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Abstract  

ABDULRAZAK ALKADOUR, FIRAS, AMER., Masters : June : 2017,  

Masters of Science in Civil Engineering  

Title: Condition Assessment Models for Sewer Pipelines  

Supervisor of Thesis: Dr. Alaa Al-Hawari.  

Underground pipeline system is a complex infrastructure system that has 

significant impact on social, environmental and economic aspects. Sewer pipeline 

networks are considered to be an extremely expensive asset. This study aims to 

develop condition assessment models for sewer pipeline networks. Seventeen factors 

affecting the condition of sewer network were considered for gravity pipelines in 

addition to the operating pressure for pressurized pipelines. Two different 

methodologies were adopted for models’ development. The first method by using an 

integrated Fuzzy Analytic Network Process (FANP) and Monte-Carlo simulation and 

the second method by using FANP, fuzzy set theory (FST) and Evidential Reasoning 

(ER). The models’ output is the assessed pipeline condition. In order to collect the 

necessary data for developing the models, questionnaires were distributed among 

experts in sewer pipelines in the state of Qatar. In addition, actual data for an existing 

sewage network in the state of Qatar was used to validate the models’ outputs. The 

“Ground Disturbance” factor was found to be the most influential factor followed by 

the “Location” factor with a weight of 10.6% and 9.3% for pipelines under gravity 

and 8.8% and 8.6% for pipelines under pressure, respectively. On the other hand, the 

least affecting factor was the “Length” followed by “Diameter” with weights of 2.2% 

and 2.5% for pipelines under gravity and 2.5% and 2.6% for pipelines under pressure. 
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The developed models were able to satisfactorily assess the conditions of 

deteriorating sewer pipelines with an average validity of approximately 85% for the 

first approach and 86% for the second approach. The developed models are expected 

to be a useful tool for decision makers to properly plan for their inspections and 

provide effective rehabilitation of sewer networks.   
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CHAPTER 1- INTRODUCTION 

1.1 Overview 

The condition and level of service of sewage pipelines could have major effect on 

environmental and economic aspects for populated urban areas. Deteriorated sewage 

pipelines are considered hazardous on the public healthiness and environment. The 

performance of sewage pipelines is a function in reliability, and level of service by 

which decision makers can determine the lifecycle of the pipeline and the time for 

interventions required to reinstate the level of service of deteriorated pipes back to the 

desired level. Maintenance, rehabilitation and renewal comprises the intervention of 

assets, which can be associated to knowing the current condition of the pipelines. In 

absence of information regarding the condition of pipelines, unforeseen failure can 

take place making asset replacement inevitable which is the most expensive measure 

amongst the rest of intervention measures.  

In the past, a reactive approach was considered in sewer management as 

rehabilitation is made upon pipe failure. However, the trend has changed with time 

towards a proactive approach due to the great cost of repairs at emergencies and its 

impact on social and environmental aspects. In the current trend, the problems are 

addressed before their occurrence by implementing a proper asset management 

system (Vanier, 2001). 

Condition assessment models are considered tools that can provide users and 

decision makers enough information to determine whether an intervention is required 

for certain pipes based on their state of deterioration. As a result, municipalities need 

to develop condition assessment models to determine the condition of the assets from 
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which decisions regarding prioritization of inspection, repair and renewal of sewer 

pipes can be made. These models are built by incorporating data available in 

databases and records in municipalities. These data are generally the deterioration 

factors that impact the degradation of sewer pipes and the condition of these pipes. 

Asset management system for sewer networks is further described in Figure 1-1.  

 
 
 
 

 

Figure 1-1: Sewer Management System 
 
 
 
 

A reliable inspection plan and condition assessment models for the maintenance 

and rehabilitation of sewer pipelines is needed to control and minimize adverse 

potential effects of assets failure as reported by the National Guide to Sustainable 

Municipal Infrastructure best practice (2003).  

Sewer pipelines can be divided into gravity pipelines and pressurized pipelines 

where each is expected to deteriorate in a different manner. Therefore, two different 

condition assessment models for each approach were developed to assess the two 

different pipeline systems. In order to collect the necessary data for the model 
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development, questionnaires were distributed among experts in sewer pipelines in the 

state of Qatar. Fuzzy Analytic Network Process (FANP) will be used to determine the 

weight of each of the identified factors that would affect the pipeline condition. The 

calculated weights (FANP) and effect values will be fed into an Oracle® Crystal Ball 

software to get a probabilistic condition index for sewer pipelines using Monte-Carlo 

simulation for the first approach. The calculated weights using (FANP) and generated 

membership functions for the effect values using Fuzzy Set Theory (FST) will be 

integrated with Evidential Reasoning (ER) technique to generate the final condition 

index for the second approach. The main goals of the current study are: (1) to 

recognize the primary factors that would affect sewer pipelines' conditions and (2) to 

develop a condition assessment model for sewer pipeline networks. 

1.2 Inspection and Evaluation of Existing Sewers 

The reasons for carrying out sewer inspections can be divided into three main 

reasons (Butler et al., 2000): 

- Periodic inspection to determine the condition of existing sewer pipelines. 

- Crisis inspection to determine the causes behind the failure of sewer pipelines 

and carry out an emergency repair. 

- Inspection of new sewers to check the new sewer pipelines are constructed as 

per the required workmanship and construction standards. 

Several inspection techniques are utilized to assess the condition of sewer 

pipelines. These techniques can be categorized into three groups. 

- Group I: Techniques used to assess the internal condition of sewer pipelines 

such as Sewer Scanner and Evaluation Technology (SSET), Closed Circuit 
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Television (CCTV), Zoom Camera, Laser Scanning and Ultra sound. CCTV is 

the most technique used widely.  

- Group II: Techniques used to assess the overall condition of sewer pipelines 

and the surrounding soil such as Micro Deflections, Natural Vibration and 

Impact Echo. 

- Group III: Techniques used to detect a specific defect within the pipe segment 

walls such as Ground Penetrating Radar (GPR). 

The structural condition of pipes are generally determined through a defined 

condition assessment rating system. There are several available rating systems such as 

NEN3399 (1992) and WRc (2001). This assessment usually depends on the results 

obtained from pipe inspections performed using the technologies listed above. 

However, those technologies are expensive and time consuming with many 

drawbacks (Wirahadikusumah, 1998).  

Typically, a pipe section is split into 1m length segments where the observed 

defects resulting from pipe inspections are identified and a condition rating is 

provided accordingly. The final condition of the pipe is either the rating of the worst 

segment or the mean rating of all segments.  

There are many errors and uncertainties with CCTV inspections’ outcome. For 

example, a certain pipe might appear to be improving in condition with age. Also, 

there is a possibility that future carried out inspections might not show the defects 

observed in the current inspections. The uncertainties in CCTV inspections can be 

connected to two main sources (Chae et al. 2003, Müller and Fischer 2007). 

• Human error where the CCTV inspection results depend on the concentration 

and experience of the operator. 
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• CCTV camera limitations where the quality of the camera and light condition 

can lead to inaccurate identifications of the defects. 

1.3 Qatar Network Existing Assets 

Qatar drainage system is separated in which foul sewage and storm water runoff 

are collected in separate systems. Sewage generally flows by gravity through house 

connections to manholes and sewer pipelines. The sewage flows by gravity to 

pumping stations where it is pumped to Sewage Treatment Works (STW). 

Qatar has a flat topography which does not support long distances of gravity sewer as 

great depths of excavation would be required. Therefore, the sewerage system 

consists of many pumping station. This leads that for sewage to arrive at the STW, it 

needs to be pumped several times. 

For gravity sewers, the favored material for usage in is vitrified clay (VC), for 

pipes up to 1000mm diameter where Glass Reinforced Plastic (GRP) is favored for 

diameters in excess of 1000mm. High-density polyethylene (HDPE) is not preferred, 

but may be used as a sliplining where trenchless methods are necessary for 

installation, using concrete jacking pipes. For pressurized pipes, the considered Pipe 

materials in pumping stations are always Ductile Iron (DI). However, for rising mains 

outside pumping stations, the piper materials can be either ductile iron (DI) or Glass 

Reinforced Plastic (GRP) with concrete protection. 

Data was collected from the Operation and Maintenance Department in Ashghal 

Public Work Authority for 2073.352 km of gravity sewer pipelines. Figure 1-2 to 

Figure 1-5 show the different characteristics (Diameter, Age, Material and Position 

Relative to Groundwater Table) of sewer pipes for the obtained data set.  
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Figure 1-2: Qatar Sewer Network - Diameter Statistics 
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Figure 1-3: Qatar Sewer Network - Age Statistics 
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Figure 1-4: Qatar Sewer Network - Material Statistics 
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Figure 1-5: Pipe position relative to Groundwater (GW) Statistics 
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1.4 Thesis Organization 

Chapter 1 – Introduction: This chapter includes an overview about sewer network, 

asset management, inspection techniques and condition assessment models. In 

addition Qatar sewer network existing assets are identified. Moreover, each Chapter’s 

content is described briefly.  

Chapter 2 – Literature Review: This chapter identifies all major factors and sub-

factors affecting sewer pipelines’ condition and all previously developed condition 

assessment models. In addition, the limitation of previous researches, the research 

problem and research objectives are stated. 

Chapter 3 – Research Methodology: This chapter describes the research 

methodology considered in this research.  

Chapter 4 – Data Collection: This chapter covers the data collection stage. 

Questionnaires - one related to gravity sewer pipelines and another related to 

pressurized sewer pipelines-were constructed and sent to sewer pipelines consultants, 

consultants, and engineers. The experts were requested to perform a pair-wise 

comparison among the identified main factors and sub-factors and to determine the 

effect of each factor on the pipeline condition. In addition, actual data set is collected 

for validation purposes. 

Chapter 5 – Model Development and Implementation: This chapter discusses 

constructing the condition assessment models using an integrated Fuzzy Analytic 

Network Process (FANP) and Monte-Carlo simulation as one approach and FANP, 

fuzzy set theory (FST) and Evidential Reasoning (ER) as another approach. 

Chapter 6 – Conclusion: This chapter wraps up the thesis with conclusions. 
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Factors Affecting Sewer Pipelines Condition 

In general, pipe deteriorates with age; however pipes with different characteristics 

can experience significant variations in the deterioration process based on many 

factors. Hawari et al., (2016) studied and identified major factors affecting sewer 

pipelines’ condition (Fenner, 2000, Fenner et al., 2000, Davies et al., 2001, 

Ariaratnam et al., 2001, Müller, 2002, Baur and Herz, 2002, Micevski et al., 2002, 

Hahn, et al., 2002, Baik et al., 2006, Tran et al., 2007, Dirksen and Clemens, 2008, 

Ana, et al., 2009).  

These factors were subdivided into three main groups: (1) physical factors, (2) 

operational factors and (3) environmental factors. The physical factors included sewer 

pipeline characteristics such as: age, material type, size, buried depth, coating 

conditions and installation quality. The operational factors included: flow rate, 

infiltration and inflow, blockages, corrosive impurities and maintenance strategies in 

addition to the operating pressure for pipelines under pressure. Finally, the 

environmental factors included: bedding conditions, location, groundwater level and 

ground disturbance.  

Table 4-1 shows the different variables (e.g.: factors) selected in previous 

researches. Age, length, material and diameter are the most common factors that were 

included in these models. 
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Table 2-1: Variables Included in Sewer Pipelines Condition Assessment Models 

Author(s) Model 

Variables Included 
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Najafi and 
Kulandaivel (2005) Artificial Neural Networks      

   
    

Ruwanpura et al. 
(2004) Rule-Based Simulation             

Hawari et al., (2016) Rule-Based Simulation        

 

 

 

 
Other Physical, Operational, and 

Environmental Factors 
Hahn et al., (2004) Expert Systems Corrosion, Erosion, Defects, Reconstruction and Socio-economic 
Elmasry et al., (2016) Inference Systems     Structural and Operational Defects 
Ariaratnam et al. 
(2001) 

Regression (Logistic )             
Chughtai and Zayed 
(2008) 

Regression (Multiple 
Linear)        

     

Salman (2012) Regression (Binary and 
Logistic )             

Ana (2009) Multiple Discriminant 
Analysis            Traffic Intensity, Installation Year 

Bai et al., (2008) Evidential Reasoning Cement lining condition and the Degree of internal corrosion 

Daher (2015) Fuzzy Based Evidential 
Reasoning    Structural, Operational, Installation Defects 

Baur and Herz (2002) Survival Functions  
 

 
   

 
 

  
 

Shape of profile 
Wirahadikusumah et 
al. (2001) 

Markov Chains – 
Nonlinear optimization   

  
 

 
    

  
Sinha and McKim 
(2007) 

Markov Chains – 
Nonlinear optimization Not Specified 

Kleiner (2001) Semi-Markov Chains  
          Expert Opinion 

Kleiner et al. (2004) Fuzzy Rule-Based Markov 
Chains             

Micevski et al. (2002) 
MarkovChains – 
Metropolis-Hastings 
Algorithm  

  
  

 
     Exposure Classification 

Baik et al. (2006) Markov Chains – Ordered 
Probit    

 
 

   
 

   
Le Gat (2008) Markov Chains – Gompit            Installation Period 
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2.2 Deterioration Models 

Prediction of sewer condition is considered a very complex process as it is 

effected by many factors. A combination of probability based equations and empirical 

data can be considered for the prediction of sewer pipelines deterioration (Mehle et 

al., 2001). The basic idea behind deterioration models is to find the relationship 

between the factors influencing the deterioration process of sewer pipelines and the 

pipeline condition. Thus, the availability of data containing set of deterioration factors 

and the sewer pipelines actual observed conditions is considered vital in sewer 

deterioration modeling. Using the developed models, the future condition of sewer 

pipelines with respect to age could be estimated. However, each model relies on 

different concepts and differs in its data requirements and calibration methods 

(Scheidegger et al., 2011).  

Condition assessment models can be classified as physical, statistical or artificial 

intelligence models (Yang, 2004). Ana and Bauwens (2010) focused on 5 statistical 

models that have been developed by previous researches to model the structural 

deterioration of sewer pipelines only in their review which were logistic regression 

model, multiple discriminant analysis model, cohort survival model, Markov chain 

model and Semi-Markov chain model. Figure 2-1 shows a classification of the 

different deterioration models considered in assessing the condition of sewer 

pipelines. 

Physical models are used to define clear quantitative relationship between 

deterioration factors and condition of sewer pipelines without accounting for the 

uncertainty of the deterioration process. In contrast, statistical models consider the 
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uncertainties by using probability based equations. On the other hand, artificial 

intelligence models are considered to be data-driven and not model-driven where the 

mathematical relationships between the deterioration factors and condition data are 

evaluated by “learning” the deterioration behavior from inspection data. 

 
 
 
 

 

Figure 2-1: Sewer deterioration models’ classification 
 
 
 
 

Ana and Bauwens (2010) further classified the deterioration models into two types 

which are pipe group and pipe level models. Pipe group models consider entire 
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the other hand, pipe level models predict the condition of each single pipe, where the 

pipe characteristics are considered as covariates. Pipe level models are useful in 

prioritizing inspection and rehabilitation plans and can be converted into group level 

models by creating groups or cohorts of sewers. All the deterioration models defined 

in Figure 2-1 are considered as pipe level models that can also be used as pipe group 

models except for Cohort survival models which fall under pipe group models only. 

2.2.1 Physical Models  

Model Description: 

Physical models are models that consider the physical mechanisms of the 

deterioration process of sewer pipelines. These physical models are considered 

deterministic models because they are based on the physical properties and the 

mechanics of a certain phenomenon. They involve fitting linear or non-linear 

equations to observations related to the asset failure (Marlow et al., 2009). The pipe 

structural properties, internal and external loads such as traffic loading and material 

degradation are the aspects that govern sewer pipes deterioration (Rajani and Kleiner 

2001). 

Application: 

ExtCorr is a physical model that was developed within the Care-S project (Konig, 

2005). The developed model could estimate the external corrosion of concrete pipes 

taking into consideration soil aggressiveness, pipe cement quality and soil moisture. 

WATS model is another similar application which was developed to simulate the 

effect of internal corrosion in sewer pipes. The model was based on developing non-

linear differential equations describing microbial and chemical transformation 
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processes of organic matter, and chemical compounds resulting from chemical 

reactions in wastewater (Vollersten and Konig, 2005).  

Critique: 

Deterioration of sewer pipelines is considered as a complex process that depends 

on large number of factors (Schmidt, 2009). Some of the aspects that contribute to the 

condition of sewer pipes can be modeled empirically such as corrosion, but the 

deterioration in sewer condition itself is very difficult to be modeled in the same 

manner. Another limitation is the scarcity of data needed to simulate the deterioration 

mechanisms (Ana, 2009).To overcome such problem, some assumptions are made 

without taking into consideration the uncertainties associated with asset deterioration 

and failure (Marlow et al., 2009). As a result, physical models developed to assess the 

condition of sewer pipelines are considered too simple to reflect the actual 

deterioration process (Tran, 2007), hence they aren’t practical enough to truly reflect 

the behavior of sewer pipelines.  

2.2.2 Artificial Intelligence Models 

Artificial intelligence (AI) aims to develop algorithms that mimic the behavior of 

humans when dealing with problems and in patterns recognition (Sage, 1990). 

Artificial Neural Networks (ANN) and rule based models such as fuzzy logic and 

simulation can be considered as AI techniques.  

2.2.2.1 Artificial Neural Networks 

Model Description: 

The Artificial neural networks (ANN) are a simulation of the human nervous 

system. They are comprised of artificial neurons which are connected to each other in 
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different layers aiming to mimic human’s brain ability to recognize patterns and to 

recall them in order to predict certain outcomes based on observations (Al-Barqawi 

and Zayed 2008). The ability of ANN to learn by patterns recognition makes it a very 

effective tool for model development. ANN could provide predictions based on 

available historical data when relationships between inputs and outputs aren’t clear or 

distinct enough or when data is incomplete (Sadiq et al. 2004). 

In ANN, neurons are linked to each other with connections having a certain 

weight. When the summations of weights for the inputs reach a certain value, the 

neurons send a signal that identifies the activation function (Fausset 1994, Zou et al. 

2008). In order to determine the weights between connected neurons, the error 

between the estimated outcome of the model and the actual outcome is minimized 

(Achim et al. 2007, Salman 2010). In sewer prediction models, the network is trained 

from a data set containing sewer deterioration factors which represent the input layer 

and pipe conditions which represent the output layer. Probabilistic neural network 

(PNN) and back-propagation neural networks (BPNN) are the two main neural 

networks that have been used in condition assessment modeling. The principles of 

these PNN and BPNN are presented below:  

 Back-propagation neural networks (BPNN): 

In BPNN, the model is divided into three layers as shown in Figure 2-2. The 

model components are as follow: 

• Input layer: Contains a set of nodes representing the deterioration factors 

having a value of Xi.  
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• Hidden layer: Each node receives signals from the input layer. The value of 

each node is the result of the product between the inputs Xi and the associated 

weights. At each node the sum of the weighted inputs is calculated and an 

output signal is produced using activation or transfer functions.  

• Output layer: The outputs of the hidden layer are received and multiplied by 

connection weights to define the predicted condition classes.  

During the training process, optimization algorithms are used to calibrate the 

connection weights where the error between the models predicted output and the 

actual conditions is minimized. 

 
 
 
 

 
Figure 2-2: Schematic presentation of the back propagation neural network BPNN 
(Tran et al., 2007) 
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• Probabilistic neural network (PNN): 

Probabilistic neural network is defined as a special form of neural networks. It 

classifies input vectors into classes based on Bayesian classification (Specht, 1990). 

The model is divided into four layers as shown in Figure 2-3.  

 
 
 
 

 

Figure 2-3: Schematic presentation of the probabilistic neural network PNN (Ana, 
2009) 
 
 
 
 
The model components are as follow: 

• Input layer: Contains a set of nodes where each node represents a deterioration 

factor having a value Xi. 

• Pattern layer: Contains one node for each sample in a training set. The value 

of each node is the result of the dot product between the input vector X and a 

weight vector. The nodes are grouped in accordance with their associated class 

i = 1,2,…..,m.  
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• Summation layer: Contains a number of nodes where each node represents a 

condition class. For a given class (i), the outputs of the pattern nodes are 

received and its value is calculated using an estimation of the probability 

density function (PDF). Equation 1 shows the mathematical formula of the 

PDF. 

 𝑓𝑓𝑖𝑖(𝑥𝑥) =  
1

(2𝜋𝜋)𝑛𝑛/2𝜎𝜎𝑛𝑛
1

𝑀𝑀𝑖𝑖
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑥𝑥 − 𝑥𝑥𝑗𝑗
(𝑖𝑖))𝑇𝑇(𝑥𝑥 − 𝑥𝑥𝑗𝑗

(𝑖𝑖))
2𝜎𝜎2 �

𝑀𝑀𝑖𝑖

𝐽𝐽=1

 (1) 

Where,  

𝑥𝑥𝑗𝑗
(𝑖𝑖): The input vector of the Jth sample in a training set from class i, 

n: The dimension of the input vector,   

𝑀𝑀𝑖𝑖: Number of training samples belonging to class i, 

𝜎𝜎: Smoothing parameter which corresponds to the standard deviation of the 

Gaussian distribution, 

𝑇𝑇: Transpose function. 

• Output layer: The outputs of the summation layer are received and the 

condition is assigned by implementing the Bayes decision rule which is shown 

in Equation 2 for a 2 condition classes. 

 ℎ1𝑓𝑓1(𝑥𝑥) > ℎ2𝑓𝑓2(𝑥𝑥) (2) 

Where,  

x: n-dimensional input vector, 

ℎ𝑖𝑖: A priori probabilities that x belongs to a condition class i. 

𝑓𝑓𝑖𝑖: Probability density function of class i. 
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In the PNN, the smoothing parameter (𝜎𝜎) is considered the most important 

parameter to be determined (Hajmeer and Basheer, 2002). Different values of (𝜎𝜎) are 

chosen where the network is trained and tested for each value and (𝜎𝜎) is selected 

based on the results that generate the least misclassification. 

Application: 

Prediction of the deterioration rates of sewer pipes using ANN based model was 

developed by Najafi and Kulandaivel (2005). The factors that were considered in the 

development of this model were age, diameter, length, material, depth, slope, and 

effluent type. Based on the model results, the diameter of the sewer had the highest 

importance, while the slope was the least important factor. The model could predict 

the condition rating of pipelines by entering the seven factors of a specific pipe to the 

model and the output would be the condition state for this pipe. Structural condition 

assessment model for sewer pipelines using both Back Propagation Neural Networks 

(BPNN) and Probabilistic Neural Networks (PNN) was developed by Khan et al. 

(2010). The two models were built using pipe age, length, depth, diameter, material, 

and bedding material. The accuracy of the two models was compared based on the 

outputs of each and it was found that the results from BPNN was more accurate than 

that from PNN.  

Critique: 

ANN models are capable of dealing with the pipe deterioration in the absence of 

clear relationships between inputs and outputs (e.g.: functional relationships aren’t 

identified) (Zou et al., 2008). By analyzing relationships between input and output 

data, ANN models can identify and replicate complex non-linear processes. However, 

the models developed using ANNs depend primarily on extensive amount of datasets 
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to create a proper environment to develop such relationships. In addition to this 

disadvantage, understanding the underlying mechanics in ANN models isn’t always 

easy as they are categorized under ‘black box’ models due to the fact that they contain 

hidden underlying processes (Tran, 2007). 

2.2.2.2 Rule Based Fuzzy Logic  

Model Description: 

Fuzzy techniques are mathematical forms that address uncertainties and 

impreciseness (Zadeh, 1965). Fuzzy rule based modeling, models the relationships 

between variables using fuzzy if-then rules which follow the term “antecedent 

proposition”. The antecedent proposition is a fuzzy proposition in which (𝑥𝑥) 

(linguistic variable) is expressed in (𝐴𝐴) (linguistic constant term). Based on the 

similarity between (𝑥𝑥) and (𝐴𝐴), the proposition’s value which is between zero and 1 

is assigned (Mamdani, 1975). The Mamdani antecedent proposition has the ability to 

deal with the qualitative and highly uncertain knowledge in the form of if-then rules 

as shown in Equation 3 (Kleiner, 2007). 

 𝑅𝑅𝑖𝑖: 𝑖𝑖𝑖𝑖 𝑥𝑥 𝑖𝑖𝑖𝑖 𝐴𝐴𝑗𝑗  𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐵𝐵𝑘𝑘, 𝑖𝑖 = 1,2, … 𝑙𝑙, 𝑗𝑗 = 1,2, … , 𝑀𝑀, 𝑘𝑘 = 1,2, . . 𝑁𝑁 (3) 

Where,  

x is the input (e.g.: antecedent) linguistic variable,  

y is the output (e.g.: consequent) linguistic variable, 

Aj is M antecedent linguistic constant in a set A, 

Bk is N consequent linguistic constant in a set B, 

The values of 𝑥𝑥, 𝑦𝑦, 𝐴𝐴𝑗𝑗 and 𝐵𝐵𝑘𝑘 are given the value from predefined sets and rules 

that define the model. 𝑅𝑅𝑖𝑖(𝑥𝑥, 𝑦𝑦) is considered as a fuzzy relation in an interval of [0,1], 
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in which 𝑅𝑅𝑖𝑖 is a function of Cartesian ordinates (𝑥𝑥, 𝑦𝑦) taking a value in the interval of 

[0,1]. To determine the sewer pipelines deterioration, rule based fuzzy techniques 

models are used in most occasions to overcome the scarcity and impreciseness of data 

(Kleiner, 2007).  

Application: 

A condition assessment model was developed using fuzzy based approach by Yan 

and Vairavamoorthy (2003). In this model, different factors affecting sewer pipeline 

condition such as age, diameter, material, depth, in addition to other linguistic factors 

were considered. These linguistic factors were transformed into numerical values 

through fuzzy rules. A Fuzzy-rule based Markovian process was used to model 

deterioration of large diameter buried pipelines (Kleiner et al., 2004). The 

methodology was then applied on sewerage pipelines by Kleiner et al. (2007). The 

model was built by fuzzifying the age and condition of pipeline into a triangular fuzzy 

membership functions, from which the deterioration rate of the same pipe was 

determined. Deterioration rate and current condition states were used to determine the 

future condition of the pipe. In another research by Rajani et al. (2006), the authors 

presented the classification of sewer pipelines in fuzzy sets. To achieve such goal, the 

different distress indicators (e.g.: defects) were converted into fuzzy sets by assigning 

each distress indicator seven linguistic values which were: excellent, good, adequate, 

fair, poor, bad, fail based on the defects values. The distress indicators were then 

aggregated based on the relevant categories where each category would reflect the 

specific pipe components reflecting the level of deterioration of each category.  
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Critique: 

Although rule based fuzzy models offer a powerful tool to deal with scarcity, 

impreciseness, and vagueness of data. One of the major shortcomings in using this 

technique is the subjectivity involved when defining the inference rules which are 

usually based on experts’ opinions. This could lead to ambiguities resulting from 

human judgements. 

2.2.2.3 Rule Based Simulation 

Model Description: 

The aim of models developed by using rule based simulation is to generate large 

number of outcomes virtually in order to estimate outcomes as in reality. In the rule 

based simulation models, a system is defined as a collection of objects which are 

called entities. The characteristics of these entities are called attributes which define 

the state of the system for which the change in it would be called a state transition 

(Inomata et al., 1988). The state of the system and state transitions are called events 

and usually define the dynamics of the system. 

Application: 

A rule based simulation model was developed as a condition assessment tool for 

sewer pipelines by Ruwanpura et al. (2004). The model was developed to determine 

the condition of sewer pipelines, and the probability that the pipe would remain in its 

current condition based on 5 years increment. The model was built using three factors 

which were: age, material and length. Random number generators were used to 

predict the generate condition rating probabilities of sewer pipelines and were 

compared with the actual condition rating probabilities. This step was performed 

several times, to determine the most probable condition rating from the overall 
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number of iteration for a given pipe. Future condition ratings were predicted using 

Markov chain with the same philosophy that was used in determining the current 

condition rating probabilities. In another research using rule based simulation, a 

model was developed using the physical, environmental and operational factors 

affecting the condition of sewer pipelines to determine their condition states (Hawari, 

2016). In this model different factors affecting sewer pipeline conditions were studied 

and identified and their effect values were determined using Fuzzy Analytical 

Network Process (FANP). By simulating the product of relative weights and effect 

values for different factors, several number of iterations, the overall condition of the 

pipeline was determined. 

Critique: 

Condition ratings using rule based simulation models can be estimated from 

limited data points due to the fact that simulation technique depends primarily on 

generating random probabilities and comparing these probabilities with real data. 

Nevertheless, data points are assumed to have the same deterioration trend as the 

adjacent points (e.g.: previous or next data points) which could lead into uncertain 

results. 

2.2.2.4 Expert Systems 

Model Description: 

Expert systems try to mimic both knowledge and reasoning in an attempt to clone 

or replace the experts to solve a problem in a specific area (Durkin, 1994). Expert 

systems usually consists of knowledge base, working memory and inference engines. 

When solving a problem using expert systems, overlapping rules -usually made of if-

then structures are used (Durkin, 1994).  
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The inference engine in expert systems represents the reasoning in which the 

system decides to consider the rule or terminate it.  

Application: 

Hahn et al., (2002) developed a knowledge based expert system using Water 

Research Center (WRC) factors affecting sewer pipelines conditions (WRC, 2001) to 

prioritize sewer inspections. The knowledge base in the expert system consisted of six 

mechanisms, to determine the likelihood and two mechanisms to determine 

consequences of failure. These mechanisms were derived from interviews with 

experts and professionals working in the field of sewage pipelines. The inference 

engine used was Bayesian Belief Network (BBN) to combine the likelihood and 

consequences of failure to determine the pipelines’ risk of failure. In the context of 

using BBN as an inference engine, Elmasry et al., (2016) employed BBN to determine 

the structural, operational and overall condition states of sewer pipelines based on 

defects that could be present in them. To build the BBN, CCTV inspection reports 

were used to determine the marginal and conditional probabilities for the different 

variables in the BBN. Monte Carlo Simulation was used to eliminate uncertainties in 

the estimated probabilities and based on the severities of each defect, the condition 

states were determined. 

Critique: 

Expert systems have the ability to pass the knowledge of experts in a certain field 

leading to efficient and accurate problem solving. Additionally, it can separate 

knowledge from inference eliminating subjectivity resulting in heuristic problem 

solving. However, it is only limited to solvable problems (e.g.: can’t be used in new 

research with no prior experience in the area). The aforementioned expert systems 
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models could determine the risk of failure and highlight the critical sections in sewer 

networks, nevertheless results were compared to real life data and were found to be 

conservative which could be attributed to the narrow domain that expert systems are 

subject to, resulting in mistakes. 

2.2.3 Statistical Models 

2.2.3.1 Multiple Linear Regression  

Model Description: 

Linear regression finds the linear relationship between the independent variables 

(effecting factors) and one dependent variable (pipe condition) (Allison, 1999). The 

multiple linear regression equation general form is presented in Equation 4. 

 𝑌𝑌 = 𝛼𝛼 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛+ 𝜀𝜀 (4) 

Where, 

𝑌𝑌 = dependent variable, 

𝛼𝛼 = intercept, 

𝛽𝛽1....𝛽𝛽𝑛𝑛= regression coefficients. Ordinary lest squares method is considered to 

determine the regression coefficients, 

𝑋𝑋1....𝑋𝑋𝑛𝑛= independent variables, 

ε = error term.  

In modeling the deterioration of an infrastructure asset, the condition state of the 

infrastructure is the dependent variable of the multiple linear regression equation and 

the contributing factors that affect the condition of this asset are the independent 

variables. 
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Application: 

Structural and operational condition assessment models for different sewer pipes 

materials were developed using multiple regression technique (Chughtai and Zayed, 

2007a, 2007b, 2008). The authors used eight factors to develop the structural 

condition prediction model which were: pipe age, length, diameter, depth, material, 

material class, bedding factor and street category. However, only pipe material, age, 

length, diameter and bed slope were used to develop the operational condition 

prediction model. A best subset analysis was carried out to determine most significant 

factors that should be included in the developed models as dependent variables.  

Critique: 

Although ordinary regression provides a flexible and simplistic method to predict 

the condition rating of sewage pipelines, there are some assumptions made when 

using such technique that could make the accuracy of the developed model 

questionable. One of these assumptions is that the distance between consecutive 

condition states is assumed to be constant, which is not the case in the deterioration of 

sewage pipelines. Furthermore, error term is assumed to be normally distributed in 

ordinary regression, which is violated most of the time because ordinary regression is 

used to model condition states that are considered ordinal response variables. In 

addition to these limitations, pipe deterioration is a complex process and might not be 

accurately presented by the linear regression relationship between the independent 

variables and condition rating (Salman, 2010). 
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2.2.3.2 Logistic Regression:  

Logistic regression can be considered as a special type of linear regression 

technique where it predicts the outcome of a categorical variable. In logistic 

regression, dependent variables are transformed into the logit of dichotomous output 

variable.  

2.2.3.2.1 Binary Logistic Regression: 

Model Description: 

Logistic regression can be used to analyze the relationship between a binary 

outcome (e.g.: success or failure) and a number of independent variables, which is 

called binary logistic regression analysis; in such cases. In binary logistic regression 

models, the outcome variable, (y) is categorical and depends on the independent 

variables, x1, x2,… xn in a set (n). Based on the probabilities associated with the values 

of (y), the outcome variable is calculated. If (y)’s value is equal to 1, this means that 

the pipe is in a good condition state and if the value is 0, this means that it is in a poor 

condition state. The hypothetical population proportion for which (y = 1) is defined as 

P(y = 1) = 𝛑𝛑. Consequently, P(y = 0) = 1-𝛑𝛑 and the odds of having (y = 1) is equal to 

( π
1−π

). Equation 5 shows the general logit function of binary logistic regression. 

 
𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜋𝜋

1−𝜋𝜋
� = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝(𝑦𝑦=1|𝑥𝑥1,…𝑥𝑥𝑛𝑛)

1−𝑝𝑝(𝑦𝑦=1|𝑥𝑥1,…𝑥𝑥𝑛𝑛)
� = 𝛼𝛼 +𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2....+𝛽𝛽p𝑋𝑋p  

                              = ∑ β𝑗𝑗𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=1  

(5) 

Where, 

𝛼𝛼 is the intercept parameter. 

𝛽𝛽s are the regression coefficients associated with the n independent variables.  
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The probability of (y =1) can be determined by using an exponential 

transformation, as shown in Equation 6. 

 𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥1 … . . 𝑥𝑥𝑛𝑛) = 𝑒𝑒
𝛼𝛼+∑ β𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛
𝑗𝑗−1

1+𝑒𝑒𝛼𝛼+∑ β𝑗𝑗𝑥𝑥𝑗𝑗
𝑛𝑛
𝑗𝑗−1

    (6) 

Where,  

𝛼𝛼 and 𝛽𝛽 are parameters estimated from data using the maximum likelihood estimation 

(MLE).  

Application:  

Logistic regression technique was used to predict the probability of sewer pipes to 

be in a certain state (Ariaratnam et al., 2001). The authors in this research used age, 

diameter, material, waste type, and average depth of cover as the contributing factors 

that would affect the condition of sewer pipes. Wald test was used to examine the 

significance of the coefficients of the independent variables in logistic regression 

model. It was found that the depth and material were not significant and that the 

coefficient of age increases the odds of deficiency by 2.6% per year. 

A binary logistic regression model was also developed for the prediction of the 

probability that a sewer pipeline would be in a deficient state for Edmonton, Canada. 

The model was developed for the intent of inspection prioritization (Ariaratnam et al., 

2001).  

2.2.3.2.2 Multinomial logistic regression  

Model Description: 

Multinomial logistic regression is an extension of binary logistic regression and 

can be used when dependent variable is categorical and has more than two levels. For 

a dependent variable with (k) categories, the multinomial regression model estimates 
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(k-1) logit equations. A generation of (k-1) logits from the remaining (k – 1) 

categories can be determined as per Equation 7.  

 𝑙𝑙𝑙𝑙
P(Y = i|x1 … … xn)
P(Y = k|x1 … … xn)

=  𝛽𝛽0 + 𝛽𝛽𝑖𝑖1𝑥𝑥1 +  𝛽𝛽𝑖𝑖2𝑥𝑥2 + ⋯ . +𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑛𝑛 (7) 

Where, 

i = 1, 2, …, k – 1 correspond to categories of the dependent variable, 

xs are independent variables, 

n is the number of independent variables, 

𝛽𝛽0 is the intercept for category i, 

βis are the regression coefficients of independent variables defined for each category i. 

𝛽𝛽0  and βis values for each (k – 1) logit equation can be estimated by multinomial 

logistic regression (Agresti, 2002).  

Therefore for a dependent variable with (k) levels and a total number of (p) 

independent variables, the multinomial logistic regression models estimate (k – 1) 

intercepts, and p*(k – 1) regression coefficients. Calculation of probabilities 

associated with each category of the dependent variable is shown in Equations 8 and 

9. 

 
P(Y = i|x1 … xn) = πi(x) =  

exp(β0 + βi1x1 + βi2x2 + ⋯ . +βinxn)
[1 + ∑ (β0 + βi1x1 + βi2x2 + ⋯ . +βinxn)]k−1

i=1
 

 for i = 1,2, … k − 1 

(8) 

 
P(Y = k) =  πk(x) =  

1
[1 + ∑ (β0 + βi1x1 +  βi2x2 + ⋯ . +βinxn)]k−1

i=1
 

 for i = k 

(9) 
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Application:  

Multinomial logistic regression was used to develop a model for predicting the 

financial needs for rehabilitation of sewage network over a specific planning horizon 

of years (El-Assaly et al., 2006). The cost in this model was estimated as the product 

of the predicted defected pipe and the cost of the repair method for the same pipe. 

Different pipes were arranged in an ascending order to determine the ones with the 

highest cost, which would require rehabilitation. Using the same technique, a model 

for sewer pipes deterioration was used to determine risk of failure of pipes 

considering the different geographical, physical, and functional factors affecting 

sewer pipes using both multinomial logistic regression, and binary logistic regression 

(Salman, 2010). Logistic regression gave the most accurate results when probability 

of failure was estimated. 

Critique: 

Logistic regression analysis helps in identifying the most important variables 

affecting the sewer pipelines condition which provides a better understanding for the 

trend of the deterioration process. In addition, no assumptions are made on the 

distributions of the independent variables which can be considered as one of the main 

advantages of this technique. The main disadvantage of using this technique is that a 

satisfactory amount of data for the factors affecting sewer deterioration is required in 

order to build the model, which sometimes is considered a challenge in some 

municipalities due to poor filing system and documentation.  
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2.2.3.2.3 Multiple Discriminant Analysis 

Model Description: 

Multiple discriminant analysis is used to analyze the linear relationship between a 

dependent categorical variable (e.g. pipe condition) and a number of predictor 

variables (e.g. deterioration factors). This method is similar to multinomial logistic 

regression technique, since more than two outcomes can be handled. The model is 

constructed based on available observations set in which the outcome is known. 

Functions are constructed using a set of linear functions of the predictor set, where 

these functions are called classification functions as shown in Equation 10. 

 𝐿𝐿𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑖𝑖1𝑥𝑥1 + 𝛽𝛽𝑖𝑖2𝑥𝑥2 + ⋯ . +𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑛𝑛 (10) 

Where, 

𝐿𝐿𝑖𝑖 is the classification function score for class (i)(i = 1 to k-1, with k being the number 

of classes),  

𝑥𝑥𝑖𝑖 are the predictor variables, 

𝛽𝛽𝑖𝑖𝑖𝑖 are classification coefficients corresponding to n-number of predictors variables 

and 𝛽𝛽0 is a constant. 

The methodology behind this multiple discriminant analysis is described in Figure 

2-4. Any observation could be visualized in an n-dimensional space where the axes 

are the classification functions (Li). Figure 2-4 shows three different classes, 

consequently only two classification functions are required (L1 and L2) to classify the 

observations. Since, the new prediction is closer to the centroid of class 3, the 

prediction outcome would be 3.  
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Figure 2-4: Multiple discriminant analysis visualization (Tran, 2007) 
 
 
 
 
Application: 

Multiple discriminant analysis was employed to model the deterioration of gravity 

pipelines in Australia by Tran et al. (2007). The predictor variables included diameter, 

age, depth, slope, location, roots of trees, soil properties and hydraulic condition. 

Unfortunately, this model showed low accuracy with less than 50% prediction 

abilities. It was found that the pipe age was insignificant which comes in line with the 

low accuracy, while the most significant factor was found to be the hydraulic 

condition. Also, it was applied by Ana (2009) to predict the condition of sewer pipes 

in Leuven and Antwrep among other techniques to compare between the suitability of 

using them in prediction. 

Critique: 

Models developed using multiple discriminant analysis could provide direct 

information about the score and class for the state of the pipes, not in the form of 

probabilities unlike logistic regression models. It can also provide information on the 
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most important variables affecting the deterioration process which helps in better 

understanding the pipe deterioration trend. Not only does multiple discriminant 

analysis require sufficient set of data and linearity similar to the ones required in 

logistic regression technique, but also there should be normality and lack of multi-

collinearity between independent variables which can be considered as one of the 

major drawbacks in the application of this method. If the normality assumptions are 

satisfied, multiple discriminant analysis is expected to give better predictions. 

Otherwise, logistic regression would be more suitable (Pohar et al., 2004). 

2.2.3.3 Evidential Reasoning  

Model Description: 

Evidential reasoning describes and handles various types of uncertainties by using 

the concept of the degrees of belief, in which each attribute of an alternative of a multi 

criteria decision making problem is described by a distributed assessment using a 

belief structure. Unlike conventional approaches that require scaling grades and 

averaging scores to aggregate attributes, the evidential reasoning approach aggregates 

belief degrees by employing an evidential reasoning algorithm. 

It aggregates two factors at a time and the resulting aggregation of the first two 

factors of evidence is aggregated with the third factor of evidence and so on. 

Equations 11, 12 and 13 show Dempster-Shafer rule combination of two basic 

probability assignments which is the theory used in developing the evidential 

reasoning algorithm. 
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 𝑚𝑚12(𝛹𝛹) =  𝑚𝑚1(𝛹𝛹) ⊕ 𝑚𝑚2(𝛹𝛹) (11) 

                                          = 0,  when 𝛹𝛹 = Φ                                                                                                                            (12) 

                                    = ∑ 𝑚𝑚1(𝐴𝐴)𝑚𝑚2(𝐵𝐵)𝐴𝐴∩𝐵𝐵=𝛹𝛹,𝐴𝐴,𝐵𝐵⊆⊕
1−𝑘𝑘

 𝛹𝛹 = Φ (13) 

 

Where,  

k = ∑ 𝑚𝑚1(𝐴𝐴)𝑚𝑚2(𝐵𝐵)𝐴𝐴∩𝐵𝐵=𝛹𝛹,𝐴𝐴,𝐵𝐵⊆⊕ , representing the conflict between subsets A and B, 

𝑚𝑚1(𝛹𝛹)𝑚𝑚2(𝛹𝛹) two basic probabilities to a subset 𝛹𝛹. 

From the above equations, the evidential reasoning general equation for 

evaluating an attribute with contributing factors can be given by Equation 14. 

 𝐸𝐸𝑘𝑘 = 𝑒𝑒𝑘𝑘
1 ⊕ 𝑒𝑒𝑘𝑘

2 ⊕ 𝑒𝑒𝑘𝑘
3 ⊕ … … . 𝑒𝑒𝑘𝑘

𝑙𝑙𝑘𝑘 (14) 

Where,  

𝑙𝑙𝑘𝑘denotes the number of factors that contribute to the 𝑘𝑘𝑡𝑡ℎattribute, 

𝑒𝑒𝑘𝑘
𝑖𝑖  is the evaluation of each contributing factor (i+) 

Application: 

A condition assessment model of buried pipes using hierarchical evidential 

reasoning was developed by Bai, et al., (2008). Inferences for condition assessment 

was done using the hierarchical evidential reasoning approach that employed the 

Dempster-Shafer theory. The developed model was built using a hierarchical 

framework for pipe condition assessment in which all contributing factors/attributes 

were assumed independent, and only the parallel aggregation of factors/attributes 

were performed using Dempster-Shafer rule of combination. This model took into 

considerations, factors that affect the integrity of pipelines wall such as cement lining 

condition and the degree of internal corrosion. Evidential reasoning using fuzzy set 
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theory was used to determine the overall pipeline conditions using possible defects 

(Daher, 2015). Defects that could be present in different pipeline components were 

divided into three categories namely structural, operational and installation defects. 

The different defect families and categories along with the sewer pipeline components 

were given weights based on their relative importance and how they contribute to the 

overall condition of the pipelines. Fuzzy based evidential reasoning was used to 

aggregate the different defects in the respective pipeline components from which the 

overall pipeline condition and each of the structural, operational and installation 

condition of different components were determined. 

Critique: 

Evidential reasoning is capable of dealing with incomplete and conflicting 

evidence without having to make any assumptions about missing data. In addition, 

they could combine multiple bodies of evidence. One of the major disadvantages of 

using hierarchical evidential reasoning is its inability to deal with dependent factors as 

well as the conflict between them without using auxiliary rules of combination. 

2.2.3.4 Cohort Survival  

Model Description: 

Cohort survival model is used to describe the process of sewer deterioration for 

homogeneous pipes having similar characteristics (e.g. cohorts). It is assumed that 

sewer cohorts with certain probability survive a number of years in a certain condition 

state. These cohorts pass through successive transitions, from the current condition 

state to a worst condition state during their service life (Baur et al., 2004). This 

transition is described by condition survival curves which are known as transition 
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functions. The transition function applied in assessing conditions of pipelines of the 

Herz distribution is given by Equation 15 (Herz, 1995 and 1996). 

 𝑆𝑆(𝑡𝑡)𝑖𝑖→𝑖𝑖+1 =
𝑎𝑎𝑖𝑖→𝑖𝑖+1 + 1

𝑎𝑎𝑖𝑖→𝑖𝑖+1 + 𝑒𝑒𝑏𝑏𝑖𝑖→𝑖𝑖+1(𝑡𝑡−𝑐𝑐𝑖𝑖→𝑖𝑖+1) (15) 

Where, 

𝑆𝑆(𝑡𝑡)𝑖𝑖→𝑖𝑖+1 is the fraction of pipes at age t which have survived until condition i or 

better, 

A is the aging factor (a = 0 means that no aging takes place), 

B is the transition parameter (the transition is faster when b is large), 

C is the resistance time which determines the age where no further deterioration is 

anticipated. 

Each different cohorts require calibration of the parameters a, b and c of the Herz 

transition function. This could be performed by minimizing the deviation between the 

fraction of sewers at certain condition i between the expected values yielded from the 

model and actual data. Only installation year, inspection year and the condition state 

are required to build the survival functions, unlike the previous discussed methods. 

Application: 

Several tools have been developed using cohort survival models that have been 

implemented by Horold, (1998) and Horold and Baur (1999). The transition curves 

developed for Norwegian network shown in Figure 2-5 was used to determine the 

remaining service life for sewer pipes towards reaching the worst condition states. For 

instance, the 50 years old group of sewers were found to be in condition state 3 from 

CCTV inspections. The first pipe in this group to reach condition 5 was estimated to 

be after 48 years which represents the minimal remaining service life (RSL). 
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Similarly, the last pipe within the group was anticipated to reach condition 5 after 105 

years which represents the maximum RSL. The average RSL of the group was 

determined by measuring the horizontal distance from the middle of the group to the 

transition curve representing condition 5. From this, it is recommended to use the 

average RSL when planning for future maintenance (Jansen, 2007). 

 
 
 
 

 

Figure 2-5: Norwegian network’s transition curves (Horold, 1998) 
 
 
 
 

Equation 15 was used in the analysis of an existing sewage network in Germany 

to assess the condition of this network (Baur and Herz, 2002). Weighted least squares 

method was used to estimate the parameters of transition functions. The rate by which 

the pipes age was calculated by determining the midpoint of two areas. The first area 

was bound between the transition curves corresponding to the transition from 

previous condition state to current condition state and the second area was bound 

between current condition state and the next condition state. As for the residual life of 

the pipes, it was predicted based on the rate of pipes’ aging.  
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Critique: 

The simplicity in the concept behind the development of cohort survival model is 

considered one of the main advantages. However, significant amount of inspection 

data are needed for each cohort in each condition state to properly calibrate the 

transition functions (Fenner, 2000). The main difficulty in developing cohort survival 

models arises from the lack of inspected data of certain conditions, since the operator 

tend to concentrate his inspections on specific sewer types such as old sewers and 

sewers in poor conditions (Ana and Bauwens, 2010). Also, there is usually an 

underestimation of the pipes in worst condition state as they may have already 

collapsed and were not included in the data under study. Consequently, there would 

be an overestimation in the predicted survival rates and remaining service life. A 

correcting model calibration has been suggested to fix this anomaly which is referred 

to as selective survival bias by adding weights to the model (Le Gat, 2008). 

2.2.3.5 Markov Chains 

Model Description: 

Markov chain is a stochastic process which has been used to describe the 

deterioration of sewer pipes passing through a number of condition states. This 

process could be described as ‘memoryless’ as the conditional probability that an 

asset could have in the future depends only on its current condition (Ross 2000). In 

Markov chains, a transition probability matrix represents the probability values for an 

asset to remain in its current condition state or transfer to another condition state. The 

general form of a transition matrix can be expressed by Equations 16 and 17. 
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 𝑃𝑃 = �

𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1𝑚𝑚
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2𝑚𝑚
… … … …

𝑝𝑝𝑚𝑚1 𝑝𝑝𝑚𝑚2 … 𝑝𝑝𝑚𝑚𝑚𝑚

�  (16) 

 � 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3, … 𝑚𝑚)
𝑚𝑚

𝑗𝑗=1

 (17) 

Where,  

pij is the conditional probability of an asset to be in condition state (j) with a current 

state (i) after a unit transition period. 

The transition probabilities can be either time dependent (non-homogeneous 

Markov model) or time independent (homogeneous Markov model) (Ana and 

Bauwens, 2010). Since pipe deterioration is age-dependent as new pipes deteriorate 

slower than older pipes, time dependent Markov model is considered to be more 

representative (Kleiner, 2001). 

In pipe deterioration, transition can only occur from the current condition state to 

worst condition states as it is impossible for a pipe to improve its condition without 

interventions. Therefore, pij is considered as 0 for i > j. Also, the pipe cannot further 

deteriorate in condition after reaching the worst condition state (m). Thus, the 

transition probability pmm = 1. Hence the non-homogeneous transition probability 

matrix can be expressed by Equation 18. 

 𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡,𝑡𝑡+1 = �

𝑝𝑝11
𝑡𝑡.𝑡𝑡+1 𝑝𝑝12

𝑡𝑡.𝑡𝑡+1 … 𝑝𝑝1𝑚𝑚
𝑡𝑡.𝑡𝑡+1

0 𝑝𝑝22
𝑡𝑡.𝑡𝑡+1 … 𝑝𝑝2𝑚𝑚

𝑡𝑡.𝑡𝑡+1

… … … …
0 0 … 1

� (18) 

Further simplified form of the transition matrix has been considered by assuming 

that the transfer in condition only drops one level at a time (Wirahadikusumah et al., 

2001 and Le Gat, 2008). This can be expressed by Equation 19. 
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 𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡,𝑡𝑡+1 =

⎣
⎢
⎢
⎢
⎡𝑝𝑝11

𝑡𝑡.𝑡𝑡+1 𝑝𝑝12
𝑡𝑡.𝑡𝑡+1 0 … 0

0 𝑝𝑝22
𝑡𝑡.𝑡𝑡+1 𝑝𝑝23

𝑡𝑡.𝑡𝑡+1 … 0
… … … … …
0 … … 𝑝𝑝𝑚𝑚−1,𝑚𝑚−1

𝑡𝑡.𝑡𝑡+1 𝑝𝑝𝑚𝑚−1,𝑚𝑚
𝑡𝑡.𝑡𝑡+1

0 0 … 0 1 ⎦
⎥
⎥
⎥
⎤

 (19) 

However, the above might not be appropriate to model structural deterioration as 

the pipe might deteriorate by several condition states at a single time step (Micevski et 

al., 2002). To solve this problem, Kleiner (2001) has recommended the use of short 

transition periods where only deterioration by a single condition state is anticipated. 

This can be expressed by Equations 20 to 22. 

 𝑄𝑄(𝑡𝑡) = {𝑞𝑞1, 𝑞𝑞2, … 𝑞𝑞𝑚𝑚} (20) 

 𝑄𝑄(𝑡𝑡 + 𝑠𝑠) = 𝑄𝑄(𝑡𝑡)𝑝𝑝𝑡𝑡,𝑡𝑡+1𝑝𝑝𝑡𝑡+1,𝑡𝑡+2 … 𝑝𝑝𝑡𝑡+𝑠𝑠−1,𝑡𝑡+𝑠𝑠 (21) 

 𝐸𝐸(𝑡𝑡 + 𝑠𝑠) = 𝑄𝑄(𝑡𝑡 + 𝑠𝑠)𝑆𝑆𝑇𝑇 (22) 

Where,  

𝑄𝑄(𝑡𝑡) is the probability mass function (pmf), 

𝑞𝑞𝑖𝑖 is the probability of the system being in state i at time t, 

𝑄𝑄(𝑡𝑡 + 𝑠𝑠) is the probability mass function after s time steps. 

Application: 

Deterioration of large diameter combined sewers was modeled using Markov 

chains by Wirahadikusumah et al. (2001). Because Markov Chains can be used to 

model deterioration of pipelines on a network level, the data used in building the 

model were categorized into sixteen groups based on material, groundwater table 

level, backfill soil type and the depth. Regression analysis was performed to 

determine the relationship between condition rating and time where non-linear 

optimization was used to convert the relationship between condition states and time 

into a Markov-chain model. Probabilities in the transition matrix were determined by 
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minimizing the sum of the absolute differences values between the condition states 

which were estimated using exponential functions and Markov-chain model 

estimations.  

In another condition assessment model that was developed for sewer pipelines in 

Waterloo, Canada, transition probabilities in Markov Chains were determined by 

minimizing the sum of the absolute differences values between the condition states 

which were estimated using polynomial regression and Markov-chain model 

estimations (Sinha and McKim, 2007). Kleiner et al., (2004) modeled the 

deterioration of buried infrastructures by employing a fuzzy-rule based non-

homogenous Markovian process to which was then applied on sewage pipelines to 

determine their condition states (Kleiner et al., 2007). The age and condition of the 

pipe were modeled using triangular fuzzy sets and the deterioration rate of the pipe 

was determined by using a fuzzy rule set. Future condition state was determined based 

on the deterioration rate value obtained from this procedure and the current condition 

state. Pipe physical properties such as age, diameter, material and slope were used to 

calculate the transition probabilities to be used in Markov Chain model for the 

deterioration of sewer pipelines (Baik et al., 2006). Similar to this methodology, a 

research was carried out in which the transition probabilities were obtained using 

Gompertz distribution and were calibrated using diameter, sewer type and installation 

period (Le Gat, 2008).  

Critique: 

Modeling sewer pipelines deterioration using Markov’s chain allows the modeling 

of complex and chronological events which could help in capturing the deterioration 

behavior of sewer pipelines. One of the difficulties in using Markov chains is 
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determining the transitional probability matrix. Also, the absence of previous 

historical inspection records could increase the challenges accompanying the use of 

Markov chains which would be more noticeable if dataset should be divided into 

cohorts (e.g.: clusters of same characteristics) and for each cohort, new Markov-chain 

deterioration curve has to be generated. However, such limitation could be solved by 

using an additional technique to estimate transition probability values, nevertheless 

the results could be affected greatly based on the chosen technique. Additionally, 

unless different transition matrices are applied for different time steps, the 

deterioration rate is assumed to be time independent which doesn’t truly represent the 

dynamic nature of deterioration in sewer pipelines.  

2.2.3.6 Semi Markov Chains 

Model Description: 

The semi Markov chain is similar to the Markov chain with the ability of 

modeling the waiting time that an asset would spend in a certain state. This waiting 

time is usually considered to follow a random distribution (Lawless, 1982). When 

modeling sewer pipelines deterioration using semi Markov chains, pipelines are 

assumed to spend a random interval in each state that can be translated into a 

probability distribution. Equation 23 shows the mathematical formulation of the 

cumulative waiting time of an asset in a certain state with a deterioration trend 

following semi Markov chain.  

 𝑇𝑇𝑖𝑖−𝑘𝑘 =  ∑ 𝑇𝑇𝑗𝑗,𝑗𝑗+1
𝑘𝑘−1
𝑗𝑗=𝑖𝑖 , i ={1,2,...,m-1}, k ={2,3,...,m} (23) 
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In this equation the cumulative time is represented as a cumulative distribution for 

the random variable 𝑇𝑇𝑖𝑖−𝑘𝑘which represents the time that an asset would take to transfer 

from state (i) to state (k). 

Application: 

Deterioration of large buried pipelines has been modeled using semi Markov 

chains, where the transition probabilities were linked to their age (Kleiner, 2001). In 

order to model the transition probabilities in a certain state (i) at a time (t) to another 

condition state (j) at a time (t+1), Equation 24 was used. 

 𝑝𝑝𝑖𝑖,𝑖𝑖+1 =
𝑓𝑓1−𝑖𝑖(𝑇𝑇1−𝑖𝑖)

𝑆𝑆1−𝑖𝑖(𝑇𝑇1−𝑖𝑖) − 𝑆𝑆1−(𝑖𝑖−1)(𝑇𝑇1−(𝑖𝑖−1))
 (24) 

Where,  

𝑝𝑝𝑖𝑖,𝑖𝑖+1 is the transition probability of the asset from a certain state to the next one, 

𝑓𝑓1−𝑖𝑖(𝑇𝑇1−𝑖𝑖) is the probability density function of the variable (𝑇𝑇1−𝑖𝑖). 

In this model, the transition probabilities were derived with the aid of Weibull 

distribution that was used to determine the distribution of waiting times, where 

expert’s opinions were used to determine the Weibull distribution’s parameters. The 

sum of waiting time in different states of the asset which represented the cumulative 

probability function was calculated using Monte-Carlo simulation.  

 Critique: 

In semi-Markov chain, lack of data problem required for determining transition 

probability can be solved by using the expert’s opinions. However, in order to 

determine the distribution of waiting time in the developed models, adequate dataset 

is required for the condition of pipes and history of inspections which might be 
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considered as a challenge because of absence of historical records for inspected 

pipelines. 

2.2.4 Summary  

This section presented the different physical, artificial intelligence and statistical 

models developed to assess the condition of sewer pipelines. In addition, factors 

affecting the condition of sewer considered in previous studies were determined. Age, 

length, material and diameter are the most common factors that were included in these 

models. 

The models discussed in this chapter can be divided into two types namely: pipe 

level models and pipe group models. In the pipe level models, the condition is 

assessed for individual pipes without considering the global deterioration of the 

network which could be suitable for scheduling inspections and optimizing the 

rehabilitation or inspection policies with respect to the number of pipelines addressed. 

While, in the pipe group level models, the condition of the whole network is assessed 

based on pipelines with similar characteristics from which strategic decisions can be 

made regarding budgetary allocation for the network rehabilitation and maintenance.  

Table 2-2 shows a classification for the different techniques used in developing 

condition assessment models for sewer pipelines from the aforementioned 

perspective. It can be noticed from the table that, models such as survival functions 

and discriminant analysis provide the life expectancy of pipelines and predict the 

condition state of pipes while logistic regression models could assess the probability 

of failure making it much more suitable to be used in risk based management of sewer 

pipelines than the former two models. 
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Table 2-2: Assessed Levels and Expected Outcomes for Each Condition Assessment Model 
M

od
el

s 

A
N

N
 

Rule Based Regression 

M
ul

tip
le

 D
is

cr
im

in
an

t 
A

na
ly

si
s 

E
vi

de
nt

ia
l R

ea
so

ni
ng

 

Su
rv

iv
al

 F
un

ct
io

n 

M
ar

ko
v 

C
ha

in
s 

Si
m

ul
at

io
n 

Fu
zz

y 

E
xp

er
t S

ys
te

m
s 

M
ul

tip
le

 

L
og

is
tic

 

Pipe 
Level         

 
 

Network 
Level           

Output 
from the 
Model 

Condition Sate 
of individual 
pipes or pipe 

cohorts 

Condition State of 
individual pipes or 

pipe cohorts 

Condition 
State of 

individual 
pipes 

Probability of 
failure of 

individual pipes or 
pipe cohorts 

Condition Sate of 
individual pipes or 

pipe cohorts 

Remaining Life time of 
pipelines and Proportions of 
each pipe at certain condition 

state 

Condition Sate 
of individual 
pipes or pipe 

cohorts 



 

48 

2.3 Problem Statement 

The presence of condition assessment models can help in managing assets and 

avoiding early failure. It can also provide an accurate prediction of expenses required 

in the future through understanding and predicting the remaining asset life and its 

condition. Condition assessment models can help in better maintenance and 

rehabilitation strategies by determining the required corrective actions (i.e.: 

maintenance, rehabilitation, renewal) and their timeframes.  

One of the drawbacks to depend on these models in assessing the condition of sewer 

pipelines is that one of the main sources of gathering information about factors are 

data from CCTV inspection reports which could be either incomplete or ambiguous 

resulting in erroneous and uncertain models. Additionally, sometimes gathering such 

data is costly or could be hard, which would raise the issue of data reliability.  

The problem of data availability is considered one of the challenges that is 

worsened when dealing with pipe group level models that require categorizing 

pipelines into cohorts based on their characteristics. Therefore and to develop a 

reliable condition assessment model, regular inspections have to be performed and 

new emerging technologies would be required to facilitate gathering required 

information in a complete and accurate manner. The concept of Artificial intelligence 

makes models such as ANN, simulation and fuzzy based more robust and 

computationally efficient when compared to the statistical ones. However, one of the 

main disadvantages is their need for extensive datasets and the difficulty in 

understanding the underlying mechanics in these models. Logistic regression, 

multiple discriminant analysis, and Markov chains are different techniques that can be 
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used to determine the condition state of pipelines in a network, however an adequate 

amount of data regarding the factors affecting sewer deterioration is required and in 

some cases the computational efforts are large especially in large scale networks.  

There is a crucial need to develop and integrated condition assessment models that 

overcome these setbacks. The proposed condition assessment models in this study 

were built based on the experience of specialists working in different fields in 

drainage networks to overcome the problem of data availability as the collected data 

sets were only used for validation purposes. In addition, the proposed condition 

assessment models are intended to complement the efforts of others by including new 

factors and taking into consideration their interdependencies and minimizing the 

uncertainties.  

2.4 Research Objectives 

The main objective is to build condition assessment models that are expected to be 

a useful tool for decision makers to properly plan for their inspections and provide 

effective rehabilitation of sewer networks. The sub-objectives of this research can be 

summarized as follows:  

• To identify and study the different factors affecting sewer pipeline condition 

and their severities.  

• To identify and study the previously developed condition assessment models.  

• To model and assess sewer pipeline condition based on the identified factors.  

• To develop new condition assessment models.  
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CHAPTER 3 – RESEARCH METHODOLOGY 

The research methodology to develop condition assessment models using FANP 

and Monte-Carlo as the first approach and FANP, fuzzy set theory (FST) and 

Evidential Reasoning (ER) as the second approach is described in Figure 3-1. A 

description of the adopted methodology is further described below. 

To develop a condition assessment model for sewer pipelines, the factors 

contributing to the deterioration of pipelines and their effects are integrated to develop 

an index to represent the condition of pipeline under study. The first part of the 

methodology for both approaches was identifying and collecting data related to the 

factors that would affect and deteriorate sewage pipelines. After identifying these 

factors, two questionnaires - one related to gravity sewer pipelines and another related 

to pressurized sewer pipelines were distributed to experts working in the field of 

infrastructures and sewage networks to collect the relevant data required in model 

development (i.e.: weights, relative importance, and effect of the contributing factors. 

FANP was used to address the interdependency between different factors affecting 

sewer pipelines conditions and uncertainty when processing data elicited from human 

judgment (i.e.: transforming a verbal pairwise comparison judgment into an exact 

ratio representing the strength of the alternative when compared to another) in an 

attempt to overcome the setbacks that could be encountered when applying Analytical 

network process (ANP) solely. The developed models take into consideration the 

interdependencies between three factorial groups affecting sewer pipeline conditions, 

namely, physical, operational and environmental. FANP integrated with Monte-Carlo 
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Simulation are used to determine the relative weights of these factors. The rest of the 

methodology adopted for the first and second approaches differs. 

For the first approach, using calculated weights and effect values; probabilistic 

condition index for sewer pipelines is determined with the aid of Monte-Carlo 

simulation. The outcome generated by Monte Carlo Simulation would form different 

probability distributions based on a random sample collection. By determining the 

most frequent outcome, the user can see and analyze the range of certainty and 

biasness of the simulated outcome that would help in eliminating the uncertainty that 

accompanies the model output, thus came the rationale behind utilizing Monte-Carlo 

simulation. The assessed pipeline condition in the form of a probability distribution 

function is the output of the model.  

For the second approach, FST is used to assign the fuzzy membership functions 

and thresholds for the severity of the factors’ effects on the pipelines condition. In 

order to combine both the effect values and relative weights of factors affecting 

sewage pipelines, ER is used as an aggregation technique. It is used to determine the 

degrees of belief for the model outputs that represents the user’s certainty level about 

how good the condition of the pipeline is, based on the effect value of the different 

contributing factors. After combining all the factors degrees of belief, defuzzification 

using the FST to generate a final crisp condition index is carried out.  

Finally, the developed model is validated using data collected from an existing 

sewage network in the city of Doha, Qatar. The validation set included actual 

conditions for 549 gravity pipelines with 6 available factors which are: age, diameter, 

length, and buried depth, pipeline position relative to groundwater and pipeline 

material. In addition to the pipeline actual condition obtained from CCTV analysis.
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Figure 3-1: Research Methodology
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CHAPTER 4 – DATA COLLECTION 

4.1 Overview 

To achieve the main objectives of this research which is developing condition 

assessment models for sewer pipelines, all Factors affecting gravity and pressurized 

pipelines in sewage networks were studied and included in a questionnaire. A 

questionnaire was distributed to experts in the field, to determine the weights of the 

identified factors and the severity of their effect on sewage pipeline condition. In 

addition, the developed model were validated through a collected data set. This 

chapter describes the data collection phase in details. 

 
 
 
 

 

Figure 4-1: Types of Data Collected 

Data Collected

Factors affecting 
sewer pipelines 

condition
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Factor's Weights 
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Factor's Effect 
Values

Validation Set
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4.2 Factors affecting sewer pipelines condition 

Identified factors affecting sewer gravity and pressurized pipeline conditions were 

divided into three main categories, namely, physical, environmental, and operational 

as shown in Figure 4.2. The physical factors included sewer pipeline characteristics 

such as: age, material type, size, buried depth, coating conditions and installation 

quality. The operational factors included: flow rate, infiltration and inflow, blockages, 

corrosive impurities and maintenance strategies in addition to the operating pressure 

for pipelines under pressure. Finally, the environmental factors included: bedding 

conditions, location, groundwater level and ground disturbance. Table 4-1 provides a 

detailed description and definitions for each of the studied factors. 

 
 
 
 

 

Figure 4-2: Classification of Factors Affecting Sewage Pipelines Condition 
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Table 4-1: Factors Affecting Sewer Pipeline Condition. 
Main 
Factors 

Sub-
Factors Description 

Ph
ys

ic
al

 (P
F)

 

Age (AG) Effects of pipeline degradation become more significant over time. 
Diameter 
(DI) 

The larger the pipe line diameter, the larger is its thickness, the lower is its 
deterioration rate and vice versa. 

Length (LE) Longer pipes are more likely to suffer from bending stresses. 

Buried Depth 
(D) 

Life loads impact increases at shallow depths and the soil overburden impact 
increases at high depths. Moderate depths increase the life of sewers 

Material 
(MT) Different pipeline material show different failure patterns. 

Coating 
Conditions 
(CC) 

Pipelines with good coating conditions have higher resistance against corrosion. 

Installation 
Quality (IQ) 

Pipeline installation should be done according to certain standards and 
qualifications. High deterioration rates result from poor installation quality. 

O
pe

ra
tio

na
l (

O
F)

 

Flow Rate 
(FR) 

Low flow rates causes deposition and accumulation of sediments while high flow 
rates causes corrosion for the piper’s internal walls and causes disturbances 
specifically when moving between pipes having different diameters. 

Blockages 
(B) 

Accumulation of deposits and sediments, intrusion of trees roots and other types of 
blockages have a significant effect on the structural and operational condition of a 
sewer pipeline. 

Infiltration 
and Inflow 
(II) 

Infiltration washes soil particles and reduces the support along a pipeline. 

Corrosive 
Impurities 
(CI) 

Sewage water carries substances and chemicals (for example: micro-bio species and 
slats) which impacts the water quality. In addition, these impurities can cause 
corrosion to the internal pipes’ internal surfaces. 

Maintenance 
and break 
Strategies 
(MS) 

The service life of sewer pipelines is increased by a good maintenance and break 
strategies. 

Operating 
Pressure 
(OP) 

High pressures resulting in the distribution systems can lead to system fatigue, 
pump and device failure, or pipe ruptures. 

E
nv

ir
on

m
en

ta
l (

E
F)

 

Soil Type 
(ST) 

The soil which contacts the pipe surface directly has an impact on the deterioration 
process. Soils have different physical and chemical properties which have different 
impacts on the pipeline. For example, certain soils responds to moisture changes 
differently in respect to volume changes which applies loading on the pipe while 
others are highly corrosive. 

Bedding 
Conditions 
(BC) 

Sewer pipeline failure chances increases with improper bedding conditions. 

Location 
(LO) 

The location of the pipeline has an impact on the deterioration process. A pipeline 
can be installed in industrial area, residential area, schools, etc. Pipelines located in 
industrial areas or cities are subjected to different conditions that the pipelines 
located in residential areas. For example: city pipelines are exposed to heavier 
traffic loading. In addition, pipelines can be located beneath different surfaces (e.g. 
asphalt, walkway, unpaved, etc.). 

Groundwater 
Level (GW) 

The amount of water in soil affects the soil resistivity, which inversely relates to the 
corrosion rate. The ground water may lead to corroding the pipe directly when salts 
and some corrosive substances exist in it. 

Ground 
Disturbance 
(GD) 

Pipelines existing near a disturbed ground are subjected to high stresses and might 
have a sudden collapse. 
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4.3 Questionnaires 

Open-ended (unstructured) questionnaires were additionally prepared to allow 

respondents to include additional factors that may have an impact on sewer pipelines 

condition. The questionnaires were distributed among different disciplines to capture 

the differences among the experts knowledge on the factors affecting the condition of 

sewer pipelines. Questionnaires were sent out to experts working in sewer field 

inspections and CCTV analysis, sewer designers, sewer site construction engineers 

and managers who have more than 30 years of experience in sewer maintenance and 

rehabilitation.  

The used questionnaire provided a tool for interviewing experts and incorporating 

the elicited information into the developed models. The questionnaires were utilized: 

(1) to compare between main factors and sub-factors affecting sewer pipeline 

condition and (2) to determine the effect value of each factor on the pipeline 

condition. The questionnaires included an introductory part with a graphical 

representation of all the identified contributing factors, followed by two main 

sections. The first section sought the relative importance of factors and sub factors 

when compared to each other and how each factor would strongly affect the pipeline 

condition. The second section focused on the effect of the different factors on the 

condition of the pipeline.  

4.3.1 Factor’s Weights (Wi) 

The importance of factors was calculated by conducting a pairwise comparison 

between the selected factors. The comparison can be categorized into three levels: (1) 

between the main factors with respect to the sewer pipeline condition; (2) between the 
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sub-factors of each main factor; and (3) between the main-factors with respect to each 

other. The pairwise comparison of each level was designed to reflect the opinion of 

the experts on the degree of importance for each factor over the other(s), with respect 

to the goal under consideration. The degree of importance was scaled from 1 to 9 

according to Saaty’s nine points scale (Saaty, 1996) with“1” indicating no significant 

influence of a factor over the other(s), while “9” indicating that there is an absolute 

influence. In Table 4-2 an example for how pairwise comparison was carried out 

based on Saaty’s scale in an ANP network is shown. For instance, if the respondent 

sees that the “Diameter” has a very strong influence over the “Age” with respect to 

“physical factors”, they could check the suitable box that reflects the degree of 

influence(i.e.: a value of 7 corresponding to very strong would be assigned in the 

pairwise comparison). The same method is then repeated for the rest of the physical 

factors and on the different levels of the developed network.  

4.3.2 Factor’s Effect Values 

Sub-factors can have different characteristics having different effect values on the 

condition of sewer pipeline. For instance, the “age” sub-factor has characteristics that 

range in value. These ranges were identified based on meetings with experts were a 

pipeline is considered new, medium or old if the age ranges from (0-15), (15-30) or 

>30, respectively and similarly for the rest of the sub-factors. The expert was 

requested to use a scale from 0 to 10 in this section of the questionnaire in which a 

value of “0” indicates the worst effect and “10” indicates the best effect on the 

pipeline condition for each sub-factor characteristic. Table 4-3 shows a sample for 

this part of the questionnaire. A full copy of the questionnaire can be found in 

appendix A. 
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Table 4-2: Questionnaire Sample for relative importance used in Pairwise Comparison 
for Main factors and Sub-Factors in gravity and pressurized pipelines 

Criterion 
(X) 

Degree Of Importance  

Criterion 
(Y) 

(9
) A

bs
ol

ut
e 

(7
) V

er
y 

St
ro

ng
 

(5
) S

tro
ng

 

(3
) M

od
er

at
e 

(1
) E

qu
al

 

(3
) M

od
er

at
e 

(5
) S

tro
ng

 

(7
) V

er
y 

St
ro

ng
 

(9
) A

bs
ol

ut
e 

1- Main Factors with respect to Sewer Pipeline Condition  
Sewer Pipelines Condition 

Physical  
Factors 

         Environmental 
Factors 

         Operational  
Factors 

2- Sub-Factors With Respect to Each Other 
Physical Factors 

Pipeline Age 

         Pipeline Diameter 
         Pipeline Length 

         Pipeline Buried 
Depth 

         Pipeline Material 

         Pipeline Coating 
Conditions 

         Installation 
Quality 

Operational Factors 

Corrosive 
Impurities 

         Blockages (Ex. 
Roots, Sediments) 

         Infiltration & 
Inflow 

         Flow Rate 

         Maintenance And 
Break Record 

Environmental Factors 

Groundwater 
Level 

         Soil Type 

         Bedding 
Conditions 

         Location (Ex. 
Traffic Load) 

         

Ground 
Disturbance (Ex. 
Construction 
Work) 

3- Main Factors With Each Other 
Physical Factors 
Environmental 
Factors          Operational  

Factors 
Environmental Factors 
Physical  
Factors          Operational  

Factors 
Operational Factors 
Physical 
 Factors          Environmental 

Factors 
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Table 4-3: Questionnaire Sample for effect values of different factors for gravity and 
pressurized pipelines 

Main 
Factor Sub-factors Unit 

Of Measure 

Qualitative 
Description 
(Parameters) 

Effect 
Value On 
Sewer 
Gravity 
Pipelines 
(0 – 10) 

Effect Value  
On Sewer 
Pressurized 
Pipelines (0 
– 10) 

Ph
ys

ic
al

 

Pipeline Age (Years) 

Old (>30) 8 9 

Medium (15-
30) 6 8 

New (<15) 4 6 

Pipeline 
Diameter (m) 

Small (<300) 8 5 

Medium (300-
600)  6 5 

Large (>600) 4 6 

: 

Installation 
Quality (%) 

Poor 10 10 

Fair 7 8 

Good 4 5 

O
pe

ra
tio

na
l 

Flow Rate (m3/d) 

Low 2 3 

Medium 3 4 

High 6 7 

: 

Maintenance And 
Break Strategies (%) 

Poor 8 10 

Fair 5 7 

Good 1 3 

E
nv

ir
on

m
en

ta
l Soil  Type 

Rock 3 3 

Sand 5 5 

: 

Ground 
Disturbance (%) 

Low 3 3 

Moderate 5 5 

High 8 8 
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4.3.3 Responses 

Forty questionnaires were received out of the sixty that were distributed. Four 

questionnaires where further eliminated because they were considered as outliers and 

36 responses were considered in developing the condition assessment model. The 

considered questionnaires’ responses showed coherent and minimum variation values 

in which all the respondents agreed that the included factors in the questionnaires 

covered all possible aspects that might influence the condition of gravity and 

pressurized sewer pipelines. 

4.4 Validation Set 

In order to validate the proposed model a dataset collected from the Drainage 

Networks Operations and Maintenance Department in Ashghal Public Work 

Authority, Doha, Qatar was used. The validation set included actual conditions for 

549 gravity pipelines with 6 available factors which are: age, diameter, length, and 

buried depth, pipeline position relative to groundwater and pipeline material. The 

actual condition was based on a CCTV analysis following a condition code EN13508 

(British Standards Institution (BSI), 2012), Class model EUROdss and class method 

DWA-M 149-3 (German Association for Water, Wastewater and Waste (DWA), 

2015). 
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CHAPTER 5: MODELS DEVELOPMENT AND 

IMPLEMENTATION 

5.1 Factors’ Weight (Wi) Determination 

The factor’s Weight (Wi) for both approaches were calculated as illustrated 

below. 

5.1.1 Fuzzy Analytic Network Process (FANP) 

Analytical network process (ANP) is considered as a multi-criteria decision 

analysis technique that takes into consideration interdependencies between decision 

alternatives. However, ANP neglects uncertainties of human judgment when 

evaluating the pairwise comparison between the different factors. Therefore FANP 

was used to account for interdependency between different factors and the 

uncertainties and vagueness accompanied by human judgments. ANP was used to 

model a three level network representing all contributing factors and sub-factors to 

determine how strongly each of them affect sewer pipeline conditions. Fuzzy 

Preference Programming method was used to conduct FANP (Zhou, 2012). Relative 

weights are determined as a solution for a nonlinear maximization problem where, the 

constraints are the upper and lower fuzzy numbers and the global weights are the 

objective of the problem. 

In the conventional ANP models, pairwise comparisons are performed on the 

element and cluster levels. Relative weights are determined from pairwise 

comparison, then are put into a matrix which is called super-matrix. The super-matrix 

represents the interrelationships of elements on different levels. Table 4-2 shows a 



 

62 
 

general arrangement of a super-matrix in a conventional ANP technique, Where CN 

represents the Nth cluster, and ENn represents the nth element in the Nth cluster 

(Piantanakulchai, 2005). Wij sub-matrix consists of the collection of the priority 

weight vectors (w) of the elements in the ith cluster with respect to the jth cluster. The 

weights obtained from the pairwise comparison on the cluster level forms an 

eigenvector, with a summation of unity. In order to obtain global priority vector, the 

weighted super-matrix is raised to a limiting power as per Equation (25).  

 𝑙𝑙𝑙𝑙𝑙𝑙
𝑥𝑥→∞

𝐸𝐸𝑘𝑘 (25) 

 
 
 
 
Table 5-1: General Arrangement of Analytical Network Process (ANP) Super-matrix 

 
 
 
 

In this study, fuzzy preference programming (FPP) method was used to determine 

the consistency ratios of fuzzy pairwise comparison matrices and local weights by 

formulating a nonlinear prioritization problem (Mikhailov, 2004).  

 
C1 C2 --- CN 

E11 E12 --- E1n E21 E22 --- E2n EN1 EN2 --- ENn 

C1 

E11 

W11 W12 --- W1N E12 
--- 
E1n 

C2 

E21 

W21 W22 --- W2N E22 
--- 
E2n 

--- 

--- 

--- 

--- 

--- 

CN 
EN1 

WN1 WN2 --- WNN EN2 
--- 
ENn 
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In the fuzzy preference programming method, the objective is to maximize the 

consistency ratio which is a function in weights. The formulated non-linear 

maximization problem is shown in Equation 26 (Zhou, 2012). 

 

Max λ Such that,  
(𝑚𝑚𝑖𝑖𝑖𝑖 −  𝑙𝑙𝑖𝑖𝑖𝑖)𝜆𝜆𝜔𝜔𝑖𝑖𝑖𝑖 − 𝜔𝜔𝑖𝑖 +  𝑙𝑙𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗  ≤ 0 
(𝑢𝑢𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖)𝜆𝜆𝜔𝜔𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖 −  𝑢𝑢𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗  ≤ 0   
∑ 𝜔𝜔𝑘𝑘 

𝑛𝑛
𝑘𝑘=1 = 1, 𝜔𝜔𝑘𝑘 >0 , 

k = 1,2,3,…,n , i = 1,2,3,..,n-1 and j = 2,3,…,n, j > i 

(26) 

Where, 𝑙𝑙𝑖𝑖𝑖𝑖 , 𝑚𝑚𝑖𝑖𝑖𝑖, 𝑢𝑢𝑖𝑖𝑖𝑖 are lower, middle and upper bounds of the triangular fuzzy 

number used in pairwise comparison and 𝜔𝜔𝑘𝑘 is priority crisp vector in which relative 

weights are present.  

During the process of collecting data for the relative importance of the different 

factors, experts specify their preferences in a linguistic way. The fuzzy linguistic 

variable should reflect different aspects of human language (Zhou, 2012). In this 

study a scale consisting of five terms which accounts for fuzziness was chosen. The 

scale adds and subtracts “0.5” from every response of the pairwise comparison to 

construct the upper and lower matrices. Table 5-2 shows a sample for the developed 

matrices using the adjusted scale in a gravity pipeline. Non-Linear FPP Solver was 

developed based on the Optimization Toolbox of MATLAB, where solutions for 

“crisp priorities’ weights” were derived without requiring the conventional 

defuzzification procedure performed in the ordinary FANP technique. 

Figure 5-1 shows the steps for the conduction of the FANP process. The Figure 

shows the different steps for constructing un-weighted and weighted super-matrices 

and the limit matrix required for getting the final weights. Table 5-3  shows the 

constructed three matrices for the different affecting sub-factors. 
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Figure 5-1: Steps for Conducting FANP
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Table 5-2: Sample of Pairwise Comparison Matrices in Gravity Pipelines 

Factors 

Lower Limit Matrix* Most Probable Matrix* Upper Limit Matrix* 
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Groundwater level 1 4 1/2  4 1/2   1/7.5  1/7.5 1 5 5  1/7   1/7  1 1/2 5 1/2  5 1/2   1/6.5  1/6.5 
Soil Type  1/5.5 1 1  1/9   1/9   1/5  1 1  1/9   1/9   1/4.5  1 1/2 1 1/2  1/8.5  1/8.5 

Bedding Conditions  1/5.5 1 1  1/9   1/9   1/5  1 1  1/9   1/9   1/4.5  1 1/2 1 1/2  1/8.5  1/8.5 
Location 6 1/2  8 1/2  8 1/2  1 1 7 9 9 1 1 7 1/2  9 9 1 1/2 1 1/2 

Ground Disturbance 6 1/2  8 1/2   1/9  1 1 7 9  1/9  1 1 7 1/2  9  1/8.5 1 1/2 1 1/2 
*Lower, Most probable and upper limit matrices values are as per the adjusted Triangular Fuzzy Number (TFN) matrix: 
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Table 5-3: Un-weighted Super-matrix, Weighted Super-matrix and Limit Super-
matrix for different affecting factors 

Fac.
  

Un-weighted  
Super-matrix 

Weighted  
Super-matrix 

Limit  
Super-matrix 

NC PF … GD NC PF … GD NC PF … GD 

NC 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.000 0.000 … 0.000 

PF 0.333 0.000 … 0.000 0.333 0.000 … 0.000 0.000 0.000 … 0.000 

OF 0.333 0.167 … 0.000 0.333 0.083 … 0.000 0.000 0.000 … 0.000 

EF 0.333 0.833 … 0.000 0.333 0.417 … 0.000 0.000 0.000 … 0.000 

AG 0.000 0.037 … 0.000 0.000 0.018 … 0.000 0.008 0.020 … 0.000 

DI 0.000 0.037 … 0.000 0.000 0.018 … 0.000 0.008 0.020 … 0.000 

LE 0.000 0.037 … 0.000 0.000 0.018 … 0.000 0.008 0.020 … 0.000 

D 0.000 0.223 … 0.000 0.000 0.111 … 0.000 0.051 0.120 … 0.000 

MT 0.000 0.223 … 0.000 0.000 0.111 … 0.000 0.051 0.120 … 0.000 

CC 0.000 0.223 … 0.000 0.000 0.111 … 0.000 0.051 0.120 … 0.000 

IQ 0.000 0.223 … 0.000 0.000 0.111 … 0.000 0.051 0.120 … 0.000 

FR 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.090 0.042 … 0.000 

B 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.024 0.011 … 0.000 

II 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.024 0.011 … 0.000 

CI 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.022 0.010 … 0.000 

MS 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.197 0.092 … 0.000 

ST 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.036 0.026 … 0.000 

BC 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.019 0.013 … 0.000 

SR 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.019 0.013 … 0.000 

LO 0.000 0.000 … 0.000 0.000 0.000 … 0.000 0.169 0.121 … 0.000 

GD 0.000 0.000 … 1.000 0.000 0.000 … 1.000 0.169 0.121 … 1.000 
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5.1.2 Monte-Carlo Simulation 

Based on the collected 36 questionnaires’ (i.e. responses), there were different 

weights for each factor, these weights were fed into Monte-Carlo simulation to 

develop probability distribution curves. Monte-Carlo simulation has the ability to 

randomly select values in a certain distribution translating it into another distribution 

based on the most frequently occurred values. Monte-Carlo simulation computes the 

most probable weight based on the repeated random sample collection and statistical 

analysis (Raychaudhuri, 2008). The simulation procedure involves two operations, 

which are: “sampling” and “running iterations” (Salem, et.al, 2003). In the sampling 

operation, the input parameters values are obtained randomly based on the 

probabilistic distributions. In the running iterations, results from the model are 

calculated based on the input parameters. In each iteration, one sample is drawn from 

each input probability distribution. When last iteration is reached, the single-valued 

output results are aggregated to produce one output distribution. Monte-Carlo 

simulation result in an output distribution that represents the most probable value for 

the factors’ weights’ based on the input parameters eliminating the uncertainties due 

to the different values for these weights. 

The statistical data of the resulted probability distributions of the final weights 

corresponding to each individual factor is summarized in Table 5-4 for sewer gravity 

and pressurized pipelines. To test goodness of actual frequencies from sampled data 

and frequencies from theoretical distributions, Chi-Squared (Ch-Sq), Anderson-

Darling (A-D), and Kolmogorov-Smirnov (K-S) tests were the selected statistical tests 

from the several available tests.  
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Table 5-4: Summary of Statistical Analysis Results for Factor Weights 

Network Type Main 
Factor Sub-Factor Distribution Mean Final 

Weight (µ) 

A-D Test K-S Test Chi-Sq Test 

Test 
Value P-Value Test 

Value P-Value Test Value P-Value 

Gravity 

PF 
AG Lognormal 0.035 0.364 0.327 0.107 0.259 8.722 0.033 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

IQ Logistic 0.075 0.778 0.022 0.130 0.054 10.667 0.031 

OF 

FR Lognormal 0.048 0.519 0.107 0.119 0.144 2.889 0.409 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

MS Weibull 0.075 0.885 0.052 0.147 0.083 7.167 0.067 

EF 

ST Lognormal 0.039 0.197 0.872 0.091 0.601 1.722 0.632 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

GD Logistic 0.107 0.482 0.172 0.130 0.056 8.333 0.080 

Pressure 

PF 
AG Lognormal 0.040 0.309 0.460 0.123 0.103 6.389 0.094 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

IQ Normal 0.078 0.189 0.896 0.080 0.835 1.722 0.787 

OF 
FR Lognormal 0.038 0.206 0.788 0.080 0.759 2.889 0.409 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

MS Weibull 0.067 0.493 0.389 0.088 0.872 4.444 0.217 

EF 
ST Lognormal 0.032 0.198 0.831 0.074 0.840 6.389 0.094 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

GD Normal 0.088 0.346 0.475 0.091 0.670 1.333 0.856 
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The best probability fit was chosen based on the maximum P-value of the three 

tests. The P-value indicates that for a null hypothesis (i.e.: no difference between the 

actual and theoretical distributions), the observed difference is equal to the P-value 

due to random sampling error. This means that for P-values approaching 0, the 

corresponding distribution best represents the resulting distribution. The mean value 

for the final weights probability distribution for gravity and pressurized pipelines are 

shown in Figure 5-2. 

 
 
 
 

 

Figure 5-2: Factors’ final weights calculated using FANP and Monte-Carlo simulation 
for Gravity and Pressurized Pipelines 
 
 
 
 

5.2 Effect Value 

5.2.1 First Approach (Condition Curves) 

The same technique described in Section 5.1.2 was applied for the different effect 

values of each factor as shown in Table 5-5 for sewer gravity pipelines and Table 5-6 

for sewer pressurized pipelines. 
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Table 5-5: Summary of Statistical Analysis Results for Factor Effect Values in Gravity Pipelines 

Main 
Fac. Fac. Characteristic Distr. 

Mean 
Effect 

Value (µ) 

A-D Test K-S Test Chi-Sq Test 

Test 
Value P-Value Test 

Value P- Value Test 
Value P- Value 

PF 

AG 
Old >30 Max. extr. 2.780 0.565 0.147 0.172 0.024 3.897 0.273 
Medium (15-30) Gamma 5.530 1.117 0.022 0.227 0.000 10.93 0.004 
New <15 Logistic 8.590 1.535 0.000 0.223 0.000 25.00 0.000 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

IQ 
Poor <30% Max. extr. 1.980 0.736 0.052 0.148 0.102 3.069 0.381 
Fair (30-70)% Normal 5.190 0.787 0.035 0.181 0.017 9.690 0.021 
Good >70% Weibull 8.520 0.976 0.122 0.159 0.182 12.58 0.002 

OF 

FR 
Low <30% Logistic 4.700 0.466 0.191 0.155 0.025 1.414 0.702 
Medium (30-70)% Weibull 8.120 1.800 0.036 0.265 0.000 27.07 0.000 
High >70% Weibull 4.900 0.597 0.241 0.133 0.312 3.90 0.143 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

MS 
Poor <30% Max. extr. 2.760 0.516 0.194 0.124 0.309 2.241 0.524 
Fair (30-70)% Weibull 5.740 0.877 0.071 0.174 0.087 12.17 0.002 
Good >70% BetaPERT 8.660 1.264 --- 0.210 --- 19.62 0.000 

EF 

ST 
Rock <50% Uniform 5.750 0.648 0.474 0.148 0.444 3.483 0.323 
Sand (50-100)% Normal 6.280 0.429 0.305 0.142 0.145 1.414 0.702 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

GD 
Low (0-30)% Weibull 8.160 0.681 0.149 0.148 0.155 11.76 0.003 
Medium (30-70)% Max. extr. 5.560 1.366 0.000 0.223 0.000 17.14 0.001 
High (70-100)% Normal 2.620 0.749 0.045 0.176 0.023 25.00 0.000 
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Table 5-6: Summary of Statistical Analysis Results for Factor Effect Values in Pressurized Pipelines 

Main 
Fac. Fac. Characteristic Distr. 

Mean 
Effect 

Value (µ) 

A-D Test K-S Test Chi-Sq Test 

Test 
Value P-Value Test 

Value P- Value Test 
Value P- Value 

PF 

AG 
Old >30 Gamma 2.300 0.517 0.282 0.131 0.365 2.000 0.368 
Medium (15-30) Weibull 5.230 1.007 0.059 0.219 0.029 14.00 0.001 
New <15 Weibull 8.560 2.184 0.000 0.243 0.000 34.40 0.000 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

IQ 
Poor <30% Normal 1.600 0.790 0.035 0.142 0.128 6.400 0.094 
Fair (30-70)% Weibull 5.060 1.652 0.031 0.232 0.025 24.80 0.000 
Good >70% Uniform 8.500 1.860 0.062 0.243 0.033 34.80 0.000 

OF 

FR 
Low <30% Uniform 4.750 1.009 0.244 0.186 0.179 6.800 0.079 
Medium (30-70)% Weibull 8.280 1.296 0.045 0.228 0.029 18.00 0.000 
High >70% Min extr. 4.930 0.862 0.025 0.148 0.087 3.200 0.362 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

MS 
Poor <30% Normal 2.130 0.639 0.089 0.136 0.178 14.00 0.003 
Fair (30-70)% Normal 5.420 0.898 0.019 0.194 0.000 12.40 0.006 
Good >70% Weibull 8.670 1.758 0.000 0.230 0.000 28.40 0.000 

EF 

ST 
Rock <50% Max extr. 5.890 0.783 0.039 0.154 0.061 2.400 0.494 
Sand (50-100)% Uniform 6.000 0.712 0.425 0.183 0.196 18.40 0.000 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

GD 
Low (0-30)% Weibull 8.500 0.830 0.160 0.171 0.123 10.80 0.005 
Medium (30-70)% Max extr. 5.710 1.160 0.000 0.168 0.027 9.200 0.027 
High (70-100)% BetaPERT 2.500 1.281 0.000 0.210 0.000 24.00 0.000 
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The effect value of the factors on the pipeline’s condition generated from Monte-

Carlo simulation does not vary with age. Based on experts’ opinion, the impact of the 

same factor should vary with age. For example, smaller diameter pipelines deteriorate 

faster than bigger diameter pipelines, but the effect of the diameter factor on the 

pipeline's condition differs significantly with time. As a result and to account for the 

change of the effect value during the lifetime of pipelines, age dependent condition 

curves were developed. The condition curves were generated using the mean values 

resulting from the developed probability distributions for the different effect values as 

the base points for these curves. Equation 27 shows the formula by which the curves 

were plotted. 

 CIt =  CI0 −  �
CI0 − X�

T
� ∗ CIt+1 (27) 

Where,  

𝐶𝐶𝐶𝐶0: is the initial condition of the pipe at time = 0, which is 10,  

𝐶𝐶𝐶𝐶𝑡𝑡: is the condition index at time (t),  

T is the overall time interval on which the curves are generated,  

𝑋𝑋�: is the mean effect value resulting from probability distributions and  

𝐶𝐶𝐶𝐶𝑡𝑡+1: is the condition index at the successive time step. 

An example of the generated curves for gravity pipeline diameter, length, buried 

depth and groundwater level condition index over different time periods is shown in 

Figure 5-3. The curves represent the condition index of the pipeline on the vertical 

axis, while the age is represented on the horizontal axis. 
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Figure 5-3: Pipeline Condition Curves for Different Sub-Factors over Age 
 
 
 
 

5.2.2 Second Approach (Fuzzy Set Theory) 

Fuzzy Set Theory (FST) is a mathematical model that was first introduced by 

Zadeh (1965), designed to generalize the concept of classical (or crisp) sets. FST 

attempts to provide a better tools to deal with vague situations that cannot be captured 

by the classical Set theory. The membership of a classical set can be considered as a 

function with only two possible values (i.e.: an element either belongs to certain set of 

elements or does not). The generalization made by Zadeh (1965) is to produce Fuzzy 

Sets that allows the membership function to have a gradual transition with any degree 

of membership from none to full. The significance of fuzzy variables is that they 

facilitate the gradual transition between states of a crisp variable and consequently, 

possess the capability to express and deal with uncertainties, unlike crisp variables 
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that ignore. Fuzzy numbers “F” can be represented by a set [a1, a2, a3, a4]. Each fuzzy 

number defined by a membership function μF, which can be expressed by Equation 

28. 

 µ𝐹𝐹(𝑥𝑥) = �

1                      , when 𝑎𝑎2<x  <a3

0 < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 1    , when �
𝑎𝑎1 < 𝑥𝑥 < 𝑎𝑎2
𝑎𝑎3 < 𝑥𝑥 < 𝑎𝑎4

0                      , Otherwise          
 (28) 

Membership functions (MFs) are the building blocks of FST, in which the 

fuzziness in a fuzzy set is determined by its MF. Accordingly, the shapes of MFs are 

important for each particular problem. MFs may have different shapes like triangular, 

trapezoidal, Gaussian, etc. For triangular fuzzy numbers a2 would have the same value 

of a3. The only condition that a MF must satisfy is that it must vary between 0 and 1.  

In order to determine the inputs to be used in the ER module, the questionnaires’ 

responses were used to generate the linguistic factors’ fuzzy thresholds for the effect 

values and their corresponding membership functions in similar manner to the FANP 

algorithm. The methodology of implementing the FST starts with defining the 

minimum average lower limit and maximum average upper limit for each linguistic 

factor affecting the pipeline conditions based on the questionnaires’ responses. To 

represent the output for the effect of the different linguistic factors, a five grade fuzzy 

subset (Excellent, very good, good, fair and critical) is used. After determining the 

input and output thresholds values, a suitable membership function is chosen to 

represent the inputs and output. In this study, trapezoidal curves at extreme points and 

triangular curves for the intermediate points were used (Figure 5-4 to Figure 5-7). 

Triangular and trapezoidal fuzzy membership function shapes were used because they 

are suitable for representing linguistic variables (Lee, 1996). Membership functions 

have been divided into four zones 0 to 5 years, 5 to 15 years, 15 to 30 years and above 
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30 years in order to appropriately take into account the age effect on the developed 

model. In such way, better and reliable assessment for new pipelines is assigned over 

the older ones by taking into consideration the age influence on the pipelines 

deterioration. Figure 5-4 to Figure 5-7 show the plot of the generated membership 

functions for diameter, length and the buried depth for gravity pipelines and their 

corresponding shapes for the fuzzy thresholds. Similarly, membership functions were 

generated for the rest of the factors affecting gravity and pressurized pipelines. The 

figures were developed by fuzzifying the input to determine the MF, for which each 

factor belongs. The corresponding MF (µF(x)) based on the five grade scale is 

calculated using Equation 28. Due to the uncertainty of the exact limits of the factors, 

the thresholds are overlapping at some intervals. Also, the trapezoidal shapes 

represent the extreme limits of excellent or critical membership functions for the 

thresholds, whereas triangular shapes are used to represent the three remaining 

membership functions in between the trapezoidal shapes.  

 
 
 
 

 

Figure 5-4: Membership Function for Pipelines’ Age Effect Value 
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(1) 

 

 
(2) 

 

 
(3) 

 

 
(4) 

Figure 5-5: Membership Functions for Pipelines’ Diameter Effect Values 
 
1) Age 0 to 5 years, 2) Age 5 to 15 years, 3) Age of 15 to 30 years and 4) Age 30 to 
40 years  
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(1) 

         

    
(2) 

 

   
(3) 

 

 
(4) 

Figure 5-6: Membership Functions for Pipelines’ Length Effect Values  
 

1) Age 0 to 5 years, 2) Age 5 to 15 years, 3) Age of 15 to 30 years and 4) Age 30 to 
40 years  
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(1) 

             

     
(2) 

         

    
(3) 

      

       
(4) 

Figure 5-7: Membership Functions for Pipelines’ Buried Depth Effect Value  
 
1) Age 0 to 5 years, 2) Age 5 to 15 years, 3) Age of 15 to 30 years and 4) Age 30 to 
40 years 
  

 



 

79 
 

5.3 Overall Condition Assessment Index 

Equation (29) represents the overall condition assessment index model derived by 

simulation. 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗 = � 𝑊𝑊𝑖𝑖 𝑥𝑥 
𝑘𝑘

𝑖𝑖=1

𝐸𝐸𝐸𝐸𝑖𝑖 (29) 

Where,  

OCIj is the overall condition index of sewer pipeline j,  

𝐸𝐸𝐸𝐸𝑖𝑖 is the effect value of factor i reflecting the factor score,  

𝑊𝑊𝑖𝑖 is the final weight for factor I, 

k is the number of factors. 

The model provides the overall condition index assessing sewer pipelines, where a 

higher index indicates a better pipeline condition. The overall condition index and 

effect values of each factor ranges between the extreme values of 0 and 10; which 

shows that the pipeline is at its worst or best condition respectively.  

5.3.1 First Approach (Monte-Carlo Simulation) 

As shown in Equation (29), the model multiplies each pipeline’s effect value 

obtained from the condition curves for each factor, by the probabilistic final weight of 

the corresponding factor. The results of these multiplications are added to calculate 

the mean overall condition index for each pipeline. The procedure is repeated for 

1000 iterations (simulations) with stopping criterion parameters of 5% accuracy (ε = 

0.05) and 99% confidence (α = 0.01). The sample variance based stopping rule used 

in this simulation (Bayer et al., 2014) is presented below in Equation 30. 
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Set n = 0, Generate Mnsamples (OCIj)I=1
Mn  and compute sample variance 

(σ�Mn
2 )  

σ�Mn
2 =  

1
Mn − 1

 ( �(OCIjI − OCI�����jM n
)2

Mn

I=1

 

While 2(1- f (
�Mn  ε 

σ�Mn
 )) >α do 

Set n= n+1 and Mn = 2Mn−1 

End while 

(30) 

Where,  

I is the iteration number,  

Mn is the number of samples,  

(OCIj)I=1
Mn  is the overall condition for samples (Mn) and iteration (I), 

σ�Mn
2 is the sample variance, 

α is the confidence, 

ε is the error, 

f (�Mn  ε 
σ�Mn

) is the distribution function. 

This reflects the strength of Monte-Carlo simulation in which a random final 

weight is chosen in each iteration based on the probability distribution determined for 

each factor. This randomness guarantees that the uncertainty is taken into 

consideration and the mean value of the OCIj obtained through the iterations is the 

final condition value for every pipeline. Based on the calculated condition value, the 

concerned authority can decide on the necessary actions to be taken for the pipeline, 
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which is the purpose of this study. A sample of a probabilistic condition index output 

from Monte-Carlo simulation is shown in Figure 5-8. 

 
 
 
 

 

Figure 5-8: Sample of Monte-Carlo Simulation Output for Overall Condition Index 
Probability Distribution 
 
 
 
 

5.3.2 Second Approach (Evidential Reasoning) 

Evidential reasoning (ER) offers a rational methodology to deal with uncertainty, 

incompleteness and fuzziness for data aggregation. This approach was developed on 

the basis of decision theory and the Dempster-Shafer theory of evidence (Yang and 

Singh, 1994; Yang and Sen, 1994; Yang, 2001) to address Multi-Criteria Decision 

Making (MCDM) problems under uncertainty. ER methodology describes and 

handles various types of uncertainties by using the concept of the degrees of belief, in 

which each attribute of an alternative of a MCDM problem is described by a 

distributed assessment using a belief structure. Unlike conventional approaches that 
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require scaling grades and averaging scores to aggregate attributes, the ER approach 

employs an evidential reasoning algorithm to aggregate belief degrees. The ER 

approach is a technique that allows aggregating many pieces of evidence (Yang and 

Xu, 2002). It aggregates two factors at a time and the resulting aggregation of the first 

two factors of evidence is aggregated with the third factor of evidence and so on.  

The ER approach is used to determine the final condition index for sewer 

pipelines. The first steps in implementing the ER module is to identify the distinctive 

evaluation grades (H) that are represented by the linguistic variables (i.e. excellent, 

very good, good, fair, and critical) and to define the final weight (ωi) for each 

contributing factor. The belief structure of the formulated ER problem consists of 

degree of beliefs indicating the user’s level of certainty about the condition of the 

pipeline (Excellent, very good,…etc.) based on the different contributing factors 

effect values. For instance the degree of belief is said to be high for an excellent 

pipeline condition for a new pipe with a low effect values of the contributing factors, 

while the degree of belief is considered low for very good pipeline conditions 

assuming an old pipeline with higher effect values for the contributing factors. After 

identifying the evaluation grades and relative weights, the degrees of belief are 

transformed into basic probability masses (𝑚𝑚𝑛𝑛,𝑖𝑖) using Equation 31, by multiplying 

the relative weights by the degrees of belief.  

 𝑚𝑚𝑛𝑛,𝑖𝑖 =  𝑚𝑚𝑖𝑖(𝐻𝐻𝑛𝑛) =  𝜔𝜔𝑖𝑖𝛽𝛽𝑛𝑛,𝑖𝑖       n = 1, … ,N;  i = 1, ... , L (31) 

Where,  

𝑚𝑚𝑛𝑛,𝑖𝑖 represents the degree to which the ith basic attribute supports the hypothesis of 

attribute (y) (pipeline condition) to be assessed to the (nth) grade (Hn ).  
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(mH,i) is the remaining probability masses unassigned to any individual after all (N) 

grades have been considered for evaluating the general attribute. (mH,i) is calculated as 

per equations 32, 33 and 34. 

 𝑚𝑚𝐻𝐻,𝑖𝑖 = 𝑚𝑚𝑖𝑖(𝐻𝐻) = 1 − ∑ 𝑚𝑚𝑛𝑛,𝑖𝑖
𝑁𝑁
𝑛𝑛=1 −  𝜔𝜔𝑖𝑖 ∑ 𝛽𝛽𝑛𝑛,𝑖𝑖

𝑁𝑁
𝑛𝑛=1 , i = 1,2,...,L   (32) 

 𝑚𝑚�𝐻𝐻,𝑖𝑖 =  𝑚𝑚�𝑖𝑖(𝐻𝐻) = 1 − 𝜔𝜔𝑖𝑖,                                     i = 1,2,...,L (33) 

 𝑚𝑚�𝐻𝐻,𝑖𝑖 =  𝑚𝑚�𝑖𝑖(𝐻𝐻) = 𝜔𝜔𝑖𝑖(1 − ∑ 𝛽𝛽𝑖𝑖
𝑁𝑁
𝑛𝑛=1 ),                     i = 1,2,...,L (34) 

Where,  

𝑚𝑚𝐻𝐻,𝑖𝑖 = 𝑚𝑚�𝐻𝐻,𝑖𝑖 + 𝑚𝑚�𝐻𝐻,𝑖𝑖 and ∑ 𝜔𝜔𝑖𝑖
𝐿𝐿
𝑖𝑖=1 = 1, 

𝑚𝑚�𝐻𝐻,𝑖𝑖 is the remaining probability mass that has not been yet assigned to individual 

grades. While, 𝑚𝑚�𝐻𝐻,𝑖𝑖is the remaining probability mass unassigned to individual grades 

caused by the incompleteness of the assessment. 

 𝑚𝑚𝑛𝑛,𝐼𝐼(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝐻𝐻,𝐼𝐼(𝑖𝑖) can be calculated by aggregating the basic probability 

masses 𝑚𝑚𝑛𝑛,𝑗𝑗and 𝑚𝑚𝐻𝐻,𝑗𝑗for n = 1, … , N and J = 1, …. , i using Equations 35 to 37 which 

combines the two probability masses using normalizing factor 𝐾𝐾𝐼𝐼(𝑖𝑖+1) .  

The normalizing factor can be defined as 𝐾𝐾𝐼𝐼(𝑖𝑖+1) = �1 − ∑ ∑ 𝑚𝑚𝑡𝑡,𝐼𝐼(𝑖𝑖)𝑚𝑚𝑗𝑗,𝑖𝑖+1
𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑡𝑡=1 �

−1
 

Where, 𝐾𝐾𝐼𝐼(𝑖𝑖+1)is the normalizing factor so that the summation of 𝑚𝑚𝑛𝑛,𝐼𝐼(𝑖𝑖+1) +

𝑚𝑚𝐻𝐻,𝐼𝐼(𝑖𝑖+1)for n = 1, ..., N is 1.  

 
𝑚𝑚 𝑛𝑛,𝐼𝐼(𝑖𝑖+1) =  𝐾𝐾𝐼𝐼(𝑖𝑖+1)(𝑚𝑚𝑛𝑛,𝐼𝐼(𝑖𝑖)𝑚𝑚𝑛𝑛,𝑖𝑖+1 + 𝑚𝑚𝑛𝑛,𝐼𝐼(𝑖𝑖)𝑚𝑚𝐻𝐻,𝑖𝑖+1 + 𝑚𝑚𝐻𝐻,𝐼𝐼(𝑖𝑖)𝑚𝑚𝑛𝑛,𝑖𝑖+1),  

 n = 1,2 ...,N        
(35) 

 Where, 𝑚𝑚𝐻𝐻,𝐼𝐼(𝑖𝑖) =  𝑚𝑚�𝐻𝐻,𝐼𝐼(𝑖𝑖) + 𝑚𝑚� 𝐻𝐻,𝐼𝐼(𝑖𝑖)  

 𝑚𝑚�𝐻𝐻,𝐼𝐼(𝑖𝑖+1) =  𝐾𝐾𝐼𝐼(𝑖𝑖+1)�𝑚𝑚�𝐻𝐻,𝐼𝐼(𝑖𝑖)𝑚𝑚�𝐻𝐻,𝑖𝑖+1� (36) 

 𝑚𝑚�𝐻𝐻,𝐼𝐼(𝑖𝑖+1) =  𝐾𝐾𝐼𝐼(𝑖𝑖+1)�𝑚𝑚�𝐻𝐻,𝐼𝐼(𝑖𝑖)𝑚𝑚�𝐻𝐻,𝑖𝑖+1 + 𝑚𝑚� 𝐻𝐻,𝐼𝐼(𝑖𝑖)𝑚𝑚�𝐻𝐻,𝑖𝑖+1 + 𝑚𝑚� 𝐻𝐻,𝐼𝐼(𝑖𝑖)𝑚𝑚� 𝐻𝐻,𝑖𝑖+1� (37) 
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By combining each two probability masses until all the factors are combined, the 

final probability masses can be converted into the final degrees of belief using 

Equations 38 and 39. 

 𝛽𝛽𝑛𝑛 =  𝑚𝑚𝑛𝑛
1−𝑚𝑚� 𝐻𝐻,𝐼𝐼(𝐿𝐿)

, n = 1,2 ...,N (38) 

 𝛽𝛽𝐻𝐻 =  
𝑚𝑚�𝐻𝐻,𝐼𝐼(𝐿𝐿)

1 − 𝑚𝑚�𝐻𝐻,𝐼𝐼(𝐿𝐿)
 (39) 

Where,  

𝛽𝛽𝑛𝑛is the degrees of belief for the aggregated final assessment associated to the grades 

𝐻𝐻𝑛𝑛 and 𝛽𝛽𝐻𝐻 represents the incompleteness of the overall assessment associated to H. 

In order to determine the overall condition of the pipeline in the developed model, 

deffuzificaion is carried for the aggregated final assessment resulting from the ER 

module by utilizing the FST module. In the defuzzification process, the final degrees 

of belief are deffuzified into a crisp values. The deffuzification process is basically 

calculating the areas of the resulting figures for each MF, weighted average method 

was used to convert the fuzzy membership functions’ overall condition into a crisp 

value.  

5.4 Model Validation 

In order to validate the proposed model a dataset collected from the Drainage 

Networks Operations and Maintenance Department in Ashghal Public Work 

Authority, Doha, Qatar was used as stated under Section 4.3.3. The validation set 

included actual conditions for 549 gravity pipelines with 6 available factors which 

are: age, diameter, length, and buried depth, pipeline position relative to groundwater 

and pipeline material. The pipeline material of the validation set obtained was 
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Vitrified Clay. Therefore, the pipeline material factor was disregarded and only the 5 

remaining factors were considered in the validation process.  

The condition varied from 1 to 5, where 1 indicates that the pipeline has minor 

defects and no action is required, while 5 indicates a pipeline with very heavy defects 

and an immediate action is required. The resulted predicted condition scale from the 

developed models has a scale that varies from 0 to 10.  

In order to apply a valid comparison between the actual condition of a pipeline and 

the obtained condition from the models, two model calibrations were required. The 

first calibration was the conversion of the 0 -10 scale for the predicted pipes’ 

condition to 1-5 scale for the actual pipes’ condition. The thresholds of the calibrated 

scale are shown in Table 5-7. The conversion was basically done by anchoring the 

maximum and minimum of the two scales (0 anchored to 1 and 10 anchored to 5) and 

dividing the rest of the scale values into 5 classes.  

 
 
 
 
Table 5-7: Conversion of Actual Condition Rating Scale to Model Prediction 
Condition Rating Scale 

Actual Condition Scale Resulted Prediction Condition Scale 

5 0 to <3 

4 3 to <5 

3 5 to <7 

2 7 to <9 

1 9 to 10 
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The second calibration was converting the relative weights for the seventeen 

factors into an equivalent five factors’ weights. Equation 40 was used to make this 

conversion in which the final obtained weights of the five factors included in the 

validation process were adjusted so that their summation would be equal to one. 

 
𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑤𝑤𝑖𝑖 + [� 𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ (1 − � 𝑤𝑤𝑖𝑖)]
𝑛𝑛

𝑖𝑖=1

 

                            Such that ∑ 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 = 1𝑛𝑛
𝑖𝑖=1  

(40) 

Where,  

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 is the calibrated factor’s weight; 

𝑤𝑤𝑖𝑖 is the original weight of the factor in case that the seventeen factors are present; n 

is the total number of factors in the problem (n=5 in the validation set). 

Table10 includes a sample of the validation data set. For example, based on the 

characteristics of pipeline No.2 shown in Table 5-8, the resulted mean value from the 

developed model was 7.8 and accordingly the pipeline's predicted condition would be 

2, while the actual CCTV condition gave a value of 1. 
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Table 5-8: Sample of Actual versus Predicted Model Condition Rating Values for 
Pipelines in Validation Dataset 
 

 

 

 

 

 

 

 

 

 

 
 
 
 

The developed model performance assessment was based on the mathematical 

diagnostics recommended in literature (Zayed and Halpin 2005; Al-Barqawi and 

Zayed 2006). In order to determine the model validity, Equations (41) and (42) were 

used which show the average validity percentage (AVP) and the average invalidity 

percentage (AIP), respectively. If the values of AIP are closer to 0 and AVP are closer 

to 100% the model is valid and vice versa. Likewise, Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE) were used to validate the model using 

Equations (43) and (44), respectively. The model is considered sound if the values for 

MAE and RMSE are close to 0 (Dikmen et al. 2005). Finally, the fitness function 

equation (𝑓𝑓𝑖𝑖) indicating that the developed model is valid if the calculated value using 

Equation (45) is close to 1000 and invalid when it is close to 0 (Dikmen et al. 2005).  

Pipeline (No.) Actual CCTV 
Condition Mean Value Predicted Model 

Condition 

2 1 7.8 2 

134 1 9.6 1 

19 2 8.2 2 

128 2 8.4 2 

24 3 6.4 3 

428 3 5.5 3 

111 4 4.6 4 

…
 

…
 

…
 

…
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 AIP = �� �1 − �
Ei

Ci
��

n

i=1

� ×
100

n
 (41) 

 AVP = 100 − AIP (42) 

 MAE =
∑ |Ci −  Ei|n

i=1

n
 (43) 

 RMSE = �∑ (Ci − Ei)2n
i=1

n
 (44) 

 fi =
1000

1 + MAE
 (45) 

Where, 

AIP = Average Invalidity Percent;  

AVP = Average Validity Percent; 

𝑀𝑀𝑀𝑀𝑀𝑀 = Mean Absolute Error;  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = Root Mean Square Error;  

𝑓𝑓𝑖𝑖= fitness function; 

Ei = predicted value;  

Ci = actual value;  

n = number of events. 

Results obtained by the first approach were 15%, 85%, 0.12, 0.15, and 893 and by 

the second approach were 14%, 86%, 0.16, 0.11, and 898 for AIP, AVP, MAE, 

RMSE and 𝑓𝑓𝑖𝑖, respectively which are considered plausible results. The “actual versus 

predicted output plot” results for the developed model (Approach 1) are shown in 

Figure 5-9. In Figure 5-9, the condition indices resulting from the model for all the 

pipes from the validation set were grouped based on their categorical classes and 

compared to the actual condition rating. Figure 5-9 shows that the results from the 
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developed model are very close to the actual ones indicating the soundness and 

accuracy of the proposed model. A comparison between the Actual Pipeline 

conditions and the predicted pipeline conditions for approaches 1 and 2 for each 

individual pipe is further presented in Figure 5-10.  

Moreover, this model shows similar accuracy to previously developed models that 

used linear regression and back propagation neural networks techniques giving 85% 

and 86%, respectively (Chughtai and Zayed, 2008 and Khan et al., 2010). However, 

the enhancement in this model could be due to the fact that it neither required 

extensive data to create the model nor made strong assumptions that would result in 

higher condition rating values (Salman, 2010). On the other hand, a major portion of 

research addressing condition assessment models, only studied and analyzed the 

significance on pipelines’ state without getting an index to express their conditions 

(Wirahadikusumah et al., 2001, Davies, 2001, Baur and Herz 2002, Younis and 

Knight, 2010). In these previous researches, limited factors varying between 4 and 10, 

such as pipe size, length, depth, material, type of waste, ground water level, street 

category, soil type and infiltration and how they contribute to sewer pipeline 

deterioration were studied, but little research studied the effect of factors such as 

coating conditions, maintenance and break strategies while taking into consideration 

the interdependencies between these contributing factors. Moreover, no research 

addressed these factors and their effect on the pressurized sewer pipelines (i.e. rising 

mains). 
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Figure 5-9: Actual Versus Predicted Overall Condition Index (1)
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Figure 5-10: Actual versus Predicted Overall Condition Index (2)
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CHAPTER 6: CONCLUSION 

New condition assessment models for sewer networks developed by integrating 

FANP and Monte-Carlo simulation as one approach and FANP combined with 

Monte-Carlo simulation, FST and ER as another approach were presented in this 

research. Seventeen factors grouped under physical, environmental and operational 

categories for gravity pipelines in addition to the operating pressure for pressurized 

pipelines were considered in the model. The developed models use a weighted scoring 

system to determine a numerical value indicating the condition of pipelines based on 

the effecting factors’ relative weights and effect values. The relative weights and 

degree of influence of the different factors were elicited from a questionnaire that was 

distributed to experts working in the field of infrastructures and sewage networks.  

The considered factors were grouped under physical, environmental and 

operational categories. The relative weight for each factor and category was 

determined by the FANP and Monte-Carlo Simulation module that considered the 

uncertainties and fuzziness associated with transforming the experts’ judgments into 

numerical values. The sub-factors for the physical, environmental and operational 

categories recorded importance weights varying within the range of 8%. The “Ground 

Disturbance” factor was found to be the most influential factor followed by the 

“Location” with a weight of 10.6% and 9.3% for pipelines under gravity and 8.8% 

and 8.6% for pipelines under pressure, respectively. On the other hand, the least 

affecting factor was the “Length” followed by “Diameter” with a weight of 2.2% and 

2.5% for pipelines under gravity and 2.5% and 2.6% for pipelines under pressure.  
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For the first approach, Monte-Carlo simulation is used to determine the final 

scores for the weights by probability distribution fitting, which helped in eliminating 

the uncertainties accompanying the model’s outputs due to different weights.  

For the second approach, FST module was used to create membership functions 

and thresholds for the effect values of the different effecting factors in the form of 

triangular and trapezoidal functions. The overall condition index was determined by 

using the ER module with the aid of FST in which degrees of belief were set and 

combined with different relative weights of the different factors. Fuzzy membership 

functions’ were defuzzified by utilizing the FST to convert the fuzzy overall condition 

into a crisp value.  

The developed models were validated using actual inspection data for 549 existing 

sewer gravity pipelines in Qatar. Results obtained by the first approach were 15%, 

85%, 0.12, 0.15, and 893 and by the second approach were 14%, 86%, 0.16, 0.11, and 

898 for AIP, AVP, MAE, RMSE and 𝑓𝑓𝑖𝑖, respectively, which indicates that the 

developed model would yield in sound and reliable results .  

The proposed condition assessment model can provide key personal and decision 

makers with a proper tool to plan their inspections instead of using conventional 

inspection and assessment methods that are time consuming and costly, collect only 

necessary data and provide cost effective rehabilitation and maintenance action. 

The model presented in this paper can be improved by adding and considering 

additional factors other than those mentioned and more case studies can be used to 

expand data sets to validate and calibrate the model. In addition, increasing number of 

questionnaires’ participants or using other techniques to determine relative weights of 

contributing factors is recommended for future work. 
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Recommendations for future research: 

1. Standardization of data acquisition tool for municipalities which should cover 

all relevant physical, operational and environmental factors. 

2. Extension of the sewer pipeline condition prediction methodology to other 

sewer network structures such as manholes, pumping stations, etc. 

3. Application of sewer condition prediction to other infrastructure networks. 

4. Develop a tool integrated with GIS. 

5. Develop a flexible tool that allows users to add or remove affecting factors or 

adjust the factor’s weights.  
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