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ABSTRACT 
 

YOUNIS, REEM, F., Masters: June: [2017:], Masters of Science in Environmental Engineering 

Title: An investigation into fouling, wetting and their mitigation using a commercial antiscalant 

in membrane distillation desalination 

Supervisor of Thesis: Prof. Farid Benyahia 

An experimental investigation into membrane fouling and loss of hydrophobicity was carried out 

in direct contact membrane distillation (DCMD) desalination of high salinity seawater. The 

membrane used was a commercial hydrophobic polypropylene flat-sheet with nominal pore size 

of 0.2 microns and a porosity of 73-75%. Extended runs of up to 91 hours in batch mode were 

conducted at various temperatures and flowrates, namely 50-70 ⁰C and 1.5-2.5 L/min 

respectively. Some runs consisted of injecting antiscalant. The results obtained showed that the 

membrane becomes significantly fouled at temperatures above 50 ⁰C often leading to significant 

distillate flux decline and a modest reduction of salt rejection, indicating that partial membrane 

wetting has occurred. It was found that the flux declined by 74% and 92% for temperatures of 60 

⁰C and 70 ⁰C, respectively at feed flowrate of 1.5 L/min. The effect of flowrate on the overall flux 

decline was not significant. The loss of hydrophobicity was studied using distillate conductivity 

and used membrane surface contact angle. In this work, both partial and surface membrane 

wetting were observed. The modest membrane wetting occurred at 70 ⁰C and 1.5 L/min and led 

to the lowest salt rejection of around 86%. However, at flowrate of 2.5 L/min regardless of the 

feed temperature studied, the salt rejection was higher than 99%. The morphology of the 

membrane and the chemical composition of the fouling components were studied using SEM and 

EDS. These were mainly carbonates of Ca and Mg and to a lesser extent, sulfates of Ca. Sodium 

chloride deposits and traces of silicates and iron were also observed. The presence of calcium 
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sulfate in the membrane surface was associated with the lowest salt rejection experiments, 

indicating that this foulant could be responsible for the membrane wetting mechanism. 

Experiments performed with commercial antiscalant injected in the feed with a dose of 4 ppm 

showed that fouling and wetting were almost completely prevented. This work has successfully 

shown that fouling in membrane distillation desalination can be mitigated using commercial 

antiscalant. However, the importance of developing high performance membranes was 

recommended to reduce the demand of costly antiscalant injection. 
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1 Introduction 

The demand for fresh water worldwide is increasing gradually along with its supply. Seawater desalination 

is considered to be the most reliable way to produce fresh water [1]. The available technologies can be 

divided into two broad categories: the distillation systems and membrane systems. The distillation 

methods such as the multi stage flash (MSF) uses a relatively inexpensive sources of thermal energy supply 

to produce high purity water [2]. However, the cost of the facilities required is high. The common known 

membrane technologies used in industry such as reverse osmosis (RO) require expensive membranes and 

associated pretreatment units to separate the brine from the pure water conducted under more compact 

and less demanding facilities. Nevertheless, high energy source is required in terms of high electrical 

power supply to achieve high feed pressure. In general, these technologies are energy intensive 

desalination processes and associated with negative environmental impact in the form of CO2 emissions. 

Membrane distillation (MD) is an emerging technology that has been under research and development 

since the 1990s [3]. MD is a thermally-driven process used mainly for desalination purposes. Other uses 

of MD include, the concentration of various types of aqueous solutions [4, 5], the separation of heavy 

metals from contaminated water or the removal of volatile organic compound traces [6, 7]. MD process 

operates by allowing only vapor to pass through a barrier layer consisting of a micro-porous hydrophobic 

membrane, by utilizing low grade thermal energy [8]. Water vapor diffuses through the pores of the 

membrane from the feed-pore interface, then depending on the MD configuration it is collected or 

condensed by different means at the permeate side [9]. There are mainly four configurations of MD that 

can be employed, including: direct contact membrane distillation, vacuum, sweep gas, and air gap [10]. 

 

One of the important factor the MD process relies on is the design and structure of the membrane. The 

characteristics of a good quality MD membrane is in compromise between membrane permeability and 
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its resistance to wettability [8]. These characteristics include adequate thickness, high porosity, narrow 

uniform pore size distribution, and high hydrophobicity [8]. Due to some issues including its production 

of relatively low permeate flux when compared to RO, concentration and temperature polarization and 

fouling of the membrane will lead to further reduction in the permeate flux [2, 11], and membrane 

damage along with loss of hydrophobicity in long-term performance [12]. In recent years, many studies 

were conducted for the purpose of improving the structure and design of the fabricated MD membrane 

including flat-sheets and hollow fiber membranes, to achieve high permeate fluxes and salt rejection what 

makes MD more viable for many uses [13-15].  

Nevertheless, MD process has advantages over conventional desalination processes including the 

thermally-driven systems such as flash distillation, and the pressure-driven systems such as reverse 

osmosis. RO demands heavy gauge piping and requires high maintenance, which is not the case in MD 

since it is thermally-driven. Moreover, MD is less prone to fouling than RO [16] since only vapor crosses 

through the membrane, and theoretically MD is capable of 100% rejection of macro-particles and ions [9].  

Compared to thermally-driven systems, MD requires lower temperature, and so waste heat of low-grade 

in addition to solar and geothermal energy sources can be utilized [8]. MD technology has less parts 

requirement and can be run in a relatively smaller footprint because of its lower vapor space [10]. 

Although, MD is a promising technology over other desalination technologies, it is not yet fully 

commercialized, thus significant advancements should be done for MD technology to achieve growth in 

market shares [17]. Despite that MD is less prone to fouling than RO, it is one of the issues that affects the 

life time and performance of the MD process. Many studies have pointed out and detailed fouling 

existence and its control approaches in reverse osmosis, nano-filtration and ultrafiltration [18-22]. 

However, compared to MD the behavior of fouling is different, since the applied pressure in RO is much 

higher than that applied in an MD process. Moreover, only vapor and not the solution of the feed enters 

the pores of the membrane, hence the chemical interactions between the feed solution and the 
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membrane will not be the same as in the membrane filtration pressure-driven processes [10]. It is 

imperative to reveal that numerous studies have been conducted on the scaling and fouling of the 

membrane in typical laboratory MD processes, but no studies was conducted to explicate this knowledge 

[23]. 

Since the operational conditions and the membrane properties in MD are different compared to pressure-

driven processes and in order to maintain MD efficiency, it is important to understand fouling mechanisms 

and to suggest control strategies [8]. The development of fouling control techniques in MD is vital not 

only in reducing the contaminated permeate production as a result of pores wetting induced by fouling, 

but also to reduce the costs of consumed energy, membrane area, replacement requirements, and 

shutdown periods [24, 25]. 

 

1.1 Objective and scope of work 

In order to deploy membrane distillation desalination commercially, it is important to address outstanding 

issues such as membrane fouling and suitable mitigation methods. Therefore, it is the objective of this 

work to investigate: 

• The effect of temperature and flowrate on the membrane fouling behavior. 

• The effect of antiscalant addition. 

These objectives will be attained through analysis of flux performance and membrane autopsy using a 

variety of tools such as SEM-EDS, contact angle, and salt rejection. 
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2 Membrane distillation 

Membrane distillation desalination process is unlike other membrane based processes that depend on 

the pressure differences or gradients of concentration or electrical potential. MD is a thermal membrane-

based separation process, where the driving force is a temperature induced vapor pressure difference 

though a micro-porous hydrophobic membrane. Vapor crosses the membrane by means of simultaneous 

mass and heat transfer from the hot feed to the cold permeate side. 

2.1 MD configurations 

2.1.1 Direct contact membrane distillation (DCMD)  

DCMD is aimed to be employed widely in desalination, the manufacture of acids, and in food industries 

for aqueous solutions concentration [26-28]. It is considered as the simplest configuration of MD amongst 

others, where the feed is in direct contact with the surface from the hot side of the membrane. The vapor 

pressure difference is the driving force that moves the vapor through the pores of the hydrophobic 

membrane into the permeate cold side where it condenses in the membrane module (Figure 1). The main 

disadvantage of this configuration is heat losses due to conduction, reducing the overall thermal efficiency 

[13]. 

 

 

 

Figure 1: DCMD configuration [13]. 
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2.1.2 Air-gap membrane distillation (AGMD) 

AGMD configuration is suitable for desalination purposes and the condensation of volatile compounds 

traces in aqueous solutions [29, 30]. The hot feed is in direct contact only with the surface of the 

membrane. In the permeate side a stagnant air is interposed between the cold surface and the membrane, 

where condensation of the vapor passing across the air gap takes place inside the membrane unit (Figure 

2). Thus, the driving force is the temperature difference in the liquid-vapor interface of the hot feed with 

the condensing surface [13]. One disadvantage of this configuration is the mass transfer resistance added 

because of the presence of air gap. Yet, it promotes reduced heat losses due to conduction [13]. 

 

 

 

Figure 2: A schematic diagram of AGMD configuration [13]. 

 
 

2.1.3 Sweeping gas membrane distillation (SGMD) 

In this configuration, the vapor condensation takes place outside the membrane module, by sweeping 

inert gas at the permeate side (Figure 3). Similar to AGMD, gas barrier is present thus, the conduction heat 

losses are reduced. However, the coefficient of mass transfer is enhanced since this barrier is not 

stationary. One drawback of this configuration is the requirement of large condenser, since large volume 
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of sweep gas is needed to diffuse only a small volume of permeate [13]. The AGMD process is suitable for 

the removal of volatile compounds from aqueous solutions. 

It is worthwhile mentioning the development of a combined process known as the thermostatic sweeping 

gas membrane distillation (TSGMD). It functions by passing an inert gas across the gap between the cold 

condensation surface and the membrane. The condensation of vapor takes place over the surface of 

condensation (AGMD), while the remaining part is condensed in an exterior condenser outside the 

membrane module (SGMD) [3, 31]. 

 

 

 

Figure 3: A schematic representation of SGMD configuration [13]. 

 
 

2.1.4 Vacuum membrane distillation (VMD)  

A pump is used in VMD configuration in the permeate side of the membrane to create a vacuum and the 

vapor condenses outside the membrane cell (Figure 4, excluding the vapor condensation unit). VMD has 

a negligible conduction heat losses, which is considered as a great advantage [10]. VMD is suitable for the 

separation of volatile aqueous solutions [32, 33]. 
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Figure 4: VDM schematic configuration [13]. 

 
 

2.1.5 Module configurations and membrane materials 

The two main configurations of MD module used are the frame and plate module, and the tubular module. 

In tubular hollow fiber module (Figure 5a), the feed passes through the shell side where the membranes 

are implemented, while the permeate is applied on the other side of the hollow fiber. Depending on the 

configuration DCMD, SGMD, or VDM, coolant, sweeping gas, or negative pressure is applied, respectively. 

The packing density of this configuration is high (3000 m2/m3) [33,37]. The other module configuration is 

the frame and plate (Figure 5b), where flat-sheet membranes can be used in any of the MD configurations 

discussed in section 2.1. The packing density is less than that of tubular module around 100-400 m2/m3 

[10,33]. However, the effective area to volume can be increased by constructing multiple layers’ flat sheet 

membranes, and the dynamics of the flow can be enhanced by adding a spacer that promotes flow 

turbulence [34]. As the configuration suggests, it is easier to replace the damaged MD membranes in the 

frame and plate module. Moreover, a better distribution of flow can be accomplished implying a lower 

degree of temperature polarization than that in hollow fiber module [34]. Accordingly, this module 

configuration was more employed in a laboratory scale to examine the effect of various membrane 

properties and operational conditions on the performance of MD process [35].  
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Figure 5: Schematic representation of (a) tubular module, and (b) frame and plate module [34]. 

 
 
The most common membrane materials used in MD applications include: polypropylene (PP), 

polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF) [53]. The commercially available 

membranes have porosity range of 0.60 to 0.95, thickness of 0.04 to 0.25 mm, and size of pore of 0.2 to 

1 µm [34]. The surface energies and thermal conductivities of these materials are presented in Table 1. 

 

 

Table 1: The thermal conductivities and surface energies of the available membrane materials used for 

MD applications [35, 36]. 

Membrane material Thermal conductivity (W/mK) Surface energy (x10-3 N/m) 

PP ~0.17 30 

PTFE ~0.25 9-20 

PVDF ~0.19 30.3 
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2.1.6 Membrane characteristics 

The membrane acts as a barrier layer, where it’s properties selectively prompt the transport of heat from 

the feed to the permeate side, the vapor phase is transferred through the inorganic or microporous 

polymeric membrane allowing the simulations exchange of heat and mass at the interfaces based on a 

vapor-liquid equilibrium [34]. The characteristics of membrane applicable for membrane distillation uses, 

include [37-40]: 

• Optimum thickness in compromise between mass and heat transfer. While, high mass transfer 

can be achieved by a thicker membrane, a lower thermal resistance leads to an increase in the 

driving force for a thinner membrane to produce a higher flux.  

• Low thermal conductivity of the membrane material, since low conductivity reduces the loss of 

sensible heat through the membrane that leads to a higher permeate flux production by 

increasing the temperature difference at the membrane interface. 

• Relatively large pore size ranging from several nanometers to few micrometers with a narrow 

distribution such that the liquid entry pressure (LEP) is not exceeded. 

• Low surface energy, implying a higher hydrophobicity of the membrane. Where the membrane 

with higher hydrophobicity can withstand higher pressure with the same pore size. In other 

words, according to equation (1), more hydrophobic material allows MD operation with a 

membrane of larger pore size under the same pressure. 

• High porosity, where the porosity is defined as the fraction volume of the voids that allow the 

production of vapor flux, regardless of the configuration of MD. 

• Exhibits good long term thermal stability handling temperature as high as 100 ⁰C, and stable 

performance of MD in terms of selectivity and permeability. 
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Liquid entry pressure is the liquid entry pressure above which the water is able to penetrate the 

membrane's pores, causing wetting [8]. The transmembrane pressure should be as high as possible to 

avoid the entry of liquid from the feed or the distillate side by overcoming the hydrophobic forces of the 

membrane. LEP depends on many factors, such as the water's surface tension, the surface energy of the 

membrane's material, and the geometry and distribution of the pores [8]. LEP can be calculated using 

Laplace-Young equation, as following [13]:  

 
𝐿𝐸𝑃 =

(−4𝐵𝑔𝜎 cos 𝜃)

𝑑𝑚𝑎𝑥

 <  𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠 − 𝑃𝑝𝑜𝑟𝑒  (1) 

Where Bg is the geometric factor of pore, and is equal to 1 for cylindrical geometry of the pores. 𝜎 is the 

solution's surface tension, 𝜃 is the angle of contact between the surface of the membrane and the 

solution, and dmax is the diameter of the largest pore. Where the pressure difference of the liquid in either 

side of the membrane and the air in the pores of the membrane should be greater than the designed LEP 

[34]. To avoid membrane wettability, the hydrophobicity of a membrane's material can be increased by 

increasing the contact angle, in which a higher value of LEP can be achieved, or by decreasing the size of 

the pores to a small maximum pore size limited by membrane permeability, promoting a better 

performance of MD [34]. However, besides wetting of the membrane taking place due to many factors 

such as the presence of surfactants, it should be noted that the major contributor to membrane wetting 

is induced by fouling and scaling [41]. 

2.2 Theoretical background 

During the operation of MD heat and mass transfer takes place simultaneously. Moreover, the dominant 

resistance across the membrane depend on the flow regime, wherein at high flowrates the mass transfer 

resistance of the membrane is predominant, while at lower flowrates the rate limiting step across the 

boundary layer is the resistances of heat transfer [2, 3]. One of the issues that affects the life time and 

performance of MD process is fouling by adding heat resistance to the MD process, that will be addressed 

in this section. 



  
   

11 
 

2.2.1 Mass transfer 

The vapor partial pressure gradient is the driving force in MD. The mass transfer transmembrane flux, is 

expressed as [42]: 

 𝐽 = 𝐶𝑚(𝑝𝑓𝑚 − 𝑝𝑝𝑚) (2) 

Where J is the flux of mass transfer, Cm is the overall coefficient of mass transfer, and pfm and ppm are the 

vapor-liquid feed and permeate partial vapor pressures, respectively [42].  

The vapor pressure is exponentially related to temperature difference as predicted from Antoine’s 

equation [10].  

 
𝑝 = 𝑒

(𝐴−(
𝐵

𝐶+𝑇
))

 (3) 

Thus, the higher the temperature difference in the vapor-liquid interface of the membrane from the 

distillate and feed sides [23], the higher the driving force which leads to an increase in flux of the 

permeate. Per Knudsen-molecular diffusion model, equation (3) can be expanded as following [43]: 

 

𝐽 =  
𝜀

𝜏𝛿

𝑝𝐷𝐴𝐵

𝑅𝑇𝑚
𝑙𝑛

(𝑝 − 𝑝𝑝𝑚)/𝑝𝐷𝐴𝐵 + (
3

4𝑑
)√2𝜋𝑀𝐴/𝑅𝑇𝑚

(𝑝 − 𝑝𝑓𝑚)/𝑝𝐷𝐴𝐵 + (
3

4𝑑
)√2𝜋𝑀𝐴/𝑅𝑇𝑚

 (4) 

All the factors that influence the flux of DCMD are included in this equation, such as the characteristics of 

the membrane (𝜀, 𝜏, 𝛿, 𝑑), the feed and permeate (𝑝𝑝𝑚, 𝑝𝑓𝑚) temperatures, transported components’ 

molecular weight (MA) and diffusivity (DAB), and the membrane module fluid dynamics and properties [44]. 

The temperature at the feed and permeate surfaces of the micro-porous membrane influences the vapor 

pressure by its polarization effects. The fouling layer formed at the surface adds an additional heat transfer 

resistance to the vapor pressure at both surfaces of the membrane; specifically fouling layers formed due 

to inorganic foulants and humic materials that are found to be porous [12]. Moreover, according to recent 

studies not only heat transfer resistance is added, but also hydraulic resistance when the fouling layer 

formed has small pores (< 50 nm) or gel-like free volume hydrophilic layer of fouling that will cause further 

reduction in the driving force due to the depression in vapor pressure. The water in liquid form may pass 
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through this layer by capillary action forming another liquid/vapor interface. This phenomenon is known as 

Kelvin effect which was not incorporated in the model of mass transfer [45]. However, the surface resistance 

is negligible since the area of the pores in MD is larger than the area of the surface [35].  

2.2.2 Heat transfer 

The thermal resistance in process transport is used to analyze the heat transfer in MD operation. Excluding 

the effect of fouling, three main sections are involved in heat resistance: The resistance of the membrane 

and the resistance of the hydrodynamic feed and permeate boundary layers. Additionally, in the presence 

of fouling layer a further heat transfer resistance is induced. Each heat transfer step contributes to a 

certain resistance and driving force. However, all the steps have equal transfer of heat under steady state 

conditions. The heat transfer at steady state is described as follows [11, 44]: 

 
𝑞 =

𝑡1 − 𝑡𝑓𝑙

𝑅1
=  

𝑡𝑓𝑙 − 𝑡𝑓𝑚

𝑅2
=

𝑡𝑓𝑚 − 𝑡𝑝𝑚

𝑅3
=

𝑡𝑝𝑚 − 𝑡𝑝

𝑅4
=

1

𝑅𝑡
(𝑡𝑓 − 𝑡𝑝) (5) 

Where, 

𝑅1 =
1

ℎ1
  , 

𝑅2 =
𝛿2

𝑘2
  , 

𝑅3 =
1

1
𝑅𝑚

+
1

𝑅𝑉

=
1

(
𝑘𝑚
𝛿𝑚

) + 𝜆𝐶𝑚 (
𝑑𝑝

𝑑𝑇|𝑇𝑚
)

 

𝑅4 =
1

ℎ4
 

R1 and R4 represent the feed and permeate hydrodynamic boundary layers’ heat transfer resistances, 

respectively. R2 is the conductive heat of the fouling layer, and R3 is the resistance corresponding to the 

parallel resistances of the membrane’s conduction heat, taking into account the pores and the solid 

portions. Figure 6a schematically describes the thermal resistances discussed. Rt is the heat transfer total 

resistance from the feed to the permeate. The temperatures at the membrane interface of the feed and 
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permeate ( tfm and tpm) can be determined from equation (5) solution, as follows [11]: 

 
𝑡𝑓𝑚 = 𝑡𝑓 −

(𝑅1 + 𝑅2)(𝑡𝑓 − 𝑡𝑃)

𝑅3 + (𝑅1 + 𝑅2 + 𝑅4)
= 𝑡𝑓 −

𝑅12(𝑡𝑓 − 𝑡𝑃)

𝑅3 + 𝑅124
 (6) 

 
𝑡𝑝𝑚 = 𝑡𝑝 −

𝑅4(𝑡𝑓 − 𝑡𝑃)

𝑅3 + 𝑅124
 (7) 

The relation of the known difference in temperature (tf -tp) with the unknown temperature difference 

(tfm-tpm), can be described as [11]: 

 
𝑡𝑓𝑚 − 𝑡𝑝𝑚 =

𝑅3(𝑡𝑓 − 𝑡𝑃)

𝑅3 + (𝑅1 + 𝑅2 + 𝑅4)
=

𝑅3(𝑡𝑓 − 𝑡𝑃)

𝑅3 + (𝑅124)
 (8) 

2.3 Temperature polarization (TP) 

Temperature polarization phenomenon is known to have a significant influence on MD performance. The 

latent heat of evaporation is removed when the water evaporates through the pores of the membrane. 

Near the membrane surface a thermal boundary layer is formed due to the cooling process. The MD 

driving force drops dramatically as a result of temperature reduction, since the water vapor pressure 

decreases exponentially with temperature [9], leading to a higher degree of flux decline.  

The effective heat transfer coefficient is the factor that determines the temperature polarization extent, 

at a given flux. A higher heat transfer coefficient is required to minimize the temperature difference 

required to transfer the same amount of vaporization heat across the thermal boundary layer. Thus, MD 

design strategies aim to increase the feed side heat transfer coefficient to reduce the temperature 

polarization effects by increasing the feed flowrate, trying to operate under turbulent regimes or adding 

spacer in the MD module to promote turbulence [9]. Equation (9) [46] present a simple temperature 

polarization model:  

 𝑇𝑓,𝑏 − 𝑇𝑓,𝑚 =
𝑞𝑜𝑢𝑡

ℎ
 (9) 

Where qout is the total loss of heat across the membrane, where vapor sensible heat transfer and 

evaporation latent heat are included, h is the heat transfer coefficient, and Tf,b and Tf,m are the 
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temperatures at the bulk in the feed stream and the membrane interface, respectively. 

In addition to vapor flux reduction, temperature polarization may lead to the reduction in scaling 

potential, because the solubility of some salts is inversely proportional with temperature. Nevertheless, 

concentration polarization may rise under similar conditions at which temperature polarization rises; 

increasing the potential of scale formation, due to increased salt concentration near the surface of the 

membrane [9]. 

2.4 Concentration polarization (CP) 

The MD system operates by allowing only water vapor to pass through the membrane, increasing the 

concentration of non-volatile salts and creating a film at the vapor/liquid interface of the membrane this 

is referred to as concentration polarization. The film model is used to describe the concentration 

polarization process, depicted by equation (10) [3]. 

 𝑥𝑚

𝑥𝑐
= 𝑒𝑥𝑝 (

𝐽

𝜌𝑘
) (10) 

Where xm is the membrane surface molar concentration and xc is the fluid streams bulk molar 

concentration, J is the flux of water through the membrane and k is the coefficient of mass transfer of the 

salt in the solution. 

It should be noted that the influence of concentration polarization is indirect and insignificant on the 

driving force of the MD process, when compared to the influence of temperature polarization on the 

vapor pressure difference. The significance of the concertation polarization effect arises due to the 

promotion of scale formation as a result of increased concentration at the membrane interface. As 

described in Eq. (10) an increase in the flux J causes an increase in the concentration polarization effect, 

while this effect is reduced with an increase in the mass transfer coefficient. Nevertheless, concentration 

and temperature polarizations take place simultaneously and both phenomena influence and depend on 

vapor flux of water through the membrane [9]. Details of fouling and scaling mechanisms will be 

elaborated in chapter 3. 
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3 Membrane Distillation Challenges: Fouling, scaling and wetting (including 

membrane autopsies, and state of art) 

3.1 Fouling in membrane distillation 

In general, fouling can be defined as the accumulation of deposits on the membrane's surface or within 

its pores that leads to the reduction in the permeation flux and the degradation in the performances of 

salt rejection, inducing wetting [47, 48]. Wetting will be discussed further in section 3.4.1. 

All the fouling sorts found in other membrane-based separation processes take place in MD. Generally, 

the formation of deposit occurs due to the interaction of foulants; that are of colloidal nature amongst 

them or/and amongst the membrane surface [49].   

Hydraulic and thermal resistances rise in the presence of a fouling layer, depending on its thickness and 

porosity [50]. If the layer of fouling was porous (Figure 6b) it may contribute to thermal resistance by 

observing a decrease in the flux of permeate only. However, if it was non-porous (Figure 6c) it increases 

both types of resistance, with a higher influence on the mass transfer resistance by hindering the water 

vapor transport across the membrane [8]. Temperature polarization effect is increased, due to the drop-

in temperature difference across the membrane passing through the fouling layer, leading to further 

reducing in the driving force of MD process [1]. The tendency and intensity of fouling depend on the type 

of feed solution used, as investigated by Gryta [12] in which he studied the effect on PP capillary 

membranes using DCMD system by feed solutions of brines, proteins from wastewater and demineralized 

water production. While brine feed contributed to a porous fouling layer of CaCO3 scale, wastewater 

caused the formation of a non-porous layer of protein fouling, as shown in the SEM images in Figure 6, 

where Figure 6d represents an image of a virgin unfouled membrane. 
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Figure 6: (a) The thermal distribution of the DCMD affected by membrane fouling, SEM images of (b) 

Porous fouling layer of CaCO3, (c) Non-porous fouling layer of protein, (c) Unfouled, virgin membrane [8]. 

 

 

The mechanisms of fouling in membrane distillation are disparate compared to that encountered in 

membrane pressure-driven processes, due to the differences in the properties and pore size of the 

membranes used, in addition to the effect of operational parameters. According to previous studies [12, 

48, 51], it was found that fouling due to CaCO3 and protein depositions were more critical under the effect 

of the elevation of feed solution temperatures, at which the MD processes operate. Moreover, the feed 

flowrate effect on the fouling rate and the deposit size and morphology, was studied. It was found that 
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while, increasing the flowrate of the feed led to the formation of porous fouling layer of smaller crystals, 

lowering the flow rate caused the production of thicker fouling layer with a mountain-like structure of 

deposition [12]. 

The complication of fouling phenomenon arises from the fact that it is influenced by many factors and can 

form on the surface or within the pores of the membrane, understanding the mechanism at which fouling 

takes place is essential in developing approaches for fouling remediation and cleaning [8]. These factors 

can be divided into four groups [18], as shown in Figure 7: (a) The characteristics of the foulants (solubility, 

charges, concentration, diffusivity, etc.); (b) properties of the membrane (pore size and its distribution, 

hydrophobicity, roughness of the surface, it's charges and functional groups); (c) operational parameters 

(temperature, and flowrate); and (d) the characteristics of feed water (pH, organic and/or inorganic 

occupation, ionic strength and the chemistry of the solution). The membrane surface fouling is mainly 

influenced by the foulant characteristics, while membrane properties mainly affect the interactions of the 

surface of membrane with the foulant [8]. Moreover, the operational conditions of MD process influence 

the propensity and intensity of fouling. 
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Figure 7: The factors influencing fouling formation [8]. 

 
 
The fouling sites can be at the external surface or blocking the pores of the membrane (Figure 8) [52]. The 

formation of deposit (gel-like) layers on the feed-membrane interface is referred to as external fouling 

this type of fouling is considered to be reversible by simple cleaning methods. Whereas, pore blocking 

fouling takes place when the foulants penetrate the surface of the membrane into its pores causing partial 

pore blockage by narrowing the pores gradually, or complete blockage by penetrating the full pores' depth 

[53]. Accordingly, pore blockage induced fouling in most cases is irreversible, as result of membrane 

degradation and permanent damage [8]. According to the study performed by Gryta [12] on DCMD 

system, it was observed in a microscopic level that fouling did not take place only on the surface of the 

membrane, but also within the pores, causing an irreversible damage of the membrane. 
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Figure 8: Schematic representation of the external fouling and the pore blocking fouling [8]. 

 
 
In accordance with the material of the fouling layer, there are three main broad categories of foulants 

found in MD technology studies [54], including: (a) inorganic, (b) organic, and (c) biological fouling. Where 

the colloidal particles and particulates deposition such as slit, clay, silica take place and/or precipitation 

and crystallization of hard minerals from the feed solution such as CaCO3, CaSO4, NaCl, iron oxide, BaSO4, 

silicate, etc. The deposition of organic matters such as proteins, humic and fulvic acids, polymers of 

polycrylic cause organic fouling. While Biological fouling, is due to the presence of microorganisms from 

sources such as fungi, algae, sludge, yeast, and bacteria. It is important to note that what makes fouling 

an even more complicated phenomenon is the fact that not only one mechanism take place in real MD 

process, instead a combination of variety of foulants and fouling mechanisms may occur simultaneously 

[8], as described in Figure 9. However, in real seawater the main concern is inorganic and particulate 

fouling. 
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Figure 9: Schematic diagram representing the mixed fouling mechanisms propensities, where a, b, c and 

M each present a different form of mixed fouling per the foulants present [8]. 

 
 

3.1.1 Inorganic fouling 

In general, inorganic fouling is referred to deposition and scaling by the precipitation of hard mineral salts 

from the feed solution involving transport and crystallization phenomena. As mentioned previously also 

colloidal particles, silica and slit precipitates, products of corrosion, etc. all affect inorganic fouling 

significantly. When the equilibrium product of solubility becomes less than the ionic product of a salt, 

scaling starts to form [48]. At the membrane surface near the feed side, due to water vaporization allowing 

supersaturation condition to take place, causing crystals growth and nucleation [55]. The fouling intensity 

can be determined by the consideration of kinetics of precipitation along with the conditions of 

supersaturation [21].  

Crystals that nucleate on the surface of the membrane is termed as surface heterogeneous crystallization, 

on the other hand crystals nucleating in the bulk is known as homogeneous bulk crystallization [56] (Figure 

10). Usually these two mechanisms in MD process occur simultaneously. Furthermore, the crystallization 

starts in the larger pores of the membrane, as they are more susceptible to wetting compared with small 
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pores [57]. As a consequence of supersaturation conditions, a higher tendency of secondary crystallization 

of ions and precipitated particles to collide with each other’s in the bulk due to transport of particles 

or/and gravitational settling mechanisms [58, 59]. As a result of the formation of fouling layer on the 

surface, the driving force across the membrane is reduced resulting in a reduced permeation flux due to 

the additional temperature polarization caused by increased thermal resistance at the membrane 

interface [60]. 

 

 

 

Figure 10: A schematic diagram representing the mechanisms of Bulk crystallization, and surface 

crystallization due to inorganic fouling in MD process [8]. 

 

The most common inorganic scale foulants in membrane distillation are calcium carbonate, calcium 

sulfate, calcium phosphate and silicate [61]. Other common foulants include ferric oxide, iron oxide, 

magnesium sulfate, magnesium chloride, barium sulfate, and strontium sulfate [62]. 

There are many factors that affect the rate of inorganic fouling induced by scaling, including: the 

supersaturation degree, the temperature of both the surface of the membrane and the solution, the 

properties of the surface such as its morphology and roughness, the properties of water, the types of 
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substrate present, and the availability of nucleation sites such as water impurities and particulates [63, 

64]. 

3.2 Inorganic scaling in membrane distillation 

Inorganic scaling was studied in MD fouling and reported in the literature. Inorganic scaling, or simply 

scaling can be divided into three categories, as also classified in RO: alkaline, non-alkaline and particulate 

scaling [19, 24, 65]. Alkaline salts, is known also as basic salts, will be easily formed when hydrolyzed in a 

solution increasing the pH above 7, which allows the formation of hydroxide ions. Thus, acidifying the 

solution will inhabit the precipitation tendency of the alkaline salts, such as calcium carbonate [65]. Other 

charged ions dissolved in water that are independent of pH variations are classified as non-alkaline salts 

[66]. Particulate scale, such as silica, can be considered as uncharged molecule scale, as polar water 

molecules does not have the tendency to dissolve these salts [67]. Furthermore, numerous factors govern 

the scale formation rate. These factors include: the operational conditions, the composition of water, 

substrate material, nucleation sites when available, and the supersaturation degree [56, 68, 69].  

3.2.1 Alkaline scale in MD 

Calcium carbonate is the most typical scale in thermal desalination processes. The fouling of membrane 

by calcium carbonate scale will often limit the conditions at which MD system can operate at [21, 70], 

because it is the fastest to reach supersaturation conditions, compared with other salts present in the 

feed solution [70]. 

The breakdown of bicarbonate, HCO3-, is responsible for the formation of calcium carbonate scale, as 

shown in the equation: Ca2+ + 2HCO3 → CaCO3 + CO2+ H2O 

Calcium carbonate scaling under typical MD operating conditions, is dominated by bicarbonate 

breakdown [71]. However, the carbonate equilibrium is complex, because it depends on many factors. 

The precipitation tendency increases with respect to increase in pH, and concentration of bicarbonate 

[72]. The increase in temperature has a dramatic effect on the solubility of CaCO3, because CaCO3 solubility 
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is inversely proportional to changes in temperature regardless of CO2 concentration [71]. Moreover, 

increasing the temperature allows more CO2 to evaporate from the solution raising the pH and shifting 

the equilibrium of the equation shown above to the right, thus CaCO3 solubility may decrease permitting 

more precipitation to take place [21, 73].  

In accordance to Shams El Din, as reported in MSF and common thermal desalination systems, at a 

temperature as low as 37 ⁰C using ocean water as the feed, calcium carbonate scale may form [74]. Which 

is typically below the average temperature MD system operates at (50-90 ⁰C). Moreover, alkaline scaling 

is dependent on many factors such as the residence time, the concentration of the feed, the heat transfer 

and the operational conditions, etc. [71].   

As indicated in the equation below, also carbonate tend to hydrolyze into carbon dioxide, as following: 

CO2
−3+ H2O→2OH− + CO2 

The equation implies that the solution will become more basic. The increase in pH will allow the 

precipitation of other scales such as Mg(OH)2, and the solubility of other scales will be influenced as well 

[75]. 

Calcium carbonate has six forms of crystals, known from their different morphology, hardness, refractive 

index and color. First, the anhydrous polymer form of crystals: vaterite, aragonite and calcite [22]. 

Although vaterite is common in MD systems with respect to operational conditions, calcite is known to be 

the most stable form among them, as it was observed in MD systems under laminar flow conditions [76, 

77]. While, 99% of the calcium carbonate deposited was in aragonite form in MD instillation operating at 

higher temperatures [71, 78]. Calcite is rounded in shape and has an average diameter of 10 µm, aragonite 

has a needle-like structure, while vaterite is spherical in shape with diameter ranges from 0.05 to 5 µm 

[106]. The three remaining forms occur in hydrated state, known as: Calcium carbonate hexahydrate 

(CCH), monohydrated calcium carbonate (MCC), and amorphous calcium carbonate (ACC) [71, 79]. Figure 

11 shows that the form nature of calcium carbonate is highly reliant on temperature.  



  
   

24 
 

 

Figure 11: The solubility of different forms of calcium carbonate with respect to temperature [80]. 

 
 
Generally, calcium carbonate scaling in MD process is only observed at quite high saturation indices. 

However, because of the micro-porous nature of the membrane, calcium carbonate has a high tendency 

to precipitate at a considerably lower induction period (higher nucleation rate), regardless of the 

saturation index (SI) value [81, 82]. As reported by Fei et al. calcite scale was observed in the MD system 

only at a concentration of CaCO3 32 times higher than the saturation index [77]. However, according to 

Gryta's observation at temperature ranges of 20 ⁰C to 100 ⁰C using hollow fiber membranes, the induction 

time of CaCO3 precipitation exceeded 30 minutes although the SI was considered to be at low levels [71, 

83]. At higher temperatures, the solubility of CaCO3 decreases. Accordingly, it was recommended by Gryta 

to operate at a temperature below 80 ⁰C to reduce the scale formation, where lake water was used as the 

feed [71]. However, in another study using untreated tap water, calcium carbonate was observed at a 

temperature as low as 40 ⁰C in a stack membrane module [84]. Notably, there is high range of variations 

of fouling, because scaling is highly dependent on temperature, but is also affected by other factors, such 

as the properties of foulants, feed water and membrane characteristics, etc. [52].  In concentrated feed 
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solution, fouling by calcium carbonate can take place in RO process at a temperature as low as ambient 

[5].   

Although studies conducted on calcium carbonate scaling in MD processes are comparably trivial, 

compared to that in pressure driven systems. In general, it was found that when CaCO3 was used in feed 

purely as the foulant, the deposit layer created was nonporous in nature, and high rate of flux decline was 

observed [56, 71, 85]. However, it was also found that the morphology of the deposit layer is influenced 

by changes in flowrate. Figure 12 shows a SEM imaging of CaCO3 on a capillary membrane under laminar 

flow. Usually, at lower flowrate larger crystals are formed and the scaling layer will be more compact. On 

the other hand, higher flowrates inhabit the growth of large crystals and the morphology of calcium 

carbonate layer formed on the surface will be more porous [71]. Accordingly, the flux decline values vary 

significantly from near zero to as high as 66% [86]. Moreover, it was found in other studies that CaCO3 can 

penetrate and block the pores of the membrane, especially in long term performance, causing partial 

wetting of the membrane and the contamination of the permeate [2, 76, 85].  

 

 

 

Figure 12: SEM image of CaCO3 scale morphology on an Accurel PP membrane, using tap water as the feed 

in a DCMD system [85]. 
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Some studies reported that the level of impurities existing in the solution with CaCO3 can affect the scaling 

rate and flux decline. For example, the conclusion brought by He et al. shows that in case of using a highly 

pure solution of calcium carbonate the membrane scaling was minor [77]. This result agreed with another 

study conducted by Nghiem et al., where the insignificant impact on the flux decline was explained by the 

CO2 transport through the membrane and the rapid homogenous precipitation in the bulk [23]. 

The foulants co-precipitation is a common phenomenon observed in MD processes and desalination 

systems in general. The co-precipitation is a more complex and unpredictable behavior of scaling. The 

most common observed foulants co-precipitation is calcium carbonate with calcium sulfate [56]. 

Unfortunately, there is no systematic studies on such a behavior [50, 87]. Gryta has observed crystals of 

bimodal size distribution using SEM-EDX analysis, as a form of co-precipitation of CaCO3 with CaSO4. It was 

found that the co-precipitation reduced the damage on the membrane and reduced wettability, 

compared to CaCO3 alone [56]. Nevertheless, a flux increase was observed when CaSO4 co-precipitated 

with CaCO3 in a study conducted by Fei [77]. The conflict in the results related to the precipitation of these 

two compounds can be explained from the kinetics of the co-precipitation, because a higher level of 

carbonate present in the feed implies a slow CaSO4 precipitation rate, but at the same time the precipitate 

formed will adhere stronger to the surface [87]. 

From MD literature it is inferred that the interaction between mixed salts in feed solution has a significant 

effect on the thermodynamics of scale formation [88]. Gryta has investigated the co-precipitation of 

CaCO3 with iron oxide. It was found that the scaling layer was porous and the flux was not reduced 

significantly [62]. 

Magnesium scale is of a concern in MD desalination systems in the form of magnesium hydroxide, 

especially in groundwater and in other applications were the concentration of Mg+2 is high in feed 

solution. Magnesium hydroxide is commonly observed and its solubility is inversely proportional with 

temperature as CaCO3 scale [71]. Gryta has found that the Mg(OH)2 scale formed only at a temperature 
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above 348 K in a direct contact membrane distillation system, in which he used Mg concentration of 15 

mg/L with tap water derived from lake [71]. 

3.2.2 Non-alkaline scaling  

One of the most common non-alkaline scale in MD systems is calcium sulfate [21]. The scale of calcium 

sulfate can take place as an anhydrite form CaSO4, or as one of the two hydrated forms, the hemihydrate 

(Plaster of Pairs) CaSO4.0.5H2O, and the dihydrate (Gypsum) CaSO4.2H2O. Regardless of the form of 

calcium sulfate scale it is considered to be persistent and can adhere strongly to the surface of the 

membrane [56]. However, the form of precipitation depends on mainly on temperature, in which gypsum 

scale occurs at a temperature around 20 ⁰C, while at higher temperature the anhydrite form is more 

common [21, 89]. In general, the peak solubility of calcium sulfate scale is at a temperature around 40 ⁰C 

[56], and does not change intensely in typical operation conditions of MD process. 

Accordingly, unlike alkaline scale in most cases the cleaning of calcium sulfate scale is relatively difficult 

and most of the mitigation methods found in literature depends mostly on optimizing the operating 

conditions of the MD system, to avoid scaling [21]. In a study performed by Gryta on calcium sulfate scale 

in MD system. Calcium sulfate can be tolerated by bulk flow, if it was in a concentration of 600 mg/L, and 

does not exceed 800 mg/L [56]. Moreover, it was found that calcium sulfate scaling in MD can cause 

membrane wetting and blockage of the pores. The SEM imaging revealed a tightly packed, hexagonal, 

needle-like-gypsum crystals (Figure 13) that tends to grow in the interior of the membrane pores, 

eventually leading to its damage [56]. As a result, in over 13-hour flux decline of 29% was observed [56]. 

Other studies revealed that only long induction period after supersaturation condition being reached 

CaSO4 crystal formation on the surface of the membrane can be initiated, for example scaling occurred 

for 2000, 1000, 500 mg/L of CaSO4 after induction periods of 30, 43, and 53 hours, respectively [23]. Thus, 

strategies to control membrane scaling by CaSO4, may be developed on the bases of the long induction 

periods [9, 23]. 
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Figure 13: SEM imaging of CaSO4 during saline wastewater separation in a DCMD process [56]. 

 
 
MD studies were also performed on the non-alkaline sodium chloride scale, the main constituent of 

desalination feeds. Sodium chloride is known to be highly soluble in water with long induction periods. In 

an experimental work conducted by Tung-Weng et al. [90] in a DCMD operation it was shown that 

increasing the concentration of NaCl from 4.5 wt% to 10 wt% caused flux reduction by only 3-4%. This 

result is expected and is due to increased mole fraction of water (decrease in the driving force) and is not 

a sign of scaling by NaCl, as confirmed by the SEM imaging showing a minor crystallization level [90]. A 

comparable result was obtained by Fei He in a MD case study using 10 wt% of NaCl [91]. However, other 

studies showed a significant flux decline when using high concentrations of NaCl (26-27.5 wt.%) [92]. After 

reaching a feed concentration of 26% NaCl a dramatic flux drop was observed, after a long induction time 

of 250 min [92]. Thus, before the flux dropped significantly, the high concentration of NaCl was in 

agreement with the theory and any drop in flux before 250 min, was only due to the reduction in vapor 

pressure of the feed [93]. Moreover, other studies showed that membrane wetting may take place when 

NaCl saturation conditions were exceeded [56, 94]. 
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3.3 Factors that influence scaling in MD 

3.3.1 Temperature  

In literature, MD operations were performed under wide variety of relevant temperature ranges. 

Temperature is one of the dominant parameters that affects the performance of MD and membrane 

fouling and scaling propensities depending on the type of salts present in the feed solution. Notable, the 

solubility of individual salts may have opposite correlations with temperature. Alkaline salts solubility are 

typically inversely correlated with temperature, since the precipitation of such salts depend on the 

hydrolysis with water that increases with increasing temperature, such as calcium carbonate, calcium 

phosphate, and magnesium hydroxide [66]. While non-alkaline salts solubility is directly proportional to 

temperature, such as NaCl. In desalination feeds, salts such as calcium carbonate and calcium sulfate that 

exhibit inverse solubility with temperature tend to reach saturation conditions more rapidly. Moreover, 

the concentration of these salts varies depending on the source of feed solution, in which the 

concentration of CaSO4 is known to be higher when using seawater as the feed, while for ground water 

being used as the feed the concentration of CaCO3 tends to be higher. However, in general for common 

feed solutions it is known that increasing the temperature causes an increased opportunity of scaling and 

for some salts it reduces the time of induction, implying a higher rate of precipitation [95]. 

Temperature may have a dramatic effect on biofouling since microorganisms are not tolerant to high 

temperatures and organic compounds are effected as well, by thermal changes. Most micro-organisms at 

a temperature above 60 ⁰C, will not be able to survive in accordance with M. Krivorot et al. experiments 

in MD system using hollow fiber membranes and seawater as the feed solution [96].  

3.3.2 Dissolved gases 

In the feed solutions of interest in desalination, dissolved gases are present and may diffuse with the 

water vapor, adding a mass transfer resistance to the driving force reducing the overall vapor flux [71]. 

Thus, by lowering the permeate flowrate, dissolved gases may indirectly reduce scaling and concentration 
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polarization, however this effect is minor [55]. Nevertheless, the absence of dissolved gases as studied by 

Schofield et al. [97] will lead to membrane wettability as the air trapped within the pores will be removed. 

3.3.3 Water source 

As predicted from numerous studies, the fouling nature and likelihood is dependent on the type of feed 

solution being used in the MD system. In general, using similar operational conditions with a specific 

source, may give an expectation of the type of fouling that may form, regardless of some exceptions due 

to seasonal changes in the quality of surface water used [9].  

In the desalination process, feed water sources include: lake, river, seawater, ocean, and ground water, 

waste water may be used as well. The constituents present in the feed water depends on its' source. 

Seawater contains typically high concentration of sodium chloride compared with other sources and 

higher concentration of other ions are present in lakes or rivers compared to that in seawater [9].  

The expected fouling types that are of concern when using seawater and in consistence with literature 

studies are: calcium carbonate, calcium sulfate, particulate, and biological fouling [9]. With calcium 

carbonate being of the most concern in most of the feed water sources. Moreover, since lakes and rivers 

contain high levels of silica and biological constituents, suspended solids and are characterized by low 

salinity they are not very applicable for MD uses [98]. Whereas, ocean waters contain high level of salt 

concentration, with tendencies of calcium carbonate and biological fouling, calcium sulfate being the main 

fouling concern, and at extremely high levels of sodium chloride, dry-out of the membrane may be an 

issue [9]. Groundwater fouling tendencies varies significantly depending on its source. However, it is 

commonly rich in iron that may potentially form iron hydroxide that is almost insoluble in water causing 

heavy fouling and a significant flux reduction [99]. 
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3.4 Effect of scaling and fouling on the membrane distillation performance 

3.4.1 Membrane wetting  

It is required that the membrane remains hydrophobic by allowing vapor only to pass through the pores 

of the membrane, in order to perform probably through MD process [8]. However, once wetting takes 

place water and any dissolved ions can potentially pass through the membrane pores. Wetting may occur 

when the feed pressure in the channels exceeds the LEP [34], more importantly in real MD systems fouling 

and scaling are issues that may eventually induce wetting of the membrane  [9]. The hydrophobic nature 

of the membrane material is the reason to block liquid from passing through the interior of the pores. 

However, once salt crystals penetrate and grow into the pores of the membrane, the non-wetting 

character will start to degrade gradually [41]. Scaling induced wetting is a long-term performance concern 

in MD systems, since the salt concentration is the highest at the interface with the membrane, where 

liquid evaporates near the pores opening, increasing the capability of salt precipitation in this district [9]. 

To achieve high permeability, it is recommended to use a membrane with as thin hydrophobic layer as 

possible and a high porosity and as large pore sizes [100]. In the long-term performance of MD process 

water penetrates deeper into the pores, hence the thin hydrophobic layer may be wetted easily and once 

wetting occurred the scaling and fouling phenomena will accelerate and lead to further damage of the 

membrane [85]. Thus conversely, in order to prevent or reduce wettability it is better to have as thick as 

possible hydrophobic layer and a small maximum pore size at the surface [41].  

Membrane wetting is effected by many factors such as the pores size and shape, the porosity, the surface 

tension of the liquid and the degree of hydrophobicity of the membrane [101, 102]. Membranes with high 

contact angle measurements and small pore radius will reduce the potential of membrane wetting [86, 

103]. However, the fouling phenomena will not be reduced by increasing the liquid-membrane contact 

angle [41]. 
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Polypropylene (PP) membranes are relatively inexpensive and have shown their effectiveness in the 

performance of many MD processes [85, 86, 102, 104, 105]. Yet, PP reveals the smallest contact angle 

when compared with other polymers (e.g. PTFE and PVDF) used for MD applications. However, PP 

membranes exhibit lower surface energies and thermal conductivities, which promote their performances 

as explained in section 2.1.6 [34]. A dramatic scaling of the membrane was observed in MD desalination 

process using PTFE membranes of pore diameters of 0.2 and 0.5 µm [1]. However in another study by 

Gryta, no sign of wetting was observed in 3 years’ performance of MD system using (Accurel PP S6/2) 

capillary polypropylene membranes, where the permeate of reverse osmosis (RO) process was used as 

the feed solution under a temperature of 353 K [85]. 

Through the performance on an MD process four different degrees of wetting can take place on/in the 

membrane: (A) non-wetted (B) surface-wetted (C) partial wetted (D) completely wetted (Figure 14) [8]. 

 

 

Figure 14: A schematic representation of the different degrees of membrane wettability. (A) non-wetted 

(B) surface-wetted (C) partial wetted (D) completely wetted. Adopted from [47]. 
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In long-term performance and due to the evaporation at the vapor-membrane interface, surface wetting 

may take place. Although surface wetting that extends to a certain depth may decrease the permeability 

of the membrane, the vaporous gap between the distilled and the feed is not broken and the distillation 

process proceeds. Therefore, the quality of the distillate will not be deteriorated [85]. However, in case 

of partial wetting the feed may leak through into the permeate side in the open portions of the 

membrane, while other portions will have decreased gaseous gaps, which will not allow the production 

of high quality water [90]. However, if the partially wetted parts are small relative to the membrane size 

the MD operation may continue [86]. Moreover, if the membrane was fully wetted the MD performance 

will be hindered, since the permeate is allowed to pass through the membrane, and inefficient permeate 

quality will be produced [41]. 

Scaling and fouling phenomenon contribute directly to the wetting of the membrane. Furthermore, 

surface wetting occurs due to the high opportunity of the pores adjacent to the pores filled with deposit 

to be filled with liquid.  

The MD process is derived thermally, as the temperature increases the solubility of carbon dioxide 

decreases in water, permitting the decomposition of bicarbonate ions that leads to the precipitation of 

calcium carbonate [41]. There are different forms of calcium carbonate that exist in nature such as 

anhydrous forms and the hydrated forms. At the feed/vapor interface inside the pores the solvent 

evaporates [47]. The supersaturation of the solution may be induced filling the wetted part of the pores. 

Accordingly, a metastable state is created allowing crystal growth and nucleation near to the evaporation 

surface. Additionally, the solvent may evaporate from the wetted surfaces of crystal, allowing further 

crystal growth in the vapor phase direction. Water logging takes place in which new areas may be wetted 

inside the pores, as result of this heterogeneous crystallization (Figure 15) [106]. 
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Moreover, the rate of scaling maybe accelerated due to the inhibition of solute diffusibility from the 

wetted pores to the feed bulk. The crystallization is effected by the type of the solute and the degree at 

which it is supersaturated [47]. 

 

 

 

Figure 15: Water logging mechanism [47]. 

 
 
The MD process will be influenced in many ways, once the membrane is wetted. The membrane becomes 

non-selective and will not achieve the purpose of separation process or desalination. Many studies have 

shown that once wetting occurs, water can move easily into adjacent pores [50, 62, 85, 86]. The rate of 

wettability may increase as a result of further crystallization, as explained previously wetting subsequently 

may lead to scaling within the pores of the membrane as shown in Figure 16. Moreover, salt deposit on 

the top layer of the membrane will alter its properties to making it more hydrophilic, increasing wetting 

potential [41, 47, 107]. In some studies, it was shown that wetting propensity on polypropylene 

membranes, affected only the pores' uppermost part [41]. However, in other studies, using PVDF and 

PTFE membranes, wetting was reported in the whole portion of the membrane [107]. Salt crystals were 
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observed in the membranes' full thicknesses along the whole depth, as confirmed by SEM imaging of the 

cross section of the membranes, depicted in Figure 16. 

 

 

 

Figure 16: To the left is SEM image of the cross section of a PVDF membrane after an exposure by seawater 

up to 4 weeks. To the right: a cross section of a PP membrane showing the top portion of the pores after 

rinsing with HCl [9]. 

 
 
The degradation in the performance of MD process by membrane wettability, is due to either the 

reduction of the driving force (vapor production), by lessening the area of vapor/membrane interface, or 

as a result of feed penetration into the pores and eventually into the permeate, leading to its 

contamination [41, 47, 85, 86, 107]. 

Interestingly, Guillen-Burrieza et al. [107] reported negative flux (from permeate side to feed) in their 

study on PVDF membranes, and the positive flux was only restored after a temperature of 10 ⁰C was 

reached. Franken et al. [108] explained the 30% decay in flux observed in his study at over a duration of 

month using a DCMD system, by a possible back flow as a result of membrane wetting. 
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3.4.2 Permeate flux decline  

Although few studies were conducted, fouling was reported differently. A metric way was suggested by 

Warsinger et al. [9]  to comprehensively present the effect of fouling on the performance of MD system, 

by the means of calculating the average flux-reduction percentage. The average fouling rate is defined 

according to equation 11: 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑜𝑢𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 [

%

ℎ
] =  

𝑓𝑙𝑢𝑥𝑖𝑛𝑡𝑖𝑎𝑙 − 𝑓𝑙𝑢𝑥𝑓𝑖𝑛𝑎𝑙

𝑓𝑙𝑢𝑥𝑖𝑛𝑡𝑖𝑎𝑙
𝑥 

100

𝑡
 (11) 

The rate of induced decline in flux by fouling can be used as a direct measure to study the effect of various 

parameters on MD experiments operating at similar baseline values of flux. Where applicable, together 

with the fouling rate, the induction period at which the flux starts to degrade can be reported [9]. The 

induction time is influenced by many factors, such as: the operating pressure and temperature of the 

system and the foulant constituents present in the feed, etc. After the induction point is reached, the flux 

decline rapidly, and in some systems a steady sate is reached eventually [13].  

A wide variety of levels of permeate flux decline were observed. Some experiments showed a minor decay 

in an operation that lasted for months [10]. Whereas, in no more than two weeks, a flux decline up to 66% 

was reported [86]. The reason behind this variation is that the drop in permeate flux is related to the 

formed scale layer thickness and its porosity [62]. Therefore, the permeate decline is dependent on the 

type of salts present in the feed along with their concentration and solubility under the operating 

temperature [9]. As explained previously, uncharged particles such as iron oxide scales along with bio-

fouling the scale layer was found to be porous. Conversely, non-porous layer of fouling was observed and 

is of higher propensity to be formed in case of inorganic scaling such as calcium carbonate. 

As reported in literature, the decline in flux can be gradual [109], or rapid as a result of exceeding 

supersaturation conditions, leading to rapid growth of salt crystals [93]. 

In studies related to fouling and scaling and their control, the rate of reduction in the permeate flow is 

most reported along with the quality of the distillate that has be worsen. The degree at which the 
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permeate flow is reduced, gives an indication of the required costs in the designed system to compensate 

for this reduction [9]. The quality of the distillate, and the degree of contamination by the feed can be 

quantitatively expressed in terms of salt rejection percentage. It can be calculated using the following 

equation: 

 
% Salt rejection =  

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑤𝑎𝑡𝑒𝑟 − 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒 𝑤𝑎𝑡𝑒𝑟

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑤𝑎𝑡𝑒𝑟
 𝑥 100% (12) 

3.4.3 Increased concentration and temperature polarization 

A stagnant hydrophilic layer at the membrane surface is formed as a result of scaling and fouling in 

addition to the existing thermal boundary layer at the membrane interface, increasing the concentration 

and temperature polarization effects. If scaling is to decrease the flow velocity, implying a higher 

residence time of water near the surface, resulting in an increased temperature polarization [110]. 

Thermal resistance increases, reducing the thermal transfer coefficient at the vapor/liquid interfaces as a 

result of deposit layer on the membrane surface [12]. Moreover, the process at which polymer materials 

degrade may be accelerated in some cases [47].   

The fouling layer does not contribute directly to temperature polarization, although it's thermal 

conductivity is higher than that of the polymer the membrane made of. However, temperature 

polarization increases as a consequence of conversing the heat transfer of evaporation, increasing mass 

transfer resistance; hence concentration polarization is increased [45]. The presence of fouling layer on 

the membrane's surface, reduces the coefficient of mass transfer. Consequently, the dissolved ions in the 

interface will increase in concentration, reducing the MD driving force, which leads to flux decline with a 

higher risk of precipitation [111]. 

3.4.4 Membrane damage and chemical degradation 

Various forms of MD membrane physical and chemical damages were observed in many studies, as a 

result of scaling and fouling, particularly at lab-scale. These forms include: membrane permeability 

depression due to the blockage of the surface [41, 107], defection of the membrane's structure (e.g. 
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cracking) as shown Figure 17a [107], reduction in the mechanical strength of the membrane [107], 

diversions in the pores' structure and distribution [107], changes in the membrane surface hydrophobicity 

and thermodynamics [41, 107]. In many cases, due to membrane damage distillate quality deterioration 

was observed by lowering the salt rejection rate [65, 85, 112, 113]. The formation of scale layer on the 

top of the surface of the membrane is the most reported case in MD literature (Figure 17b). The scale 

layer consists of NaCl in addition to salts that are insoluble, such as CaCO3, CaSO4 and MgCO3 [41, 107]. 

 

 

 

Figure 17: (a) Cracking (b) salt deposition layer. Both (a) and (b) show PTFE membrane within 2 weeks of 

seawater exposure under drying conditions [107]. 

 
 
In accordance with MD literature either increase or decrease in flux were observed as a result to 

membrane damage, compared with the flux of an intact membrane [41, 114]. While an increase in flux 

can be explained by pore wetting that lowers the salt rejection through the membrane [107, 113], flux 

decrease is primarily due to the blockage of the pores by the deposits formed on the surface [41, 114]. 

Hsu et al. [1] observed flux decay due to severe fouling, in desalination MD process with high potential of 
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bio-fouling, however the quality of the distillate was not affected, in this study ultrasonic cleaning was 

effective in restoring the flux, with only small degree of fouling irreversibility. Moreover, Guillen-Burrieza 

et al. [107] result is in agreement with that of Hsu et al. in which flux decline was observed through the 

MD operation as a result of scale deposition at the membrane's surface. While many other studies on MD 

reported a permeate flux increase after membrane fouling occurred that was attributed by dramatic pore 

wetting process due to membrane damage and inorganic scaling [9]. In these cases, post washing of the 

membrane by de-ionized water was not very affective for salt deposition removal [9]. 

Alteration in membrane’s morphology due to fouling was also observed in MD processes. Gryta et al. [41] 

confirmed a high thermal stability of the PP membranes polymer material, since only small alteration in 

the membrane structure was observed. Whereas, PVDF and PTEF membranes exposed to seawater under 

two weeks of operation showed dissimilar behavior in a study conducted by Guillen-Burrieza et al. [107]. 

They reported a variation in the porosities and the distributions of pore size of the membranes in 

accordance with membrane autopsies. PVDF membranes showed higher shift in pore size distributions 

(PSD), compared to PTFE that is because of PVDF broader pore size distribution. These changes were 

explained by salt deposit layers (4-7 µm) thick and membrane damage, which was more severe in PTFE in 

the form of fiber cracks attributed by mechanical strength deterioration confirmed using Mullen burst 

test (Figure 17) [107]. On the other hand, scaling of PVDF membranes took place within the pores. 

Moreover, the atomic force microscopy (AFM) studies revealed different surface roughness and attraction 

forces with CaCO3 for the membranes used [107]. Thus, it can be concluded that the material of the 

polymer the membrane composed of, in addition to membrane’s morphology contribute to its propensity 

to fouling resistance, with the mechanism of formation left unexplored [9]. 

Chemical degradation of the membrane was reported during MD operation. Gryta el al. [41] observed 

increased wettability rate due to loss of hydrophobicity of the Accurel PP membranes. Moreover, the 

degradation of PP polymer martial was confirmed by the presence of hydrophilic surface group due to 



  
   

40 
 

increased temperature and oxidation. As recognized by the Fourier transform infrared spectroscopy (FTIR) 

analysis, sodium carboxylate was formed from the reaction of hydroxyl and carbonyl (hydrophilic) surface 

groups with the sodium chloride solution [41]. Due to the presence of these surface groups it was difficult 

to control membrane wetting by simple means of rinsing and drying. Nevertheless, the distillate quality 

in this study did not deteriorate [47]. 

3.4.5 Effect of temperature on fouling 

The effect of temperature was discussed previously, it was pointed out that different types of fouling are 

differently influenced by variation in temperature. The dominant effect being the relation between the 

solubility of minerals with temperature on the formation of scale. Moreover, because of high dependence 

of common foulants solubility on temperature, temperature polarization plays a major role in fouling and 

scaling propensities. At the membrane interface the temperature is reduced due to the effect of 

temperature polarization, reducing the precipitation of calcium carbonate and calcium sulfate which are 

more soluble at lower temperatures, on the other hand the solubility of other non-alkaline foulants are 

increased due to their inverse solubility with increased temperature polarization. Moreover, higher 

temperatures may hinder biological fouling formation, so a higher degree of temperature polarization can 

simulate bacterial growth due to biofouling. In a study conducted by Gryta [71], where the feed was lake 

water using hollow fibers PP membranes in DCMD process, it was found the major foulant was calcium 

carbonate. Figure 18 is used to demonstrate the effect of elevating temperature on the rate of CaCO3 

scale formation, where the percentage decrease in the flux per hour is used to represent the rate of 

fouling induced by CaCO3 scale [71]. Reduced flux contributing to a higher concentration polarization as a 

result of inverse salt solubility in the feed stream with increase in temperature translated to a significant 

higher fouling rate. Figure 18 shows that increasing the temperature from 80 to 90 ⁰C increased by four 

times the fouling rate [9]. 
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Figure 18: The effect of increasing temperature on the fouling rate, where the major fouling contributor is 

CaCO3 scale [9]. 

 
 
In another study conducted by Long D. Nghiem et al. [23] on the effect of increasing temperature on CaSO4 

scaling in a DCMD system at a constant flowrate. Figure 19 shows that using an initial concentration of 

2000 mg/L of CaSO4 as the feed solution, the induction time of CaSO4 scale formation was found to 

decrease as the feed temperature increases. Moreover, the size of the crystals formed were directly 

correlated with changes in temperature. The largest crystals were observed by SEM image at temperature 

of 60 ⁰C, while a thin needle-like structure of crystals was observed at 40 ⁰C. The results attained by this 

study is in agreement with the thermodynamics and kinetics of CaSO4 precipitation in theory [23]. 
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Figure 19: The permeate flux profiles obtained at different feed temperatures, using a solution of CaSO4 as 

the feed [23]. 

 
 

3.4.6 Effect of feed flowrate on fouling  

The mass and heat transfer coefficients are directly affected by the feed flowrate in the channels. An 

increase in the velocity of the feed is translated to a higher mass and heat transfer coefficients, despite 

the discontinuance in this increase due to the transition region from laminar to turbulent flow. The 

temperature polarization effect is reduced due to the increase in flow rate and permeate flux [9]. 

The increase in temperature causes a decrease in the solubility product (Ksp) value for salts that have 

inverse solubility such as CaCO3 (Figure 11). As previously mentioned, the increase in flow velocity 

increases the heat transfer coefficient (h); increasing the temperature at the interface. Also, the salt 

concentration at the interface of the membrane decreases as a result of the increase in the coefficient of 

mass transfer [9]. Thus, the activity product and the Ksp both decrease, which are the numerator and 

denominator of the saturation index (SI), respectively [115]. Described in equation (13). 

 
𝑆𝐼 = 𝑙𝑜𝑔 (

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐾𝑠𝑝

) (13) 

Therefore, the rate at which these two quantities varies determine the change in SI relatively which gives 

an indication of fouling tendency at the membrane surface as a function of salt supersaturation [9].  
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However, the numerical models in literature study the effect of changes in system parameters on the 

fouling rate induced by flux decline in terms of SI assuming the presence of a single salt only [9], which is 

not the case in real seawater and other surface waters. Where the presence of mixture of salts significantly 

contribute to major changes in SI value, the current numerical modeling gives only a general trend of SI 

variation under the effect of various parameters [88]. Moreover, the co-precipitation of a salt in the 

presence of other salts may have a different solubility product leading to variations in the structure and 

morphology of the precipitates, and the solubility product for a given precipitate is a function of 

temperature only [88]. Thus, there is a lack of studies on the thermodynamics of precipitation tendencies 

in terms of SI indices by numerical modeling, that take in account the overall effect (in the presence of 

salt mixtures) of fouling as a result of increasing the feed flowrate at the membrane surface. 

In a study conducted by Gryta [71] on the influence of varying the feed velocity on the rate of fouling using 

tap water as the feed and hollow fiber polypropylene membranes with pore size of (0.22-0.55 µm) and 

porosity of 73%. At a constant temperature of 80 ⁰C, it was found that increasing the flow velocity from 

0.31 to 0.96 m/s lead to a notable reduction in flux decline; lower decrease in flux. However, as indicated 

from Figure 20 further increase in the velocity from 0.96 to 1.4 m/s did not enhance the flux performance, 

despite the initially higher flux at 1.4 m/s the decline in flux was steeper. Thus, it was concluded that an 

optimum flowrate can be adjusted for each MD module, where further variation in flowrate may have 

limited effect on the efficiency of the performance [71]. It was pointed out that the influence of the 

distillate flowrate is less significant on the flux performance. Moreover, the crystal morphology by SEM 

imaging shows that at the lower feed flowrate (0.31 m/s) an adhered fouling layer was formed of larger 

crystals on the surface of the membrane and penetrated into its pores, indicating a sign of wettability. 

While the opposite is true for the higher flowrate (0.62 m/s) with a more porous layer of fouling formed, 

where the sharing action of water is higher and can distribute the crystal formation and remove 

precipitation [9]. 
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Figure 20: The effect of feed velocity on the fouling rate (% decline in initial flux) at a constant temperature, 

literature data [9, 71]. 

 
 
In another study performed by He et al. [77], using brine as the feed solution in a crossflow hollow fiber 

DCMD system. According to their experimental work the maximum precipitation rate of calcium ions was 

observed at a velocity 688 mL/min, which is an intermediate value between the other two velocities 

shown in Figure 21. However, it was stated that as Reynold’s number increase the temperature at the 

membranes interface should increase, eventually the concentration polarization effect increases and 

dominates over the temperature polarization effect in the MD operation [77]. Nevertheless, the highest 

flux decline percentage was observed at 688 mL/min. The conclusion brought by He et al. [77] on the 

effect of the flowrate is by some means consistent with Gryta’s conclusion [71]. Likewise, other studies 

[114, 116] confirm the presence of an optimum feed flowrate depending on the MD module used in their 

studies, in which further variation in the feed flowrate will not lead to any improvement in the efficiency 

of the module. Thus, literature findings imply that there could be a specific flowrate, where above, an 

inverse or insignificant effect may be observed. In other words, for each module the fouling rate decreases 

at a higher feed flowrate up to a certain value, where further increase in feed flowrate will reduce its 

effect on the scaling potential. 
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Figure 21: The effect of feed velocity on calcium concentration [Ca]%. Where Fb1, Fb2 and Fb3 are 84, 688, 

and 1438 mL/min, respectively. 

3.5 Fouling mitigation and control  

The main mitigation techniques used in MD systems so far, are chemical cleaning and the pretreatment 

of the feed [13, 56]. However, many other technologies and methods were employed in the purpose of 

scale inhibitions and fouling preventions, including: hydraulic cleaning, surface roughness reduction, 

altering surface charges or the hydrophobicity of the membrane and increasing the flowrate of the feed 

[55]. The use of antiscalant and the effect of filtration were investigated, in addition to other less 

employed technologies, including: magnetic water treatment, heating of the feed, flocculation and 

variation in pH [76, 86, 92]. Some of these mitigation technologies will be discussed in more details. 

3.5.1 Use of antiscalant 

The use of antiscalant in pressure-driven applications, such as reverse osmosis and multi-stage flash 

desalination, has shown its effectiveness in scaling inhibition [117, 118]. Antiscalants are known to be 

effective inhibition tool for inorganic scales of carbonate, and sulfate, along with fluoride, metal oxides, 

and detached colloids [71, 119]. Antiscalants are of low costs and only small doses are required, usually 

less than 10 ppm [9]. However, antiscalants are claimed to reduce the surface tension of water and may 
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accelerate membrane wetting, since their molecules are typically organic [120]. 

Antiscalant can be defined as a chemical added to the feed to interfere with the adhesive forces of the 

scales and foulants to the membrane surface; to hider crystallization and precipitation reactions [8]. The 

antiscalant acts through different mechanisms, it is adsorbed on the surface of the crystal, so that the 

active sites of growth are blocked. The growth rate of the crystals is retarded; thus, nucleation and 

precipitation rate are delayed, and the properties of the crystal surfaces and their accumulation 

tendencies are altered. Furthermore, the use of antiscalant may cause deviations in the morphology of 

the crystals (deformed scales) by weaken the adhesion to the membrane surface, or it may change the 

concentration of CO2 [121, 122]. However, since the antiscalants have hydrophilic property a possible 

mechanism to inhabit the scale formation is by changing their surface energies, they may as well have a 

potential to alter the surface energy of the membrane in a MD application, and eventually lead to 

membrane wetting [8].  

A study performed by Gryta [116] to investigate the use of antiscalant to particularly inhabit calcium 

carbonate scaling in a hollow fiber MD system. The antiscalant was designed for RO and polyphosphate-

based. However, the name and composition of the used antiscalant were not provided. Large cubic-like 

structure of crystals was formed without the use of antiscalant. Although CaCO3 crystals growth was 

reduced significantly when adding the antiscalant in a dose of (2-20ppm), a thin amorphous non-porous 

layer was created on the surface of the membrane, eventually lead to the reduction in the permeate flux. 

Moreover, it was found that the flux was higher without adding antiscalant and the more concentrated 

the antiscalant was, the lower the flux of the permeate [116]. Periodic rinsing by HCl was applied and 

found to be effective along with the use of antiscalant, since the initial flux value was restored and no sign 

of wetting was observed. However, the MD operation time was recommended to not exceed one hour, 

in order to prevent the breakdown of the antiscalant to form orthophosphate deposit [41].   

Another study performed by He et al. [123] showed more positive results using hollow fibers with 
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fluorosilicone coated PP membranes and different types of antiscalant, with different degrees of scale 

inhibition depending on the type of antiscalant used. For example, it was found that antiscalant composed 

of polyacrylic acid was more effective in calcium sulfate scale inhibition than the organo-phosphorus 

antiscalant that was more potent in reducing calcium carbonate scales. Moreover, a blend of phosphoric 

and carboxylic acids antiscalant showed a moderate inhibition of both calcium carbonate and calcium 

sulfate scales [123]. Varying concentration of the antiscalant from 0.6 to 70 mg/L was applied, however 

increasing the dose of antiscalant did not show any changes in the degree of scale inhibition. The 

measurements of the antiscalant solutions surface tension (71.5 mN/m) were similar to that of tap water 

(71.8 mN/m) [123]. Under the operational conditions of the experiment no signs of wetting phenomena 

were detected by the breakthrough pressure test. 

3.5.2 Membrane cleaning 

Cleaning by acid is commonly applied method in laboratory MD studies in order to reclaim the fouled 

membrane. In terms of removing salt depositions from the membrane surface, many acids have been 

used including weak and strong acids with HCl being the most common acid used in studies related to MD 

systems. HCl is effective in dissolving salts that are basic such as CaCO3. In terms of cleaning the 

membrane, an acidic solution is introduced to the feed in a batch process replacing the feed water. 

However, as noted by Gryta [26,152], the permeate should be removed during the cleaning process since 

HCl is volatile and can blend with the water vapor to reach the permeate side.   

Acid cleaning by HCl of the membrane where the major foulant is CaCO3 as reported by Gryta [26, 152] 

was found to restore the flux to its original value. However, repeating the process of rinsing with a 

concentration of 2-5% of HCl, the flux restored was reduced compared with the original value as reported 

by Gryta [111]. In another study by Curcio et al. [25] using feed solution of synthetic seawater, the MD 

flux and hydrophobicity of the membrane were completely restored by applying two steps of rinsing; by 

an acidic solution followed by a NaOH solution with a period of 20 min between each step. Pretreatment 
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with Ca(OH)2, was found to be effective in reducing silicates and sulfates fouling, as reported by Gryta et 

al. [102]. 

In case of cleaning the membrane from iron oxide scale Gryta [26] added HCl with different concentrations 

(5-36 wt.%). Although adding a high concentration of HCl (36 wt.%) fully removed iron oxide scale in a 

duration of one hour, the flux decreased and the membrane was wetted indicating that the negative 

effects of fouling by high acidification level was increased. Thus, Gryta recommended 18% HCl to partially 

remove iron oxide scale and recovery the flux near to its initial value as it worked better than 5% HCl, 

eliminating the other negative effects caused by higher concentrations. 

Thus, the effectiveness of cleaning by acid rinsing varied dramatically according to the type of foulant 

existing in the feed, the amounts of acid added, and the time the acid is allowed to act. In general, HCl 

washing was effective in removing alkaline scales including CaCO3. Crystalline scales required stronger 

acids to be removed, such as iron oxide scales [26]. While, other organic foulants were partially removed 

by the addition of acids to clean MD membranes, acid cleaning was not very effective in the removal of 

other forms of scales such as silica [30]. Overall, acid cleaning can be effective in reducing the rate of 

fouling relatively, especially for alkaline foulants. However, continuous addition of acid to modify the pH, 

adds to the cost of MD process, depending on the value of acid added [124]. 

Other cleaning methods include, rinsing with de-ionzed (DI) water that absorbed salts readily [121] or by 

simple approach of reversing the flow direction. For example, in a study performed by Mericq et al. [109] 

using VMD system with synthetic seawater as the feed, the flux was recovered completely by running 

water permeate RO that re-dissolved the salt depositions. In another study conducted by Meindersma et 

al. [87] using AGMD configuration with pond water where biofouling was major, reversing the flow was 

effective in restoring the flux completely. 
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3.5.3 Gas bubbling 

Gas bubbling is one of the methods that was implemented to reduce the effect of temperature and 

concentration polarization. Chen et al. [83] improved the flux by adding turbulence to the feed in the 

means of introducing gas bubbles, which consequently reduced membrane fouling. Spacers have been 

used to induce turbulence in the feed streams. Chen et al. [83] used hollow fibers in an MD process where 

the permeate was inside the fibers to study the effect of different configurations on the flux and fouling 

tendencies, including: spacer, air bubbling with no-spacer, and no-spacer. The lowest flux was that in the 

case of no-spacer. However, after certain time NaCl concentration increased and formed a fouling layer. 

The scaling was more sever in the case of spacer compared to no-spacer case due to the trapping of NaCl 

near the membrane surface, which may not be the case in flat sheet configuration. While less scale 

formation in the air bubbling case showed an improved performance due to sufficient mixing and 

hindering of the local salt trapping. At higher temperatures and lower feed flowrates, where temperature 

and concentration polarization are expected to be the highest, air bubbling is anticipated to give high 

improvement in MD performance by decreasing fouling tendencies. However, gas bubbling increases the 

concentration of dissolved gases in the feed and may add a mass transfer resistance in the permeate 

stream in configurations such as SGMD and AGMD [9]. In addition, air bubbling impact on the membrane 

pores' gas content and on gas chemistry such as the content of CO2 may affect the progression of salt 

formation [125]. 

3.5.4 Magnetic water treatment (MWT) 

MWT technology was developed in the purpose of hindering the rate of nucleation, however it makes the 

crystal growth more significant. MTW is implemented for water treatment purposes and heat exchangers 

[76, 126]. Gryta studied the effectiveness of a MTW device that is available commercially on treating 

hollow fiber membrane, where the feed used was tap water with the addition of HCO3- of 2.7 and 3.6 

mmol/dm-3 alkalinity, heated up to 85 ⁰C by running 0.1 T magnetic field [76]. A significant improvement 
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in the flux was observed, as expected the morphology of the crystal was changed, despite the bigger 

crystals in size mainly calcite, a thinner and more porous layer of scale was formed. Moreover, no signs of 

membrane wettability were observed under MWT [76]. 

3.5.5 Membrane modification and enhanced properties 

Some research studies were conducted for the purpose of reducing fouling rate and achieving higher salt 

rejection by modification the MD membrane surface by the addition of coating layer, or increasing the 

hydrophobicity of the membrane by increasing the LEP and the contact angle, to further reduce 

wettability. 

In a study performed by Zhang et al. [127] the fabricated PVDF membrane showed a higher hydrophobicity 

in terms of increased contact angle from 107 ⁰ of the original membrane into 156 ⁰, this was attained by 

casting a mixture of SiO2 nanoparticles that is hydrophobic with polydimethylsiloxane (PDSM) on the 

surface of the flat-sheet membrane. It was found that the performance of the DCMD was improved by a 

higher rejection of salt performance and a longer induction period for the modified membrane, despite 

the lower permeation flux. After 40 h using a high concentration of NaCl (25 wt%) the flux declined steeply 

for the original membrane compared with the modified one, indicating lower fouling and wetting 

propensities of the fabricated membrane. After the fouling test NaCl deposits were found to penetrate 

through the pores of the original membrane; not only on its surface, which was not the case in the 

modified membrane, revealing that SiO2 nanoparticles is an example of a potentially effective surface 

modification method that can be employed in fabricating anti-fouling membranes [127]. 

Super-hydrophobic coats can provide a reduction in the surface nucleation rate and the attachment of 

particulates, by acting as a buffer layer [128]. Moreover, these coats enhance the performance of acid 

rinsing recovery, and hinders membrane wetting [129, 130]. A contact angle of 166 ⁰ can be reached by 

fluorosilicone coatings, that are created by the use of hydrothermal synthesis at low temperature to 

deposit TiO2 on the surface of the membrane [130]. These fluorosilicone coats showed their effectiveness 
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in hindering fouling by gypsum increasing the induction period, in MD hollow fiber membrane [123]. In 

other studies, coating by fluorosilicone significantly reduced CaCO3 and CaSO4 scales formation by the 

means of pore size reduction [48, 77, 96]. 

Another factor in mitigating membrane scaling and wettability is by increasing the surface porosity and 

reducing the pores size. Gryta has found that CaCO3 crystals penetrate the interior of the membrane, in a 

study conducted on PP capillary membranes with larger pores on its surface, using tap water in the feed 

stream [47]. The decline in flux observed was similar for membranes having same properties other than 

their surface porosities, which indicated that the membrane was not clogged in case of higher porosity. 

However, higher porosity increased the tendency of membrane wettability [47].  Coating the surface with 

a thin (1µm) low porosity layer was found to be effective in reducing wetting tendency, with similar 

permeate flux compared to an uncoated membrane. Moreover, reducing the pore size to a size smaller 

than that of the crystal was admitted to restrict their penetration into the pores of the membrane [47]. 

Thus, applying a thin coat of low porosity may be recommended to reduce membrane wettability, without 

causing a high reduction in the permeation flux.  

Other studies suggested that the material of the membrane may have different degrees of hydrophobicity 

accounting for different membrane wetting tendencies. for example, Tung-Weng et al. [90] noticed that 

under similar operating conditions PTFE membranes was more capable of resisting wetting, compared 

with PTFE membranes. In Gryta study, PP membranes undergo wettability in few days, they were claimed 

to not exhibit optimal hydrodphicity [47]. Moreover, membranes fabricated of non-polymer materials 

such as glass are believed to have an improved thermal and chemical performances [129].  

3.6 Fouling monitoring and used membrane characterization 

To be able to understand fouling and its propensity, it is essential to assess foulants by diagnostic 

techniques. These measurements include physical, chemical and biological characterization. The 

characterization methods provide information that help in understanding the fouling process formation 
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and fundamentals [131]. Thus, fouling control and minimization techniques can be developed based on 

this understanding of the mechanisms governing fouling process. 

Many factors contribute to the lifetime of a membrane such as the chemical and physical cleaning and 

control methods, in addition to the operational conditions of a MD system. Membrane autopsy is used to 

assess the degradation in MD performance and a membrane’s lifetime along with the changes in its 

properties even after long operation. Autopsy involves dissecting the membrane and examining the 

surface to check for foulants and other components that may lead to further damage [132]. Accordingly, 

the development of cleaning and control strategies, and future pretreatment is based on the 

characterization methods, and the reveal of foulants identity by membrane autopsy [61]. Some of the 

characterization techniques applied in MD studies are summarized in Table 2.
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Table 2: Summary of some physical, chemical, and biological characterization of fouled membranes, 

adopted in MD studies. 

Physical Chemical Biological 

Scanning electron microscopy 

(SEM) 

Energy-dispersive X-ray 

spectroscopy (EDS or EDX) 

Direct method: microbial 

community and microscopy, 

such as: Confocal laser scanning 

microscopy (CLSM) 

Atomic force microscopy (AFM) Inductively coupled plasma 

mass spectroscopy (ICP-MS) 

Contact angle Foulant concentration by total 

organic carbon (TOC) 

Pore size distribution (PSD) Zeta potential Indirect method: flux decay, 

transport of solute and bacteria 

enumeration, and flow field-

flow fractionation (FIFFF) 

Ultrasonic time-domain 

reflectometry (UTDR) 

Tensile strength parameter  

 

3.6.1 Physical characterization  

Scanning electron microscopy (SEM) a common technique used to view samples' surface structures, 

morphologies and cross-sections at a microscopic level. SEM provides an image of the targeted area on a 

screen by generating high-energy electron focused beam that travels in a series of magnetic lenses. 

Usually, the sample is sputter-coated by gold, platinum or carbon thin layer in order to improve the image 

resolution by rising the sample's conductivity. The membrane surface and the foulants are assessed 

qualitatively and quantitatively by SEM providing details about their morphologies, thicknesses and 

structures. However, a complete or partial dry out of the sample is needed to be used in SEM, increasing 

the tendency of altering the structure of some foulants [24]. Figure 22 provides an example of a virgin and 

fouled membrane SEM images. 



  
   

54 
 

 

Figure 22: SEM images of (a) virgin membrane (b) fouled membrane [133]. 

 

Atomic force microscopy (AFM) is carried out by the use of different modes of cantilever deflection based 

on Hooke's law. AFM is of a higher resolution compared to SEM, by providing a three-dimensional (3D) 

profile in a nanoscale level of the surface, without the need of sample pretreatment. Surface morphology, 

topology and roughness are provided by AFM [134, 135]. However, AFM is of a slow scanning speed, and 

may be effected by membrane's surface high roughness [131]. 

To investigate the thickness of the deposit layer, optical laser sensor method can be utilized. The deposit 

thickness is translated by detecting the difference in the intensity of signal provided by a laser light 

crossing the deposit layer [136]. This method showed its effectiveness in fouling inspection in a 

microfiltration process.  

Ultrasonic time-domain reflectometry (UTDR) provides a media's physical characteristics where the 

ultrasonic waves travel, in addition to the location of a moving or stationary interface real-time 

measurements. The ultrasonic waves are reflected in the presence of interface between different media 

by partitioning the energy of the detected waves. The thickness can be calculated from the medium 

velocity along with the detected waves reflection by the transducer [12]. The investigation of fouling 
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layers in a flat-sheet membrane by UTDR was used by Mairal et al. [20]. Other studies [137, 138] utilized 

this technique for fouling characterization in hollow fiber membranes. 

Surface wetting is determined from the composition of the materials along with the geometry of the 

surface structure [12]. Contact angle (CA) measurement is used to quantify the wettability of a membrane. 

Thermodynamically there are three forces, that are balanced when dropping water on a horizontal 

surface. The three forces shown in Figure 23, include: the interfacial solid-liquid tension, the solid-vapor 

tension and the surface tension of liquid-vapor [139]. The droplet shape and angle is determined by these 

forces. The surface is hydrophilic when the angle θ is less than 90⁰ and the droplet forms a thin film. 

Whereas, the surface exhibits a hydrophobic behavior when the angle is above 90 ⁰, with a droplet having 

a cylindrical shape. surfaces exceeding contact angle of 150 ⁰, are considered to be super hydrophobic 

[140]. Moreover, super hydrophobicity is achieved by modifying the membrane's low surface energy and 

surface roughness. 

 

 

 

Figure 23: A diagram showing a liquid droplet with the three-phase forces [139]. 

 
 

3.6.2 Chemical characterization  

Energy dispersive X-ray spectrometry (EDS) is a technique used to analytical analyze the composition of 

the elements present in a fouled surface. EDS devise is often coupled with SEM. In EDS analysis, the 

electromagnetic radiation interacts with the definite atomic structure of each element in the fouling layer 
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to generate different peaks. Figure 24 provides an example on the EDS of a deposit layer on a PP 

membrane, according to this EDS the main elements composing the deposit are mainly calcium, and traces 

of Al, S, Mg and Cl. Thus, it can be concluded that the main fouling issue is calcium carbonate scales. 

 

 

Figure 24: (a) SEM image of the membrane (b) The attached EDS spectra showing elemental composition 

of the fouled layer used tab water as the feed [47]. 

 
In a fouled layer the concentration of metal and non-metal elements in parts per million (ppm) and parts 

per billion (ppb) is measured using inductively coupled plasma mass spectroscopy (ICP-MS). Ions such as 

magnesium and calcium can be selectively detected at high accuracy by the ICP-MS. The samples are 

prepared by dissolving the deposits from the surface of the membrane by acidic or alkaline solution [8]. 

Usually, more efficient extraction by alkaline and acidic solutions of organic and inorganic scales, 

respectively [131]. 

Tensile strength parameter is an important factor in detecting the mechanical integrity of a membrane, 

that has been used in autopsy studies [141]. The tensile strength of a virgin membrane compared to a 

fouled one gives an indication of the degree at which the membrane can withstand the operation of MD 

in long-term performance before it deforms permanently, due to structural changes caused by fouling. 
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Remarkably, applying cleaning and fouling control techniques extensively in long terms can lead to the 

damage of the membrane by affecting its mechanical integrity. A universal testing machine can be used 

to determine the tensile strength parameter following standard test procedures such as ASTM D368-10 

[8].  

Another chemical characterization method of the membranes is the zeta potential. It is used to determine 

the charges of the surface, in order to evaluate the interactions that may take place between the 

membrane surface charges and the foulants present in the feed. The zeta potential can be identified by 

measuring the potential difference between the charges on the surface and dispersed charges in the feed 

solution to identify the membrane electro-kinetic phenomena [8]. 

Biological characterization of the membrane was not considered, since it is outside the scope of this work, 

where seawater was used as the feed solution. Some of the membrane characterization techniques 

discussed, namely SEM-EDS analysis and contact angle, will be employed in this investigation to support 

results and discussion. 
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4 Experimental Methodology 

4.1 DCMD bench scale unit 

The DCMD apparatus with flat-sheet used in this work, is composed of different instrumental parts, as 

shown in Figure 25.  

The instrumental parts can be divided into: 

1- DCMD cell (module). 

2- Distillate and feed tanks.  

3- Peristaltic pumps and connection tubing. 

4- Electronic balances. 

5- Bath units of cold and hot water (cooler and heater). 

6- Digital thermometer and associated cables, hot/cold sides. 

7- Desktop computer with data acquisition system. 

Similar system was used in a previous thesis project [142]. The selection of DCMD was based on its 

availability and to the fact that it does not require additional facility to condense the permeate vapor. 
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Figure 25: The bench scale DCMD unit setup in the chemical engineering laboratory of QU. 

 

 

The distillate reservoir was filled initially with 2.5L of deionized water, while the feed reservoir was filled 

initially with a maximum of 5L and not less than 4L of seawater. The temperatures of the hot and cold 

streams were selected using the water bath temperature control set points; usually up to 30 minutes 

would be required to reach thermal equilibrium. A digital thermometer was used to assess the 

temperature from four thermocouples connected to the tubes from the inlet and outlet of the feed and 

distillate streams in and out the DCMD module. As can be seen in Figure 25 the tubes were insulated to 

prevent heat losses from the system. Notably, the distilled (cold unit bath) and feed (hot unit bath) are 

recycled in closed loops, that are not allowed to overlap. The data acquisition system can be started after 
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the temperatures were stabilized. Then the temperatures of the feed and distillate streams entering and 

leaving the DCMD unit were manually measured throughout the experimental operation. The data 

acquisition system that was connected to the distillate balance, records the weight of the distillate tank. 

It was programmed to continuously record the weight in the desktop every 30 seconds. Then the data 

recorded were saved as ASCII text file and further processed in excel spreadsheet, to produce flux graphs 

from weight data and membrane effective area. The temperature and flowrate were selected then the 

operation continues until the flux drops to almost zero. It took around (45- 91) hours depending on the 

selected operational conditions to be able to replace the membrane and start a new run with different 

parameters. Furthermore, under some selected operation conditions the runs were repeated, but with 

antiscalant added to the feed seawater to investigate its effect on MD process. 

4.2 Feed solution 

In this study, raw seawater was used as the feed solution from two different locations in Qatar: Alwakra, 

and west bay nearby beach regions. However, as shown in Table 3 it can be noted that the values obtained 

are similar since the sources are not too far apart. Moreover, the conductivities of seawater measured 

are comparable with that of Arabian Gulf of UAE reported in literature (59-65 mS/Cm) [107]. 

 

 

Table 3: The conductivity and pH of the feed seawater. 

Feed solution Source Location Conductivity (mS/Cm) pH 

Seawater Alwakra 62.5 7.5 

West bay 63.9 7.9 
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4.3 Membrane flat-sheet 

A Hydrophobic polypropylene flat-sheet membrane (supplied by Membrana, Germany) was used in this 

study as shown in Figure 26, and the properties of the membrane are listed in Table 4.  

 

Figure 26: The flat-sheet PP membrane used in the MD runs. 

 
Table 4: Properties of the polypropylene membrane used. 

 Membrane trade name Accurel PP 2E HF (R/P) 

Chemical composition Polymer Polypropylene 

Residual oil content (%) ≤ 0.1 

Physical characteristics Thickness (µm) 170 ± 15 

Porosity (%) 73 - 75 

Nominal pore size (Microns) 0.2  

Surface energy (x10-3 N/m) 30.0 

Thermal conductivity (W m-1K-1) ~0.17 
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Flat-sheet membranes are more widely used for MD applications in small scale studies compared to 

hollow fibers. Flat-sheet membranes were found to be less prone to fouling and when operating under 

the same conditions as hollow fiber, they were claimed to have better performance in terms of their 

capability in producing higher flux. Moreover, flat-sheets are easier to clean when needed, because of 

their simpler design [34, 143]. For these reasons, flat-sheet membranes were designated in this study. 

The membrane’s active area is 0.014 m2. The coupons membrane width and length are 14.1 and 19.2 cm, 

respectively. 

4.4 Configuration of DCMD Unit 

The DCMD module used in this work was made available from an on-going infrastructure building project 

supported by ConocoPhillips [144]. Figure 27 shows the MD module bottom and top plates. The module 

was made up of two machined compartments made of solid PTFR (Teflon) with the membrane and spacer 

“sandwiched” within as depicted in Figure 28. The feed (hot) stream flows through the bottom plate, in a 

counter-current flow regime with the cold (permeate) stream carried in the top plate. 
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Figure 27: The membrane distillation flat-sheet module schematic diagram (dimensions in mm) [144]. 

 
 
The coupon of the membrane of area 270.7 cm2, is placed over a spacer on the bottom plate feed manifold 

inner O-ring. As shown in Figure 28. 
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Figure 28: Presentation of the position of the spacer and membrane coupon in a view diagram of the MD 

unit [144]. 

 
Figure 29 illustrates the MD module inner parts including the inlet and outlet flow channels. The inner O-

ring is used to prevent the hot and the cold streams from mixing, and both the inner and outer O-rings 

are used as sealants to avoid leakage. The unit leakage is further prevented by attaching clamps on the 

top of the MD module, as shown in Figure 30. At the corners of the bottom plate, in between the outer 

and the inner O-rings, the four guide pins made of stainless are placed to align the plate and the 

membrane coupon together. Then the two flexible Teflon plates are held together by the Allen screw nuts 

and bolts, in which four washers are used to distribute the screws load on the plates. Moreover, the 

function of the spacer used is to increase turbulence of the flow. 
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Figure 29: The inner parts of the bottom and the top plates of the MD unit. 

 
 

 
Figure 30: The MD unit from outside with the leak-proofing clamping shown. 

 
 
The ports for the inlet and outlets of the feed and permeate placed in the top and bottom plates are made 

using National pipe thread (NPT) standards. In order to prevent stream leakages, the channels ae sealed. 

The feed solution flows in the mid of the bottom plate over the feed manifold in a tangential regime across 
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the surface of the membrane in which the feed that evaporates get distilled, while the remaining is 

recycled back to the feed tank. The same closed loop flow regime applies to the permeate in the top plate, 

in which the cold water is forced to move to the outlet located in the opposite side into the distillate 

reservoir. 

4.5 The MD module construction materials 

The parts of the MD unit described earlier, are made up of different materials. Teflon 

polytetrafluroethylene (PTFE) polymer material was selected for the body of the MD unit. Since Teflon 

has many advantages over other polymeric materials, most importantly its high thermal and chemical 

resistances. Moreover, it supports the MD design to make it more energy efficient as it avoids losses of 

heat from the system. Other Teflon advantages are listed below [145]: 

• The material is non-stick. 

• Resistance to numerous chemicals. 

• Low friction coefficient. 

• High hydrophobicity. 

• Can perform under extreme temperatures (-240C – 260C). 

The material of construction used in the O-rings is Viton of diameter 2mm. This material is made of 

elastomer synthetic rubber with fluorocarbon polymers. The advantages of Viton seals are listed below 

[146]: 

• High temperature limits (-23°C – 204 °C). 

• High degradation resistance of many chemicals and fluids, compared with other commercially 

available rubber materials. 

• High resistance to oxidation. 

• High resistance to burning. 

• Very low permeability to substances. 
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The fittings used in the inlet and outlets steams are fabricated of ethylene-tetra-fluoro-ethylene (ETFE) 

and Teflon nuts of perfluoroalkoxy (PFA). These materials are highly resistant to corrosion and can tolerate 

high temperatures and pressures [146]. 

4.6 The MD module dimensions  

The length, width, and height of each plate in the MD unit is 233 mm × 182.8 mm × 30 mm, respectively. 

More details are depicted in Figure 31 and Figure 32. 

 

 

 

Figure 31: The DCMD module plate dimensions from the outside in millimeters [144]. 
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Figure 32: The MD compartment dimensions from the inside in millimeters [144]. 

 
 
The membrane cavity length is 131 mm and depth is 2 mm. Likewise, the grooves depth for the 2 mm 

diameter O-rings is 2 mm to prevent water leakage. Figure 33 demonstrates the proportions of the plates 

sides.  

 

Figure 33: The dimensions of the plates from the sides [144]. 
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4.7 Auxiliary equipment details  

In this section, some of the details of the auxiliary equipment in the DCMD unit are presented along with 

their functions. The auxiliary equipment used in this study include: Heater and cooler, two pumps, two 

weight balances, digital thermometer sensor and data acquisition system.  

4.7.1 Heater and cooler 

The heater was used to heat the feed (seawater) in a heating bath circulation. While, the permeate 

(distillate) was cooled in a refrigerating bath circulation. Table 5 presents the specifications of the heating 

and refrigerating circulators. 

 

 

Table 5: The specifications of the heater and cooler used [147]. 

Model  Julabo, F32-MA, Germany 

Temperature range/ Stability (-35 ⁰C, 200 ⁰C)/ ± 0.02 ⁰C 

Dimensions (L x W x H)  42 x 31 x 64 cm 

Heating capacity 2 kW 

Filling volume 2 L 

 

 

4.7.2 Pump and tubing 

Peristaltic pumps used to deliver the feed to the heater and the distillate to the cooler before reaching 

the MD unit. The reasons behind selecting this type of pump are their low maintenance requirements, 

high volumetric precision, and easy flow control and cleaning. 

The peristaltic pump used is supplied by Thermo Scientific (FH100X). The pump is controlled digitally. 

Table 6 list the peristaltic pumps specifications used in the MD system. 
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Table 6: The peristaltic pumps specifications [148]. 

Dimensions (W x L x H) 27.9 x 31.7 x 15.2 cm 

Operating Temperature range (0 - 40) ⁰C 

Flow capacity 14 - 4000 mL/min 

Revolution per minute 4 - 400 

Speed regulation ±0.25 % 

 

 

The tubing used to connect the feed tank and the heater through the peristatic pumps was flexible Vincon 

tubing supplied by Saint Gobain, USA. More details and specifications are shown in Table 7. 

 

 

Table 7: The tubing specifications used in the MD unit [149]. 

Type Vincon (PVC)  

Color Clear 

Outer diameter 14.3 mm 

Inner tubing diameter  9.5 mm 

Wall thickness 2.4 mm 

Operating Temperature range  (-43 ⁰C, 74 ⁰C) 

Tensile strength  16.9 MPa 
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4.7.3 Digital balance 

  
The digital balances were used in the purpose of monitoring the changes in weight of the feed and 

distillate throughout the experiments. Additionally, the distillate weight balance was also connected to 

the data acquisition system to eventually determine the distillate flux. Table 8 shows the specifications of 

the NewClassic precision balances (MS4002SDR, Mettler Toledo, US) used in the MD process. 

 

 

Table 8: The digital balance specifications [150]. 

Balance dimensions (W x L x H) 194 x 347 x 96 mm  

Weight pan dimensions 170 x 200 mm 

Readability 0.01/ 0.1 g 

Capacity 820/ 4200 g 

 

 

4.7.4 Temperature sensors 

Four thermocouples were implanted with insulation to the feed and distillate inlet and outlet streams, 

the temperatures were measured manually using a digital display thermometer (Model 421502 Dual Input 

Type J/K), by connecting the thermocouples with the thermometers’ input jacks. The specifications of the 

digital thermometer are shown in Table 9. 
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Table 9: The specifications of the thermometer and thermocouples used in the MD system [151]. 

Display  5 digits LCD  

Accuracy  ±0.05 

Temperature range (-200 to 1370) ⁰C 

Supplied thermocouples  Type K, Teflon insulation 

Maximum insulation temperature: 270 ⁰C 

 

 

4.7.5 Conductivity meter  

Measuring the conductivity of the distillate is important to judge its quality. The conductivities of the 

distillate and feed before and after each run were measured to keep track on the ion content. A 

conductivity meter SD 320 Con (IP 67 waterproof) was used, its specifications are presented in Table 10. 

 

 

Table 10: The specifications of the conductivity meter used [152]. 

Conductivity measurement range  (0 – 5000) µS/cm 

Temperature range  (-5 – 150) ⁰C 

Accuracy  ±0.5 % of reading  

 

 

4.7.6 Data acquisition scheme 

The weight data collection was done by data acquisition system. A freeware software known as 

(serialporttokeyboard) was installed in the PC that was connected to the digital balance via a serial port 
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cable to transfer the distillate tank weight measurements from the balance directly into the PC. The 

distillate weight was recorded every 30 seconds. The data collected were saved as ASCII format using 

Microsoft Notepad and processed into flux results using Microsoft Excel Spreadsheet. 

4.8 Experimental method  

This section outlines the experimental operation along with the procedures of measuring the quality of 

distillate water (ICP) and membrane autopsy techniques that were carried out to achieve the objectives 

of this study. Membrane autopsy techniques include characterizing membrane fouling by (SEM, EDX) and 

the surface contact angle measurements of the used membranes to detect the hydrophobicity loss. The 

same autopsy techniques were applied to used membranes after the use of antiscalant. 

4.8.1 Experimental operation 

Numerous experiments were performed at different operating conditions, using seawater as the feed 

solution and deionized water in the distillate tank. The replacement of the membrane for the selected 

parameters, was done after (45-91) hours in total of subsequent batch experiments each of (4-5) hours of 

operation. It is worth mentioning that in real operation more than the effective time mentioned was 

needed for each run, for the desired temperatures to be reached, and cleaning of the tanks after each run 

from deposits. Moreover, the membrane replacement procedure includes the open-up of the MD module 

to be cleaned and the membrane is washed with deionized water, then its allowed to dry to be sent for 

membrane autopsy. The flux data is what adopts the replacement of the membrane. Since, the weight 

data collected from each batch are used to generate a flux graph. Furthermore, the flux graphs obtained 

under the same operational conditions using the same membrane are merged together, until the 

permeate flux reaches almost zero membrane replacement can take place. The time it takes to be able to 

replace the membrane depends on the operation conditions chosen. The DCMD system operated under 

ambient pressure and the same permeate inlet temperature (20 ⁰C) for all runs. A summary of operating 

conditions in this work is presented in Table 11 where the experiment code is a number with four digits 
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representing the feed temperature and flowrate. For example, the feed temperature of 50 ⁰C and flow 

rate of 1.5 L/min is represented as 5015. 

 

 

Table 11: The parameters selected with the total operation time of the experimental batches in the lab 

scale DCMD system. 

Feed/permeate 

Flowrate (L/min) 

Feed inlet 

Temperature (⁰C) 

Experiment code Total operation 

Time (hr) 

1.5 

 

50 5015 91 

60 6015 63 

70 7015 49 

2.5 50 5025 56 

60 6025 53 

70 7025 45 

 

 

Due to the lengthy nature of the experiments, it was not possible to repeat all the runs. However, some 

of the experimental runs were repeated to establish the reproducibility. The operational condition of 

experiment code 6025 was selected randomly, for the experimental runs to be repeated. It was found 

that the initial permeate flux obtained was the same for both graphs with comparable average values and 

relatively low standard deviations. 
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4.8.2 Antiscalant 

The antiscalant is a chemical additive that was added to the feed solution at the beginning of each run, to 

investigate its capability to mitigate membrane fouling. Several antiscalants were considered for potential 

utilization. However, in this study antiscalant Performax 3-S200 was provided with samples and data-

sheet which highlighted its thermal stability. Antiscalant Performax 3-S200 (supplied by Ashland Hercules 

Water Technologies, USA) was injected using a pipette to the seawater feed in a dose of 4ppm (within 

manufacturer recommended range). The chemical exact composition of the antiscalant is confidential. 

However, it is quoted as a modified polycarboxlyte that is free of phosphorus and nitrogen that is non-

toxic, calcium tolerant and strong dispersing polymer especially in low flow areas. The molecular weight 

of this antiscalant was designed for scale control of high temperature application without Ca-polymer 

precipitation risk, that is applicable for the thermally driven MD desalination process (Appendix A: 

Antiscalant datasheet). Some physical properties are presented in Table 12. The selected set of 

experiments of different operational conditions are presented in Table 13. The letter A is added to the 

experiment code as an indication of experimental runs with added antiscalant. 

 

 

Table 12: Physical properties of PERFORMAX 3-S200 antiscalant. 

Density 1200 (kg/m3) 

pH 6 

Freezing point < 0 ⁰C approximately  

Solubility Miscible with water in all proportions  

Color Yellowish 
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Table 13: The operational conditions for the set of experiments with added antiscalant. 

Feed/ permeate flowrate 

(L/min) 

Feed temperature ( ⁰C) Experiment code 

1.5 60 6015 A 

2.5 60 6025 A 

1.5 70 7015 A 

 

 

4.8.3 Measurements of contact angle (CA) 

The contact angle of the membrane active layer was measured after each experiment, in order to 

investigate membrane wettability from the degree of loss of hydrophobicity. The CA measurements were 

carried out with a KRUSS DSA25 drop shape analyzer along with the ADVANCE innovative software that 

provided a live camera image display and a workflow of the analysis even for inclined surfaces [153]. The 

sessile drop method was selected from the software to calculate the deionized water adhesion to the 

surface by fitting the shape of the drop captured to Young-Laplace equation. The deionized water dosing 

was controlled automatically by the software employing a syringe perpendicularly placed above the 

membrane surface. The needle used in the syringe was made of PP with lock connector and the needle 

diameter was 0.7 mm. The KRUSS drop shape analyzer used in the Chemical Engineering Research 

Laboratory at Qatar university is shown in Figure 34. 
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Figure 34: The drop shape analyzer KRUSS DSA25 used for CA measurements. 

 

 

The membrane was cut into rectangles from different sites and placed in a membrane holder as shown in 

Figure 35. The contact angle measurement was automated and consisted of repeated measurements until 

consistent values are obtained using a built-in statistical routine.  

The distilled water drop was brought into contact with the membrane surface to perform the 

measurement. For convenience, the site portions of the membrane surface near the inlet, outlet and mid 

were labeled (IN), (OUT), and (MID), respectively. The average value of all the sites of each membrane 

used was then calculated. 
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Figure 35: The membrane holder with a sample membrane shown. 

 
 

4.8.4 SEM-EDS physical characterization 

The scanning electron microscope (SEM) was used to view the membrane surface structure and 

morphology. SEM was attached with energy dispersive spectrometry (EDS) that was used to analyze the 

composition of the elements on the fouled surfaces. However, in this study it was difficult to view the 

membrane cross-section or the thickness of the fouled layer since the membrane should be frozen by 

liquid nitrogen, and cut into a small piece in order to fit the sample holder in the SEM apparatus. The SEM 

imaging with different magnifications along with the EDS were done using an FEI Quanta 200 instrument 

in Qatar university at the laboratory of central unit.  

4.8.5 Water Quality Experiments  

Cations analysis was assessed to study the quality of distillate using inductive coupled plasma- optical 

emission spectrometry (ICP-OES).  The result of ICP analysis was done for (Ca, Mg, Na, K, and Sr) cations. 

The distillate samples were sent to the chemical engineering laboratory for analysis. The samples were 

prepared by acidification by 2% of HNO3. The instrument used was Thermo (ICP-OES) model iCAP-6500 
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and the reference methods of analysis was the Standard methods for the examination of water and 

wastewater, EPA Method No. 3120B Metals by Plasma Emission Spectroscopy. In general, the analysis was 

achieved by first preparing blanks. The preparation of these blanks was done by using ultra-pure water 

with 100 mL added nitic acid. Along with the blanks several standards were prepared and then placed in 

the ICP-OES auto-sampler rack with the samples to be analyzed using a compatible ICP-OES software. 

4.8.6 Method for flux decline and salt rejection 

The flux decline measurements are used as indication of fouling and scaling taking place, as explained in 

section 3.4.2, using Eq. 11 by utilizing the data acquisition system that translated the recorded weight into 

flux data using excel spreadsheet. Moreover, the quality of the distillate, and the degree of contamination 

by the feed is quantitatively expressed in terms of salt rejection percentage. It can be calculated using Eq. 

12. Where, the conductivity of the seawater and the distillate were measured after each experimental run 

of the batch processes. 
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5 Results and discussion 

In this chapter, the results of the experimental work conducted will be presented and discussed. The 

experiments performed were designed to investigate the effect of fouling and wetting on extended runs 

performances using Accurel polypropylene membrane within a variety of operational conditions. 

Moreover, the effect of adding antiscalant as a mitigation method was studied.  

The main sections of this chapter include: 

1- The flux performances at different operational conditions. 

2- The effect of added antiscalant on the flux performances. 

3- Membrane wetting investigation. 

4- SEM-EDS physical characterization of used membranes. 

5.1 Flux performances 

The main purpose is to study the distillate flux profiles obtained at different operating conditions for 

extended runs performance to elucidate the effect of fouling and wetting on the MD process. The 

percentage decline in flux is an indication of the induced average rate of fouling as discussed previously 

in section 3.4.2. The feed solution used for all runs was seawater, and the membrane utilized in the 

experiments in the DCMD bench scale unit was made of polypropylene with pore size of 0.2 microns and 

a porosity of 73-75%. The active area available for membrane distillation was 0.0014 m2. More details 

were presented in section 4.6, along with the experimental procedures. The effect of varying feed 

temperature and feed flowrate on the MD flux performance are studied herein. 

 

5.1.1 The effect of the feed temperature on the extended runs performance of MD.  

The flux performance results are shown in Figure 36, Figure 37 at operating conditions presented in Table 

11. 
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Figure 36 shows that at a constant distillate temperature of 20 ⁰C and a feed flowrate of 1.5 L/min, the 

increase of feed temperature from 50 ⁰C to 70 ⁰C led to a significant increase in the permeate flux initially. 

The maximum permeate flux of (37.2 L/m2.h) was achieved at the temperature of 70 ⁰C. Whereas, 

reducing the feed temperature from 70 ⁰C to 50 ⁰C reduced the permeate flux by 58 % of the initial flux. 

This can be explained in terms of Antoine equation Eq. (3), where the partial vapor pressure that 

represents the driving force of the MD process for vapor mass transport increases exponentially with an 

increase in temperature difference. This is consistent with many reported permeate flux results in the 

literature [65, 71, 107]. 

 

 

 

Figure 36: The flux profiles obtained at qf= 1.5 L/min, where tf= 50-70 ⁰C, and tp= 20 ⁰C. 
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However, the decline in flux increases more rapidly at the higher operating temperature. Figure 36 

illustrates that at feed temperature of 70 ⁰C during 17 hours of operation the permeate flux was decreased 

by 43.5%, while for the same duration the permeate flux decreased by 31.6% for feed temperature of 60 

⁰C. This can be explained by an increased potential of fouling with increase in flux, which will lead to an 

increase in the heat transfer resistance caused by the fouling layer formed on the surface of the 

membrane; eventually lowering the driving force and reducing the active area for vapor transport.   

Furthermore, as indicated by Eq. (10), for similar mass transfer coefficients of the salts in the feed (same 

flowrate) it is expected at a higher flux (due to the higher operating temperature) to have a higher degree 

of concentration polarization, implying a higher potential of scale formation. Moreover, the heat transfer 

resistance of the membrane induced by the fouling layer (mainly due to the precipitation of the salts) at 

the interface will further decrease the driving force; eventually reducing the flux more rapidly at a given 

flowrate. Moreover, since the feed temperature of 50 ⁰C is considered to be relatively low, a lower degree 

of concentration polarization is expected according to Eq. (10) thus the permeate flux produced was 

nearly constant. 

As scaling occurs the deposit layer on the membrane surface will have two negative effects: reduction of 

the active area of the membrane with potential of pore blockage, and an additional thermal resistance 

which enhances the concentration polarization thus reducing the flux. 

After 23 hours of operation the flux curves crossed each other and past the crossing point (depicted by an 

arrow in Figure 36) it can be noticed that the decline in flux is less pronounced. This can be explained by 

the fact that the formed compact deposit layer enhances the temperature polarization effect in terms of 

diminishing the rate of scale formation, due to the inverse solubility of the predominant salts such as 

CaCO3 and CaSO4, as designated from the SEM-EDS analysis in section 5.3. 

Moreover, the layer of fouling formed will persist in reducing the permeate flux as a result of the reduced 

active area of the membrane until it declines to almost zero. 
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The average fouling rates presented in Table 14, depict the percentage of flux decline per hour. At feed 

flowrate of 1.5 L/min the average fouling rate was higher for higher feed temperature. This result is 

consistent with the result found by Gryta [71]. A possible explanation can be in terms of the reduced flux 

contributing to a higher concentration polarization due to inverse salt solubility in the feed stream with 

increase in temperature translated to a significantly higher fouling rate. Due to the low average fouling 

rate obtained at feed temperature of 50 ⁰C, the permeate flux decline was low compared to the higher 

feed temperatures. 

 

Table 14: The average fouling rate at the operational conditions employed.  

Temperature (°C) Average fouling rate 

at 1.5 L/min  

(%flux decline/hr) 

Average fouling rate 

at 2.5 L/min  

(%flux decline/hr) 

70 2.04 2.05 

60 1.64 1.74 

50 0.16 0.19 

 

 

Figure 37 depicts that the highest flux obtained was at temperature of 70 ⁰C (40 L/m2.h). Accordingly, the 

significance of feed temperature effect on the level of permeate flux produced was confirmed at the 

higher flowrate, referring to the exponential increase in the driving force of the MD process with respect 

to increase in temperature. However, Figure 37 shows that decreasing the feed temperature from 70 ⁰C 

to 50 ⁰C caused a similar reduction in the initial permeate flux (60%) when compared with that of the 

lower feed flowrate (58%) shown in Figure 36. Thus, it can be inferred that the effect of varying the feed 

flowrate on the initial permeate flux is minor compared to the effect of varying the feed temperature. 
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Figure 37: The flux profiles obtained at qf= 2.5 L/min, where tf= 50-70 ⁰C, and tp= 20 ⁰C. 
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thermodynamics and thus the propensity to fouling [88]. Therefore, it is difficult to predict the induction 

periods for salts precipitations. 

The induction period at feed temperature of 60 ⁰C (14 hours) is almost double the induction period at 

feed temperature of 70 ⁰C (6 hours), as depicted in Figure 37. This can be due to increased fouling rate 

and concentration polarization effects, where the main constituent on the surface of the used membranes 

was CaCO3 as depicted in the SEM-EDS of Figure 52, Figure 54 and Figure 56 in section 5.3, which exhibits 

an inverse solubility with respect to temperature. Thus, the higher the temperature the higher the rate of 

precipitation; reducing the driving force for the MD process. Further explanations on the effect of varying 

the feed flowrate on the performance of MD will be elaborated in section 5.1.2. 

Similar average fouling rates were obtained using feed flowrate of 2.5 L/min as depicted in Table 14 when 

compared to the ones obtained at flowrate of 1.5 L/min. Thus, it can be deduced that the feed flowrate 

has a minimal effect on the overall permeate flux decline rate caused by fouling. 

 

5.1.2 The effect of the feed flowrate on the extended runs performance of MD. 

The effect of feed flowrate on flux performance at operating conditions shown in Table 11 are depicted 

in Figure 38, Figure 39 and Figure 40. 

In section 5.1.1 the temperature effect on the flux performance indicated that the flowrate had a minimal 

impact on the initial flux. Nevertheless, Figure 38 depicts that the flowrate affects the initial permeate flux 

to some extent at operating temperature of 50 ⁰C. Moreover, fractional flux decline was observed at 

longer operating times but it can be considered negligible. Figure 38 indicates that at a feed flowrate of 

2.5 L/min the overall flux was maintained at a slightly higher value of 17 L/m2h, when compared with the 

flux obtained at the lower feed flowrate of 1.5 L/min (15 L/m2h). However, the rate of reduction in the 

permeate flux at 2.5 L/min is slightly higher than that observed at 1.5 L/min. Despite the fact that 

increasing flowrate leads to a reduction in temperature polarization as described in Eq. (9) in section 2.3; 
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implying an increase in the temperature at the boundary layer leading to a higher permeate flux, the 

scaling potential increases due to the increased flux rising the concentration polarization phenomena. 

Thus, at a higher flowrate the flux decline is induced by increased fouling potential (CP). Nevertheless, this 

effect is minor due to the low operational feed temperature. Since the permeate fluxes obtained are low 

compared to those obtained at higher temperatures, the effect of partial increased flux on concentration 

polarization and scaling potential is low. This result is supported by observations on the SEM images 

(Figure 51, and Figure 57) showing partial surface coverage, and scattered scale where CaCO3 being the 

main constituent exhibiting inverse solubility. 

 

 

Figure 38: The effect of varying the feed flowrate at tf=50 ⁰C, and tp=20 ⁰C. 
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Moreover, the overall average fouling rate (0.19 %flux decline/hr) was not affected as depicted in Table 

14. Accordingly, at a temperature as low as 50 °C the rate limiting step is the heat transfer resistance of 

the thermal boundary layer, which is low compared to the heat resistance of the fouling layer [9]; hence 

the flux was maintained almost constant with negligible deterioration. 

 

Depending on the operating temperature, the effect of feed flowrate in improving the flux becomes less 

pronounced, since the thermal resistance of the scale layer formed with higher running temperature 

becomes much greater than the thermal resistance of the boundary layer. This concept was presented in 

section 3.4. Moreover, Figure 39 depicts that the flux decline was more rapid for the higher feed flowrate. 

In addition to concentration polarization effect, the heat loss by conduction, particularly when using 

DCMD configuration will be introduced [34]. Theoretically heat loss by conduction is expected to increase 

by the use of higher operating feed flowrate, due to the enhancement of thermal efficiency [65]. Thus, 

the heat transfer coefficient in the feed side is enhanced, and an increase in the overall temperature 

difference between the feed and the permeate sides is expected, enhancing the driving force for vapor 

transport; that should be translated to a higher flux. However, it is expected that the thermal conductivity 

of the membrane to increase with increased flux [114], hence heat conduction through the membrane 

wall is facilitated. As result of heat loss by conduction and according to Eq. (9) TP also is expected to 

increase what lead to the scattered less compact scale formation, due to the inverse solubility of the main 

constituent CaCO3. 
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Figure 39: The effect of varying the feed flowrate at tf=60 ⁰C, and tp=20 ⁰C. 

 

Nevertheless, the average fouling rate was almost the same (~1.7 %flux decline/hr) as depicted from Table 

14, which is consistent with the conclusions brought by the literature [71, 114, 116] that there could be 

an optimum feed flowrate for each MD module, where further changes in the flowrate will not cause 

considerable changes in the overall flux decline. 

 

Despite that at a higher feed velocity the fouling tendency is higher, due to enhancement in the 

concentration polarization phenomena, surface renewal and more shear water action on the surface is 

expected to lower the potential of the scale to form and adhere to the surface. Moreover, due to the 

turbulence caused by the increased flowrate an increase in flux (reduced boundary layer) is expected. 

However, the temperature polarization at the surface will be reduced, due to shear actions of the water. 
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Thus, two negative effects are expected. First, increased potential of scale formation, since the main salts 

exhibit inverse solubility. Second, increased potential of heat loss by conduction reducing the thermal 

efficiency and the driving force eventually leading to more flux decline. 

 

 

 

Figure 40: The effect of varying the feed flow rate at tf= 70 ⁰C and tp= 20 ⁰C. 

 

The flux was higher initially, for the higher feed flowrate, since the heat and mass transfer coefficients are 

directly affected by the feed flowrate. However, after an induction period of 6 hours the flux stared to 

decline more rapidly for the same reasons explained for Figure 39. Moreover, the lower induction period 

obtained compared with the lower temperature of 60 ⁰C (14 hours) at feed flowrate of 2.5 L/min as shown 

in Figure 40 may be due to the increased thermal conductivity of the membrane at the higher permeate 
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flux [65], and increased fouling rate brought by the increase in temperature as explained in section 5.1.1 

in more details. Moreover, the slight increase in flux observed following the induction period at the lower 

flowrate may have been contributed by the partial membrane wetting caused by the CaSO4 co-

precipitation with CaCO3 [9, 107].  

The average fouling rate was high and the same (~2 % flux decline/ hr) as depicted in Table 14, despite 

the flux decline behaviors observed in Figure 40, because the feed flowrate influences the boundary layer 

which is a small thermal resistance. However, when scale formation take place on the membrane surface 

the thermal resistance of this scale layer will become greater than the resistance of the boundary layer. 

The same argument applies to mass transfer resistance, where the mass transfer of vapor will be reduced 

eventually. 

 

 

Figure 41: The overall flux decline percentage after 45 hours of operation for tf= (50-70 ⁰C), tp=20 ⁰C and 

qf= 1.5, 2.5 L/min. 
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Figure 41 depicts that the percentage of the overall flux decline increases with an increase in temperature. 

After 45 hour of effective operation, at feed flowrate of 1.5 L/min the flux decline percentage at feed 

temperature of 50 ⁰C is only 7.33, while the flux decline percentages at 60 ⁰C and 70 ⁰C are 74.04 and 

92.12, respectively. 

 

Moreover, at feed flowrate of 2.5 L/min the flux decline percentage at feed temperature of 50 ⁰C is only 

8.63, while at 60 ⁰C and 70 ⁰C the flux decline percentages are 78.69 and 92.60, respectively. The 

percentages of flux decline for both feed flowrates are very similar. Emphasizing that the feed 

temperature has a predominant effect on the performance of the MD process (in terms of flux decay) 

when compared to the feed flowrate effect. However, an increase in the feed temperature from 60 ⁰C to 

70 ⁰C led to a less drastic increase in the flux deterioration performance.  

 

Most of the flux profiles depicting decline tend to have three distinct zones (A, B and C) as summarized in 

Figure 42. This original explanation was established using literature information on MD modeling and 

experimental evidence from SEM imaging. 

Where the flux profile at a higher flowrate is represented in a red curve, while the blue curve represents 

the flux profile at a lower flowrate for the same feed temperature. 

 Zone A shows that at a higher feed flowrate more turbulence will promote a higher heat transfer 

coefficient, due to the reduced temperature polarization (TP) effect. Moreover, higher operating flowrate 

will lead to the reduction in the thermal resistance of the boundary layer. Thus, a higher driving force for 

vapor transport at the higher flowrate (red curve) is expected to increase the flux to some extent. It can 

be inferred that the effect of the thermal boundary layer is dominant in Zone A, represented as (R1 and 

R4) thermal resistances as explained in section 2.2.2. 

Zone B is a transition zone, where the effect of the thermal resistance (R2) due to fouling layer formation 
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starts to predominate the effect of the boundary layer on the flux performance. Thus, the effect of TP is 

reduced and inorganic foulants exhibiting inverse solubility will tend to gain a promoted formation 

tendency. When the fouling layer starts to form, and adhere at the surface of the membrane the effect of 

CP becomes more dominant, consequently the effect of the thermal resistance of the fouling layer will 

increase along with a gradual increase in mass transfer resistance. As explained by Eq. (10) the scaling 

potential is expected to increase exponentially with an increase in flux (J). Accordingly, the flux in red 

curve (higher flowrate) shown in Figure 42 is expected to decline faster. Moreover, heat loss by 

conduction through the membrane is expected to increase especially when using DCMD configuration, 

since increased flux is expected to increase the thermal conductivity through the membrane material (R3). 

Thus, at this stage both TP and CP effects were increased at the higher flowrate, while mainly CP effect 

was increased at lower flowrate as distinguished by the compactness of the fouling layer from SEM images 

at both flowrates. 

Zone C shows that the thermal resistance due to the fouling layer dominate (R2). After the transition zone, 

heat transfer resistance is expected to increase due to the adhesion and compactness of the fouling layer 

formed on the membrane surface. Where R2 described in Eq. (5) will increase because of increased 

thickness of the fouling layer; implying also increased mass transfer resistance and reduced thermal 

conductivity caused by the fouling layer formed. Moreover, the effect of TP in reducing the driving force 

is further enhanced at both flowrates. 
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Figure 42: Schematic representation of the main three zones of declining flux profile curves. 
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5.2 Investigations of membrane wetting 

The membranes applicable for membrane distillation uses are hydrophobic in nature. However, wetting 

of the membrane is induced mainly by foulants penetrating into the interior of the membrane though its 

pores covering the whole depth, partial depth, or on the surface of the pores only [41]. Depending on 

many factors such as the residence time, the operating conditions, heat transfer and the feed 

concentration fouling propensities vary; and so, the opportunity of membrane wettability to penetrate 

and block the pores of the membrane. The different forms of membrane wetting that may take place 

according to the degree of damage caused to the membrane, were discussed and summarized in Figure 

14. The membrane is hydrophobic when the contact angle is higher than 90 °, and super-hydrophobic 

when the contact angle exceeds 160 ° [140].  

Figure 43 illustrate the contact angle measurement of a virgin polypropylene membrane produced by 

KRUSS DSA25 drop shape analyzer using the ADVANCE innovative software described in section 4.8.3. 

 

 

Figure 43: The shape of the deionized droplet and the contact angle on the surface of a virgin flat-sheet 

PP membrane (0.2 µm). 
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Various measurements of contact angle were performed to insure high accuracy. The values obtained for 

the CA of the virgin PP membrane are shown in Table 15 along with the calculated average. According to 

the average contact angle value the membrane can be classified to relatively highly hydrophobic. 

 

 

Table 15: The virgin flat-sheet polypropylene membrane (0.2 µm) contact angle measurements. 

Membrane Contact angle (CA) ( °) Average CA ( °) 

PP (0.2 µm) 138.2 133.7 131.5 134.5 

 

 

Table 16 and Table 17 show the contact angle measurements of the fouled membranes. The contact angle 

measurements and associated labeling schemes are explained in detail in section 4.8.3. 

 

Table 16: The measured contact angles at various sites of the fouled membranes operated at different 

feed temperatures and at a constant feed flowrate of 1.5 L/min. 

Experiment 

code 

IN1 IN2 IN3 M1 M2 M3 OUT1 OUT2 OUT3 Average 

CA 

5015 91.74 98.23 101.84 100.08 100.25 100.95 97.96 92.16 87.44 96.74 

6015 103.7 107.13 108.97 103.26 104.7 101.7 96.85 107.72 87.64 102.41 

7015 99.89 102.28 103.61 97.39 99.58 99.62 86.19 97.12 97.39 98.12 
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It is expected that the lowest contact angle measurement is for the membrane with the highest fouling 

rate and scaling potential, since both are responsible for inducing wetting in the membrane as explained 

previously in section 3.4.1. Many factors affect the rate of fouling such as the characteristic of the 

membrane and its properties, the foulant present and their characteristics, and the operational conditions 

[8]. Similarly, alkaline scaling and crystallization of salts are dependent on the residence time for the scale 

on the membrane surface, the concentration of the feed, the heat transfer and operational conditions 

[71]. With the feed temperature having a more pronounced effect on the performance of the MD process 

as depicted from the permeate flux results (section 5.1.1). 

 

Table 16 shows that the average contact angles of all the fouled membranes are comparable. Although 

the CA obtained are reduced when compared to the pristine membrane (134.5 °), all CA measurements 

indicate that the used membranes did not lose their hydrophilicities (> 90 °). Despite that it is expected 

to have a slightly higher contact angle for the lowest feed temperature (50 ⁰C) used; since the average 

fouling rate was the lowest (0.14 %flux decline/hr), the operational time under this condition was the 

highest too (91 hr). Thus, the residence time of the deposits to interact with each other and with the 

membrane surface was higher and so the expected potential for induced wettability. Nevertheless, it is 

inferred that only surface wetting took place, since the percentage of salt rejection was the highest 

(99.94%) depicted in Figure 44, which indicates no signs of full depth penetration of the feed into the 

distillate side. 

 

Table 17 depicts that the average contact angles measured are reduced by (32-22%) when compared to 

the pristine membrane (134.5 °). This loss of hydrophobicity indicates surface membrane wetting 

occurred as illustrated in Figure 14. Since there is no significant contamination of the distillate by the feed, 

according to the salt rejection values presented in Figure 44 it can be concluded that no partial wetting of 
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the membrane took place operating at feed flowrate of 2.5L/min. Nevertheless, the contact angle 

measurements of the experiment code 6025 (tf= 60 ⁰C and qf= 2.5 L/min) was relatively low occasionally 

when compared with the other used membranes contact angle measurements, this could be due to 

measurements error or the selected portions of the membrane to be tested were more fully covered by 

foulants, since the layer of fouling is unevenly distributed on the surface of the membrane as depicted 

from the SEM-EDS Figure 55 in section 4.8.4. 

 

 

Table 17: The measured contact angles at various sites of the fouled membranes operated at different 

feed temperatures and at a constant feed flowrate of 2.5 L/min. 

Experiment 

code 

IN1 IN2 IN3 M1 M2 M3 OUT1 OUT2 OUT3 Average 

CA ( °) 

5025 96.05 100.88 106.66 107.3 109.87 109.44 100.9 102.95 103.53 104.17 

6025 97.21 94.68 94.85 81.2 78.08 68.62 101.15 100.25 100.09 90.68 

7025 109.82 111.95 112.85 110.34 111.85 97.27 82.66 87.83 93.95 102.06 

 

 

The conductivities of the permeate using the conductivity meter described in section 4.7.5 along with the 

calculated salt rejection percentage using Eq. (12) and the duration of each run for feed flowrate of 1.5 

L/min and temperatures of 70 ⁰C, 60 ⁰C, and 50 ⁰C  are presented in Table 18, Table 19, and Table 20, 

respectively. 

The permeate electrical conductivity increased, which is possibly due to partial wetting as explained in 

section 3.4.1. Where the seawater leaks through the distillate side in the open membrane’s portions which 

will cause the contamination of the distillate and the production of low water quality, while the other 
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portions will have only reduced vaporous space which will lead to reduction in flux. After 23 hours, the 

salt rejection percentage started to decline more rapidly as shown in Table 18 to reach a value of 85.65 % 

at the end of the batch runs at a total of 49.5 hours of operation. Thus, before reaching 23 hours of 

operational hours it is expected that only large pores and the pores near the surface primarily experienced 

wettability. Whereas, the vaporous phase inside the membrane pores was still retained. 

 

 

Table 18: The salt rejection percentages for all the runs of experiment code 7015. 

 

Sample 

# 

Run duration 

(min) 

Distilled conductivity 

(mS/cm) 

Salt rejection (%) 

1 303.0 0.0459 99.95 

2 244.0 0.138 99.85 

3 309.5 0.0569 99.94 

4 270.0 0.2163 99.77 

5 232.5 0.5732 99.40 

6 274.5 1.663 98.25 

7 277.5 2.991 96.86 

8 279.0 7.077 92.56 

9 260.0 9.997 89.49 

10 280.5 8.906 90.64 

11 240.0 13.650 85.65 
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Table 19 shows that the salt rejection percentage started to decline after period of 47 hours of effective 

operation. Comparing these results with that of the higher running temperature it can be seen that the 

reduction in the percentage salt rejection took a longer period of time and was less dramatic than that of 

the higher temperature (70 ⁰C) to reach a value of 93.33% at the end of the runs after 64 hours of effective 

operation. 

 

 

Table 19: The salt rejection percentages for all the runs of experiment code 6015. 

Sample 

# 

Run duration (min) Distilled conductivity 

(mS/cm) 

Salt 

rejection (%) 

1  311 40.56 99.57 

2 289.5 4.4 99.95 

3 292.5 3.9 99.96 

4 290.5 7.83 99.92 

5 233.5 20.23 99.79 

6 208.5 8.26 99.91 

7 280.5 9.48 99.90 

8 264 25.93 99.73 

9 372.5 40.7 99.57 

10 279.5 53.66 99.44 

11 378.5 225.5 97.63 

12 285.5 455.7 95.21 

13 344 634.6 93.33 
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Table 20: The salt rejection percentages for all runs of experiment code 5015. 

Sample 

# 

Run duration (min) Distilled conductivity 

(mS/cm) 

Salt 

rejection 

(%) 

1 309.5 0.025 99.97 

2 277.0 0.047 99.95 

3 294.5 0.076 99.92 

4 279.0 0.035 99.96 

5 292.0 0.038 99.96 

6 298.5 0.064 99.93 

7 288.5 0.029 99.97 

8 291.5 0.038 99.96 

9 283.5 0.047 99.95 

10 274.0 0.076 99.92 

11 259.0 0.075 99.92 

12 256.0 0.091 99.90 

13 292.0 0.047 99.95 

14 292.0 0.055 99.94 

15 265.5 0.045 99.95 

16 336.5 0.099 99.90 

17 277.5 0.106 99.89 

18 292.0 0.064 99.93 

19 309.0 0.047 99.95 
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The percentage of salt rejection shown in Table 20, was not effected and is high (99.95%) after 91 hours 

of operation, deduce that no open portions of the membrane took place at the operating feed 

temperature of 50 ⁰C and flowrate of 1.5 L/min, implying no sign of partial wetting, since the quality of 

water did not deteriorate and the distillate was not contaminated by the seawater feed. However, surface 

wetting may have occurred which was investigated by means of contact angle measurements. 

The detailed tables of salt rejection percentage at feed flowrate of 2.5 L/min are added to (Appendix B: 

Salt rejection tables) and are not shown in this section, since all the values are very high (99%) for all runs 

as depicted in Figure 44 for all feed temperatures. 

 

Figure 44 shows that the effect of increasing the feed temperature was more pronounced in the reduction 

of salt rejection at the lower feed flowrate (1.5 L/min). At feed temperature of 70 ⁰C and feed flowrate of 

1.5 L/min the constituents of seawater were more constantly in contact with the surface of the membrane 

with less shear action which allows the salt crystals to adhere to the surface and even to grow bigger 

increasing the opportunity of the scale to penetrate into the interior of the pores leading to partial wetting 

of the membrane. Moreover, at feed flowrate of 1.5 L/min the lowest salt rejection percentages of 85.65% 

and 93.33% were obtained at feed temperatures of 70 ⁰C and 60 ⁰C, respectively when compared with 

the higher feed flowrate. As confirmed by the SEM-EDS analysis shown in Figure 47, Figure 48 in section 

5.3.1 at these two operational conditions CaSO4 scale was detected on the surface of the membrane 

increasing the potential of partial membrane wetting, since once it is formed it adheres strongly to the 

surface and may lead to membrane damage [56]. 

However, high salt rejection percentages were obtained for all the feed temperatures, operating at the 

higher feed flowrate of 2.5 L/min. Which indicates a very lower potential for partial wettability, since the 

distillate was not contaminated by the feed seawater. Varying the feed flowrate did not influence the salt 

rejection percentage, at the relatively low temperature of 50 ⁰C. 
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Figure 44: The salt rejection percentages for feed temperatures (50- 70 ⁰C), at feed flowrates of (1.5, 2.5 

L/min).  
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5.3 SEM-EDS physical characterization and analysis 

In this section, some of the SEM images at different magnifications along with the EDS analysis will be 

presented for the used membranes. This technique of membrane autopsy can provide a qualitative 

description of how scaling and fouling affected the membrane surface. Consequently, flux decline profiles 

obtained at different operating conditions discussed in section 5.1 can be further understood. 

The SEM image of the unfouled pristine membrane is shown in Figure 45, as can be seen the pores are 

more circular in shape. Fouling of the membrane by salt deposition was investigated after several 

extended runs at the specified operational condition. SEM imaging of the top surface of each used 

membrane was performed and the majority of the deposited elements were identified by the EDS 

analysis. 

 

 

 

Figure 45: The representative SEM image of a pristine polypropylene membrane (0.2 µm) at x50000 

magnification. 
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Several SEM images were performed from different locations of the membrane (at the inlet, outlet, and 

center) as described in section 4.8.4, in which only representatively selected images are revealed in order 

to understand the extent of the fouling and concentration polarization phenomenon on the MD 

performance. 

5.3.1 SEM- EDS analysis for the used membranes at the lower flowrate 

Figure 46 shows the fouling layer formed on the surface of the membrane after 4 weeks of seawater 

exposure in 50 hours of operation, compared with the as-received polypropylene membrane (Figure 45) 

that can be characterized by the sponge like structure with circular shaped pores. From Figure 46(a), the 

morphology “mountain-like” structure and the relatively large size of the crystals present, give a hint of 

severe fouling of the surface with almost all the parts covered with thick salt deposition layer. Same as for 

other locations on the membrane’s surface, presented in (Appendix C: SEM images of the used membrane 

for experiment code 7015). Figure 46(b) shows the morphology and the chemical structure of the crystals 

corresponding to a specific section of the membrane’s surface, similar crystals morphologies were seen 

in other parts of the SEM images. The arrow indicates the embedded NaCl in the deposit layer of the 

“needle-like” structure that may be a sign of the presence of calcium sulfate and calcium carbonate in the 

form of aragonite [8, 106]. 
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Figure 46: SEM images of the fouled membrane (a) The salt deposit layer magnification and (b) at x 15000 

magnification, where tf= 70 ⁰C and qf= 1.5 L/min (experiment code: 7015). 

 
The EDS microanalysis presents the elemental compositions of the salt deposits that confirms the identity 

of the crystals recognized from the electron microscopy. Figure 47 shows the EDS of the SEM images 

presented in Figure 46, the main elements the deposit composed of are Ca, O, and C and traces of S, Na, 

and Cl. The presence of these elements confirms that the crystals’ chemical compositions consist of CaCO3, 

CaSO4, and NaCl that depict the components of the salt deposition layer. Moreover, at feed temperature 

of 70 ⁰C and feed flowrate of 1.5 L/min, CaCO3 can be considered as the main contributor to fouling along 

with CaSO4. 

The presences of these salts is consistent with the feed seawater composition Mg2+, Ca2+, HCO3
1-, SiO3

2-, 

and HSO4- confirmed by the ICP-OES test and is comparable with the seawater composition of Arabian 

Gulf  found in literature [107]. Yet, under this specific running condition precipitates containing 

magnesium were not identified by the SEM-EDS analysis on the surface of the membrane, nor particulate 

and colloidal fouling. 

(a) (b) 
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Figure 47: The EDS spectrum of the identified distinct crystal morphology shown in Figure 46. 

 
Figure 48 shows the SEM-EDS analysis of different locations depicted as (a), (b) and (c) of the fouled 

membrane after 64 hours of batch runs. Moreover, Figure 48 depicts the different types of foulants at 

different locations of the membrane, which implies an inhomogeneous distribution of the salt crystals 

forming the deposit layer as proven by the SEM and EDS of various sites on the surface of the fouled 

membrane. The SEM image in  Figure 48(a) identifies the existence of CaCO3 in the form of aragonite [8, 

106] and NaCl only, which is consistent with the elemental composition shown in the corresponding EDS 

spectrum (C, Ca, O, Na, and Cl). While, Figure 48(b) EDS analysis indicates that the deposit layer is 

composed of Ca, O, C and traces of Si, Fe, S, and Mg confirming the presence of CaCO3, CaSO4, MgCO3, 

and/or MgSiO3 compounds in the layer covering the membrane surface as shown in the corresponding 

SEM image. 
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Figure 48: SEM images of the fouled membrane surface sites (a), (b), and (c) at x 10000 magnification and 

their corresponding EDS, where tf= 60 ⁰C, tp= 20 C and qf= 1.5 L/min (experiment code: 6015). 

 

Where the presence of Si and Fe can be classified as another form of fouling known as particulate and 

colloidal fouling. Silica particulate foulant is unlike other types of foulants it does not form a coat on the 

surface of the membrane nor it penetrate into the pores, but it causes clogging in the feed flow if hollow 

fiber membrane was used [86]. However, the seawater used as the feed was not pretreated; trivial 

amount of silica was seen in the EDS analysis and since the solubility of silica increases with temperature 

it was not present at the higher running temperature (70 ⁰C). Moreover, iron itself is not present in the 

feed seawater, it appears at the surface of the membrane as a result of a corrosion reaction in any form 

of iron oxide. This corrosion could be the result of a reaction between the seawater and the metallic 

surfaces in the flow loop. Moreover, iron oxides have tendency to accrue on the membrane surface and 

may penetrate into membrane pores. The crystalline structure of iron oxide existing depends on many 

(a) (b) (c) 
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factors, such as: pH, temperature, and other ions present in the feed solution [62]. However, only trace 

amount of Fe was present as indicated by the EDS spectrum, due to the proper system design and the use 

of stainless steel which is more resistant to iron rusting. 

Whereas, the salt deposit on the surface of the membrane shown in the SEM image corresponding to 

Figure 48(c) (different location) illustrate the presence of CaCO3, CaSO4, NaCl, MgSiO3 and MgCO3 as 

confirmed by the elemental composition displayed by the EDS analysis of that segment in addition to 

traces of aluminum that was not seen in other parts of the fouled membrane. Moreover, the SEM image 

at low magnification seen in Figure 49 gives an insight of the thickness and the coverage of the fouling 

layer at the surface, with compact large crystalline structures of the salt deposits due to the low feed 

flowrate [71]. 

 

 

 

Figure 49: SEM image at x 2500 magnification of the surface of the fouled membrane, where tf= 60 ⁰C, 

tp=20 ⁰C and qf=1.5 L/min (experiment code: 6015). 
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Figure 50 shows the SEM images corresponding to different parts of the used membrane as a result of 91 

hours of operation at the feed temperature of 50 ⁰C and feed flowrate of 1.5 L/min. The composition of 

the deposit shown in EDS spectrum Figure 50(a) consist of mainly Ca, O, C and traces of Na, thus the major 

component of the deposit corresponding to this segment is CaCO3 in the form of vaterite (spherical shape, 

with diameter range of 0.05- 5 µm) [8, 106]. Moreover, the fouling layer cracks shown in Figure 50(a-b) 

and other SEM images (Appendix D: SEM images of the used membrane for experiment code 5015) 

indicate a thin and porous layer of fouling allowing the vapor to pass through the membrane surface. The 

stability of the permeate flux at feed temperature of 50 ⁰C, can be deduced from the morphology of the 

fouling layer since it was proven by the SEM images to be less compact and more porous, with uncovered 

parts of the membrane surface as depicted in Figure 51. From the EDS spectrum of part (b) the major 

elements identified are C, O, N, Ca and small amounts of Mg, Si, and P. The obtained results confirm that 

CaCO3, MgCO3 and MgSiO3 comprise the major components of this deposit layer. 
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Figure 50: SEM-EDS analysis (a), (b), and (c) showing different parts of deposit formed on the surface of 

the fouled membrane at different high magnifications, where tf=50 ⁰C and qf= 1.5 L/min (experiment code: 

5015). 

 
Due to the relatively low operating temperature, debris of dead plankton cells were observed on the 

surface of the fouled membrane as seen in Figure 50(b) indicated by a circle. Though, it may not be 

considered as biofouling or biofilm formation, since the SEM images show mainly mineral deposit with 

fragments of dead plankton. Therefore, in this work biofouling is not considered a major contribution to 

membrane fouling. Also, the inhomogeneity in deposit distribution of the fouled layer is confirmed by the 

SEM-EDS analysis. As shown in the EDS microanalysis Figure 50(c) the main elements constituting the 

deposit layer are C, O, and Ca and small amounts of Si, Mg, Fe, Al, and K confirming the presence of CaCO3, 

MgCO3, and MgSiO3. In additions to traces of Fe, Al and K that were not present in other parts on the 

membrane’s surface. Furthermore, as can be noticed calcium sulfate scale was not observed under this 

specific operation conditions (low temperature). 

(a) (b) (c) 
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Figure 51: The SEM image at low magnification x 1000 for experiment code: 5015. 

 
 
It can be concluded that under different running temperatures different morphologies of the formed 

calcium carbonate crystal structure were determined. For example, Figure 46(a) indicates the presence of 

aragonite “needle-like structure” while Figure 50(a) indicates the presence vaterite identified by its 

spherical shape structure with diameter range of 0.05-5 µm. and the chemical composition and salts 

deposition and nucleation depends on the combination of operation conditions applied on the MD 

process. 

5.3.2 SEM-EDS analysis at the higher feed flowrate 

Figure 52 shows a representative section of the fouled surface of the membrane after 54 hours of 

operation at feed temperature of 70 ⁰C and feed flowrate of 2.5 L/min. It was determined by the EDS 

spectrum that the major elements composing the deposit layer are Ca, C, O and small amounts of Mg, Si, 

Al and Fe. The obtained results confirm that CaCO3 in the form of aragonite comprise the major 

component of the fouling layer on the surface on the membrane in addition to MgCO3 and MgSiO3. 
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Figure 52: Sample of the SEM-EDS analysis of the fouled membrane surface, where tf= 70 ⁰C and qf= 2.5 

L/min (experiment code: 7025). 

 
In other section of the analyzed membrane surface different morphologies were obtained as confirmed 

by the SEM images despite the similar chemical compositions of species on the surface. Moreover, in 

some portions of the surface were not covered with deposits indicating a better permeability of the 

membrane at the higher feed flowrate, due to the increased surface shear action of water, reducing 

scaling potential. As well as, the size of the crystals formed is smaller compared with the lower feed 

flowrate, as explained in the kinetics of fouling process [9], and as found by Gryta [71]. 

CaSO4 was not observed under high feed flowrate conditions, since CaSO4 needs long induction period to 

precipitate and when it forms it adheres strongly to the surface, thus under stronger shear actions it will 

not have the same opportunity to form and adhere to the surface of the membrane. 
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Figure 53: SEM image at 2500 x magnification showing the distribution of the deposit layer on the surface 

of the fouled membrane (experiment code: 7025). 

 
 
Figure 54 was selected representatively to show the determined elements present on the surface of the 

membrane: Ca, C, and O and small amounts of Na, Cl, Al, Si, Mg, and Fe confirming the presence of CaCO3, 

NaCl, MgCO3, MgSiO3, and other particulates in the corresponding SEM image. Uneven distribution of the 

foulants composing the deposit layer analyzed in different sections of the membrane’s surface, as 

confirmed by EDS (Appendix E: EDS for experimental code 6025). However, CaCO3 in the form of aragonite 

crystalline structure “needle-like” [8, 106] can be considered to be the major component of the fouling 

layer deposited on the surface of the membrane. 
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Figure 54: The result of the SEM-EDS analysis of the fouled membrane, where tf= 60 ⁰C, and qf=2.5 L/min 

(experiment code: 6025). 

 

Furthermore, under the running conditions of 60 ⁰C and feed flowrate of 2.5 L/min a relatively thick 

deposit layer was formed indicating severe fouling. However, the fouling layer formed on the surface of 

the membrane was porous as indicated by the SEM image at low magnification in Figure 55. The crystals 

formed are relatively small when compared to the lower flowrate at the same feed temperature, depicted 

in Figure 49. 
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Figure 55: The SEM image at 1000 x magnification of the fouling layer formed on the surface of the 

membrane, at tf= 60 ⁰C and qf= 2.5 L/min. (experiment code: 6025) 

 

 

Figure 56 represent a sample of the SEM-EDS analysis performed at the fouled membrane after 71 hours 

of operation. The EDS analysis confirms that the major elements are Ca, C, O and small amounts of Mg, 

Si, Al, and Fe. Thus, CaCO3 can be considered the major foulant shown in the SEM image in Figure 56 and 

other constituents such as: MgCO3, MgSiO3 and NaCl comprise the fouling layer on the surface of 

membrane. Occasionally, K and Zn elements were determined in one of the EDS spectrum, nevertheless 

with negligible amounts. 
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Figure 56: SEM-EDS analysis at 10000 x magnification of the fouled membrane surface, where tf= 50 ⁰C 

and qf= 2.5 L/min (experiment code: 5025). 

 

 

Different morphological structures were seen in different parts of the fouling layer. Moreover, the 

chemical compositions were different for different SEM images, suggesting an uneven distribution of the 

salt crystals. The deposit layer was fragile and less compact. Thus, less severe fouling indicated by the size 

of the crystals and the distance separating them on the membrane surface as perceived in Figure 57. This 

observation supports the explanation suggested by the CP effect that at a lower permeate flux lower 

potential of scale formation is expected, as depicted in Figure 38 a stable flux performance was obtained. 
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Figure 57: SEM image at a low magnification to give an indication on the distribution of the fouling layer 

on the surface of the membrane (experiment code: 5025).  



  
   

118 
 

5.4 The effect of antiscalant on the extended runs performance of MD 

In this study, the use of a commercial antiscalant was investigated as a mitigation method to reduce and 

hinder fouling of the membrane, thus maintaining the flux and the quality of the distillate. The antiscalant 

PERFORMAX 3-S200 used was made of modified polycarboxlyte that is stable under high temperature 

operation and is non-toxic. More details about PERFORMAX 3-S200 antiscalant are presented in section 

4.8.2. Three set of experiments were selected to perform the study with antiscalant. The operational 

conditions applied were listed in Table 13.The dosage of PERFORMAX 3-S200 antiscalant added for all the 

runs was 4 ppm, as recommended by the suppling company. 

 

The addition of PERFORMAX 3-S200 antiscalant contributed to a significant reduction of permeate flux 

decline. Figure 58 shows that the permeate flux obtained is almost constant for an operation time of 52 

hours. This can be explained by the ability of the antiscalant to inhibit the formation of the fouling layer 

by weakening the interactions between the salt crystals and their adherence to the flow surface of the 

membrane. This was explained in section 3.5.1. Thus, the thermal resistance due to presence of a fouling 

layer will be reduced, and so the heat transfer coefficient from the bulk of the feed to the surface of the 

membrane is less effected; hence the driving force for vapor transport will be enhanced. 
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Figure 58: The permeate flux obtained at tf= 60 ⁰C, tp= 20 ⁰C and qf= 1.5L/min, without (6015) and with 

added antiscalant (6015 A). 

 
However, the initial flux produced is lower by a small amount under the effect of antiscalant added to the 

feed seawater as depicted from Figure 58. This could be due to some deviations caused by the 

constituents of the antiscalant on the seawater properties. 

The results obtained in this work contrast with those obtained by Gryta [116] where the use of 

polyphosphate antiscalant additives caused larger decline in flux than without antiscalant in extended 

runs operation, thus reducing the efficiency of the MD process. This suggested that Gryta [116] used an 

unsuitable antiscalant for membrane distillation desalination. 

 
Figure 59 shows that the addition of 4 ppm dosage of PERFORMAX 3-S200 antiscalant improved the flux 

performance drastically when compared to the experiment without antiscalant. This is due to the 

reduction in concentration polarization phenomena caused by the scale layer, enhancing mass transfer of 
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the vapor across the membrane by variety of mechanisms the antiscalant can work in, to control the 

growth of deposits and their adherence to the surface of the membrane. However, in the case of higher 

feed flowrate (2.5 L/min), a dip in the permeate flux was observed after 26 hours as depicted in Figure 59. 

Nevertheless, the flux remained constant thereafter until the end of the experiment (46 hours). It was not 

clear what may have caused this dip in flux. 

 

 

Figure 59: The permeate flux obtained at tf= 60 ⁰C, tp= 20 ⁰C and qf= 2.5L/min, without (6025) and with 

added antiscalant (6025A). 

 

The results observed in Figure 60, confirms the effectiveness of the applied modified polycarboxlyte 

antiscalant, despite the higher applied feed temperature, since the permeate flux remained almost 

constant for 45 hours of operation. 
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Figure 60: The permeate flux obtained at tf= 70 ⁰C, tp= 20 ⁰C and qf= 1.5L/min, without (7015) and with 

added antiscalant (7015 A). 

 

The general observations perceived from Figure 60 are similar to those depicted by Figure 58 (tf= 60 ⁰C, 

qf= 1.5 L/min). Moreover, the addition of antiscalant at the same flowrate of 1.5 L/min caused a reduction 

in the initial permeate fluxes produced without adding antiscalant by 8% and 15% for feed temperatures 

of 70 ⁰C and 60 ⁰C, respectively. Thus, increasing the operating temperature at the same feed flowrate 

leads to a higher production of permeate in MD desalination with added antiscalant. Unlike the results 

found by Gryta [116] in which the degree of hydrolysis of the polyphosphate antiscalant increased with 

an increase in feed temperature, and beyond 1 hour of MD instillation the antiscalant will be ineffective 

in inhabiting scale formation. 
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5.4.1 Investigation of membrane wetting occurrence with added antiscalant 

In this section, the added antiscalant proves its effectiveness in terms of overall reduction in the damage 

caused by salt deposition and fouling with a minor reduction in surface contact angles regardless of the 

operating condition and since the salt rejection values were all higher than 99% indicating the production 

of highly pure distillate, not being contaminated by the feed constituents.  

The pristine membrane contact angle was measured as 134.5 °. Details are presented in Table 15, in 

section 5.2. Moreover, the same procedures for measuring the contact angle were done on the used 

membranes from experiments with antiscalant, as described in section 4.8.3. The contact angles 

corresponding to the used membranes after applying antiscalant (does of 4 ppm) to the feed seawater, 

are shown in Table 21. 

 

 

Table 21: The contact angle measurements of the used membrane under the effect of added antiscalant.  

Experiment 

code 

CA1 CA2 CA3 M1 M2 M3 OUT1 OUT2 OUT3 Average 

CA ( °) 

6015 104.9 109.65 111.09 106.58 111.31 113.12 108.87 110.74 110.84 109.68 

7015 105.45 105.53 106.68 106.91 106.99 108.93 109.96 110.17 101.6 106.91 

6025 110.93 113.45 118.23 102.91 109.74 102.49 118.1 104.44 101.9 109.13 

 

 

Table 22 shows that all the contact angle measurements are very high compared to the pristine membrane 

and yet can be considered hydrophobic, regardless of the operational conditions applied. Moreover, the 

reduced hydrophobicity can be referred to a negligible surface wetting of the membrane due to the fact 

that the deposits covered the surface of the membrane partially. Uneven distribution of the crystals, 
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which was proven from the SEM images of the used membrane surfaces at low magnifications (a sample 

case is presented in Figure 63). And comparing the contact angle with and without the addition of 

antiscalant to the feed a general overall improvement can be concluded as shown in Table 22. 

 

 

Table 22: The contact angle measurements of the used membranes, with and without the addition of 

antiscalant to the feed. 

Experiment 

code 

CA ( °) without 

antiscalant 

CA (  °) with 

antiscalant 

6015 102.41 109.68 

7015 98.12 106.91 

6025 90.68 109.13 

 

 

High percentages of salt rejection were obtained with added antiscalant implying that no signs of partial 

wettability of the membrane caused by membranes full depth penetration by contaminants to the 

distillate side. Moreover, for 45- 52 hours of operation the antiscalant has worked effectively in mitigating 

membrane fouling with the production of high water quality, regardless of the operational condition 

applied in this study as illustrated in Figure 61. Yet, the highest reduction in the deterioration of water 

quality was in the instance of using feed temperature of 70 ⁰C and feed flowrate of 1.5 L/min (7015). 

On the other hand, the addition of antiscalant did not cause a noticeable improvement in terms of salt 

rejection percentage at temperature of 60 ⁰C and flowrate of 2.5 L/min (6025), because the application 

of higher feed flowrate prevented the contamination of the distillate by the feed seawater. 
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 Figure 61: The salt rejection percentages with and without the addition of antiscalant to the feed. 

 

SEM-EDS analysis of the used membranes with added antiscalant 

The antiscalant inhabited the crystallization and nucleation of the salts to a large degree as depicted from 

Figure 62. Figure 62(b) shows a deformed deposit. This altered morphology of crystals is a result of the 

antiscalant working mechanism in disturbing crystal formation and weakening the adhesion of the crystals 

to the membrane surface, with the exact working mechanism left unestablished. However, insignificant 

amount was detected on the membrane surface. Moreover, negligible amount of scattered scale crystals 

has formed on the membrane surface as can be depicted from the SEM image obtained in Figure 62(a). 

Where the flux maintained stable and the MD process efficiency was enhanced, thus the antiscalant 

worked effectively in restricting the amounts of deposits formed on the surface of the membrane. 

Moreover, most of the membrane surface is free from deposit as shown in Figure 63. Notably, the SEM 

images presented were selected randomly since all the used membranes surfaces had similar 

morphologies and chemical composition, regardless of the operational conditions. 
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From the EDS analysis of the used membranes no traces of sulfur were found in the chemical composition 

of the scattered crystalline structures observed on the membranes surface, with Ca, C, and O being the 

main components suggesting that CaCO3 was the dominant composition of the deposits. 

On the other hand, highly amorphous morphologies with low porous scaling layer has been observed by 

Gryta [116] by adding antiscalant of polyphosphate to the feed solution (lake water with added 

bicarbonate) what caused the deterioration in the MD process efficiency.  

 

 

 

Figure 62: The SEM images of used membranes at x 2000 magnification with added antiscalant to the 

feed. 

 

 

(a) 
 

(b) 
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Figure 63: The SEM image at 1000x magnification of the used membrane after applying antiscalant to the 

feed. 

 
A summary of the case studies with and without the addition of antiscalant presented in chapter 5 is 

conveniently presented in Table 23, Table 24, and Table 25. 

Table 23 shows the case scenarios were both fouling and wetting of the membrane took place and the 

repeated cases with the addition of the antiscalant showed that the used polypropylene membranes (0.2 

microns) and 73-75% porosity were partially clean with no signs of wettability. Table 24 shows more 

porous fouled surfaces with less compact and smaller size of crystals compared to those shown in Table 

23 at the lower feed flowrate. Moreover, the high values of salt rejection percentage depict that 

membrane wetting did not occur, nevertheless surface loss of hydrophobicity of the membranes took 

place as indicated from the reduced contact angle measurements. Likewise, the addition of antiscalant 

(6025 A) was effective in mitigating membrane fouling to a significant degree. Table 25 shows the SEM 

images of the used membranes for cases 5015 and 5025 to be partially covered with scattered crystals 

and porous layer of fouling with negligible flux decline and the production of high water quality regardless 

of the low rate of production, due to the low operating feed temperature, likewise the higher flowrate 

shows small sa;t crystalline structures. 
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Table 23: The worst-case scenarios before and after the addition of antiscalant. 

Experiment 
code 

PP layer at low magnifications Main 
constituents 

Salt 
rejection 
(%) 

Flux decline 
(%) 

7015 

 

carbonates 
and 
sulfates. 

85.65 92.18 

7015 A 

 

Carbonates 
(negligible 
amounts) 
 

99.95 insignificant 

6015 

 

Carbonates 
and sulfates  

93.33 74.04 

6015 A 

 

Carbonates 
(negligible 
amount) 

99.93 Insignificant 
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Table 24:Case scenarios with membrane fouling and after the addition of antiscalant. 

Experiment 
code 

PP layer at low magnifications Main 
constituents  

Salt 
rejection 
(%) 

Flux 
decline 
(%) 

7025 

 

Carbonates  99.08 92.60 

6025 

 

Carbonates 99.87 78.69 

6025 A 

 

Carbonates 
(negligible 
amounts) 

99.93 9.6 
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Table 25: Case scenarios with minimal membrane fouling without the addition of antiscalant. 

Experiment 
code 

PP layer at low magnifications Main 
constituents  

Salt 
rejection 
(%) 

Flux 
decline 
(%)  

5015  

 

Salts of 
carbonates 

99.95 7.33 

5025 

 

Salts of 
carbonate  

99.95 8.63 
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6 Conclusions and recommendations 

6.1 Conclusions 

The experiments performed in DCMD unit for desalination using polypropylene membranes, for the 

purpose of investigating membrane fouling behavior by studying the flux performance, SEM-EDS analysis 

and salt rejection percentages by means of distillate conductivity measurements. Moreover, membrane 

fouling problem significantly influence the effectiveness of the membrane and its life-cycle. The 

investigation of mitigation method by commercial antiscalant was a crucial factor for membrane 

distillation to effectively compete with other desalination systems. The objectives of this work were 

achieved, and the following conclusions were inferred. 

In general, it can be concluded that at a given flowrate for extended runs using high salinity seawater as 

the feed in DCMD process using polypropylene membrane 0.2 microns and 73-75% porosity, beyond the 

operational temperature of 50 ⁰C the percentage of flux decay increased drastically.  

It can be concluded from studying the effect of varying the feed temperature at a constant flowrate on 

fouling behavior, that: 

• Increasing the feed temperature led to a significant increase in the initial flux obtained, due to the 

exponential relation between the driving force of the MD process (partial vapor pressure) with 

temperature difference as suggested by Antione equation. 

• The higher the flux obtained, the higher the degree of concentration polarization (CP) observed 

in terms of flux decline. Thus, it can be inferred that the feed temperature as an operating 

parameter is the main factor influencing the potential of scale formation in terms of increasing 

the concentration polarization effect. 
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• At low feed temperature of 50 ⁰C minimal scale formation occurred with low but stable flux 

performance, while at higher feed temperatures significant scale formation took place as inferred 

from the average fouling rates. 

The following remarks can be inferred from studying the effect of varying the feed flowrate at constant 

feed temperature on the fouling behavior: 

• The effect of feed flowrate can be divided into two categories: at low feed temperature and at 

high feed temperature. At the low feed temperature (50 ⁰C) the effect of thermal resistance of 

the boundary layers was dominant (R1 and R4). Thus, a slightly higher flux was produced at the 

higher flowrate with minimal CP effects, due to the low fluxes produced. 

• At higher feed temperatures, the effect of reduced TP becomes more significant promoting the 

formation of the fouling layer. However, the decline in flux at the higher flowrate was more 

significant due to the promotion of loss of heat by conduction and the initially higher flux causing 

an increase in CP effect and the thermal resistance of the fouling layer. However, TP will be 

increased as a result of heat loss by conduction, thus reducing scale formation that exhibits 

inverse solubility leading to a less compact fouling layer. Moreover, the higher the temperature 

the more pronounced the effect of feed flowrate on the permeate flux deterioration. 

According to membrane wettability investigations, the following insights can be referred: 

• In general, fouling of the membrane may potentially lead to membrane wetting. However, the 

impact of membrane wetting may not directly be related to the permeate flux performance 

(because wetting was not severe in the cases studied).  

• The obtained salt rejection percentage was the lowest (85.6%) at the highest operating 

temperature (70 ⁰C) and flowrate of 1.5 L/min, which indicates a sign of membrane partial 

wettability due to salt passage across the membrane. 
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• The higher operating flowrate lead to the production of high water quality (more than 99% salt 

rejection) at any studied temperature, probably by disturbing the growth of sulfate crystals 

associated with membrane wetting. 

• The percentage of salt rejection at feed temperature of 50 ⁰C was not affected regardless of the 

operating flowrate. 

• All the used membranes showed partial loss of membrane hydrophobicity compared to the 

pristine membrane (134.5 °). Nevertheless, the surface contact angle measured for all the used 

membranes were above 90 °. 

From the SEM-EDS analysis of the used membranes, the following conclusions can be deduced: 

• Membrane fouling and salt crystallization lead to the formation of a deposit layer on the surface 

of the membrane and eventually permeate flux decline was observed in most of the cases studied. 

However, the composition of the fouling layer and its compactness depends on the operational 

conditions of the MD process. 

• The feed flowrate has significantly influenced the morphology of the deposit layer. At the higher 

flowrate, smaller crystals were formed and the fouling layer was less compact when compared to 

layer of fouling observed at the lower flowrate. 

• Carbonates were observed in all the cases studied, regardless of the amount deposited that 

depends on the operational conditions applied. 

• At the lower flowrate (1.5 L/min) and higher temperatures of 60 ⁰C and 70 ⁰C both carbonates 

and sulfates were observed on the surface of the membrane. 

• At the higher flowrate (2.5 L/min) calcium sulfates were not observed on the surface of the 

membrane at any temperature studied, but carbonates were observed. Since under stronger 

shear actions calcium sulfate will not have the same opportunity to adhere to membrane surface. 
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• Sodium chloride was observed on the membrane’s surface in most cases studied, due to the long 

operational period of the extend runs and the use of spacer that may have caused the NaCl to be 

trapped near the membrane surface at small dead zones. 

• Membrane wetting in terms of foulants full depth penetration into the permeate side, was 

detected when sulfates co-precipitated with carbonates. 

The optimization of MD process in terms of adjusting the operational conditions was not practical, 

since the compromise between reduced membrane fouling and high permeate flux production was 

not feasible. This is due to the association of higher concentration polarization effect with the 

operational conditions that lead to the generation of higher flux. Thus, to insure high flux with 

optimum MD performance in extended runs operations, a mitigation method using a commercial 

antiscalant was proposed to the worst-case scenario conditions where the initial high flux was 

followed by decline due to membrane fouling. 

 

From the application of commercial antiscalant to the feed seawater, the following can be stated: 

• Antiscalant PERFORMAX 3-S200 at a dosage of 4 ppm has shown its effectiveness in mitigating 

membrane fouling, preventing wetting and improving the performance of the MD desalination. 

• All the used membranes revealed high contact angle measurements, when compared to the 

pristine membrane. Moreover, the selectivity of the membranes was not affected since the salt 

rejection percentages were all higher than 99%. 

• The antiscalant inhibited the growth of calcium sulfate completely and hindered the growth of 

carbonates to a significant degree. 

• In the cases studied, the initial permeate flux was reduced slightly when applying antiscalant. 

However, no flux decline was observed. 
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6.2 Recommendations and future work 

At the end of this study, some recommendations are proposed for future work: 

• In long-term performances, the commercially available membranes are highly susceptible to 

fouling eventually leading to a reduced life time increasing the replacement costs if it is to be 

employed in real plants. Thus, it is vital to design special membranes for MD desalination with 

adjusted desirable properties to be applicable for large scale implementations. 

• The kinetics of salt crystals nucleation and growth are not fully understood; thus, it should be 

further investigated in order to better comprehend the effect of fouling on the permeate flux 

performance. 

• The employment of characterization methods that can determine membrane wetting in terms of 

revealing pore blockage by foulants, such as taking SEM images of the cross section of the used 

membranes. Moreover, estimating the thickness of the deposit layer by physical techniques such 

as, optical laser sensor to better understand the effect applied operational conditions on 

membrane fouling compactness and the process of MD. 

• The increase in feed temperature led to the reduction in the induction periods of salt deposition. 

Moreover, increasing the flowrate will cause the induction period to be further reduced. 

However, it is difficult to predict the SI index of any salt in the presence of other salts. Therefore, 

efforts should be made in future work to develop advanced thermodynamic numerical models for 

mixed salts saturation indices. 

• The temperature and concentration polarization effects were used to interpret the effect of 

fouling on the membrane and permeate flux performance. However, their effect should be 

correlated with advanced modeling of the MD desalination process which incorporates 

crystallization studies.  
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• The effect of varying the concentration of antiscalant added to the feed should be further 

investigated, to evaluate the cost of mitigation on the performance of MD if to be functional in 

large scale. 

• Elucidation of the antiscalant working mechanism in preventing scale formation in MD 

desalination can further serve in optimizing the mitigation process. 
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Appendix A: Antiscalant datasheet  

The datasheet of the antiscalant used in this study, provided by the suppling company. 
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Appendix B: Salt rejection tables  

The tables below present the calculated salt rejection percentages and the duration of each run operating 

at the higher feed flowrate of 2.5 L/min. 

 

The salt rejection percentages for all runs of experiment code 7025. 

Sample 

# 

Run Duration (min) Distilled 

conductivity 

(mS/cm) 

Salt 

rejection 

% 

1 313 0.015 99.99 

2 303 0.016 99.98 

3 302 0.028 99.97 

4 258 0.281 99.65 

5 252 0.486 99.33 

6 296 0.618 99.09 

7 296 0.379 99.42 

8 277 0.872 98.64 
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The salt rejection percentage for all runs of experiment code 6025. 

Sample 

# 

Run Duration (min) Distilled 

conductivity 

(mS/cm) 

Salt 

rejection 

% 

1 252 0.046 99.94 

2 267 0.015 99.98 

2 231 0.024 99.98 

4 264 0.024 99.98 

5 302 0.03 99.97 

6 298 0.23 99.77 

7 292 0.071 99.92 

8 288 0.04 99.96 

9 205 0.059 99.94 

10 306 0.098 99.89 

11 300 0.205 99.77 

12 242 0.124 99.86 
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The salt rejection percentage for all runs of experiment code 5025. 

Sample 

# 

Run Duration Distilled 

conductivity 

(mS/cm) 

Salt 

rejection 

% 

1 226 0.032 99.96 

2 333 0.061 99.93 

3 318 0.026 99.97 

4 244 0.027 99.96 

5 310 0.045 99.95 

6 289 0.053 99.93 

7 289 0.035 99.96 

8 287 0.015 99.98 

9 309 0.035 99.96 

10 271 0.09 99.89 

11 270 0.045 99.94 

12 290 0.05 99.94 
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Appendix C: SEM images of the used membrane for experiment code 7015 

 

 

SEM images at low magnifications showing different sites of the fouled membrane surface having similar 

morphologies. 
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Appendix D: SEM images of the used membrane for experiment code 5015 

 

 

 
 

SEM images of the used membrane showing cracks and uncovered parts of the surface indicating a less 

compact and more porous fouling layer.  
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Appendix E: EDS for experimental code 6025 

 

 

 

 
The EDS showing that the elements on different parts of the used membrane surface are diverse, implying 

an uneven distribution of the constituents on the surface.  


