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REVIEW ARTICLE

Microbial volatilome in food safety. Current status and
perspectives in the biocontrol of mycotoxigenic fungi and
their metabolites
Zahoor Ul Hassan a, Safa Oufensou b, Randa Zeidana, Quirico Migheli b and
Samir Jaoua a

aEnvironmental Science Program, Department of Biological and Environmental Sciences, College of Arts and
Sciences, Qatar University, Doha, Qatar; bDepartment of Agricultural Sciences and Desertification Research
Centre (NRD), Università degli Studi di Sassari, Sassari, Italy

ABSTRACT
Fungal infection and mycotoxins contamination in food and feed
products cause significant economic losses to the food and
agricultural industry. Although the efficacy of synthetic fungicides
is unquestionable, there are serious issues associated with their
application in agriculture. Improper and/or prolonged application
of these products may cause the emergence of resistant fungal
populations, carry-over of chemicals in the human diet and
adverse effects on non-target species. By contrast, ease in
application and negligible effects on the environment makes
microbial volatile organic compounds (VOCs) safe and sustainable
substitutes to synthetic fungicides. A considerable research
investment has highlighted the efficacy and suitability of VOCs
emitted by bacteria, yeast and filamentous fungi for application
in food crops and stored products. In this review, focus is made
on the potential use of microbial VOCs as inhibitors of toxigenic
food mycobiota and their mycotoxins. The mode of action of
microbial volatile compounds, possible application in different
scenarios, limitations and perspectives are discussed.
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1. Introduction

Fungal infections of agricultural crops and their products trigger significant losses to the
food and agricultural compartments (Alina, 2022; Shabeer et al., 2022; Xu et al., 2022).
The old Food and Agriculture Organization (FAO) notion ‘25% of the food is annually
lost due to fungal infection’ is in fact true and even slightly underestimates the actual
damage (Almeida et al., 2019).

Apart from the mold-associated spoilage, infections of food products by mycotoxin-
producing species results in the buildup of toxins (Al Attiya et al., 2021; Hassan et al.,
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2019; 2018; Ul Hassan et al., 2018; Xu et al., 2022). An ever-growing list of mycotoxins of
human health significance includes mainly those produced by filamenteous fungi. The
toxic effects of mycotoxins could be as mild as short-duration gastrointestinal disorders
to chronic (immunosuppression, growth retardation, reproductive disorders) and acute
(hepatotoxicity, nephrotoxicity, neurological disorders and deaths) in the exposed
animal and humans (Alshannaq & Yu, 2017; Cimbalo et al., 2020; Dey et al., 2022).
These effects are generally severe in the vulnerable communities, including infants,
elderly and immunocompromised patients (Omotayo et al., 2019).

Integrated control measures against fungi are proposed at all stages of agricultural pro-
duction to minimise the damage. Best management practices at pre-harvest stages, includ-
ing crop rotation, resistant crops, proper sowing and watering time, use of health
propagative material and application of fungicides can help dropping the magnitude of
the issue (Santiago et al., 2015; Shabeer et al., 2022; Tilocca et al., 2019). At post-harvest
stages, there are several approaches (physical, chemical and biological) to preserve food
from fungal attack and accumulation of mycotoxin (Ji et al., 2016; Sadiq et al., 2019).
The inappropriate application of synthetic fungicides has led to serious concerns regarding
the environment and public health (Tilocca et al., 2020). Moreover, the emergence of fun-
gicide-resistant fungal strains is largely linked with the improper use of synthetic antifungal
compounds in the field and at the postharvest stage (Fisher et al., 2022).

Physical methods, such as binding agents, UV exposure, sorting, cleaning, grading,
washing, etc. are also adopted to reduce contamination with mycotoxins in susceptible
agricultural commodities, albeit their effectiveness may vary according to the targeted
toxin and of the food/feed material (Kolosova & Stroka, 2012; Sipos et al., 2021).

Several antagonistic bacteria, filamentous fungi and yeast strains have been registered
and biocontrol commercial products are being marketed for the protection of food com-
modities subject to mycotoxin contamination (Freimoser et al., 2019; Moore, 2022;
Moral et al., 2020; Tilocca et al., 2020). Antifungal formulations utilising non-aflatoxi-
genic Aspergillus flavus strains, e.g. Alfa-Guard (atoxigenic A. flavus), FUSAclean
(non-pathogenic Fusarium oxysporum), AF36® (atoxigenic natural A. flavus) and
Aflasafe® (four atoxigenic A. flavus strains) are currently being used with significant
reductions in aflatoxins (AFs) in corn, peanuts, cotton seeds and other agricultural
crops (Kagot et al., 2019). In addition to filamentous fungi, antagonistic yeast (Cryptococ-
cus albidus, Aureobasidium pullulans, Metschnikowia fructicola and Saccharomyces cere-
visiae and Candida oleophila,) and bacterial strains (Streptomyces spp., lactic acid bacteria
(LAB), Pseudomonas spp., Bacillus spp.,) are registered for their antifungal commercial
use in agricultural and food industry (Freimoser et al., 2019; Salas et al., 2017).

Until recently it was known that most of the biocontrol strains employ competition for
space and nutrients as a major mechanism of the antagonism. However, during the last
two decades, the focus of attention has shifted from competition to volatile-mediated
interaction between the target fungi and biocontrol agent. For instance, non-toxigenic
strains of A. flavus used in three commercial formulations (Afla-Guard®, AF36®,
Aflasafe®) were thought to compete with the toxigenic A. flavus for the space and nutri-
ents as a mechanism of their antagonism (Bandyopadhyay et al., 2019). However, Moore
et al. (2021, 2022) have recently demonstrated that the volatiles released by non-aflatoxi-
genic A. flavus are also involved in this interaction.
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Volatile organic compounds (VOCs) are characterised by their low solubility in water
and high vapour pressure ≥10 Pa (Lammers et al., 2022; Tilocca et al., 2020) and play
diverse physiological roles in the environment (Weisskopf et al., 2021). The use of vola-
tiles for human benefits started with their application as perfumes, flavouring agents in
food and developing specific aroma and taste of food products (Ebert et al., 2017; Verma
et al., 2022). The volatile profile of microbes depends on several characteristics including
the age of the microbes, physical parameters (temperature, pressure, humidity), presence
of other organisms in their environment, aeration and the method of collection (Insam &
Seewald, 2010). Biotechnological application of microbial volatiles was a neglected area of
research, particularly due to lack of sophisticated collection and analytical methods
(Weisskopf et al., 2021). However, during the past decade, application of VOCs in the
food, agriculture, pharmaceutical and medicine industry has been largely explored
(Lammers et al., 2022; Weisskopf et al., 2021).

In this review, we will summarise recent research achievements on the role of
microbial (bacteria, yeast and filamentous fungi) volatiles in the control of mycotoxigenic
fungi and their metabolites in food preservation, with emphasis on pre- and post-harvest
damage. Furthermore, the potential utilisation of microbial volatiles in food preservation,
their mode of action, limitations and perspective are discussed.

2. Biosynthesis of microbial volatiles

Like other living organisms, microbes also produce complex arrays of volatiles and
secrete them during their routine metabolic processes. These molecules are regarded
as products of their metabolism (Schmidt et al., 2015; Weisskopf et al., 2021) and are
broadly classified as inorganic and organic compounds (Lammers et al., 2022; Schulz-
Bohm et al., 2017). The major classes of organic volatiles of microbial origin include aro-
matic compounds, alkanes, alkenes, fatty acids, ester, alcohols, methyl ketones, alde-
hydes, ketones and short-chain fatty acids (Schmidt et al., 2015; Tilocca et al., 2020;
Veselova et al., 2019; Weisskopf et al., 2021). The synthesis of these volatiles involves
catabolic processes (Figure 1) such as glycolysis, lipolysis and proteolysis (Freimoser
et al., 2019; Veselova et al., 2019).

In general, microbial volatiles molecules across Kingdom and within Kingdom are
common in their nature (Mari et al., 2016; Salas et al., 2017; Tilocca et al., 2020).
However, some molecules are peculiar to a microbial group or even a single strain,
making them unique in their physicochemical role (Schmidt et al., 2015). Below, we
provide a brief summary on overall biosynthesis of volatiles produced by bacteria,
yeast and filamentous fungi.

During the aerobic cell environment, pyruvate is converted to acetyl-CoA and enters
into fatty acid metabolism or tricarboxylic acid (TCA) cycle. Fatty acid metabolism gen-
erates alkanes, alkenes, ketones and aliphatic alcohols (Schmidt et al., 2015). Even num-
bered fatty acids are produced with the β-oxidation of acetyl-CoA. Fatty acids, aldehydes
and ketones are the typical volatile end products of fatty acid pathways (Lammers et al.,
2022). Aromatic compounds, such as 2-phenylethanol (2-PE) are produced mainly
through the shikimate pathway and are particularly important in the antifungal activities.
For example, several studies highlighted the production of 2-phenylethanol (2-PE) by
bacteria (Weisskopf et al., 2021), yeast (Farbo et al., 2018), and filamentous fungi
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(Medina-Romero et al., 2017), and its inhibitory role against toxigenic fungi and their
mycotoxins. Sulphur compounds are important constituents of microbial volatilome
and are synthesised from the methanethiol and hydrogen sulphide. Dimethyl disulphide
is a dimer of methanethiol which is commonly detected in gas chromatography (GC)
volatile profiles of many bacteria (Brock et al., 2014). Other sources of sulphur com-
pounds are acids, such as methyl-butyric acid. Terpene hydrocarbons are diverse
groups of volatiles produced by fungi and bacteria and have been implicated in their anti-
fungal mode of action (Corcuff et al., 2011; Medina-Romero et al., 2017; Tenorio-Salgado
et al., 2013). Terpenes are synthesised by three pathways; (a) the mevalonate pathway,
which was long being considered the only source of isopentenyl diphosphate and
dimethylallyl diphosphate. This pathway starts with glycolysis leading to acetyl-CoA
and isopentenyl diphosphate, which subsequently results in the production of terpenes
(Freimoser et al., 2019). The other two pathways are leucine and the 2-methylerythri-
tol-4-phosphate (Veselova et al., 2019) which also results in the synthesis of terpenes (iso-
prene, monoterpenes and sesquiterpenes). Along with organic compounds, microbes
also produce inorganic molecules such as carbon monoxide, carbon dioxide, hydrogen
cyanide, oxygen, hydrogen, hydrogen sulphide, ammonia, nitrogen dioxide, sulphur
dioxide, etc. (Tilocca et al., 2020; Veselova et al., 2019).

3. Bacteria

3.1. Antifungal bacterial volatilome

Organic compounds of bacterial origin are characterised by acids, alcohols, terpenes,
benzenoids, acids, ketones, esters, pyrazines and alkenes (Veselova et al., 2019; Weisskopf

Figure 1. Pathways involved in the synthesis of microbial volatiles implicated in the antagonism of
toxigenic fungi and mycotoxins. Dotted lines indicate the steps involved in the synthesis of known
antifungal volatiles, while continuous line indicate non-volatiles intermediate or final products. This
figure presents the modification of pathways previously illustrated by Schmidt et al. (2015) and Vese-
lova et al. (2019).
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et al., 2021). These molecules alone or their consortia play significant antifungal activity
against toxigenic fungi and mycotoxins during pre- and post-harvest stages of food
systems (Chalivendra & Ham, 2019; Lammers et al., 2022; Veselova et al., 2019). Like-
wise, bacteria also produce inorganic volatiles such as carbon monoxide (CO), carbon
dioxide (CO2), hydrogen cyanide (HCN), oxygen (O2), hydrogen (H2), hydrogen sul-
phide (H2S), ammonia (NH3), nitrogen dioxide (NO2), sulphur dioxide (SO2), etc.,
play diverse roles including quorum sensing, electron donor or receptor and as
defence molecules (Tilocca et al., 2020). Below is a detailed account of microbial
profiles of different bacterial genera, with emphasis on their antagonistic activities
against mycotoxigenic fungi.

3.1.1. Bacillus spp.
Bacillus spp. as a biocontrol agent have several advantages over the other microbial
genera because of their convenience in application, environmental safety (with few
exceptions), resilience to harsh conditions, genetic diversity, broad range of antifungal
activity and minimal nutritional requirements (Chalivendra & Ham, 2019). These
benefits associated with Bacilli place them on top of the list of commercialised biocontrol
agents (Effmert et al., 2012). In the last few decades, there are many novel reports on the
role of Bacillus spp. against toxigenic fungi and mycotoxin biosynthesis in food commod-
ities (Table 1). The main species of Bacillus implicated in biocontrol of toxigenic yeast are
B. amyloliquefaciens (Arrebola et al., 2010; Chaves-López et al., 2015; Shi et al., 2014;
Yuan et al., 2012), B. subtilis (Arrebola et al., 2010; Chaves-López et al., 2015),
B. velezensis G341 (Calvo et al., 2020; Lim et al., 2017), B. cereus (Chaves-López et al.,
2015), B. methylotrophicus (He et al., 2020), B. thuringiensis (He et al., 2020),
B. licheniformis (Ul Hassan et al., 2019), B. megaterium (Mannaa & Kim, 2018; Saleh
et al., 2021), B. simplex (Al Attiya et al., 2021) and B. pumilus (Morita et al., 2019).
The prominent antifungal volatile molecules synthesised by Bacillus spp., include (but
not limited to) 2,3-butanediol, 3-hydroxy-2-butanone (Ryu et al., 2003), tetradecane,
pentadecane (Yuan et al., 2012), 3-hydroxy-2-butanone, dimethylsulfoxide, 1-butanol,
(Lim et al., 2017), 3-methyl-1-butanol (Ul Hassan et al., 2019), diacetyl, 2-undecanone,
2-nonanone, 1-butanol, 2-heptanone, benzaldehyde, acetoin (Calvo et al., 2020), quino-
line, benzenemethanamine 1-octadecene (Al Attiya et al., 2021), tetracosane, palmitic
acid (Saleh et al., 2021), 1-butanol, propanone, acetic acid, 2-methylpropanoic acid,
ethyl acetate, carbon disulphide (Chaves-López et al., 2015), 3-hydroxy-2-butanone
(acetoin) (Arrebola et al., 2010), ethanol, S-()-2-methylbutylamine, methyl isobutyl
ketone (Morita et al., 2019), 2-butyl 1-octanol, 4-trifluoroacetyl hexadecane, 5-methyl-
2-phenyl-1H-indole and dimethyl disulphide (Mannaa & Kim, 2018).

In a study by Shi et al. (2014), B. amyloliquefaciens isolated from the peanut shell
inhibited F. graminearum by 41.4–54.5% in co-culture assay and by 92.7–100% in
tip-culture assay. Additionally, upon in-vivo application on wheat kernels, this strain
inhibited deoxynivalenol (DON) synthesis by 16.69–90.30%. Ul Hassan et al. (2019)
demonstrated that volatiles (mainly 3-methyl-1-butanol) emitted by B. licheniformis
inhibited all tested toxigenic Aspergillus and Penicillium species. A. westerdijkiae
showed high sensitivity to Bacillus licheniformis strain 350-2 (BL350-2) volatiles with
an inhibition ratio of 62%, while other representative strains including A. carbonarius,
A. ochraceus, A. niger, A. parasiticus, A. flavus and P. verrrucosum were all inhibited at
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Table 1. Summary of antagonistic bacterial species/strains, their target toxigenic fungi, bioactive volatile molecule(s) and experimental application.
Antagonistic bacteria Target fungi Main biomolecules Main effects Experimental setup Reference

Lentilactobacillus (Lent.) buchneri,
Lactococcus lactis, Lent. buchneri,
Lactiplantibacillus plantarum,
Levilactobacillus brevis, Lac.
plantarum, Lacticaseibacillus
rhamnosus

A. flavus Acetic acid; propionic acid; 1,2
propanediol

Degraded zearalenone (ZEN) and
tenuazonic acid in silage.

In situ on maize
silage

Gallo et al.
(2022)

Lactobacillus plantarum A. niger, A. ochraceus,
A. tubingensis,
A. carbonarius,
A. tubingensis and
A. niger

Acetic acid; phenyllactic acid; pyrazines Inhibition of mycelium growth In vivo on synthetic
media and in
vitro on detached
red grapes

Dopazo et al.
(2022)

Lacticaseibacillus rhamnosus, Lac.
plantarum

A. flavus 1,2 propanediol Reduction in AFB1 levels In situ on corn
silage

Gallo et al.
(2021)

Enterococcus faecium, Enterococcus
casseliflavus

F. verticillioides Acetoin; diacetyl Inhibition of mycelium growth and
mycotoxin production

In vitro on
synthetic media

Diaz et al.
(2021)

Bacillus megaterium F. verticillioides A. flavus,
P. verrucosum,

Palmitic acid; tetracosane Suppression of fungal growth and
mycotoxin synthesis; suppression
of mycotoxin synthesis

In vitro on
synthetic media
and in vivo on
maize ears

Saleh et al.
(2021)

B. simplex A. flavus, A. carbonarius Quinoline; benzenemethanamine; 1-
octadecene

Inhibition of mycelium growth and
mycotoxin synthesis

In vivo application
on stored coffee
bean

Al Attiya et al.
(2021)

B. velezensis, B. atrophaeus and
Psychrobacillus vulpis

Alternaria alternata,
F. solani

Isopentyl isobutanoate; 2,3-butanediol;
acetoin; isopentanol; dimethyl;
disulphide acetic acid

Mycelium growth inhibition In vitro on
synthetic media

Toral et al.
(2021)

B. velezensis P. expansum Pyrazine; 2-heptanone; 1-butanol; acetoin;
2-undecanone; butyl for – mate;
benzaldehyde; diacetyl; nonane; 2-
nonanone,

Mycelium growth inhibition In vitro on
synthetic media
and in vivo of
grapes and
apricot

Calvo et al.
(2020)

Streptomyces philanthi A. flavus and A. parasiticus Geosmin; L-linalool; 2-mercaptoethanol;
heneicosane

100% inhibition in mycelium growth
and AFs synthesis

In vivo on soybean
seeds and in vitro
on synthetic
media

Boukaew and
Prasertsan
(2020)

S. kanamyceticus, S. misionensis,
S. cangkringensis, S. kanamyceticus

A. alternata, F. solani Trans-2-hexenal Inhibition of mycelium growth In vitro synthetic
media

Corral et al.
(2020)
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Streptomyces yanglinensis A. parasiticus and A. flavus 2-methyl-2-bornene; 2-methylisoborneol Inhibition of expression of AFs
synthesis genes, conidial
germination, mycelium growth,
and sporulation

In vitro on
synthetic media
and in vivo on
peanut kernels

Lyu et al.
(2020)

Burkholderia cenocepacia F. solani, A. niger Nonanoic acid indole; methyl anthranilate;
methyl benzoate; benzyl propionate;
methyl salicylate; dimethyl trisulphide

Inhibition of mycelium growth In vitro synthetic
media

Chen et al.
(2020)

Pseudomonas aeruginosa A. flavus, A. fumigatus 2-heptanone; 2-undecanone; methyl
thiobutyrate; 1-undecanol; 2-
dodecanone

Inhibition of mycelium growth In vitro on
synthetic media

Nazik et al.
(2020)

B. methylotrophicus, B. thuringiensis P. expansum Up to 30 compounds from the following
groups. Pyrazines; phenols; ketones;
aldehydes; acids; alcohols and other
organic compounds

Mycelium growth inhibition In vitro on
synthetic media
and in vivo on
loquat fruit

He et al. (2020)

Enterobacter asburiae A. flavus Phenylethyl alcohol; 1 – pentanol Complete growth inhibition in vitro;
inhibition of A. flavus infection on
peanuts, downregulation of Afs
synthesis genes, inhibition of AF
synthesis, inhibition of conidial
germination and conidial
morphological alteration

In vitro on
synthetic media
and in vivo on
stored peanuts

Gong et al.
(2019)

Streptomyces alboflavus A. flavus Benzenamine; dimethyl trisulphide Suppression of mycelium growth,
sporulation, conidial germination
and AFs pathway genes

In vitro on
synthetic media

Yang et al.
(2019)

B. pumilus A. niger S-()−2-methylbutylamine; 5-methyl-2-
heptanone; ethanol; methyl isobutyl
ketone

Enhancement of A. niger growth In vitro on
synthetic media

Morita et al.
(2019)

B. licheniformis A. parasiticus, verrucosum,
A. westerdijkiae, A. niger,
A. ochraceus, A. flavus,
carbonarius,

3-methyl-1-butanol Inhibition of mycelium growth and
mycotoxin production

In vivo on maize
and in vitro on
artificial media

Ul Hassan et al.
(2019)

Bacillus sp. A. fumigatus, P. expansum Benzaldehyde; isovaleric acid; propanoic
acid; 2-methylbutanoic acid; acetic acid

Fungal growth inhibition In vitro on
synthetic media

Osaki et al.
(2019)

Lactobacillus sp. A. parasiticus 6-octadecenoic acid methyl ester; 2-
methyldecane; pentadecane; 7-
hexadecenal; phenol; dotriacontane

Suppression of mycelium growth
and mycotoxin synthesis

In vitro on
synthetic media
and in vivo on
wheat grains

Shehata et al.
(2019)

(Continued )
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Table 1. Continued.
Antagonistic bacteria Target fungi Main biomolecules Main effects Experimental setup Reference

B. megaterium, Pseudomonas
protegens

P. fellutanum,
A. fumigatus, P. islan –
dicum, A. candidus

4-trifluoroacetoxyhexadecane; heptanol;
5-methyl-2-phenyl-1H-indole; 2-butyl 1-
octanol

Suppression of conidial
germination, sporulation, fungal
population, mycelial growth and
germ-tube elongation

In vitro on
synthetic media
and in vivo on
rice

Mannaa and
Kim (2018)

Pseudomonas donghuensis F. culmorum 1-undecan; methyl thiocyanate; S-methyl
thioacetate; dimethyl trisulphide;
dimethyl sulphide; HCN

Inhibition of myclium growth In vitro on
synthetic media

Ossowicki et al.
(2017)

B. megaterium, Pseudomonas
protegens

A. flavus *VNA Inhibition of sporulation, mycelial
growth, conidial germination and
reduction in AFs synthesis

In vivo on stored
rice grains and in
vitro on synthetic
media

Mannaa et al.
(2017)

B. velezensis F. oxysporum Dimethylsulfoxide; 1-butanol; 3-hydroxy-
2-butanone

Fungal growth inhibition In vitro on
synthetic media

Lim et al.
(2017)

Lactobacillus plantarum, Lactobacillus
fermentum, Lactobacillus brevis

A. niger, P. roqueforti Polyporic acid Fungal growth inhibition In vitro on
synthetic media

Valerio et al.
(2016)

Lactococcus sp. P. chrysogenum, A. niger Butyl phenol Reduction of mycelium growth In vivo on wheat
grains and in
vitro on synthetic
media

Varsha et al.
(2015)

Lactobacillus paracasei Penicillium spp. Diacetyl Suppression of mycelium growth In vitro on
synthetic media
and in vivo in
yogurt

Aunsbjerg
et al. (2015)

B. cereus B.amyloliquefaciens,
B. subtilis

A. parasiticus, A. flavus,
A. clavatus, A. niger,

Ethyl acetate; 1-butanol; acetic acid;
carbon disulphide; 3-methylbutanoic
acid; propanone

Mycelium growth inhibition In vitro on
synthetic media

Chaves-López
et al. (2015)

B. amyloliquefaciens F. graminearum VNA Inhibition of fungal mycelial mass
mycotoxin synthesis

In vitro on
synthetic media

Shi et al. (2014)

Burkholderia ambifaria Alternaria alternata Phenylpropanone; dimethyl Trisulphide;
4-octanone; 2-undecanone;
methylmethanethiosulfonate; dimethyl
disulphide

Mycelial growth inhibition In vitro on
synthetic media

Groenhagen
et al. (2013)

Burkholderia tropica F. culmorum Limonene; alpha-pinene; ocimene Mycelial growth inhibition Plant root
protection and
dish plate
growth assay

Tenorio-
Salgado et al.
(2013)

506
Z
.U

L
H
A
SSA

N
ET

A
L.



Lactobacillus sanfranciscensis,
Lactobacillus reuteri, Lactobacillus
pontis, Lactobacillus hammesii,
Lactobacillus plantarum

A. niger, P. roqueforti Monohydroxy octadecenoic acid; coriolic
acid

Mycelial growth inhibition In vitro on
synthetic media

Black et al.
(2013)

B. amyloliquefaciens F. oxysporum 2,3,6-trimethyl-phenol; pentadecane;
tetradecane

Mycelial growth inhibition In vitro on
synthetic media

Yuan et al.
(2012)

B. amyloliquefaciens, B. subtilis P. crustosum and
P. italicum

3-hydroxy-2-butanone (acetoin) Inhibition of germ tube elongation,
fungal radial growth and spore
germination

In vitro on
synthetic media
and in vivo in
citrus (valencia)

Arrebola et al.
(2010)

Lactobacillus plantarum A. flavus 3,6-bis(2-methylpropyl)−2,5-
piperazinedione

Complete inhibition of mycelial
growth

In vivo on soybean Yang and
Chang
(2010)

Lactobacillus plantarum A. fumigatus, P. roqueforti 3-hydroxydecanoic acid; 3-phenyllactic
acid

Mycelial growth inhibition In vitro on
synthetic media
and in vivo on
grass silage

Broberg et al.
(2007)

Lactobacillus plantarum F. sporotrichioides,
A. fumigatus

3-phenyllactic acid Inhibition of fungal mycelium In vitro on
synthetic media

Ström et al.
(2002)

Note: This table is a summary of relevant findings on bacterial VOCs-mediated inhibition of mycotoxigenic fungi presented in descending chronological order. *VNA = Volatile Not Analysed.
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44–60% compared to unexposed controls. In in vivo testing on maize ears, volatile of
BL350-2 showed 88% inhibition of A. flavus and complete inhibition of AFs biosynthesis.
In a study by Saleh et al. (2021), we found that a B. megaterium strain (BM344-1) produ-
cing tetracosane and palmitic acid significantly inhibited toxigenic P. verrucosum,
A. flavus, and F. verticillioides by 67, 29% and 18%, respectively. Upon exposure to
BM344-1 volatiles, there was 100% inhibition of AFs, ochratoxin A (OTA) and fumoni-
sins (FUMs) synthesis by the three tested toxigenic fungi. In vivo tests performed on
maize ears showed that the inhibition of A. flavus (51%) by BM344-1 was higher,
whereas the effect on mycotoxin biosynthesis was lower compared to artificial media.
These differences strongly suggest that antifungal activities of bacterial strains are associ-
ated with other factors, such as the effect of substrate and the experimental setup.

The volatiles of B. simplex BS350-3 showed 1-octadecene, benzenemethanamine and
quinoline as the most bioactive molecules against toxigenic A. carbonarius and A. flavus
on coffee beans (Al Attiya et al., 2021). The level of AFs contamination in artificially
infected coffee beans was significantly lower (26.65 ± 3.33 μg/kg) in the existence of
BS350-3 volatiles, compared to the unexposed control coffee beans (63.60 ± 8.52 μg/
kg). Likewise, BS350-3 volatiles significantly inhibited OTA contamination at 1.88 ±
0.33 μg/kg by A. carbonarius as compared to unexposed infected coffee beans, where
the level was 4.13 ± 0.81 μg/kg (Al Attiya et al., 2021).

3.1.2. Lactic acid bacteria (LAB)
LAB constitute acid-tolerant, heterogenous bacteria producing acid as an end product of
carbohydrate fermentation (Salas et al., 2017), and are found in diverse ecological niches
including soil, human body, animals and plants (Broberg et al., 2007; Crowley et al.,
2013). LAB contribute significantly to agriculture industry in production and preser-
vation of food, particularly in the control of toxigenic fungi (Chalivendra & Ham,
2019; Dopazo et al., 2022; Gallo et al., 2021, 2022; Sadiq et al., 2019). In accordance
with their GRAS (Generally Considered as Safe) status, and some probiotic properties
(Crowley et al., 2013), LAB are regarded as green preservatives (Nasrollahzadeh et al.,
2022). The mode of action of LAB are diverse and involves the secretion of lytic
enzymes, production of antifungal volatiles, competition for nutrients and space, degra-
dation of produced mycotoxins, etc. (Nešić et al., 2021; Tilocca et al., 2020). LAB volati-
lome comprises a long list of antifungal molecules including 6-octadecenoic acid methyl
ester, pentadecane, 7-hexadecenal, phenol, 2-methyldecane, hexadecanoic acid methyl
ester, dotriacontane (Shehata et al., 2019), acetoin, diacetyl (Diaz et al., 2021), butyl
phenol (Varsha et al., 2015), cyclo (L-Phe-trans-4-OH-L-Pro), 3-phenyllactic acid
(Ström et al., 2002), polyporic acid (Valerio et al., 2016), 3,6-bis(2-methylpropyl)-2,5-
piperazinedion (Yang & Chang, 2010), 3-phenyllactic acid, 3-hydroxydecanoic acid
(Broberg et al., 2007), monohydroxy octadecenoic acid, coriolic acid (Black et al.,
2013) and acetic acid, propionic acid, 1,2 propanediol (Gallo et al., 2021, 2022).

Antifungal volatiles of LAB (Table 1) were shown to inhibit toxigenic Aspergillus
(Broberg et al., 2007; Gallo et al., 2022; Shehata et al., 2019), Penicillium (Aunsbjerg
et al., 2015; Yang & Chang, 2010) and Fusarium (Diaz et al., 2021; Ström et al., 2002;
Varsha et al., 2015), as well as their ability to produce mycotoxins. Acetoin and diacetyl
were identified as bioactive volatile molecules of Enterococcus faecium and Enterococcus
casseliflavus which resulted in 33% and 10% growth inhibition of F. verticillioides,
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respectively. In this study, Enterococcus spp. also inhibited FB1 synthesis by 89% (Diaz
et al., 2021). In another study, VOCs of Lactobacillus sp. RM1 showed antagonistic activi-
ties against toxigenic fungi and AFs and OTA synthesis in vitro. On wheat grains,
A. parasiticus was completely inhibited by bacterial volatiles for at least 2 weeks of co-
incubation. These antagonistic effects were mainly due to 6-octadecenoic acid methyl
ester, 2-methyldecane, pentadecane, 7-hexadecenal, phenol, hexadecanoic acid methyl
ester, dotriacontane (Shehata et al., 2019). Lactobacillus paracasei strain DGCC 2132
inhibited P. solitum and Penicillium sp. by producing a volatile (diacetyl) at pH 6.5
and 4.5, respectively (Aunsbjerg et al., 2015). A defined volume (200 μg/mL) of commer-
cial diacetyl successfully inhibited both fungi for 14 and 20 days, respectively. A summar-
ised account of antifungal activities of different LAB is presented in Table 1.

3.1.3. Pseudomonas spp.
There are several studies on the inhibitory role of volatiles synthesised and released by
Pseudomonas spp., against toxigenic fungi (Cordero et al., 2014; Lal et al., 2022;
Mannaa et al., 2017; Mannaa & Kim, 2018; Nazik et al., 2020; Ossowicki et al., 2017;
Wang et al., 2021). The VOCs mix of some hydrocarbons emitted by Pseudomonas fluor-
escens MGR12 significantly inhibited F. proliferatum both on rich and minimal media
(Cordero et al., 2014). Nazik et al. (2020) performed series of experiments to explore
the role of Pseudomonas aeruginosa volatiles against different representative strains of
A. flavus and A. fumigatus. Only in the volatile mix collected from the antagonistic
strains a number of bioactive molecules were identified, including methyl thiobutyrate,
2-undecanone, methyl thiocyanate, methyl thio isovalerate, heptane, 2-heptanone,
decanone, mercaptoacetone, 2-undecanol, 1-undecanol, 2-tridecanone and 2-dodeca-
none. Among these, methyl thiobutyrate, 2-undecanone and 2-heptanone, when tested
alone, showed strong antifungal activity against the tested Aspergilli. In contrast to the
reported results of Scott et al. (2019), Nazik et al. (2020) concluded that VOCs released
by P. aeruginosa never promote A. fumigatus growth (Table 1).

In another investigation, Ossowicki et al. (2017) reported the emission of volatiles
active against F. culmorum by a soil isolate of Pseudomonas donghuensis P482. The list
of molecules showing in vitro inhibitory effects includes S-methyl thioacetate, dimethyl
sulphide, dimethyl trisulphide, 1-undecan, methyl thiocyanate and HCN.

3.1.4. Streptomyces spp.
Streptomyces was believed to be the largest antimicrobial producing genus in the
twentieth century (Watve et al., 2001), and hence there exist several registered commer-
cial products based on Streptomyces strains (Bubici, 2018). Biocontrol activities of Strep-
tomyces spp., volatiles against toxigenic Aspergillus, Penicillium, Fusarium and Alternaria
are documented in several studies (Cho et al., 2017; Corral et al., 2020; Li et al., 2010; Lyu
et al., 2020; Wang et al., 2013). In an in vitro assay, the volatiles emitted by Streptomyces
alboflavus significantly inhibited A. flavus, F. moniliforme, A. niger, P. citrinum and
A. ochraceus. A major component of S. alboflavus TD-1 volatilome was identified as
2-methylisoborneol by GCMS (Wang et al., 2013). Similarly, Corral et al. (2020) tested
the volatiles of four maize and apple isolates of Streptomyces (S. kanamyceticus,
S. misionensis, S. cangkringensis and S. kanamyceticus) on Alternaria alternata and
F. solani. Bacterial volatiles (trans-2-hexenal as a major molecule) inhibited the fungal
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growth up to 96.7%. Lyu et al. (2020) exposed toxigenic A. parasiticus and A. flavus to the
VOCs emitted by Streptomyces yanglinensis strain 3–10, both in vitro and on peanuts
kernels. Bacterial volatiles repressed the expression of AFs biosynthesis genes along
with fungal sporulation, vegetative growth and conidial germination. Likewise, on
peanut kernels, bacterial volatiles showed significant inhibition of both fungal infection
and AFs biosynthesis. GCMS-based analysis showed high concentrations of 2-methyl-2-
bornene and 2-methylisoborneol in bacterial volatiles among 19 other compounds. Com-
mercial methyl 2-methylbutyrate showed the highest in vitro activity, suggesting it as a
major responsible for inhibition. S. alboflavus TD-1, an isolate from wheat bran pro-
duced two antifungal volatiles (dimethyl trisulphide and benzenamine), which strongly
inhibited A. flavus by suppressing growth of fungi and its AFs biosynthetic potential,
as evidenced by downregulation of key AFs synthesis genes (Yang et al., 2019).

3.1.5. Burkholderia spp.
The volatiles of a few species in the genus Burkholderia including, Burkholderia ambi-
faria (Groenhagen et al., 2013), Burkholderia tropica (Tenorio-Salgado et al., 2013),
Burkholderia gladioli (Elshafie et al., 2012) and Burkholderia cenocepacia (Chen
et al., 2020) have shown to produce inhibitory effects on toxigenic fungi and their
mycotoxin synthesis (Table 1). Elshafie et al. (2012) reported the production of
1-methyl-4-(1-methylethenyl)-cyclohexene, an antifungal volatile by B. gladioli active
against a range of toxigenic fungi such as A. flavus, A. niger, and P. expansum. Like-
wise, Chen et al. (2020) reported the antagonistic activity of B. cenocepacia against
F. solani and A. niger by producing volatile inhibitory molecules including indole,
dimethyl trisulphide, methyl salicylate, methyl benzoate, methyl anthranilate, benzyl
acetate, allyl benzyl ether and nonanoic acid. Like other bacteria, the volatiles of Bur-
kholderia showed inhibitory activities against toxigenic Aspergillus, Fusarium, Alter-
naria and Penicillium species (Chen et al., 2020; Elshafie et al., 2012; Groenhagen
et al., 2013; Tenorio-Salgado et al., 2013).

3.2. Antagonistic mechanism of bacterial volatiles

The precise mechanism of interaction of bacterial volatiles with toxigenic fungi resulting
in the suppression of fungal growth and mycotoxin biosynthesis is not well outlined.
However, diverse effects are reported on the fungal strains as well as the host commod-
ity/crop to produce biological effects (Schmidt et al., 2016, 2015; Tilocca et al., 2020). In
laboratory settings, inhibition of fungal growth and/or mycotoxin production are
primary criteria to declare/screen the biological agents (Al Attiya et al., 2021; Saleh
et al., 2021; Ul Hassan et al., 2019). In reality, the composition of volatiles produced
by any antagonistic strain is regulated by several physicochemical parameters including
the nature of microbial strains, substrate composition, existence of other microbes,
environmental conditions (temperature, vapour pressure, water activity) and the age
of bacterial cells (Corcuff et al., 2011; Effmert et al., 2012; Ezra & Strobel, 2003;
Lammers et al., 2022). To achieve optimal antifungal activity, it’s critical to validate
specific physicochemical conditions and environmental attributes. For instance, at 0.98
aw, 20 out of 59 Bacillus isolates inhibited both A. flavus and A. parasiticus. However,
on lower 0.95 aw, only 3 isolates showed their effectiveness (Bluma & Etcheverry,
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2006). Similarly, on maize kernel extract agar, Bacillus isolates from maize field displayed
a higher inhibition of F. verticillioides and A. flavus compared to the same strains being
cultured on PDA, suggesting specific nutritional requirements for optimal metabolite
biosynthesis (Palumbo et al., 2007). The lack of inhibitory activity by candidate/known
biocontrol agents on popular growth media are likely due to unavailability of desired
nutrients (Chalivendra et al., 2018), leading to poor growth and toxic metabolite syn-
thesis. Under such stress situations, antagonistic bacterial strains may also produce
growth-promoting substances and increase disease severity as well as mycotoxin pro-
duction (Cray et al., 2016). Additionally, microbes needing nutrient-rich media for the
production of inhibitory molecules might not be an economically viable choice for
field application (Chalivendra & Ham, 2019).

The reduction of mycelium growth may not necessarily be associated with the inhi-
bition of mycotoxin biosynthesis. There are several reports on enhanced mycotoxicity
by Fusarium and Aspergillus when mycelial growth was inhibited (Santiago et al.,
2015). Chalivendra et al. (2018) tested 29 Bacillus isolates for their antifungal and anti-
aflatoxigenic potential on A. flavus. In total, 3 isolates inhibited A. flavus growth,
while 26 were able to suppress AFs synthesis. These findings suggest that screening for
biocontrol activity should include both the effect on fungal growth as well as on myco-
toxin biosynthesis, to reduce the chances of losing effective strains. A mycotoxin biocon-
trol cocktail could include microbial strains with different inhibitory potential over a
range of species. Another possibility is to include microbial strains with strong myco-
toxin inhibiting (but no antifungal) activity with fungicides for a robust toxin control
measure (Ons et al., 2020).

HCN, a common inorganic volatile, leads to production of cyanide ions, which are
known inhibitors of metallic enzymes such as cytochrome c oxidases. The inhibition
of key fungal enzymes consequently leads to a cascade of events passing over the
impaired function and finally death (Effmert et al., 2012). Antifungal effects include
the suspension of hyphal growth inducing cell injury, thereby affecting mycotoxins syn-
thesis and stability (Chalivendra & Ham, 2019). In many fungi-bacteria interactions, it
has been reported that exposed fungi recover once removed from the bacterial volatiles
environment, suggesting a clear fungistatic effect, while in others the effects of bacterial
compounds are irreversible (Chalivendra & Ham, 2019; DeFilippi et al., 2018).

Bacterial volatiles interact with cell wall of target fungi by releasing enzymes as
reported by Tamreihao et al. (2016). In a study, on exposure to caryolan-1-ol (a major
volatile) of Streptomyces spp, Cho et al. (2017) reported inhibition of endomembrane
systems of target fungi.

4. Yeast

4.1. Antifungal yeast volatilome

Application of yeast volatile molecules in the protection of food crops and their products
have several advantages over synthetic fungicides (Freimoser et al., 2019; Tilocca et al.,
2020). Yeasts in general are easy to cultivate in cheaper growth media without costly
equipment, are safer to handle in BSL1 facilities and are Generally Regarded As Safe
(GRAS) organisms (Breuer & Harms, 2006; Ebert et al., 2017; Papp et al., 2021;
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Table 2. Summary of antagonistic yeast species/strains, their target toxigenic fungi, bioactive volatile molecule(s) and experimental application.
Antagonistic yeast Target fungi Main biomolecules Main effects Experimental setup Reference

Hanseniaspora uvarum,
H. opuntiae

A. flavus, A. niger Octanoic acid; 2-phenethyl
acetate; furfuryl acetate

Inhibition of fungal mycelial mass,
spore germination, repression of
aflR, pks genes, non-sporulation
of hyphae

In vivo on figs and in vitro
on synthetic media

Galván et al.
(2022)

Candida pyralidae, Pichia
kluyveri

P. expansum *VNA Inhibition of mycelial growth In vivo on apple Gomomo et al.
(2022)

Cyberlindnera jadinii A. parasiticus, A. niger, P. verrucosum. VNA Fungal growth inhibition In vitro on synthetic
media

Alkuwari et al.
(2022)

Saccharomyces cerevisiae,
Candida intermedia,
Lachancea thermotolerans

A. flavus VNA Fungal growth and AFs synthesis
inhibition

In vitro on synthetic
media

Ul Hassan et al.
(2021)

Kluyveromyces marxianus P. verrucosum, P. italicum, P. expansum,
P. digitatum, P. camemberti,
F. verticillioides, F. oxysporum, F. solani,
F. graminearum, F. subglutinans,
F. proliferatum, F. culmorum,
A. westerdijkiae, A. carbonarius,
A. ochraceus, A. parasiticus,
A. carbonarius, A. niger

Tetracosane;
hexatriacontane;
docosane; heptacosane;
eicosane; nonadecane

Mycelial growth inhibition,
extension in shelf life of tomatoes
and grapes

In vitro on synthetic
media and in vivo
protection of tomatoes
pathogenic
F. oxysporum

Alasmar et al.
(2021)

Debaryomyces hansenii F. avenaceum, P. roqueforti 2-pentanone; acetic acid;
acetone; 2-phenylethanol;
3-methylbutanoic acid

Inhibition of fungal mycelium and
spore germination

In vitro on synthetic
media

Huang et al.
(2021)

Hanseniaspora uvarum A. parasiticus, A. westerdijkiae, A. steynii,
A. carbonarius, A. flavus

VNA Inhibition of fungal growth and
detoxification of AFs and OTA

In vitro on synthetic
media

Gómez-
Albarrán et al.
(2021)

H. uvarum, H. opuntiae A. flavus 2-methylbutanoic acid;
acetic acid; isobutyric acid

Fungal growth and AFs synthesis
inhibition, suppression of aflR
gene expression

In vitro on synthetic
media

Tejero et al.
(2021)

Aureobasidium pullulans,
Meyerozyma guilliermondii

P. expansum, P. digitatum VNA Inhibition of fungal mycelial
growth and spores germination

In vitro on synthetic
media

Agirman and
Erten (2020)

Meyerozyma quilliermondii/
Meyerozyma caribbica,
Pichia occidentalis, Pichia
kudriavzevii

P. chrysogenum, P. expansum, A. flavus,
F. poae

Ethyl esters; phenylethyl
alcohol; acetate ester

Reduction in mycelial growth In vitro on synthetic
media

Choińska et al.
(2020)

(Continued )
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Table 2. Continued.
Antagonistic yeast Target fungi Main biomolecules Main effects Experimental setup Reference

Candida nivariensis A. flavus 1-pentanol Inhibition of fungal growth and
spores germination, reduction in
AFs synthesis

In vitro on synthetic
media

Jaibangyang
et al. (2020)

Candida intermedia A. carbonarius 2-phenylethanol Inhibition of fungal growth and
mycotoxins synthesis, reduction
in protein synthesis,
mitochondrial metabolism,
detoxification mechanism

In vitro on synthetic
media

Tilocca et al.
(2019)

Streptomyces alboflavus A. ochraceus Dimethyl trisulphide;
denzenamine

Inhibition of spore germination and
mycelial growth, fungal
morphological alteration,
membrane disruption, reduced
sporulation, inhibition

In vitro on synthetic
media

Yang et al.
(2018)

Cyberlindnera jadinii A. carbonarius, A. ochraceus 2-phenylethanol Inhibition of mycelial growth and
mycotoxins synthesis,
downregulation of pks synthase,
peptide synthase, laeA and veA
genes

In vivo on grapes berries
and in vitro on
synthetic media

Farbo et al.
(2018)

Saccharomyces cerevisiae,
Metschnikowia pulcherrima,
Wickerhamomyces
anomalus

A. carbonarius, P. digitatum Ethyl acetate Inhibition of fungal growth In vitro on synthetic
media and in vivo on
strawberries

Oro et al. (2018)

Lachancea thermotolerans A. parasiticus, P. verrucosum,
F. graminearum

VNA Inhibition of fungal mycelium,
sporulation and mycotoxins
synthesis

In vitro on synthetic
media and in vivo on
cherry tomatoes

Zeidan et al.
(2018)

Candida sake P. expansum, Alternaria alternata, VNA Mycelial growth inhibition In vitro on synthetic
media and in vivo on
apple

Arrarte et al.
(2017)

H. opuntiae, Metschnikowia
pulcherrima

P. expansum VNA Delayed fungal growth In vivo on cherries de Paiva et al.
(2017)

Debaryomyces hansenii Aspergillus sp., Fusarium spp. VNA Reduction in fungal growth 97.2-
98.3%, delayed fungal growth,
reduction in FUM synthesis by
58.9%

In vivo on maize grains
and in vitro on
synthetic media

Medina-
Córdova et al.
(2016)

(Continued )
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Table 2. Continued.
Antagonistic yeast Target fungi Main biomolecules Main effects Experimental setup Reference

Saccharomyces and non-
Saccharomyces

A. caelatus, A. versicolor, A. terreus,
A. carbonarius

VNA Inhibition in mycelial growth, germ
tube elongation and spore
germination

In vitro on synthetic
media

Nally et al.
(2015)

Pichia anomala A. flavus 2-phenylethanol Fungal growth inhibition and
suppression of AFs synthesis
genes

In vitro on synthetic
media

Chang et al.
(2015)

Debaryomyces hansenii P. verrucosum 2-methyl-1-propanol 2-
methyl – 1-butanol

Growth reduction of fungi In vivo exposure on
fermented sausages

Núñez et al.
(2015)

Aureobasidium pullulans P. expansum, P. digitatum 2-phenylethanol Inhibition of spore germination,
spread and mycotoxins synthesis

In vitro on synthetic
media and in vivo on
apples and oranges

Di Francesco
et al. (2015)

Pichia anomala A. flavus 2-phenylethanol Inhibition of spore germination and
expression of AFs synthesis genes

In vitro on synthetic
media

Hua et al.
(2014)

Lachancea thermotolerans,
Candida friedrichii,
Cyberlindnera jadinii,
Candida intermedia

A. carbonarius VNA Inhibition of fungal vegetative
growth on synthetic media and
grapes berries

In vitro on synthetic
media and in vivo on
grape berries

Fiori et al.
(2014)

Pichia pastoris P. italicum 2-phenylethanol Inhibition of conidial germination
and growth of fungi,
mitochondrial membrane
abnormalities

In vitro on synthetic
media

Liu et al. (2014)

Cryptococcus victoriae,
P. membranifaciens

P. expansum VNA Inhibition of mycelial spread and
spore germination

In vitro on synthetic
media and in situ on
pear

Lutz et al.
(2013)

Aureobasidium pullulans P. expansum VNA Mycelial growth inhibition In vitro on synthetic
media and in vivo on
infected apples

Mari et al.
(2012)

Candida altose A. brasiliensis (formerly A. niger) Phenethyl alcohol; isoamyl
alcohol; isoamyl acetate

Inhibition of spore germination In vitro on synthetic
media

Ando et al.
(2012)

Hanseniaspora uvarum A. carbonarius 2-phenylethyl acetate Inhibition of mycelial growth and
mycotoxins synthesis

In vitro on synthetic
media

Masoud and
Kaltoft (2006)

Hanseniaspora uvarum,
P. anomala, P. kluyveri

A. ochraceus 2-phenyl ethyl acetate;
isoamyl alcohol; isobutyl
acetate; ethyl propionate;
ethyl acetate

Suppression of mycelial growth
and OTA production

In vitro on synthetic
media

Masoud et al.
(2005)

This table is a summary of relevant findings on yeast VOCs-mediated inhibition of mycotoxigenic fungi presented in descending chronological order. *VNA = Volatile Not Analysed.
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Spadaro & Droby, 2016). Table 2 summarises recent studies (after the year 2000) on the
yeast volatiles, their spectrum of antifungal activities, and mode of action to minimise the
impact of toxigenic fungi and mycotoxins in food.

4.1.1. Hanseniaspora spp.
Two species of genus Hanseniaspora, namely H. uvarum and H. opuntiae are known for
postharvest protection of food by releasing VOCs effective against toxigenic Aspergillus
(Apaliya et al., 2018; Galván et al., 2022; Gómez-Albarrán et al., 2021; Masoud & Kaltoft,
2006; Masoud et al., 2005; Tejero et al., 2021), Penicillium (de Paiva et al., 2017) and
Fusarium (Hameed et al., 2019). The antagonistic volatiles of Hanseniaspora spp., are
mainly acids including acetic acid, isobutyric acid, 2-methylbutanoic acid, octanoic
acid (Galván et al., 2022; Tejero et al., 2021) or 2-phenethyl acetate, furfuryl acetate
(Galván et al., 2022; Masoud et al., 2005), isoamyl alcohol, ethyl propionate, isobutyl
acetate and ethyl acetate (Masoud & Kaltoft, 2006).

4.1.2. Debaryomyces spp.
A Debaryomyces hansenii isolate from marine environment showed several biotechno-
logical benefits (Breuer & Harms, 2006; Medina-Córdova et al., 2018), including the
reduction of toxigenic fungal growth and mycotoxins in different food matrices
(Huang et al., 2021; Medina-Córdova et al., 2016; Núñez et al., 2015; Gil-Serna
et al., 2011; Gil-Serna et al., 2009). This yeast is considered as safe (BIOHAZ, 2012)
by European Food Safety Authority (EFSA) and interacts with the toxigenic fungi
using different mechanisms of action including downregulation of the expression of
mycotoxin synthesis genes (Gil-Serna et al., 2011) and synthesis of antifungal volatiles
(Núñez et al., 2015). In a study by Medina-Córdova et al. (2016), volatiles of
D. hansenii antagonise the growth of Aspergillus sp., F. subglutinans and
F. proliferatum at 97–98%. In in vivo testing, the volatiles of this yeast were able to
entirely suppress growth on maize grains, showing a partial inhibition of theses
fungi and disease appearance. Additionally, there was 60% reduction in FUMs syn-
thesis by F. subglutinans upon exposure to yeast VOCs. In another study,
D. hansenii volatiles suppressed toxigenic Penicillium spp. at >60% in co-culture exper-
iments (Núñez et al., 2015). The main antifungal volatile molecules released by
D. hansenii include 2-methyl-butanol, 2-methyl-propanol, 3-methyl-butanol, (Núñez
et al., 2015), 2-pentanone, acetic acid, acetone, 2-phenylethanol and 3-methylbutanoic
acid, (Huang et al., 2021). In the Table 2, antifungal activities of Debaryomyces spp.,
are summarised.

4.1.3. Saccharomyces spp.
Saccharomyces spp. play an important role in food safety particularly in controlling fungi
and mycotoxins in food products (Papp et al., 2021). Saccharomyces cerevisiae volatiles
exert inhibitory effects on growth and on mycotoxin biosynthesis (Nally et al., 2015;
Oro et al., 2018; Ul Hassan et al., 2021). The VOCs-mediated antagonistic activity of Sac-
charomyces cerevisiae is mainly due to ethyl acetate (Oro et al., 2018), as reported against
A. flavus (Ul Hassan et al., 2021), A. caelatus, A. versicolor, A. terreus, A. carbonarius
(Nally et al., 2015) and Penicillium spp. (Oro et al., 2018).
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4.1.4. Candida spp.
Candida spp. demonstrated significant inhibition of fungi including A. flavus
(Jaibangyang et al., 2020; Ul Hassan et al., 2021), A. carbonarius (Farbo et al., 2018;
Tilocca et al., 2019; Tilocca et al., 2020), A. ochraceus (Farbo et al., 2018), A. niger
(Ando et al., 2012), Penicillium (Arrarte et al., 2017; Gomomo et al., 2022) and Alter-
naria spp., (Arrarte et al., 2017) as well as their mycotoxin synthesis. The volatiles of
Candida pyralidae (Gomomo et al., 2022), Candida intermedia (Tilocca et al., 2019; Ul
Hassan et al., 2021), Candida nivariensis (Jaibangyang et al., 2020), Candida sake
(Arrarte et al., 2017), Candida friedrichii (Farbo et al., 2018; Fiori et al., 2014) and
Candida maltosa (Ando et al., 2012) inhibited toxigenic fungi. The bioactive volatile
molecules produced by different Candida species include isoamyl alcohol, phenethyl
alcohol, isoamyl acetate (Ando et al., 2012), 2-phenylethanol (Farbo et al., 2018) and
1-pentanol (Jaibangyang et al., 2020). Candida volatiles inhibit fungal sporulation,
mycelial growth and mycotoxin synthesis (Farbo et al., 2018; Jaibangyang et al.,
2020; Ul Hassan et al., 2021) by direct cytolytic effects (Fiori et al., 2014), downregu-
lating the expression of relevant pathway genes (Farbo et al., 2018) or mitochondrial
metabolic activity (Tilocca et al., 2019).

4.1.5. Pichia/Wickerhamomyces spp.
The biocontrol efficacy of Pichia spp. by releasing inhibitory volatiles play an important
role against pre- and post-harvest spoilage fungi (Gomomo et al., 2022; Masoud et al.,
2005). In this regard, Pichia kluyveri (Gomomo et al., 2022; Masoud et al., 2005),
Pichia kudriavzevii, Pichia occidentalis (Choińska et al., 2020), Pichia pastoris (Liu
et al., 2014), P. membranifaciens (Lutz et al., 2013), P. anomala (Chang et al., 2015; Con-
tarino et al., 2019; Hua et al., 2014; Masoud et al., 2005; Oro et al., 2018) are well known
for their inhibitory role. In a study on P. anomala strain WRL-076, Hua et al. (2014)
reported production of antifungal volatile 2-phenylethanol which resulted in depressed
spore germination, suppression of vegetative growth and of AFs synthesis in A. flavus.
The inhibition of AFs synthesis was associated with the 10,000-fold downregulation of
AFs biosynthetic genes, as well as altered chromatin modifying genes.

4.1.6. Lachancea and Cyberlindnera spp.
There are a couple of studies describing the role of volatiles emitted by Lachancea and
Cyberlindnera spp., in the biocontrol of Aspergillus, Penicillium and a few Fusarium
fungi. The first ever work was performed by Fiori et al. (2014) on Lachancea thermoto-
lerans 751 and Cyberlindnera jadinii 273 against OTA-producer strains of A. carbonarius.
The yeast volatiles significantly inhibited growth on detached grape berries and on syn-
thetic media. Later on, toxigenic species of Aspergillus (Alkuwari et al., 2022; Farbo et al.,
2018; Tilocca et al., 2019; Ul Hassan et al., 2021; Zeidan et al., 2018), Penicillium and
Fusarium (Alkuwari et al., 2022; Zeidan et al., 2018) were exposed to the same yeast vola-
tiles to investigate the mechanism of antagonism (Table 2). Zeidan et al. (2018) exposed
mycotoxin-producing strains of F. graminearum, P. verrucosum and A. parasiticus to the
volatiles emitted by L. thermotolerans and observed up to 48% reduced mycelium growth
and much higher (96%) depression in their mycotoxin biosynthesis. In another study,
Farbo et al. (2018) reported the precise nature of bioactive compound in the volatile
blend of L. thermotolerans and C. jadinii as 2-phenylethanol (2-PE): this compound is
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involved in the inhibition of vegetative growth, sporulation and downregulation of the
key genes (pks, laeA, veA and others) involved in growth and mycotoxin synthesis.
Taking forward the findings of Farbo et al. (2018), a step ahead proteomic investigation
was carried out by Tilocca et al. (2019) to explore the metabolic profile of A. carbonarius
exposed to 2-PE. An array of metabolic alterations was observed in the VOCs – exposed
A. carbonarius, including the reduction in protein synthesis, inhibition of fungal growth
and defence system. Among the biocontrol benefits, more recently it was demonstrated
that fermentation processes involving L. thermotolerans improve the sensory profiles of
wines (Hranilovic et al., 2022; 2021).

4.1.7. Metschnikowia spp.
There is plenty of information about the antifungal efficacy of Metschnikowia spp., cell-
free extracts against phytopathogenic and mycotoxin-producing fungi (Settier-Ramírez
et al., 2021), however only one species, i.e. Metschnikowia pulcherrima is known for its
antifungal volatiles (de Paiva et al., 2017; Oro et al., 2018). In in vitro assays, VOCs
released by M. pulcherrima, the major component being ethyl acetate, were able to sup-
press the growth of A. alternata and A. carbonarius. Likewise, ethyl acetate fumigation
completely protected apple fruit from spoilage and fungal infection. In another study,
M. pulcherrima L672 volatiles significantly delayed the infection by P. expansum
(a patulin producer) on sweet cherries (de Paiva et al., 2017).

4.1.8. Cryptoccocus spp.
Cryptoccocus victoriae and Cryptococcus albidus are two important species of the genus
Cryptoccocus known for their antifungal volatiles. Apart from fungal spore germination
inhibition, Lutz et al. (2013) demonstrated 100 and 62% inhibition of P. expansum
growth upon exposure to C. albidus and C. victoriae volatiles, respectively. The precise
nature of antifungal volatiles was not studied.

Among yeast species being registered or commercialised as plant protecting agents
against different pathogens, S. cerevisiae, M. fructicola, A. pullulans, C. albidus and
C. oleophila are preminent in the list of approved yeasts (Freimoser et al., 2019).
However, biocontrol products based solely on the antifungal volatiles and their contact-
less application for the preservation of food is still awaited.

4.2. Antagonistic mechanism of yeast volatiles

Pre-harvest application of yeast’s VOC for the control of toxigenic fungi in agricultural
settings has received marginal attention. This is because of low molecular weight of
VOCs, leading to less chances to concentrate enough in the open environment to interact
with fungal communities (Freimoser et al., 2019; Papp et al., 2021; Tilocca et al., 2020).
However, their use in post-harvest storage is applicable, where there are enough chances
particularly in a closed environment to interact with their target fungal strains and inhibit
their growth and/or mycotoxin synthesis (Tilocca et al., 2020). There are several mech-
anisms by which yeast VOCs antagonise the growth and mycotoxins accumulation
activities of toxigenic fungi. Among these, down regulation of mycotoxins pathways
genes in VOCs exposed fungi is widely accepted (Farbo et al., 2018). However, this is
not a general mechanism of antagonism involved in all type of fungal communities in
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any situation. Farbo et al. (2018), in their same study noted no effect in gene expression of
A. ochraceus, whereas A. carbonarius was strongly inhibited. Exposure of A. flavus to
2-phenylethanol (a major bioactive molecule in yeast volatilomes) resulted in suppressed
AFs synthesis by inhibition of expression of all pathway genes (Chang et al., 2015), while
at high 2-phenylethanol exposure levels fungal protein and amino acid synthesis was
strongly altered (Liu et al., 2014). A proteomic investigation on a toxigenic
A. carbonarius by Tilocca et al. (2019) revealed that yeast VOCs significantly target
protein synthesis, detoxification of toxic metabolites, mitochondrial metabolism and
their proliferative activity.

Another direct interaction of the yeast VOCs is the permeability changes in the target
fungi membranes, thereby leading to abnormal diffusion of molecules and ions and even-
tually the death of the affected cells (Ando et al., 2012; Di Francesco et al., 2015; Simon-
cini et al., 2015). This further suggested that less volatile molecules, staying for a longer
time on the membrane of fungi, might have stronger inhibitory potential on fungal cells.
Pennerman et al. (2019) studied the effect of a volatile compound (1-octen-3-ol) on two
non-toxigenic strains of P. expansum and found that exposed fungi were able to syn-
thesise more patulin as compared to unexposed ones. He correlated this increased pro-
duction with the upregulation of glucose oxidase.

5. Filamentous fungi

5.1. Role of fungal volatiles in the biocontrol of mycotoxin-producing fungi

The role of filamentous fungal volatiles in the biocontrol of mycotoxin-producing fungi
has least been studied and largely limited to the post-harvest decay prevention of fruits
and vegetables (Mari et al., 2016). VOCs of a few filamentous species from genus Asper-
gillus, Penicillium, Ceratocystis, Muscodor, Galactomyces, Trichoderma have been tested
to be potentially inhibitory towards toxigenic fungi. However, Muscodor albus and
non-aflatoxigenic A. flavus have been best characterised so far for their biocontrol vola-
tiles (Mari et al., 2016; Moore, 2022). Below is a brief account of both of these genera and
details are reported in Table 3.

5.1.1. Muscodor spp.
Muscodor albus was discovered in late 1990s as an excellent bio-preservation candidate
for the post-harvest fumigation of fruits and vegetables. The bioactive molecules in the
volatiles of M. albus were identified by Ezra and Strobel (2003) as propanoic acid and
2-methyl-ester. These volatiles showed strong antifungal activity against toxigenic and
phytopathogenic F. solani, A. ochraceus, and P. expansum. In the following year,
Mercier and Jiménez (2004) reported isobutyric acid and 2-methyl-1-butanol as volatiles
of M. albus being effective against P. expansum. The exploration of bio-preservative
potential of M. albus continued on, and Corcuff et al. (2011) reported that fumigation
of potatoes with M. albus volatiles can protect tubers from important pathogens includ-
ing F. sambucinum. In a more extensive work, Braun et al. (2012) found a strong anti-
fungal activity of M. albus volatiles on a range of toxigenic fungi including A. flavus,
A. carbonarius, A. ochraceus, A. niger, F. graminearum and P. verrucosum (Table 3).
In their study, 2-methyl-butanol and isobutyric acid were reported as major antifungal
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biomolecules. Meanwhile, other M. albus strains were isolated, but their activity against
fungal pathogens was not comparable, nor the nature of their produced volatile mol-
ecules showed any similarity with good biocontrol strains. However, in spite of its
huge biofumigation potential, M. albus was not able to obtain registration as a commer-
cial bio-preservative product by the US Environment Protection Agency, because of tox-
icity of one of its metabolites (Mari et al., 2016).

5.1.2. Aspergillus spp.
Among all mycotoxins, control of AFs and their producing fungi remained a major focus
of the scientific communities for decades (Ji et al., 2016; Shabeer et al., 2022). This is
mainly because of the range of their toxic effects, and established regulation by the
food regulatory authorities in most of the developed nations as well as in several devel-
oping countries (van Egmond et al., 2007). Thus, in many of the published reports, the
biocontrol efforts are directed mainly towards A. parasiticus and A. flavus, the two major
producers of AFs in food (Moore, 2022). In these efforts, the use of non-aflatoxigenic
fungal strains (A. flavus) for the control of aflatoxigenic strains showed the most
prominent role (Moore et al., 2021; Moore, 2022). It is advisable to employ the non-toxi-
genic intra-specific strains against the toxigenic strains to achieve the optimal benefits
because these strains normally share the same ecological niche. Non-aflatoxigenic
strains are presumably more aggressive colonisers than the toxigenic ones, as it’s gener-
ally assumed that mycotoxins synthesis in fungi is inversely associated with mycelial
growth (Ehrlich et al., 2011), and for a good biocontrol agent good colonising property
is a prerequisite, so that it can out-compete toxigenic strains (Moore, 2022). According to
Horn and Dorner (2009) non-toxigenic fungal strains retain the ability to degrade the
products of toxigenic strains or convert and then potentially utilise them for their meta-
bolic processes (Maxwell et al., 2021). Application of high dose and annual rec-
ommended use of non-aflatoxigenic fungal strains not only protect the subjected crops
in pre-harvest, but their biocontrol effects diffuse to the neighbouring agricultural
plots (Weaver & Abbas, 2019) as well as to the post-harvest storage of grains (Alberts
et al., 2017; Dorner & Cole, 2002).

There is overwhelming evidence on the application of intraspecies fungal volatile in
the control of counterpart toxigenic species (Ehrlich, 2014; Singh & Lee, 2018) that
can display a significant activity in the inhibition of toxigenic fungi (Table 3). Application
of fungal volatiles in biocontrol of mycotoxins and toxigenic fungi has beenmost success-
ful among all other microbial volatiles.

The story of potentially safe biocontrol of A. flavus and AFs started with in discovery
of a non-aflatoxigenic strain of A. flavus (AF36) back in 1980s, which was later on
(Ehrlich & Cotty, 2004) found to be having a mutation in a key cluster gene pksA
(aflC). Meantime, another aggressive coloniser, the non-aflatoxigenic A. flavus
NRRL21882, was discovered and used in a biocontrol formulation (Alfa-Guard®) for
application on the peanuts field (Dorner & Lamb, 2006). The successful field trials of
AF36 and NRRL21882 led to their US environmental protection agency (EPA)-approval
for pre-harvest use only. Nowadays, two commercial formulations AF36, namely Prevail®
(used in western part of USA) and Alfa-Gurad® (licenced by Syngenta) are being used
Eastern US and other countries like Turkey (Lavkor et al., 2019) and Brazil (Reis et al.,
2020) for the effective control of A. flavus and AFs. Interestingly, Alfa-Guard® apart
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Table 3. Biocontrol activities of filamentous fungal species/strains against mycotoxigenic fungi, major bioactive volatile molecule(s) and experimental application.
Antagonistic
filamentous fungi Target toxigenic fungi Main biomolecules Main effects Experimental setup Reference

Trichoderma
koningiopsis

F. oxysporum Twenty-four compounds
were detected, dominated
by alkenes; alkanes and
ester

Inhibition of F. oxysporum mycelium
by 43.68%, delayed conidial
germination and germ tube
elongations

In vitro on synthetic
media

You et al. (2022)

A. flavus volatiles Three A. flavus strains were non-aflatoxigenic and
non-CPA – producing, a toxigenic, and toxigenic
producing AFs and CPA, respectively. LA4 (SRRC
594) produces B + G AFs and CPA species

Decane; 3-octanone; 2,3-
dihydrofuran

Individual volatile molecules showed
minimal effect on mycelial growth.
Combination of all three molecules
inhibited fungal growth and AFs
and CPA synthesis

In vitro on synthetic
media

Moore et al.
(2022)

Trichoderma
atroviride

F. oxysporum 6-pentyl-2H-pyran-2-one Inhibition of fungal mycelium In vitro on synthetic
media and in vivo
on tomato seedling

Rao et al. (2022)

A. flavus Two A. flavus LA2 and LA3, one A. parasiticus LA4 Trans-2-methyl-2-butenal; 3-
octanone; 2,3 dihydrofuran
and decane

Inhibition of AFs and CPA synthesis In vitro on synthetic
media

Moore et al.
(2021)

Non-aflatoxigenic
A. flavus
NAFFHB396 and
707

A. flavus *VNA Inhibition of AFs synthesis up to
99.33%

In vivo on peanuts Yan et al. (2021)

Galactomyces
geotrichum
G. candidum,
G. candidum

F. proliferatum Fusarium sp. VNA Suppression of mycelial growth and
conidial germination

In vitro on synthetic
media and in vivo
on tomatoes

Cai et al. (2021)

Sarocladium
brachiariae

F. oxysporum 2-methoxy-4-vinylphenol;
3,4-dimethoxystyrol;
caryophyllene

Induction of plasma membrane aging
process, expression of chitin
synthases genes leading to cell wall
damage and accumulation of ROS

In vitro on synthetic
media

Yang et al.
(2021)

Hypoxylon
anthochroum

F. oxysporum Terpinolene; monoterpenes
eucalyptol; 2-methyl-1-
butanol; ocimene;
phenylethyl alcohol

Inhibition of fungal growth, alteration
in hyphal morphology, cell
membrane permeability, and
inhibition of hyphal cell respiration

In vivo on cherry
tomato fruit and in
vitro on synthetic
media

Medina-Romero
et al. (2017)

Ceratocystis
fimbriata

F. verticillioides, F. oxysporum, P. italicum VNA Inhibition of conidial production,
mycelial growth, and germ tube
elongation

In vitro on synthetic
media

Li et al. (2015)

(Continued )
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Table 3. Continued.
Antagonistic
filamentous fungi Target toxigenic fungi Main biomolecules Main effects Experimental setup Reference

P. expansum strain Six P. expansum strains Phenethyl alcohol and
geosmin

Inhibition of fungal growth In vitro on synthetic
media

Rouissi et al.
(2013)

Nodulisporium spp. P. digitatum, P. expansum, F. oxysporum Eucalyptol Inhibition of mycelial growth In vitro on synthetic
media

Suwannarach
et al. (2013)

Muscodor albus A. ochraceus. A. flavus, A. carbonarius, A. niger,F.
graminearum, F. culmorum, P. verrucosum,

2-methyl-1-butanol;
isobutyric acid

Suppression and/or killing of conidial
germination

In vitro on synthetic
media under
controlled
environment

Braun et al.
(2012)

Muscodor albus F. sambucinum Ethanol; 2 and 3-methyl-1-
butanol; isobutyric acid

Inhibition of fungal infections In vivo on potatoes Corcuff et al.
(2011)

P. decumbens A. sydowii (+)-Thujopsene Fungal growth inhibition In vitro on synthetic
media

Polizzi et al.
(2011)

Oxyporus
latemarginatus

Alternaria alternata, F. oxysporum 5-pentyl-2-furaldehyde Inhibition of fungal growth In vitro on synthetic
media

Lee et al. (2009)

Muscodor albus P. expansum 2-methyl-1-butanol;
isobutyric acid

Inhibition of fungal mycelia and bio-
preservation of apples

In vivo study on
infected apples

Mercier and
Jiménez
(2004)

Muscodor albus F. solani, A. ochraceus Propanoic acid; 2-methyl-
ester

Inhibition of mycelial growth In vitro on synthetic
media

Ezra and Strobel
(2003)

Note: This table is a summary of findings on filamentous fungal volatiles mediated inhibition of toxigenic fungi and mycotoxins presented in the order of most recent to older. *VNA = Volatile
Not Analysed.
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from AFs control also protects maize crops from F. verticillioides and fumonisin con-
tamination (Reis et al., 2020). The success story of biocontrol strains kept on going
with the discovery of K49 (Abbas et al., 2006) in U.S.A. and A2085 (active ingredient
of AF-X1TM in Italy), MyToolBox Af01 used in maize crops in Serbia. All these strains
were either having single gene mutation (K49, AF36), absence of complete AFs genes
cluster (A2089, NRRL21882) or missing couple of cluster genes (MyToolBox Af01).
The technology of A. flavus biocontrol with the use of non-aflatoxigenic strains is still
evolving and a composite formulation of four non-aflatoxigenic strains in each Afla-
Safe® (being used in Africa) (Bandyopadhyay et al., 2016), and FourSureTM in U.S.A.
(Moral et al., 2020) are being practiced with high success. However, the mechanism of
action of these non-aflatoxigenic A. flavus strains is still not completely understood.
Competitive exclusion and competition for nutrients and space are certainly major
mechanisms, but these are not sufficient to fully explain the efficacy of biocontrol
strains. In recent years, the role of antagonistic volatiles is being explored in their biocon-
trol mechanism (Moore et al., 2021, 2022). Based on the volatile profiles of non-aflatoxi-
genic A. flavus (Lucca et al., 2010) in an in vitro environment, Moore et al. (2021) applied
3-octanone, trans-2-methyl-2-butenal, 2,3-dihydrofuran and decane against toxigenic
A. flavus strains. All the volatile molecules significantly inhibited AFs and later two mol-
ecules (2,3-dihydrofuran and decane) along with AFs synthesis inhibition, also suppress
cyclopiazonic acid CPA production (Moore et al., 2021). In another study, the same team
reported significant reduction in AFs and CPA synthesis in toxigenic A. flavus when
exposed to three VOCs of non-toxigenic A. flavus (i.e. 2,3-dihydrofuran, 3-octanone
and decane), while there was a minimal effect on fungal growth of toxigenic A. flavus
strain. To further investigate the antagonistic mechanism of action of non-aflatoxigenic
strains, Moore et al. (2019) hypothesised the possible role of extrolites produced by non-
aflatoxigenic A. flavus on the inhibition and AFs synthesis of toxigenic A. flavus. The
precise chemical nature of extrolites and their mode of action remain unexplored.

It has been more than a decade (Bandyopadhyay et al., 2019) on the successful com-
mercial application of non-aflatoxigenic fungi for the control of toxigenic A. flavus and
mycotoxins. However, Moore (2022) presents certain important considerations that
must be met to supplement continuous application as well as expand the knowledge
to the other toxigenic fungi and their toxins. These considerations are digging infor-
mation about the: (a) persistence of atoxigenic fungi under climatic stresses and particu-
larly their vulnerability to climate change (if any); (b) genetic stability of non-
aflatoxigenic strains, as fungi are existing and evolving since thousands of years, sexual
interaction might result in production of other mycotoxins; (c) efforts/managemental
practices to supplement the effectivity of atoxigenic fungi; and (d) outlining the
precise mode of action of atoxigenic strains.

Apart from the application of non-aflatoxigenic A. flavus, atoxigenic strains of other
fungi can be tested for their bio-preservation potential. For instance, Wani et al. (2010)
found the production of a volatile 2-PE by a strain of A. niger: this molecule is similar to
the one produced by yeasts for the inhibition of toxigenic A. flavus, A. carbonarius,
A. ochraceus (Chang et al., 2015; Farbo et al., 2018; Tilocca et al., 2019) and can poten-
tially be used as biocontrol means. The exploration of non-toxigenic fungal strains from
genus Aspergillus, Penicillium and Fusarium is continuing, with focus on their potential
for commercial application such as aggressiveness, genetic stability, environmental
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impact and ease and suitability in application. Below is a tabulated summary of such
efforts made in the years after 2000.

5.2. Volatilome of filamentous fungi: mode of action against toxigenic fungi

The precise mechanism of action of filamentous fungal volatiles in the control of toxi-
genic fungi and mycotoxins has not been fully elucidated. However, based on the
nature of biocontrol strains and their reported in vitro and in vivo activities, some
hypotheses can be inferred. The volatiles of biocontrol strains have shown genetic
effects such as altered expression levels in the key genes involved in the mycotoxins
synthesis (Moore et al., 2021) and those involved in cell membrane aging process
and expression of chitin synthase (Yang et al., 2021). There are different patterns of
genes alteration in the biocontrol strains, spanning from point mutation in a single
gene (Ehrlich & Cotty, 2004), missing some pathway genes (Yin et al., 2008), or com-
plete deletion of mycotoxin pathway gene cluster (Chang et al., 2005). Yet, there
might be other possibilities, probably at post-transcriptional level, as several non-
aflatoxigenic A. flavus strains are known to have intact gene clusters (Criseo et al.,
2008; Scherm et al., 2005). Moreover, aggressive colonisation of the substrate by
non-toxigenic strains suggests that competitive exclusion in terms of ‘fight for space
and nutrients’ is also operative in these fungi-fungi interactions (Mauro et al., 2018;
Yan et al., 2021).

Filamentous fungi may share with yeast the same antagonistic mechanisms of action
because the nature of their biomolecules is not different (Moore et al., 2021; Moore
et al., 2022; Rao et al., 2022; Yang et al., 2021). Wani et al. (2010) reported the pro-
duction of 2-PE (2-phenylethanol) by A. niger; whereby 2-PE-producing yeasts are
known to affect the cellular metabolic processes and the expression of key mycotoxin
synthesis pathway genes in the exposed fungi (Farbo et al., 2018; Tilocca et al., 2019).
Another possible mechanism of action involves DNA-methylation as a result of the
exposure to the volatile N-methyl-N-nitroso isobutyramide (MNIBA) released by
M. albus (Alpha et al., 2015; Hutchings et al., 2017; Jimenez et al., 2012). The decompo-
sition of MNIBA results in the production of methyl diazohydroxide and isobutyric
acid: the first one is converted to methyl diazonium ion, which interacts with the
nucleophilic site on DNA and leads to DNA-methylation. Consistently with this
pathway, isobutyric acid (a derivative of MNIBA), has been found in the fungal vola-
tiles of previous studies (Braun et al., 2012; Corcuff et al., 2011; Mercier & Jiménez,
2004). This mechanistic pathway is particularly relevant to the M. albus biocontrol
activity, as isobutyric acid is not reported in the volatiles of non-aflatoxigenic
A. flavus strains (Lucca et al., 2010; Moore et al., 2021).

Suppression of fungal spore production and germination (Li et al., 2015), alteration in
plasma membrane permeability and hyphal cell respiration (Medina-Romero et al.,
2017), accumulation of reactive oxygen species (Yang et al., 2021) are other mechanisms
of action of fungal volatiles on toxigenic fungi. It is not unreasonable to hypothesise that
non-toxigenic biocontrol strains are working in multidimensional ways to limit the
growth and mycotoxins synthesis potential of the toxigenic strains. These approaches
might include release of antifungal molecules (volatiles and diffusible), competition for
the space and nutrients, lytic enzymes, etc.
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6. Application of microbial volatiles in different scenarios for the
protection of horticultural crops

There are promising evidences of bacterial, yeast and filamentous fungal strains posses-
sing strong antifungal potentialities to limit the mycotoxins in food (Dopazo et al., 2022;
Gallo et al., 2022; Medina-Romero et al., 2017; Moore et al., 2022, 2021; Saleh et al., 2021;
Wang et al., 2021; Yang et al., 2021). A handful number of these strains are proven under
in vitro and in vivo environment to retain antagonistic activities in limiting key toxigenic
fungal species (Alasmar et al., 2021; Farbo et al., 2018; Galván et al., 2022; Gomomo et al.,
2022; Moore, 2022). Fewer of these, however, were successfully tested in fructo/in planta
(Bandyopadhyay et al., 2019; Gallo et al., 2022; Moore, 2022). Microbial volatile mol-
ecules can easily diffuse in the stored food commodities making it possible to ensure
maximum protection by reaching every empty space and surface, at least during post-
harvest storage and transportation (Lammers et al., 2022; Passone & Etcheverry,
2014). In most of the post-harvest closed environment studies, even smaller volumes
were able to produce long-standing protection with an increasing shelf life of the biofu-
migated commodities (Aunsbjerg et al., 2015). The results obtained with low volumes of
volatile molecules also present an economical and environmental advantage compared to
their chemical fungicide counterpart.

Another approach could be incorporating VOCs in edible films, which are being
used as smart food packaging material (Okcu et al., 2018; Sultan et al., 2021). These
films can be used as a routine coating material for hard-textured fruits like avocado,
mango and orange. These films may retain the molecules on the fruit for extended
duration of time, ensuring protection against microbial spoilage during long-distance
transportation and storage. However, this approach wouldn’t be viable for highly per-
ishable fruits like strawberry, table grape, peach, as these are much prone to handling
damages. In such cases, these fruits can be preserved by treating sterile gauze with
antimicrobial VOCs and distributing them within the fruit packages this approach
has been proven very effective for 56 days at 1°C (Valero et al., 2006; Valverde
et al., 2005). Incorporating VOCs on specialised slow release material such as polyethy-
lene terephthalate (PET), and packing in sachets or pouches to be inserted in the food
storage boxes can effectively reduce the food spoilage during the transport and storage
chain (Almenar et al., 2007).

The first successful biocontrol effort emerged with the commercialisation of
Aflaguard® to limit the spread of toxigenic A. flavus and AFs in the peanut fields
in U.S.A. (Dorner & Lamb, 2006; Moore et al., 2021). Alfagurad®, a formulation of
non-toxigenic A. flavus coated on roasted sorghum seeds, is applied during the sowing
of crops (Moore, 2022; Moore et al., 2022). Atoxigenic A. flavus mainly produce trans-
2-methyl-2-butenal, 2,3-dihydrofuran and decane to control the growth of toxigenic
A. flavus and/or AFs synthesis (Moore et al., 2021). An observation based on 10-years
application of this product showed 70–90% reduction in AFB1 in the treated commod-
ities (Bandyopadhyay et al., 2019; Moore, 2022; Moore et al., 2019). Despite this mile-
stone success, antifungal products based on yeast and bacterial volatilome have not
been achieved yet. In any case, before adopting such approaches it is absolutely necessary
to correlate laboratory findings with commercial context in terms of physicochemical
appearance, sensorial evaluation and quality standards of the product.
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7. Concerns and limitations associated with the application of VOC

Application of microbial volatiles for the control of mycotoxigenic fungi and mycotoxins
in food shows a significant potential to replace the synthetic fungicides, thereby avoiding
associated environmental and health effects. Additionally, it adds significant economic
benefits to the food and agriculture industry by controlling pre- and post-harvest
losses at low cost. However, with increasing efforts in developing and application of
VOC in commercial settings, some concerns and limitations were outlined by the scien-
tific community as well as by consumers, namely: (a) chances of interaction of VOCs
with food molecules, leading to the production of toxic products that might raise the
regulatory issue; (b) VOCs might behave differentially in different food material, possibly
inhibiting their diffusion and effectivity; (c) range, effectiveness, spectrum and safety of
the VOC, as there is a common concern about microbial volatiles being not as effective as
synthetic fungicides, particularly in the open environment and against a diversified range
of spoilage microbes. In these scenarios, it is imperative to assess the effect of microbial
volatiles in a real food protection system: the appropriate concentration of VOCs for
optimal protection needs to be explored for each different food commodity under vari-
able environmental conditions; (d) safety associated with fumigation of microbial volatile
is another important consideration that can be enhanced with the application of proper
concentration of the fumigant; (e) the registration process, as with any new products,
registration process for the commercial application is not easy nor fast, (f) genetic stab-
ility of non-toxic microbes: this concern is particularly relevant to the use to non-toxi-
genic fungal strains for the control of toxigenic ones. There are chances that genetic
makeup of the biocontrol strains (atoxigenic) will change with time, leading to emer-
gence of super-toxigenic strains.

8. Conclusions and perspectives

The antifungal spectrum of microbial volatiles is generally wider because of rapid conver-
sion to gaseous state in water and air diffusion (Lammers et al., 2022; Passone & Etche-
verry, 2014), and needs no physical contact with the treated commodity, hence
organoleptic qualities of the food matrices are preserved (Valero et al., 2006; Valverde
et al., 2005). Other restrictions posed by the chemical and physical methods of fungal
control such as high cost of production, heavy equipment, denaturation of nutrition
value and energy consumptions are overcome by microbial methods (Smaoui et al.,
2022). All in all, it is not unreasonable to foresee a big scope and future of microbial
VOC in the food and agriculture industry for the biological control of mycotoxins.
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