, in addition to installing FOS within the main 
bridge girders and deck slab, three sleepers were instrumented 
and installed consecutively at the midspan of the bridge (refer 
to Figure 2c). In parallel to the structural monitoring 
programme, experimental testing was performed to simulate 
the loading and boundary conditions experienced by one of the 
installed sleepers (refer to Figure 2a).  Testing was conducted 
at a specialized laboratory facility housed at Heriot-Watt 
University. A nonlinear FE model of the prestressed concrete 
sleepers was constructed to provide additional information and 
to run parametric studies on the behaviour of the sleeper on 
ballast (refer to Figure 2b). Further details of the FE model and 
modelling process are provided in Xu et al. (2019).   

.  These sensors have a measurement accuracy of 
approximately +/- 4 µε and, when used with a Micron Optics 
sm130 spectrum analyser can acquire data at up to 1000 Hz. 
All fibre optic sensor cables were routed to a central enclosure 
where sensor signals could be interrogated and downloaded. 

All monitoring and experimental data collection activities 
using sensor have some associated level of uncertainty. In 
particular, sensor measurement accuracy may be affected by 
ambient temperature fluctuations, method of attachment, long-
term deterioration, analyser settings and limitations, and 
software data interpretation algorithms.  Accounting for these 
uncertainties in experimental and field monitoring data is 
critical for properly interpreting the information generated.  

Figure 3 Sleeper schematic and FOS instrumentation 
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As outlined in Figure 1, there are several potential approaches 
for modelling engineered systems. These include model-driven 
approaches (e.g. closed-form physics-based, FE models, etc.), 
data-driven approaches (i.e. model free or those considering 
only information gathered from performance data), model-
updating or system identification approaches (i.e. those 
seeking to infer critical system parameters based on response 
of the system), and a new class of approaches based on data-
centric engineering.   

A variety of data-driven approaches have emerged as the 
primary means for developing performance models and for 
detecting statistically significant trends which may indicate 
deterioration or damage (Farrar and Worden 2013). Statistical 
techniques for data reduction such as principle component 
analysis (PCA) (Tibaduiza et al. 2013) and for supervised 
machine learning such as artificial neural networks (ANNs) 
(Hakim and Razak 2013) have been used for processing, 
interpretation and damage detection. In terms of model 
updating and system identification, a large body of literature 
exists pertaining specifically to structural health monitoring 
(SHM) of critical infrastructure.  Pasquier and Smith (2015) 
developed a systematic system identification framework using 
model falsification combined with knowledge-based 
reasoning.  They used an iterative approach in which they 
developed a series of physics-based candidate finite element 
(FE) models and compared their results with measured in-situ 
performance data.  By applying their framework to a full-scale 
existing highway bridge, they confirmed its validity to perform 
system identification while taking into consideration 
systematic uncertainties.  Malekzadeh et al. (2015) proposed a 
hybrid data analysis technique which combined model-driven 
and data-driven approaches. Using a small laboratory-based 
instrumented bridge structure, the framework consists of three 
sequential phases which include studying (determining 
structure-specific critical damage scenarios), training (running 
FE model simulations coupled with Monte Carlo simulations 
to learn relevant performance parameters), and monitoring 
(using trained data set to make real-time predictions).  Finally, 
they were able to demonstrate how the developed hybrid 
framework might be used in future to perform real-time 
damage detection (facilitated via the FE model) on a full-scale 
bridge. 

Data-centric engineering (DCE) is the emerging field of 
research which seeks to leverage the performance data 
obtained from sensors which have been installed on engineered 
systems and from data obtained through physics-based 
simulations to produce more robust predictive models. Past 
studies by the authors have involved developing fundamental 
statistical tools for analysing and processing live-streaming 
monitoring data and have begun to define the concept of DCE 
in the context of instrumented infrastructure (Lau et al. 2018a, 
Lau et al. 2018b).   

This paper has several primary contributions, namely, it 
defines a new class of problems related to data-centric 
engineering in the context of modelling the behaviour of 
instrumented infrastructure.  Secondly, it demonstrates a DCE 

modelling approach which utilises Gaussian processes through 
a case study involving fibre-optic based self-sensing railway 
sleepers. Emerging machine learning techniques based on 
Gaussian process (GP) regression are nonparametric, can be 
used for nonlinear regression and are ideally-suited for use in 
structural damage detection (Fuentes et al. 2013). Multi-output 
Gaussian processes (Kennedy et al. 2001) have been used in a 
recent study concerning condition monitoring where 
information from two types of physics-based models (low- and 
high- fidelity FE models) are fused together to obtain more 
accurate predictions of structural responses (Zhou et al. 2016). 
Finally, this paper discusses the future implications and 
applications of DCE-based approaches for better leveraging 
data generated from instrumented structures. 

Figure 1. Approaches for modelling engineered systems 
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DCE applications have begun to be explored within a wide-
variety of sectors including cybersecurity, ecosystem 
modelling, extreme weather event prediction and many others.  
Its application to infrastructure systems, particularly those 
deemed as being ‘smart’ is an area of increasing interest. This 
paper focuses specifically on applying DCE approaches to 
instrumented civil engineering assets.  

Case Study: Self-Sensing Railway Sleepers Installed on 
a Concrete Underbridge 
Beginning in 2015, a research project undertaken through the 
Centre for Smart Infrastructure and Construction at the 
University of Cambridge investigated the incorporation of 
fibre optic sensor (FOS) networks into new railway bridges and 
sleepers (Butler et al. 2016, Butler et al. 2017, Xu et al. 2019). 
This project investigated the feasibility of incorporating FOS 
within concrete bridge beams and sleepers during their 
construction and using the collected sensor data to reason about 
the structures’ response to passing trains. Specifically, an 11.9 
metre underbridge (owned and operated by Network Rail) 
supported by 600 mm deep prestressed concrete beams, a 200 
mm reinforced concrete deck with precast concrete parapets 
was constructed over a thirteen-month period (completed in 
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April 2016). The bridge primarily carries heavy freight trains 
via a single rail line over a diverted watercourse. The rail track 
is supported by prestressed concrete sleepers installed on 400 
mm of stone ballast.  Figure 2 depicts the several stages of data 
collected (and generated) from the self-sensing sleeper and 
track bed system. 

Figure 2 Stages of data collection for self-sensing 
sleepers 

 

To provide additional information of how the axle loads are 
supported by and distributed to the bridge superstructure, in 
addition to installing FOS within the main bridge girders and 
deck slab, three sleepers were instrumented and installed 
consecutively at the midspan of the bridge (refer to Figure 2c). 
In parallel to the structural monitoring programme, 
experimental testing was performed to simulate the loading and 
boundary conditions experienced by one of the installed 
sleepers (refer to Figure 2a).  Testing was conducted at a 
specialized laboratory facility housed at Heriot-Watt 
University. A nonlinear FE model of the prestressed concrete 

sleepers was constructed to provide additional information and 
to run parametric studies on the behaviour of the sleeper on 
ballast (refer to Figure 2b). Further details of the FE model and 
modelling process are provided in Xu et al. (2019).   

Effects of loading, ballast settlement and supporting ballast 
pressure were all assessed based on the experimental and 
numerical results. The results indicated that self-sensing 
sleepers in addition to being able to directly assess their own 
structural condition may also be used for track-level condition 
monitoring (e.g. ballast settlement, axle load estimation, train 
speed and direction indication, etc.). 

FOS were installed during the sleeper manufacturing process. 
In total, three strain-measuring FOS (fibre Bragg grating point-
based sensors) were installed along the top and bottom 
prestressing steel strands and embedded within the concrete 
(refer to To provide additional information of how the axle 
loads are supported by and distributed to the bridge 
superstructure, in addition to installing FOS within the main 
bridge girders and deck slab, three sleepers were instrumented 
and installed consecutively at the midspan of the bridge (refer 
to Figure 2c). In parallel to the structural monitoring 
programme, experimental testing was performed to simulate 
the loading and boundary conditions experienced by one of the 
installed sleepers (refer to Figure 2a).  Testing was conducted 
at a specialized laboratory facility housed at Heriot-Watt 
University. A nonlinear FE model of the prestressed concrete 
sleepers was constructed to provide additional information and 
to run parametric studies on the behaviour of the sleeper on 
ballast (refer to Figure 2b). Further details of the FE model and 
modelling process are provided in Xu et al. (2019).   

.  These sensors have a measurement accuracy of 
approximately +/- 4 µε and, when used with a Micron Optics 
sm130 spectrum analyser can acquire data at up to 1000 Hz. 
All fibre optic sensor cables were routed to a central enclosure 
where sensor signals could be interrogated and downloaded. 

All monitoring and experimental data collection activities 
using sensor have some associated level of uncertainty. In 
particular, sensor measurement accuracy may be affected by 
ambient temperature fluctuations, method of attachment, long-
term deterioration, analyser settings and limitations, and 
software data interpretation algorithms.  Accounting for these 
uncertainties in experimental and field monitoring data is 
critical for properly interpreting the information generated.  

Figure 3 Sleeper schematic and FOS instrumentation 
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3. Data-Centric Engineering Approaches 

This section explores how to combine the modelling elements 
of DCE approaches: physics-based modelling and data-driven 
modelling. One feature of the DCE approach is the 
combination of physics and statistics at the modelling stage. 
Another feature considers the contrast between the output of 
the physics-based model and the data-driven model. These two 
features are conceptually very different. The first fuses both 
models together in an effort to achieve a more representative 
model, whilst the second is more concerned with assessing the 
similarities between the separate model outputs. 

We now discuss in more detail the aspects of DCE methods 
using the application of the railway sleeper described 
previously. Recall that FOS measurement data is not available 
along all points of the railway sleeper: data is only available at 
three discrete locations. In this application, the aim is to 
monitor the response of the entire sleeper, and not just at the 
sensor locations. The physics (mechanics) governing the 
response of the sleeper can be used to understand its response 
to applied axle loading between the sensor locations. One way 
of achieving this was explored in Gregory et al. (2018) that 
combines an analytical physics-based model (i.e. beams on 
elastic foundations) (Hetenyi 1971) and experimental data 
from the sleeper. 

A DCE approach may combine the separate model outputs to 
generate predictions of the response of the sleeper to stimuli. 
This is in contrast to traditional modelling approaches used in 
engineering. In model updating for example, the predictions 
are obtained from a physics-based model, whilst the data is 
only used to tune the components of the physics-based model. 
Data-centric engineering advocates a more balanced approach 
to modelling, where each separate model can contribute to the 
predictions. This approach is more balanced in the following 
sense: first, physics-based models are typically based on a 
structural simplification of the asset (including loading and 
boundary condition assumptions). Therefore, assuming the 
physics-based model is the true data generation process, as in 
model updating, would lead to an inaccurate representation of 
the structures’ true response. Conversely, the sensor data 
captures the response of the structure in operation using a 
measurement device. Thus, modelling the data directly would 
capture the response of the instrumented asset and the 
associated measurement errors of the sensors themselves and 
the measurement device (e.g. in this study, a FOS analyser). In 
summary, a DCE approach models the response of the structure 
by balancing the information generated from the physics-based 
model and the observed (experimental and/or operational) 
error-prone measurement data. 

In Gregory et al. (2018), this balance is explored through multi-
ouput Gaussian processes. A Gaussian process (Rasmussen 
2004) is a model for a continuous function 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧), over a 
problem space 𝑧𝑧𝑧𝑧 ∈ 𝑍𝑍𝑍𝑍 (e.g. space and time), that has a mean 
𝜇𝜇𝜇𝜇(𝑧𝑧𝑧𝑧) and a covariance function 𝑘𝑘𝑘𝑘(𝑧𝑧𝑧𝑧, 𝑧𝑧𝑧𝑧′), 𝑧𝑧𝑧𝑧′ ∈ 𝑍𝑍𝑍𝑍, 

𝐟𝐟𝐟𝐟(𝐳𝐳𝐳𝐳) ∼ 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆(𝛍𝛍𝛍𝛍(𝐳𝐳𝐳𝐳),𝐤𝐤𝐤𝐤(𝐳𝐳𝐳𝐳, 𝐳𝐳𝐳𝐳′))   (1) 

A multi-output Gaussian process (Kennedy et al. 2001) is a 
framework for modelling more than one variable, say 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧) and 
𝑢𝑢𝑢𝑢(𝑧𝑧𝑧𝑧), that are connected in some way 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧) = 𝑔𝑔𝑔𝑔(𝑢𝑢𝑢𝑢(𝑧𝑧𝑧𝑧)), via 
Gaussian processes. The model can therefore generate 
predictions for any one variable, conditioned on data from all 
variables. In the case of the method presented in Gregory et al. 
(2018), each output corresponds to the output from the 
experimental testing of the sleeper or from the predictions 
generated from an analytic physics-based model (e.g. closed-
form solution for a beam of finite length on an elastic 
foundation). The connection between the two sources of 
information in this case is the physical law connecting the two 
quantities measured by each of the sources: vertical deflection 
simulated by the physics-based model and beam curvature 
derived through strain measurements measured recorded 
during experimental testing. This approach balances the 
proportion of data considered from the physics-based model 
output with respect to the number of experimental data points. 
This is achieved by maximising the predictive performance of 
the resulting DCE model. If the physics-based model is overly 
simplified, this approach would prefer to use a lower 
proportion of data from the physics-based model. Combining 
the physics-based model and sensor data in this way creates a 
DCE-based model capable of quantifying the effects of system 
components that cannot be directly measured by the sensors 
(e.g. the stiffness of ballast supporting the sleeper). 

The aforementioned study (Gregory et al. 2018) proposed one 
possible way of balancing the two sources of information 
relating to the modelled railway sleeper. However, there are 
many other DCE methods one could consider using for such an 
application. The next section outlines some future 
developments of these methods. 

4. Future Developments of DCE Approaches 

In SHM applications, there are typically three sources of 
information: physics-based model simulations, experimental 
data and data collected from the structure in operation. This 
raises the question of how to combine the different data sources 
to monitor and accurately predict the future operational 
response of the structure. Another issue is how to deploy 
results from experimental and theoretical work in operational 
systems (Cawley, 2018). These are important aspects of SHM 
where the application of DCE-based approaches is being 
investigated. 

To illustrate the issues of combining the different sources of 
data used in SHM we now consider physics-based simulations 
in addition to experimental (see Figure 4) and operational data 
(see Figure 5) from the instrumented sleeper. Note that for the 
experimental data, the response of the sleeper is recorded under 
known applied forcing (i.e. simulated train axle loading). 
Whereas, for the operational data the response of the sleeper is 
recorded over time, at 50 Hz; the forcing (i.e. the actual axle 
loads) is unknown.  

 

 
 
 

The physics-based model can generate simulated responses for 
a variety of variables, such as time and forcing. The manner in 
which the experimental and operational data are combined will 
depend on the input of the selected physics-based model, i.e. 
response as a function of space and force, or space and time. 
Figure 6 displays the information from the three sources in 
response (beam curvature) and space. 

Note that the physics-based model is based on several 
simplifications. The form of the analytic physics-based model 
used in Gregory et al. (2018), assumes a constant flexural 
rigidity of the railway sleeper. This assumption is unrealistic as 
can be seen in Figure 6 from the anti-symmetry in the 
experimental and operational data at the sensor locations, in 
contrast to the physics-based model simulations. The Figure 
displays the empirical variation in the experimental and 
operational data, which does not exist in the physics-based 
simulations since they are deterministic. 

Figure 4 Experimentally-measured curvature for the 
three sensors (black & blue = sensors under loading 
points; red = midspan sensors) (curvature vs. time). 

 

Figure 5 Measured operational curvature values for the 
three sensors (represented by different colours) on a 
sleeper from Bridge 11 during a train passage event – 
(curvature vs. sleeper length). 

 

Recall from the start of the section, that the aim of using DCE 
in this study is to predict the operational response of the 
structure, by leveraging the data collected from experiments 
and physics-based models. In addition to this, it is of interest to 
quantify the differences between the experimental and 
operational responses of the sleeper. We now give an example 

of how the DCE model, discussed in the previous section, can 
be used for this purpose.   

A way of combining all three sources of information for the 
railway sleeper application using the DCE model proposed in 
Gregory et al. (2018) is to employ a connecting equation 
between the experimental and operational data. An example of 
this connecting equation between the two sources of data is, 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝜌𝜌𝜌𝜌 × 𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) + 𝜉𝜉𝜉𝜉, (2) 

Where 𝜌𝜌𝜌𝜌 is an unknown scaling parameter which needs to be 
estimated and 𝜉𝜉𝜉𝜉 is a random noise term (with potentially 
unknown parameters that need to be estimated). Connecting all 
three sources of information can then be done by utilising the 
aforementioned connection between the experimental data and 
the physics-based model in addition to the one in (2). The 
output (e.g. predictions of operational structural responses) 
produced from extending the DCE model in this way, will now 
be based on all three data sources (i.e. field monitoring, 
experimental, and the analytical model) (illustrated in Figure 
6). In principle, this extension to the Gaussian process 
framework can be used to leverage both experimental data and 
physics-based model simulations. However, the performance 
of the resulting DCE method depends on the choice of the 
connecting equation.  

Instrumented infrastructure, such as the railway sleeper 
considered throughout this paper, produce complex data sets, 
i.e. high dimensional and high frequency. Many traditional 
engineering approaches, including FE modelling, are 
inadequate to deal with such data in real-time. For example, it 
may be necessary to monitor some structures continuously. 
This presents a computational challenge when the data is 
revealed at a high frequency – it would be infeasible to 
recalibrate or run a FE model at 50 Hz. Data-centric 
engineering methods seek to address this difficult and 
unresolved problem. 

Figure 6 Physical simulation of curvature (black), taken 
with forcing of standard rail carriage (125,000N), 
operational curvature data (red), taken at the peak of 
curvature from a carriage going over it (e.g. 0.75 seconds 
from Figure 5), and experimental data (blue), taken at a 
forcing of 125,000 N. 
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3. Data-Centric Engineering Approaches 

This section explores how to combine the modelling elements 
of DCE approaches: physics-based modelling and data-driven 
modelling. One feature of the DCE approach is the 
combination of physics and statistics at the modelling stage. 
Another feature considers the contrast between the output of 
the physics-based model and the data-driven model. These two 
features are conceptually very different. The first fuses both 
models together in an effort to achieve a more representative 
model, whilst the second is more concerned with assessing the 
similarities between the separate model outputs. 

We now discuss in more detail the aspects of DCE methods 
using the application of the railway sleeper described 
previously. Recall that FOS measurement data is not available 
along all points of the railway sleeper: data is only available at 
three discrete locations. In this application, the aim is to 
monitor the response of the entire sleeper, and not just at the 
sensor locations. The physics (mechanics) governing the 
response of the sleeper can be used to understand its response 
to applied axle loading between the sensor locations. One way 
of achieving this was explored in Gregory et al. (2018) that 
combines an analytical physics-based model (i.e. beams on 
elastic foundations) (Hetenyi 1971) and experimental data 
from the sleeper. 

A DCE approach may combine the separate model outputs to 
generate predictions of the response of the sleeper to stimuli. 
This is in contrast to traditional modelling approaches used in 
engineering. In model updating for example, the predictions 
are obtained from a physics-based model, whilst the data is 
only used to tune the components of the physics-based model. 
Data-centric engineering advocates a more balanced approach 
to modelling, where each separate model can contribute to the 
predictions. This approach is more balanced in the following 
sense: first, physics-based models are typically based on a 
structural simplification of the asset (including loading and 
boundary condition assumptions). Therefore, assuming the 
physics-based model is the true data generation process, as in 
model updating, would lead to an inaccurate representation of 
the structures’ true response. Conversely, the sensor data 
captures the response of the structure in operation using a 
measurement device. Thus, modelling the data directly would 
capture the response of the instrumented asset and the 
associated measurement errors of the sensors themselves and 
the measurement device (e.g. in this study, a FOS analyser). In 
summary, a DCE approach models the response of the structure 
by balancing the information generated from the physics-based 
model and the observed (experimental and/or operational) 
error-prone measurement data. 

In Gregory et al. (2018), this balance is explored through multi-
ouput Gaussian processes. A Gaussian process (Rasmussen 
2004) is a model for a continuous function 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧), over a 
problem space 𝑧𝑧𝑧𝑧 ∈ 𝑍𝑍𝑍𝑍 (e.g. space and time), that has a mean 
𝜇𝜇𝜇𝜇(𝑧𝑧𝑧𝑧) and a covariance function 𝑘𝑘𝑘𝑘(𝑧𝑧𝑧𝑧, 𝑧𝑧𝑧𝑧′), 𝑧𝑧𝑧𝑧′ ∈ 𝑍𝑍𝑍𝑍, 

𝐟𝐟𝐟𝐟(𝐳𝐳𝐳𝐳) ∼ 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆(𝛍𝛍𝛍𝛍(𝐳𝐳𝐳𝐳),𝐤𝐤𝐤𝐤(𝐳𝐳𝐳𝐳, 𝐳𝐳𝐳𝐳′))   (1) 

A multi-output Gaussian process (Kennedy et al. 2001) is a 
framework for modelling more than one variable, say 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧) and 
𝑢𝑢𝑢𝑢(𝑧𝑧𝑧𝑧), that are connected in some way 𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧) = 𝑔𝑔𝑔𝑔(𝑢𝑢𝑢𝑢(𝑧𝑧𝑧𝑧)), via 
Gaussian processes. The model can therefore generate 
predictions for any one variable, conditioned on data from all 
variables. In the case of the method presented in Gregory et al. 
(2018), each output corresponds to the output from the 
experimental testing of the sleeper or from the predictions 
generated from an analytic physics-based model (e.g. closed-
form solution for a beam of finite length on an elastic 
foundation). The connection between the two sources of 
information in this case is the physical law connecting the two 
quantities measured by each of the sources: vertical deflection 
simulated by the physics-based model and beam curvature 
derived through strain measurements measured recorded 
during experimental testing. This approach balances the 
proportion of data considered from the physics-based model 
output with respect to the number of experimental data points. 
This is achieved by maximising the predictive performance of 
the resulting DCE model. If the physics-based model is overly 
simplified, this approach would prefer to use a lower 
proportion of data from the physics-based model. Combining 
the physics-based model and sensor data in this way creates a 
DCE-based model capable of quantifying the effects of system 
components that cannot be directly measured by the sensors 
(e.g. the stiffness of ballast supporting the sleeper). 

The aforementioned study (Gregory et al. 2018) proposed one 
possible way of balancing the two sources of information 
relating to the modelled railway sleeper. However, there are 
many other DCE methods one could consider using for such an 
application. The next section outlines some future 
developments of these methods. 

4. Future Developments of DCE Approaches 

In SHM applications, there are typically three sources of 
information: physics-based model simulations, experimental 
data and data collected from the structure in operation. This 
raises the question of how to combine the different data sources 
to monitor and accurately predict the future operational 
response of the structure. Another issue is how to deploy 
results from experimental and theoretical work in operational 
systems (Cawley, 2018). These are important aspects of SHM 
where the application of DCE-based approaches is being 
investigated. 

To illustrate the issues of combining the different sources of 
data used in SHM we now consider physics-based simulations 
in addition to experimental (see Figure 4) and operational data 
(see Figure 5) from the instrumented sleeper. Note that for the 
experimental data, the response of the sleeper is recorded under 
known applied forcing (i.e. simulated train axle loading). 
Whereas, for the operational data the response of the sleeper is 
recorded over time, at 50 Hz; the forcing (i.e. the actual axle 
loads) is unknown.  

 

 
 
 

The physics-based model can generate simulated responses for 
a variety of variables, such as time and forcing. The manner in 
which the experimental and operational data are combined will 
depend on the input of the selected physics-based model, i.e. 
response as a function of space and force, or space and time. 
Figure 6 displays the information from the three sources in 
response (beam curvature) and space. 

Note that the physics-based model is based on several 
simplifications. The form of the analytic physics-based model 
used in Gregory et al. (2018), assumes a constant flexural 
rigidity of the railway sleeper. This assumption is unrealistic as 
can be seen in Figure 6 from the anti-symmetry in the 
experimental and operational data at the sensor locations, in 
contrast to the physics-based model simulations. The Figure 
displays the empirical variation in the experimental and 
operational data, which does not exist in the physics-based 
simulations since they are deterministic. 

Figure 4 Experimentally-measured curvature for the 
three sensors (black & blue = sensors under loading 
points; red = midspan sensors) (curvature vs. time). 

 

Figure 5 Measured operational curvature values for the 
three sensors (represented by different colours) on a 
sleeper from Bridge 11 during a train passage event – 
(curvature vs. sleeper length). 

 

Recall from the start of the section, that the aim of using DCE 
in this study is to predict the operational response of the 
structure, by leveraging the data collected from experiments 
and physics-based models. In addition to this, it is of interest to 
quantify the differences between the experimental and 
operational responses of the sleeper. We now give an example 

of how the DCE model, discussed in the previous section, can 
be used for this purpose.   

A way of combining all three sources of information for the 
railway sleeper application using the DCE model proposed in 
Gregory et al. (2018) is to employ a connecting equation 
between the experimental and operational data. An example of 
this connecting equation between the two sources of data is, 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝜌𝜌𝜌𝜌 × 𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) + 𝜉𝜉𝜉𝜉, (2) 

Where 𝜌𝜌𝜌𝜌 is an unknown scaling parameter which needs to be 
estimated and 𝜉𝜉𝜉𝜉 is a random noise term (with potentially 
unknown parameters that need to be estimated). Connecting all 
three sources of information can then be done by utilising the 
aforementioned connection between the experimental data and 
the physics-based model in addition to the one in (2). The 
output (e.g. predictions of operational structural responses) 
produced from extending the DCE model in this way, will now 
be based on all three data sources (i.e. field monitoring, 
experimental, and the analytical model) (illustrated in Figure 
6). In principle, this extension to the Gaussian process 
framework can be used to leverage both experimental data and 
physics-based model simulations. However, the performance 
of the resulting DCE method depends on the choice of the 
connecting equation.  

Instrumented infrastructure, such as the railway sleeper 
considered throughout this paper, produce complex data sets, 
i.e. high dimensional and high frequency. Many traditional 
engineering approaches, including FE modelling, are 
inadequate to deal with such data in real-time. For example, it 
may be necessary to monitor some structures continuously. 
This presents a computational challenge when the data is 
revealed at a high frequency – it would be infeasible to 
recalibrate or run a FE model at 50 Hz. Data-centric 
engineering methods seek to address this difficult and 
unresolved problem. 

Figure 6 Physical simulation of curvature (black), taken 
with forcing of standard rail carriage (125,000N), 
operational curvature data (red), taken at the peak of 
curvature from a carriage going over it (e.g. 0.75 seconds 
from Figure 5), and experimental data (blue), taken at a 
forcing of 125,000 N. 
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5. Conclusions 

This paper has provided an overview of how the emerging 
analytical approach of DCE can be applied to instrumented 
infrastructure systems. By gathering quantifiable performance 
data from critical bridges, buildings, tunnels etc. and 
combining this information with traditional numerical (i.e. FE) 
modelling approaches, DCE seeks to create more robust and 
balanced predictive models.  A contrast was drawn between 
data-driven models, model updating (and system 
identification) and data-centric models. A DCE model 
proposes a more balanced approach to modelling, where each 
separate model (i.e. data-driven and physics-based) can 
contribute to the predictions. Thus, by discussing the subtleties 
of this distinction, this study has provided a more 
comprehensive definition of DCE. An example of a DCE 
approach using a two-stage Gaussian process, was applied to 
fuse experimental and field monitoring sensor data captured 
from instrumented railway sleepers. Several key advantages of 
a DCE-based approach over traditional data-driven, model-
based and system identification approaches include: 

• The development of a separate predictive model that is not 
based on data-driven and physics-based (i.e. FE) models 
alone which is capable of accounting for uncertainties in 
model assumptions and measurement error, 

• Allowing for the systematic balancing of inputs from the 
data-driven and physics-based model results; and 

• The ability to be readily adapted to combine (and balance) 
inputs from multiple sources of data (e.g. from 
experimental tests, field monitoring and numerical 
simulations). 

There are still many complex data science and engineering 
challenges to address including: 

• Data curation and processing: all data from an 
instrumented infrastructure cannot not be stored given the 
high-frequency recording and the dimensionality of the 
data. This raises questions of the sort:  Which parts of the 
data should be stored? How is the “importance” of the kept 
parts measured? 

• False positives over infinite/long time horizons: in the 
setting of a structure instrumented with a sensor network, 
it is feasible that data will be accrued continuously for very 
long periods. Any system/methodology that is used to 
signal changes/degradation/damage will produce false 
signals. A challenge, from a statistical point-of-view, is 
controlling the false signal rates over infinite time horizon. 

• Integrating live-streaming statistical models (based on 
continuously recorded sensor data) with physics-based 
models (e.g. finite element); and 

• Demonstrating the performance of DCE models as applied 
to full-scale and operational engineering systems. 

The flexibility of DCE approaches for combining a variety of 
different data sets (and models) provides a promising 
framework for tackling these challenges.  

Acknowledgements 

The authors gratefully acknowledge the EPSRC and Innovate 
UK, the Cambridge Centre for Smart Infrastructure and 
Construction (CSIC) Innovation and Knowledge Centre 
(EPSRC grant reference number EP/L010917/1) and the 
Lloyd’s Register Foundation Programme on Data-Centric 
Engineering at the Alan Turing Institute for supporting this 
project; the invaluable use and facilitation of Heriot-Watt 
University testing facilities; the assistance with self-sensing 
sleeper fabrication from CEMEX; the on-site instrumentation 
assistance of J. Shardelow and N. Gibbons of the University of 
Cambridge; and the experimental testing and finite element 
modelling expertise offered by J. Xu of the Harbin Institute of 
Technology. 

References 

American Society of Civil Engineers. 2017 Infrastructure 
Report Card. Washington D.C., 2017. 
Bowers et al. (2016). Smart Infrastructure – Getting More from 
Strategic Assets. 7 pgs. Centre for Smart Infrastructure and 
Construction, Cambridge UK. 
Butler LJ, Gibbons N, Ping H, Elshafie MZEB, and Middleton 
CR (2016).  Evaluating the early-age behaviour of full-scale 
prestressed concrete beams using distributed and discrete fibre 
optic sensors. Journal of Construction and Building Materials, 
126: 894 – 912.  
Butler LJ, Xu J, Ping H, Gibbons N, Dirar S, Middleton CR, 
and Elshafie MZEB (2017).  Robust fibre-optic sensor arrays 
for monitoring early-age performance of mass-produced 
concrete railway sleepers. Journal of Structural Health 
Monitoring 17(3): 635 – 653. 
Canadian Construction Association. The Canadian 
Infrastructure Report Card 2016. Canadian Society for Civil 
Engineering & Federation of Canadian Municipalities. 2016. 
Cawley P (2018). Structural health monitoring: Closing the gap 
between research and industrial deployment, Structural Health 
Monitoring, 17(5): 1225 – 1244. 
Farrar CR and Worden K (2013). Structural health monitoring: 
a machine learning perspective. John Wiley & Sons, 
Chichester, U.K. 643 pgs. 
Farrar CR and Worden K (2013). Structural health monitoring: 
a machine learning perspective. John Wiley & Sons, 
Chichester, U.K. 643 pgs. 
Fuentes R, Cross EJ, Halfpenny A, Barthorpe RJ and Worden 
K (2014). Autoregressive Gaussian processes for structural 
damage detection. Proceeding of the international conference 
on uncertainty in structural dynamics, Leuven, Belgium: 469 – 
483. 
Gregory A, Lau D-H, Girolami M, Butler L, Elshafie M. 
(2018) The synthesis of data from instrumented structures and 
physics-based models via Gaussian processes. arXiv:1811.108 

 

 
 

Hakim SJS and Razak HA (2013). Structural damage detection 
of steel bridge girder using artificial neural networks and FE 
models. Steel and composite structures 14(4):367 – 377. 
Hetenyi M (1971) Beams on elastic foundation: theory with 
applications in the fields of civil and mechanical engineering. 
University of Michigan. 
Lau FD-H, Butler LJ, Adams NM, Girolami MA, Elshafie 
MZEB. (2018a). The role of statistics in data-centric 
engineering. Statistics and Probability Letters, Special Issue on 
the Role of Statistics in the Era of Big Data. 136. 
Lau FD-H, Butler LJ, Adams NM, Elshafie MZEB, Girolami 
MA. (2018b). Real-time statistical modelling of data generated 
from self-sensing bridges. ICE Journal of Smart Infrastructure 
and Construction. 171(1): 3 -13. 
Malekzadeh M., Atia G., & Catbas F.N. (2015).  Performance-
based structural health monitoring through an innovative 
hybrid data interpretation framework. J Civil Struct Health 
Monit 5:287 – 305.  
Pasquier R. and Smith I.F.C. (2016).  Iterative structural 
identification framework for evaluation of existing structures. 
Engineering structures 106:179 – 194. 
Rasmussen, CE (2004). Gaussian processes in machine 
learning. Advanced lectures on machine learning. Springer, 
Berlin, Heidelberg: 63-71. 
Tibaduiza DA, Mujica LE and Rodellar J (2013). Damage 
classification in structural health monitoring using principle 
component analysis and self-organizing maps. Structural 
control and health monitoring 20: 1303 – 1316. 
Xu J, Butler LJ, Elshafie MZEB. (2019). Experimental and 
numerical investigation of the performance of self-sensing 
concrete sleepers. Structural health monitoring. 
Zhou K, Liang G, and Tang J (2016). Vibration analysis of 
structure with uncertainty using two-level Gaussian processes 
and Bayesian inference. Journal of Physics: Conference Series. 
Vol. 744.

Downloaded by [] on [05/08/24]. Published with permission by the ICE under the CC-BY license 



349

 

 
 
 

5. Conclusions 

This paper has provided an overview of how the emerging 
analytical approach of DCE can be applied to instrumented 
infrastructure systems. By gathering quantifiable performance 
data from critical bridges, buildings, tunnels etc. and 
combining this information with traditional numerical (i.e. FE) 
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data. This raises questions of the sort:  Which parts of the 
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it is feasible that data will be accrued continuously for very 
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controlling the false signal rates over infinite time horizon. 
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Acknowledgements 

The authors gratefully acknowledge the EPSRC and Innovate 
UK, the Cambridge Centre for Smart Infrastructure and 
Construction (CSIC) Innovation and Knowledge Centre 
(EPSRC grant reference number EP/L010917/1) and the 
Lloyd’s Register Foundation Programme on Data-Centric 
Engineering at the Alan Turing Institute for supporting this 
project; the invaluable use and facilitation of Heriot-Watt 
University testing facilities; the assistance with self-sensing 
sleeper fabrication from CEMEX; the on-site instrumentation 
assistance of J. Shardelow and N. Gibbons of the University of 
Cambridge; and the experimental testing and finite element 
modelling expertise offered by J. Xu of the Harbin Institute of 
Technology. 

References 

American Society of Civil Engineers. 2017 Infrastructure 
Report Card. Washington D.C., 2017. 
Bowers et al. (2016). Smart Infrastructure – Getting More from 
Strategic Assets. 7 pgs. Centre for Smart Infrastructure and 
Construction, Cambridge UK. 
Butler LJ, Gibbons N, Ping H, Elshafie MZEB, and Middleton 
CR (2016).  Evaluating the early-age behaviour of full-scale 
prestressed concrete beams using distributed and discrete fibre 
optic sensors. Journal of Construction and Building Materials, 
126: 894 – 912.  
Butler LJ, Xu J, Ping H, Gibbons N, Dirar S, Middleton CR, 
and Elshafie MZEB (2017).  Robust fibre-optic sensor arrays 
for monitoring early-age performance of mass-produced 
concrete railway sleepers. Journal of Structural Health 
Monitoring 17(3): 635 – 653. 
Canadian Construction Association. The Canadian 
Infrastructure Report Card 2016. Canadian Society for Civil 
Engineering & Federation of Canadian Municipalities. 2016. 
Cawley P (2018). Structural health monitoring: Closing the gap 
between research and industrial deployment, Structural Health 
Monitoring, 17(5): 1225 – 1244. 
Farrar CR and Worden K (2013). Structural health monitoring: 
a machine learning perspective. John Wiley & Sons, 
Chichester, U.K. 643 pgs. 
Farrar CR and Worden K (2013). Structural health monitoring: 
a machine learning perspective. John Wiley & Sons, 
Chichester, U.K. 643 pgs. 
Fuentes R, Cross EJ, Halfpenny A, Barthorpe RJ and Worden 
K (2014). Autoregressive Gaussian processes for structural 
damage detection. Proceeding of the international conference 
on uncertainty in structural dynamics, Leuven, Belgium: 469 – 
483. 
Gregory A, Lau D-H, Girolami M, Butler L, Elshafie M. 
(2018) The synthesis of data from instrumented structures and 
physics-based models via Gaussian processes. arXiv:1811.108 

 

 
 

Hakim SJS and Razak HA (2013). Structural damage detection 
of steel bridge girder using artificial neural networks and FE 
models. Steel and composite structures 14(4):367 – 377. 
Hetenyi M (1971) Beams on elastic foundation: theory with 
applications in the fields of civil and mechanical engineering. 
University of Michigan. 
Lau FD-H, Butler LJ, Adams NM, Girolami MA, Elshafie 
MZEB. (2018a). The role of statistics in data-centric 
engineering. Statistics and Probability Letters, Special Issue on 
the Role of Statistics in the Era of Big Data. 136. 
Lau FD-H, Butler LJ, Adams NM, Elshafie MZEB, Girolami 
MA. (2018b). Real-time statistical modelling of data generated 
from self-sensing bridges. ICE Journal of Smart Infrastructure 
and Construction. 171(1): 3 -13. 
Malekzadeh M., Atia G., & Catbas F.N. (2015).  Performance-
based structural health monitoring through an innovative 
hybrid data interpretation framework. J Civil Struct Health 
Monit 5:287 – 305.  
Pasquier R. and Smith I.F.C. (2016).  Iterative structural 
identification framework for evaluation of existing structures. 
Engineering structures 106:179 – 194. 
Rasmussen, CE (2004). Gaussian processes in machine 
learning. Advanced lectures on machine learning. Springer, 
Berlin, Heidelberg: 63-71. 
Tibaduiza DA, Mujica LE and Rodellar J (2013). Damage 
classification in structural health monitoring using principle 
component analysis and self-organizing maps. Structural 
control and health monitoring 20: 1303 – 1316. 
Xu J, Butler LJ, Elshafie MZEB. (2019). Experimental and 
numerical investigation of the performance of self-sensing 
concrete sleepers. Structural health monitoring. 
Zhou K, Liang G, and Tang J (2016). Vibration analysis of 
structure with uncertainty using two-level Gaussian processes 
and Bayesian inference. Journal of Physics: Conference Series. 
Vol. 744.

Butler, Lau, Gregory, Girolami and Elshafie

Downloaded by [] on [05/08/24]. Published with permission by the ICE under the CC-BY license 


