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ABSTRACT The traditional healthcare system is increasingly challenged by its dependence on in-
person consultations and manual monitoring, struggling with issues of scalability, the immediacy of
care, and efficient resource allocation. As the global population ages and chronic conditions proliferate,
the demand for healthcare systems capable of delivering efficient and remote care is becoming more
pressing. In this context, Deep Reinforcement Learning (DRL) emerges as a technological advancement
that improves the healthcare by enabling smart, adaptive, and real-time decision-making processes.
Existing DRL applications in resource allocation, however, face significant challenges. They often lack
the adaptability required to respond to the dynamic and complex nature of healthcare environments,
struggle with optimizing latency, and fail to address specific node capacity constraints key factors that
impacts the effectiveness of healthcare applications. Addressing these challenges, this paper introduces the
Deep Reinforcement Learning for Live Video Transmission (DRL-LVT) framework. This new technique
optimizes video resource allocation in Device-to-Device (D2D) networks within healthcare settings.
By formulating the video resource allocation challenge as a multi-objective optimization problem, the
framework aims to minimize network delays while respecting node capacity limitations. The core of DRL-
LVT is its novel algorithm that leverages Deep Reinforcement Learning (DRL) to dynamically adapt to
changing environmental conditions, facilitating real-time decisions that consider node capacities, latency,
and the overall network dynamics. We evaluate the performance of our proposed model and benchmark it
against existing state-of-the-art techniques. Our results demonstrate significant improvements in efficiency,
reliability, and adaptability, making the DRL-LVT framework a robust solution for real-time remote patient
monitoring in smart healthcare systems.

INDEX TERMS Smart healthcare system, RPM, video live streaming, deep reinforcement learning, node
capacities.

I. INTRODUCTION

THEADVENT of advanced video streaming technologies
and healthcare informatics has paved the way for

innovative solutions in remote patient monitoring (RPM).
Traditional RPM systems have primarily focused on data

collection and elementary analytics, often overlooking the
complexities associated with video streaming. In contrast,
Real-Time Remote Patient Monitoring (RL-RPM) integrates
real-time video streaming to offer a comprehensive view of
a patient’s condition. The RL-RPM system can reduce the
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medical risks, and enable exchanging information between
different people in different places, which is extremely
important especially in some regions like rural areas that
might lack specialized medical personnel. In particular,
RL-RPM enables accurate evaluations of conditions like
dermatological disorders and high-risk pregnancies, enhances
postoperative care, and even holds potential in mental
health consultations. By offering immediate visual context,
live video streaming significantly improves communication,
diagnosis, and treatment in remote healthcare, bridging the
gap between remote monitoring and traditional in-person
care.
Integrating video streaming with healthcare informatics

in RL-RPM systems poses several challenges, particularly
in ensuring high-quality video streaming, especially during
peak usage times. One major challenge in RL-RPM is
maintaining the Quality-of-Experience (QoE), particularly
in comparison to video-on-demand (VOD) services. Live
streaming QoE generally requires a higher bitrate1 and
experiences less rebuffering2 compared to VOD, as high-
lighted in [1]. Additionally, latency and network delay are
critically important in a live video environment to facilitate
real-time interactions among users and manage delays effec-
tively in dynamic network settings. One of the promising
advancements in video streaming is Device-to-Device (D2D)
communication. D2D allows for direct data transfer between
devices without relying on a central network infrastructure.
These results in reduced latency and improved resource
utilization, making it particularly beneficial for applications
that require real-time data exchange, such as healthcare
monitoring systems. Several studies, including [2] and [3],
have investigated the use of D2D communication for video
streaming. These solutions primarily concentrate on meeting
delay requirements but often overlook factors like the status
of transmission links and the capacities of participating
nodes, which are critical in maintaining network connectivity.
The key goal in managing network nodes is to select
appropriate nodes for relaying video content, considering
their capacity thresholds, and at the same time, aiming to
minimize transmission delays [4]. In [2], [3], the use of D2D
for video streaming is explored, focusing primarily on delay
requirements, they often overlook crucial factors such as the
status of transmission links and the capacities of participating
nodes. These elements are vital for maintaining network
connectivity, highlighting the need to select nodes for video
content relay based on capacity thresholds while minimizing
transmission delays. Effective control of nodes in a D2D
network is essential, as it contributes to the physical layer
optimizations that are vital for the success of any advanced
RL-RPM system. D2D connectivity reduces latency and
increases reliability, essential for real-time medical scenarios
like surgery monitoring and emergency care. It efficiently

1Bitrate is associated with video definition; a higher bitrate indicates that
the video can be played in higher definition.

2Rebuffering refers to the instances when a video pauses for buffering;
less rebuffering allows for smoother video playback.

manages bandwidth, allowing for the streaming of high-
resolution images and live videos directly between devices.
This is crucial for robust network performance, emphasizing
the importance of selecting nodes based on capacity and
minimizing delays. Effective node management in D2D
networks enhances remote patient monitoring systems by
ensuring fast and reliable healthcare service delivery, where
speed and data integrity are critical.
Another significant development is DRL, a subset of

machine learning that excels in making intelligent, real-
time decisions based on environmental feed back. DRL
algorithms can dynamically allocate resources and adapt
to changing conditions, making them ideal for complex
systems where multiple variables need to be optimized
simultaneously. DRL combines Reinforcement Learning with
Deep Learning techniques to solve challenging complex
decision-making problems [5]. Within the broad spectrum
of DRL applications, numerous studies have aimed to refine
network performance, focusing on enhancing throughput,
conserving energy, and minimizing latency. In [6], the
authors focused on optimizing resource allocation in cloud
computing environments using DRL. In [7], the authors used
DRL for adaptive resource allocation in IoT network. The
paper studied an optimization problem within mixed action
spaces, combining both discrete and continuous elements.
In [8], DRL is used to allocate spectrum resources in cogni-
tive radio networks. In the domain of dense heterogeneous
networks (HetNets) over 5G, research highlighted in [9]
employs DRL to navigate the network selection challenge,
striving to enhance medical data delivery within smart health
systems. This model seeks to bolster energy consumption
and latency, and satisfy a spectrum of Quality of Service
(QoS) requirements. Similarly, the emergence of a novel
Healthcare Internet of Things (H-IoT) system [10], fortified
by permissioned blockchain and DRL, targets the acute
challenges of security [11] and limited energy capacity,
exacerbated by the COVID-19 pandemic. However, the scal-
ability of blockchain implementations and the computational
overhead intertwined with DRL and blockchain synergy pose
considerable challenges, particularly for resource-constrained
IoT devices. Despite the importance of effective node
control in DRL and D2D networks for the success of
advanced RL-RPM systems, existing solutions may not fully
address the dynamic nature of healthcare environments.
While DRL offers promising avenues for intelligent, real-
time decision-making in complex systems [5], applications in
cloud computing [6], IoT networks [7], and cognitive radio
networks [8] have highlighted the challenge of balancing
computational overhead with the scalability of solutions,
especially in resource-constrained settings.
In response to these challenges, this paper proposes

a new technique, the Deep Reinforcement Learning for
Live Video Transmission (DRL-LVT) framework for the
healthcare system. The DRL-LVT framework leverages the
strengths of DRL to dynamically adapt resource allocation
in real-time, ensuring optimal video streaming quality within
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D2D networks. Unlike previous approaches, the DRL-LVT
framework takes into account not only the delay requirements
but also the critical aspects of node capacity and link status,
ensuring a robust and reliable solution for remote patient
monitoring. Furthermore, the DRL-LVT framework incor-
porates a predictive mechanism that intelligently anticipates
network variations, thereby maintaining consistent video
quality even in fluctuating network conditions. Additionally,
the framework incentivizes network participation by offer-
ing benefits to D2D communications, such as accelerated
access to localized services and data, alongside reduced
service costs, promoting wider technology adoption. The
followings are the main contributions proposed in this
paper:

• Introducing a novel framework, termed DRL-LVT
(Deep Reinforcement Learning for Live Video
Transmission), specifically designed to optimize real-
time video resource allocation in D2D networks for
healthcare applications. The proposed model employs a
hierarchical decision-making algorithm that allows for
control over resource allocation, thereby enhancing the
system’s overall performance metrics.

• Formulating the video resources allocation problem as
an optimization problem that aims to minimize the
network delay while respecting the nodes’ capacities
constraints.

• Proposing a new algorithm to dynamically adapt to
varying network conditions, making real-time decisions
based on node capacities, latency, and network dynam-
ics. The algorithm learns to solves the formulated
allocation problem while adapting to different environ-
ment variations.

• Defining the reward function and the set of states, and
actions and integrating the deep reinforcement learning
model with hierarchical value decisions. Basically,
the DRL agent makes discrete actions, each of them
controls a set of sub-actions related to the node’s link
activation.

• Evaluating the performance of the proposed model with
various simulations and comparing it with the state of
the art techniques.

The rest of this paper is organized as follows.: Section II
delves into related work in the field. Section III introduces
the proposed system model and the formulation of the
problem. Detailed explanations of the proposed scheme’s
functionality are provided in Sections IV and V. Section VI
is dedicated to evaluating the performance of the DRL model
in comparison to contemporary techniques. The significance
and implications of the proposed model are discussed
in Section VII. The paper concludes with Section VIII,
summarizing the key findings and contributions.

II. RELATED WORKS
In this section, various solutions for RPM and video
streaming techniques are presented.

A. REMOTE MONITORING OF PATIENTS
In recent years, the concept of smart healthcare systems has
gained considerable attention, leading to a variety of studies
that focus on real-time monitoring for chronic diseases.
For instance, the work presented in [12] explores a real-
time monitoring system specifically designed for chronic
disease management. This system employs body sensor
networks to monitor blood pressure, aiming to provide timely
interventions and prevent complications. Another study [13]
introduces a wireless ECG monitoring system with the objec-
tive of reducing data transmission time, thereby enhancing
the efficiency of remote healthcare services. Furthermore,
research in [14] discusses the use of smartphones for
diabetes management, while [15] presents a real-time online
assessment and mobility monitoring framework that employs
sensor-based infrastructure. In the realm of IoT, the study
in [16] proposes an IoT-enabled framework that collects
various medical data, including electrocardiograms (ECG),
through mobile devices and sensors. This data is then
securely transmitted to the cloud, allowing healthcare pro-
fessionals seamless access for timely interventions. Another
noteworthy contribution focuses on hospital resource man-
agement by monitoring patients remotely at home, thereby
automating the data collection and storage process [17].

While these studies have significantly advanced the field
of remote patient monitoring, they often do not address the
unique challenges posed by real-time video streaming. This
proves the need for integrated solutions that can adapt to the
dynamic requirements of real-time video-based monitoring.

B. D2D TECHNIQUE FOR VIDEO TRANSMISSION
D2D communication has emerged as a promising technique
for efficient video transmission, particularly in real-time
applications. Various models have been proposed to leverage
D2D for enhancing video quality and reducing latency. For
instance, edge caching is utilized to mitigate congestion and
delay in video content transmission [18]. While these models
are effective for stored video content, they often fall short
in the context of live streaming, introducing issues such as
higher throughput, delay, and jitter. The study in [18] focuses
on resource utilization in 5G networks but limits its scope
to single-user, single-video scenarios, neglecting multi-user,
multi-video contexts. Another work [19] prioritizes links for
video transmission but fails to consider video quality-aware
mechanisms, leaving the suitability of such techniques for
on-demand D2D video streaming an open question. In [20],
D2D multicast communications for live streaming video are
explored. The authors employ frame priority (FP) encoding
to improve user Quality of Service (QoS). This ensures that
valuable frames for decoding are re-transmitted, enhancing
the overall video quality. In [21], an innovative method is
introduced, focusing on a blockchain-based model for video
streaming. This approach enhances collaboration between
content creators and transcoders by incorporating a block size
adaptation strategy. Additionally, the well-known Dijkstra’s
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algorithm, as referenced in [22], addresses the shortest-path
problem in directed graphs with positive weights.
Despite these advancements, defining an optimal solution

for video transmission remains a challenging problem.
Inappropriate resource allocation can significantly impact
network spectral efficiency, highlighting the need for more
robust and adaptable solutions.

C. SMART ALLOCATION TECHNIQUES FOR VIDEO
TRANSMISSION
DRL has been widely applied in resource management
tasks like power allocation, channel selection, and spectrum
access, as highlighted in various studies [23]. Its effectiveness
in video streaming and network choice has also been
documented in numerous research works [24], [25], [26].
For instance, in [24], the authors proposed an Adaptive
Bitrate (ABR) system using Reinforcement Learning (RL),
where a neural network model is trained to adjust video
chunk bitrates based on data observed on the client side.
Similarly, another research [25] introduces a Video Quality
Aware Rate Control (QARC) system. This system uses a
neural network to enhance transmission quality by adjusting
the sending rate and reducing latency, based on historical
network conditions. In research [26], a DRL-based approach
is used to predict user viewing directions in panoramic
video streams, utilizing Long Short-Term Memory (LSTM)
algorithms. While these models primarily focus on predicting
video resolution and bitrate, they often do not address
other Quality of Service (QoS) aspects, such as block error
rate, jitter, delay, and latency, influenced by the physical
layer. In [27], a comprehensive strategy is presented for
enhancing federated learning (FL) within the context of the
Industrial Internet of Things (IIoT). This approach focuses
on strategic device selection and resource allocation to foster
an efficient collaborative FL architecture. In [28], the authors
addressed the challenge of real-time deep neural network
(DNN) inference within the constrained resources of IIoT
networks by introducing an end-edge-cloud orchestration
architecture. This setup enables dynamic placement of pre-
trained DNN models from the cloud to the edge and end
devices for efficient inference. DetFed [29] is applied to
federated learning to the industrial IoT, with the help of
6G and Time-sensitive Networks (TSN). Specifically, the
complexity of real-time problem-solving, exacerbated by the
implicit nature of the optimization’s objective function and
the temporal correlation of available time slots, presents sig-
nificant challenges. This complexity can lead to difficulties in
achieving the optimal balance between learning accuracy and
network performance constraints, such as delay, jitter, and
packet loss, especially in highly dynamic or unpredictable
network environments.
The exploration into a continuous bitrate and latency

control model for live video streaming, utilizing Deep
Deterministic Policy Gradient (DDPG) for nuanced control,
marks another notable advancement [30]. This model’s
ability to enhance the Quality of Experience (QoE) across

diverse network conditions underscores DRL’s potential.
Nevertheless, the need for broader validation, concerns over
scalability and computational efficiency, and the intrica-
cies of practical deployment within existing infrastructures
suggest avenues for further development to elevate the
model’s robustness and efficacy in streaming applications.
DeepPower [31] introduces a DRL-based power manage-
ment solution for latency-critical (LC) applications in data
centers, employing a hierarchical control mechanism for
adaptive power management. This novel approach promises
substantial power savings and reduced request timeouts,
yet it confronts challenges in real-world implementation,
including the complexity of the hierarchical control structure
and the responsiveness of the system to sudden workload
changes. These issues underscore the necessity for fur-
ther optimization to enhance DeepPower’s efficiency and
applicability across data center environments. These stud-
ies, typically operate within relatively stable or controlled
network settings and employ DRL specifically designed for
these targeted aims. While successful for their specified
purposes, these methods often do not fully address the
complex and dynamic challenges prevalent in healthcare
settings, where the need for dependable, low-latency commu-
nication is critical, especially for live video streams in remote
patient monitoring. Another study [32] presents a DRL-based
model for scheduling links in wireless networks to address
interference, employing Deep Neural Networks (DNN) to
understand and adapt to network dynamics. Additionally,
research [33] applies DRL in Cognitive Radio (CR) networks
for network selection. The DRL agent in this case evaluates
performance metrics like collision probability, blocking,
dropout rates, and throughput to make decisions. However,
the challenge in CR networks is managing the limited and
fluctuating resources for various video applications. In
contrast to existing works, this paper introduces a novel DRL
framework specifically designed for real-time remote patient
monitoring. Our centralized DRL agent in the core network
has access to all node data and information, which empowers
it to perform optimized network performance through smart
resource allocation. This unique setup enables the agent to
efficiently manage network resources, ensuring that each
node operates at optimal parameters and maintains consistent
communication standards critical for healthcare monitoring.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section delineates the proposed system model followed
by the formulation of the optimization problem aimed at
enhancing video streaming for real-time remote monitoring
in healthcare systems.

A. SYSTEM MODEL
Consider a network denoted byN, comprising N participants,
which includes healthcare providers such as doctors and
nurses, as well as patients, all interconnected via a D2D
communication system. This network is specifically opti-
mized for the unique requirements of medical consultations
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FIGURE 1. Video live streaming system under study.

and remote patient monitoring. Participants within N are
equipped with devices that possess defined download and
upload capacities. These capacities are critical for the effi-
cient transmission and reception of medical data. Utilizing
advanced 5G technologies, the network ensures robust and
high-speed data communication. Additionally, the network’s
dynamic topology is intelligently designed to adapt to the
varying conditions and locations of the participants.
The transmission delay between any two users, Ui and

Uj, in N is represented by Di,j. For participants not
directly connected, Di,j is considered infinite, highlighting
the importance of establishing efficient relay paths:

Di,j = ∞, ∀ Ui,Uj; Ui � Uj. (1)

In this cooperative streaming model, each participant Ui may
request and forward video chunks, aiming to minimize the
overall streaming delay of the network. The status of the
current video chunk v at time t at user Ui is denoted by
Hv,t
Ui
. If user U1 successfully forwards the latest chunk of

video v at time t to U2, the decision variable Xv,tU1,U2
is set

to one; otherwise, it remains zero:

Hv,t
Ui

= t, ∀ Ui ∈ Sv. (2)

For any user Ui not in Sv, the latest chunk of video v at
time t is the most recent one received, determined by:

Hv,t
Ui

= max
Uj∈N

(
Xv,t−1
Uj,Ui

× Hv,t−1
Uj

)
, ∀ Ui /∈ Sv. (3)

The delay in transmitting a chunk from Ui to Uj is crucial,
especially in healthcare settings where information timeliness
can directly impact patient outcomes. Thus, the cumulative
delay to Uj for video v at time t is computed as:

Dv,tj =
∑
Ui∈N

Xv,ti,j × (Dv,t−1
i + Di,j). (4)

with the conditions for Dv,tj further detailed by:

Dv,tj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if Uj ∈ Dv,

+∞ if Uj /∈ Dv

and
( ∑

Ui∈N Xv,t−1
i,j = 0

)
,∑

Ui∈N Xv,t−1
i,j .(Dv,t−1

i + Di,j) if Uj /∈ Dv

and
( ∑

Ui∈N Xv,t−1
i,j �= 0

)
.

(5)

Similarly, jitter3 measures the delay variability in transmit-
ting a single chunk from a user Ui to another user Uj at
time t, for a specific video v. The jitter, denoted as Jv,tj , is
crucial for ensuring smooth and uninterrupted video streams
essential for remote patient monitoring and consultations.
This is represented as follows [18]:

Jv,tj =
∑
Ui∈N

Xv,ti,j · Ji,j. (6)

B. PROBLEM FORMULATION
Responding to the critical need for real-time remote mon-
itoring in healthcare systems, our optimization framework
is designed with the specific requirements and challenges
of healthcare live video environments in mind. The primary
objective remains to minimize the delivery time for video
v to requesting users, crucial for ensuring timely medical
consultations and patient monitoring, while adhering to the
constraints of node resources. The optimization problem
to reduce transmission time within network limitations is
defined as:

minDv,tj + Jv,tj − Hv,t
j . (7)

Thus, to enhance delivery efficiency for all videos to all
requesting users at time t, especially under the stringent
conditions of healthcare applications where delays can
significantly impact patient outcomes, the problem defined
in Equation (7) is adapted as follows:

min
V∑
v=1

∑
U∈Dv

(
Dv,tj + Jv,tj − Hv,t

j

)
(8)

s.t.
V∑
v=1

∑
Uj∈N

Xv,tj,i ≤ CDi,∀Ui ∈ N (9)

V∑
v=1

∑
Uj∈N

Xv,ti,j ≤ CUi,∀Ui ∈ N (10)

∑
Uj∈Dv

Dv,tj ≤ T,∀v ∈ [1..V] (11)

In this formulation, CDi and CUi represent the download
and upload capacities for node i, respectively. Equations (9)
and (10) are designed to guarantee that all participating nodes
i adhere to the constraints regarding their available upload
and download capacities. Additionally, the constraint delin-
eated in Equation (12) mandates that the delay experienced
by a receiving node Uj for a video v at any given time t
must not surpass the predefined threshold T . These con-
straints are meticulously formulated to ensure the system’s
performance aligns with the critical healthcare context, where
the efficiency of video delivery directly correlates with
the quality of patient care. However, optimizing each time

3In healthcare scenarios, jitter represents the variation in delay times for
received video chunks, which is crucial for maintaining the quality of live
telehealth sessions.
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slot independently might not incentivize users to download
videos they do not need. Specifically, a user U is likely to
download a video v, where U /∈ Dv, only if there is an
intention to forward it to another user in subsequent time
steps. Consequently, when this optimization extends over all
time steps, covering t = 1, . . . ,Nt, the problem formulation
becomes more complex:

min
Nt∑
t=1

V∑
v=1

∑
U∈Dv

(
Dv,tj + Jv,tj − Hv,t

j

)
(12)

s.t.
V∑
v=1

∑
Uj∈N

Xv,tj,i ≤ CDi,∀Ui ∈ N∀t ∈ [1..Nt] (13)

V∑
v=1

∑
Uj∈N

Xv,ti,j ≤ CUi,∀Ui ∈ N,∀t ∈ [1..Nt] (14)

∑
Uj∈Dv

Dv,tj ≤ T,∀v ∈ [1..V],∀t ∈ [1..Nt] (15)

max
Uj∈N

(
Xv,t−1
Uj,Ui

Hv,t−1
Uj

)
,∀v ∈ [1..V],∀t ∈ [1..Nt] ∀Ui /∈ Sv (16)

Hv,t
Ui

= t,∀ Ui ∈ Sv. (17)

Furthermore, with the revised expressions for Dv,tj , Jv,tj ,
and Hv,t

j , the optimization problem becomes:

min
Nt∑
t=1

V∑
v=1

∑
U∈Dv

(
∑
Ui∈N

Xv,ti,j Di,j + (18)

∑
Ui∈N

Xv,ti,j Ji,j − max
Ui∈N

(
Xv,t−1
Ui,Uj

Hv,t−1
Ui

)
)

s.t.
V∑
v=1

∑
Uj∈N

Xv,tj,i ≤ CDi,∀Ui ∈ N∀t ∈ [1..Nt] (19)

V∑
v=1

∑
Uj∈N

Xv,ti,j ≤ CUi,∀Ui ∈ N,∀t ∈ [1..Nt] (20)

∑
Uj∈Dv

∑
Ui∈N

Xv,ti,j Di,j ≤ T,∀v ∈ [1..V],∀t ∈ [1..Nt] (21)

max
Uj∈N

(
Xv,t−1
Uj,Ui

max
Ui∈N

(
Xv,t−1
Ui,Uj

Hv,t−1
Ui

))
,∀v ∈ [1..V], (22)

∀t ∈ [1..Nt] ∀Ui /∈ Sv

Hv,t
Ui

= t,∀ Ui ∈ Sv (23)

The constraints of the problem define the alloca-
tion of resources and limitations on delay propagation.
Consequently, the minimization of the objective function, as
shown in (18), is achievable when all the specified constraints
in (19) and (20) are met. The following section will
introduce the proposed model that dynamically addresses
this optimization challenge.

IV. DRL-BASED FRAMEWORK FOR VIDEO STREAMING
In this section, we detail the set of states S, the reward
function and the actions A. Also, the DRL algorithm for the
dynamic video resources allocations is discussed.

A. DQN ALGORITHM IN THE DRL-LVT FRAMEWORK
To effectively meet the demanding requirements of health-
care networks, which necessitate both low latency and
high reliability, we have integrated the DQN algorithm
into our DRL-LVT framework. DQN is particularly suited
for environments with discrete action spaces, making it
suited for our system where node selection for video
transmission is linked to capacity constraints. In our system,
the decision on whether a user should forward a video
segment to another user is represented by binary actions,
forming a comprehensive set of actions each corresponding
to a possible node-to-node transmission at any given time.
Directed by the DRL agent, these actions aim to optimize
resource allocation, ensuring that each decision adheres to
network constraints while minimizing an objective function
that reflects the priorities of real-time remote monitoring.
The choice of DQN over other reinforcement learning

algorithms (such as Policy Gradient or Actor-Critic) is
based on its superiority in managing binary decision-making
processes that are vital in our application. Unlike these
other algorithms, which are more suited to continuous
action spaces, DQN excels in scenarios requiring precise,
binary decisions. Its robust features, such as experience
replay and fixed Q-targets, furnish the system with the
agility necessary for rapid adaptation to network con-
dition fluctuations, crucial for the efficient distribution
of video resources and maintaining stable communication
channels. Moreover, DQN’s capability to handle complex
decision-making processes allows our system to dynamically
manage node capacities and navigate high-dimensional state
spaces, facilitating informed and efficient decision-making.
Leveraging DQN, our system dynamically adjusts strategies
based on observed changes, thereby ensuring that decisions
are informed by both historical and current data. This
adaptability allows for continuous refinement of strategies,
thereby enhancing operational efficiency and reliability.
These timely adjustments are essential for maintaining the
responsiveness of our remote healthcare monitoring system
to the fast-evolving nature of wireless networks, consistently
meeting the demands of healthcare delivery.

B. DRL STATES
In our adapted model, the DRL agent is aware of the
environment’s states, which, in a healthcare context, include
the urgent need for reliable and uninterrupted video com-
munication. Based on these states, the agent orchestrates
actions to ensure optimal resource allocation for video
streaming. A crucial aspect of this process involves nodes
communicating their available resources and capacities. This
communication enables the DRL agent to intelligently select
nodes with sufficient remaining capacities for packet transfer.
Resource allocation is conducted iteratively for each node,
emphasizing the healthcare requirement for continuous and
efficient video stream handling. For instance, after node1
allocates a portion of its resources to forward packets, it
updates its remaining resources accordingly. This procedure
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is replicated across all nodes, ensuring the network’s capacity
is maximized for the demands of healthcare video streaming.
At the beginning of each episode, the DRL agent initializes

the values of the download and upload capacities CDi and
CUi respectively for each node i. Then, the remaining
capacities RCUi and RCDi will be updated as:

RCDti = RCDt−1
i −

∑
Uj∈N

Xtj,i (24)

RCUt
i = RCUt−1

i −
∑
Ui∈N

Xti,j (25)

For each video v and corresponding time stamp t, the
DRL agent strategically selects the optimal transmission
path based on the available remaining capacities.
Therefore, the set of states includes not only the
investigated video but also a detailed account of the
available remaining resource for each node. i.e., S =
{t, v,RCD1,RCD2, . . . ,RCDN,RCU1,RCU2, ..,RCUN}.
Note that the RCD and RCU will be reinitialized at the end
of the last video. These updates ensure that the system
dynamically adapts to the evolving demands of healthcare
video streaming, addressing both the immediate needs for
patient care and the overarching goal of enhancing healthcare
delivery through technology.

C. DRL ACTIONS
Upon analyzing the current state of the network, the DRL
agent strategically selects nodes for the transmission of video
chunks, critical for maintaining the continuity and quality of
healthcare services through live video feeds. As depicted in
Figure 2, the agent’s decision-making process begins with
the selection of a primary action. This initial decision is
then refined into specific sub-actions that involve activating
particular communication links within the network, ensuring
optimal path selection for video chunk transmission in real-
time. For example, if it is determined that user Ui should
forward the most recent chunk of video v at time t to user
Uj, the decision variable Xv,ti,j is assigned a value of one.
If not, Xv,ti,j is set to zero. Therefore, the action set can
be represented as A = {Xv,ti,1,Xv,ti,2, . . . ,Xv,ti,N}. The actions
generated by the DRL agent aim to minimize the objective
function detailed in (18) while adhering to all the constraints
specified in (19) and (20) offering a robust solution for real-
time remote monitoring challenges.

D. DRL REWARD FUNCTION
The optimization problem objective is to transfer the videos
to their destinations while satisfying the resource constraints
and minimizing:

Obj =
Nt∑
t=1

V∑
v=1

∑
U∈Dv( ∑

Ui∈N
Xv,ti,j Di,j +

∑
Ui∈N

Xv,ti,j Ji,j − max
Ui∈N

(
Xv,t−1
Ui,Uj

Hv,t−1
Ui

))
.(26)

FIGURE 2. DQN actions.

At each time stamp, the problem will be solved for one
video in one time stamp. The cumulative reward is computed
as:

RewardC = C1 + C2 + C3 − αObj. (27)

where, α represents a constant less than 1. This constant
α ensures that the primary focus of the system is on
meeting the constraints, followed by the minimization of the
objective function. The constraint C1(i) is related to the delay
minimization that should be less than the required time T:

C1(i) =
{

1 if
∑

Uj∈Dv
Xv,ti,j Di,j ≤ T,

0 if
∑

Uj∈Dv
Xv,ti,j Di,j > T.

For the network with Dv nodes, C1 becomes:

C1 = 1
( ∑
Uj∈Dv

Xv,ti,j Di,j ≤ T
)
. (28)

The constraint C2(i) is to ensure that the node i should not
exceed its download capacities while forwarding the data to
their destinations:

C2(i) =
{

1 if
∑

Uj∈N Xv,tj,i ≤ RCDi,

0 if
∑

Uj∈N Xv,tj,i > RCDi

= 1(
∑
Uj∈N

Xv,tj,i ≤ RCDi)

C2 becomes:

C2 =
∑
Ui∈N

C2(i) (29)

=
∑
Ui∈N

1(
∑
Uj∈N

Xv,tj,i ≤ RCDi)

The constraint C3(i) is to ensure that the node i should
not exceed its upload capacities while forwarding the data
to their destinations:

C3(i) =
{

1 if
∑

Uj∈N Xv,tj,i ≤ RCUi,

0 if
∑

Uj∈N Xv,tj,i > RCUi

C3 becomes:

C3(i) = 1

⎛
⎝ ∑
Uj∈N

Xv,tj,i ≤ RCUi

⎞
⎠
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FIGURE 3. DQN predictive model.

The commutative reward is maximized when the objective
function is minimized and all the constraints are satisfied.
Note that before computing the reward, all the last chunk
indexes for all the users must be updated according to
Eq. (20).

E. VIDEO TRANSMISSION ALGORITHM
We propose a new algorithm entitled DQN for video live
transmission (Algorithm 1) that receives the set of states
from the network and decides about the set of actions. The
algorithm takes into consideration the conditions in Eq. (18)
while optimizing the performance of the DRL agent.
The input comprises the system’s state S, which includes

the number of nodes N, the number of videos V , and
the available upload and download capacities for each
node (RCD1,RCD2, . . . ,RCDN,RCU1, . . . ,RCUN). The
iteration rounds are represented by each episode in the
algorithm, where actions for video transmission are decided
per node. The action set [Xv,ti, 1,Xv,ti, 2], . . . ,Xv,ti,N,
determined either randomly or through the trained actor
based on the exploration rate ε, forms the core output
mechanism for decision-making. The step size is managed
through the update of the exploration rate εdecay. After
initializing the algorithm (lines 1-4) with the network’s
nodes (N), video count (V), and activation functions,
we focus on the system state initialization, defined as
S = t, v,RCD1,RCD2, . . . ,RCDN,RCU1, . . . ,RCUN, rep-
resenting time (t), video (v), download capacities (RCD),
and upload capacities (RCU) for each node (line 5). The
exploration phase begins with ε = 1, promoting full
action space exploration (line 6). Throughout each episode,
the algorithm sequentially processes nodes, deploying a
uniformly distributed random variable r to choose between
random action selection and trained model predictions
(Lines 9-14), effectively balancing exploration with exploita-
tion. This mechanism ensures that actions are not just
randomly chosen but are informed by past learning, espe-
cially as ε gradually decreases. Actions, represented as
[Xv,ti, 1,Xv,ti, 2], . . . ,Xv,ti,N , are derived either from direct
model output or random selection, depending on r’s relation
to ε. Upon selecting an action, the algorithm updates the
network’s state by activating links and adjusting capacities

Algorithm 1 DQN for Video Transmission, Specifying Input
and Output Details
1: Initialize number of nodes N.
2: Initialize the number of videos V .
3: Initialize the number of layers and neurons.
4: Initialize the actor activation functions.
5: Initialize the system state: the available upload

and download capacities for each node, i.e., S =
{t, v,RCD1,RCD2, ...,RCDN,RCU1, . . . ,RCUN}.

6: Initialize a full exploration of the model (the exploration
rate ε = 1).

7: Initialize exploration decay rate εdecay to control explo-
ration reduction over time.

8: for each episode do
9: for each node do

10: Generate a random variable r.
11: if r ≤ ε then
12: Generate random action set

[Xv,ti,1,X
v,t
i,2], . . . ,Xv,ti,N .

13: else
14: Generate action set [Xv,ti,1,X

v,t
i,2], . . . ,Xv,ti,N with

the trained actor.
15: end if
16: Integrate hierarchical action-value functions.
17: Activate the links interconnected to

[Xv,ti,1,X
v,t
i,2], . . . ,Xv,ti,N .

18: Update the cumulative reward.
19: Update remaining capacities RCremain =

{t, v,RCD1,RCD2, . . . ,RCDN,RCU1, . . . ,RCUN}.
20: Store transition (sti, a

t
i, r

t
i, s

t+1
i ) in replay buffer.

21: end for
22: Update the actor model.
23: Update the exploration rate to εdecay so that ε =

ε × εdecay.
24: end for

(Lines 15-18), a crucial step for managing the dynamic
conditions of live video streaming, particularly in healthcare
applications where the stability and reliability of video data
are paramount. Rewards received update the cumulative
metric, which then influences future decisions and optimizes
the network performance for video transmission. Finally, the
algorithm’s continuous learning loop is maintained through
the updates of the actor model and the adjustment of the
exploration rate (ε), with ε experiencing exponential decay
to shift the focus from exploration to exploitation as the
model’s performance improves (Lines 20-21). This gradual
transition ensures the model becomes increasingly efficient at
predicting optimal actions for video transmission, effectively
managing the network’s resources to enhance the quality and
reliability of live video streams.

V. PERFORMANCE EVALUATION
This section delves into the performance evaluation of
the proposed model. Initially, the network topology and
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TABLE 1. Comprehensive simulation parameters for DRL-LVT model.

the parameters of the DRL algorithm are outlined in
Section V-A. The effectiveness of the DRL algorithm is
then examined, focusing on the convergence of the objective
function and rewards, as detailed in Section V-B and V-C.
Additionally, Section V-D explores a dynamic scenario
where node capacities vary over time, assessing the DRL
algorithm’s response in terms of allocation efficiency.

A. SIMULATION ENVIRONMENT
In our simulation setup, each node is assigned fixed capaci-
ties for both downloading and uploading, which are pivotal
for transmitting videos to their destinations (as defined
in Equations (9) and (10)). To evaluate the performance
of these methods in adhering to resource constraints, we
introduce the concept of Average Upload/ Download. This
metric represents the mean number of videos uploaded or
downloaded by each node. Table 1 presents the simulation
and the DRL parameters respectively [9], [34].

B. SIMULATION RESULTS
Figure 4 depicts the DRL cumulative reward. For the first
1000 episodes, the system starts with a full exploration with
an exploration rate ε to 1. Thus, initially the system estimates
a random policy based on random actions, which will form
the basis to improve the policies. Then at each episode, the
algorithm updates the exponential rate to εdecay to get better
policies and better interaction between the states and the
made actions in time. The better the actions are, the better
the performance will be, and the more the cumulative reward
is. After 1500 episodes, the DRL agent learns better how
to select the users with the adequate capacities to forward
the video chunks. Hence, the DRL reward increases fast and
the proposed system converges. Figure 5 shows the objective

FIGURE 4. The DRL cumulative reward with a varied number of episodes.

FIGURE 5. The DRL objective function.

function of the DRL model for a varied number of episodes.
First, we remark the variation of the objective function since
the system is not able yet to make good decisions. Then, we
increase the number of episodes, the DRL agent knows better
about the environment interaction and is capable to make
good actions for each received state. Hence, the objective
function and the reward are increased (Figure 4).
The performance of our Deep Reinforcement Learning for

Live Video Transmission (DRL-LVT) algorithm is rigorously
evaluated against four distinct methodologies: the Flexible
Video Transmission Scheme (Flexi) [20], the NoD2D
approach [35], the Distributed Random (DR) strategy [35],
and the classical Dijkstra algorithm [22]. The NoD2D
method is characterized by its reliance on direct node-
to-base station connections, offering a centralized but less
flexible communication model. In contrast, Flexi employs
a frame priority metric for video transmission decisions,
based on user feedback on quality and requests for non-
received frames, aiming to enhance viewing experiences.
The DR approach randomly selects the transmission routes
without considering the network’s topology or conditions,
embodying a truly distributed approach to video streaming.
Distinguished by its efficiency in identifying the shortest
paths between network nodes, the Dijkstra algorithm serves
as a benchmark for optimizing network routing to min-
imize propagation delays. Further comparisons extend to
the Distributed Resource Allocation (CSM) [21] and the
Scheduling Algorithm (Sch) [18], both designed with live
video streaming’s quality of service in mind, focusing on
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FIGURE 6. Comparison of DRL-LVT against NoD2D, Flexi, DR and Dijkstra.

FIGURE 7. Comparison of the propagation delay under CSM, Sch, Dijkstra and DRL.

delivery ratio as a critical performance metric. These collec-
tive methodologies provide a comprehensive evaluation for
the DRL-LVT framework’s performance including the power
consumption, execution time (for a 100-node scenario), and
propagation delay. Our comparative analysis, illustrated in
Figure 6, reveals that while the NoD2D approach leads
to increased power usage and propagation delays due to
its reliance on direct base station communications, Flexi
incurs additional delays and power consumption through its
feedback and re-transmission process. In contrast, the DR
model, lacking network awareness, achieves lower execution
times at the cost of higher propagation delays. The Dijkstra
and DRL-LVT algorithms demonstrate superior performance,
underscoring the efficacy and innovation of the proposed
framework. This evaluation not only highlights the DRL-LVT
algorithm’s advancements but also broadens the discourse
on network management strategies for efficient live video
streaming.
In Figure 7, the propagation delays of various algorithms,

including CSM, Sch, Dijkstra, and the proposed DRL
model, are compared. Notably, the DRL and Dijkstra models
demonstrate lower delay times relative to the others. The
Sch algorithm necessitates that devices exchange data, such
as the most recent video chunk and average playback
delay. This process obliges each device to compute its
propagation delay based on the information received from
neighboring devices. Consequently, this requirement for
additional computational work extends the time it takes for
video to travel from its source to its destination, contribut-
ing to the Sch algorithm’s relatively longer delays. In a
different approach, CSM, when not paired with blockchain
technology, mandates that nodes fetch video chunks from
the cloud and send back the processed version through

FIGURE 8. Comparison of the full delay with a varied number of nodes requesting
each video under DR, NoD2D, Flexi, Dijkstra and DRL.

backhaul links. This approach inherently introduces more
extended delays compared to other methodologies. On the
other hand, the Dijkstra algorithm is adept at finding the
shortest routes between nodes within a cluster, effectively
cutting down on transmission times. The DRL model, on
the other hand, focuses on identifying the optimal path that
maximizes rewards while minimizing the objective function,
contributing to its efficiency in reducing delays. Figure 8
presents a comparison of the full delay for a varying
number of nodes requesting each video using Distributed
Random (DR), NoD2D, Flexi, Dijkstra, and DRL-LVT
algorithms. Given the constraint that both upload and
download capacities are fixed at 2, each video transmission
algorithm shows significant shifts in performance. Dijkstra’s
algorithm, typically adept at identifying the shortest paths,
experiences quick saturation of network paths due to these
strict capacity limits, resulting in escalated delays as the
network load increases. Flexi, dependent on feedback and
prioritization, encounters severe compounded delays as the
capacity cap significantly restricts its ability to effectively
manage re-transmissions. Likewise, the NoD2D and DR
strategies face considerable difficulties, their less efficient
routing methods culminating in steep increases in delays.
In contrast, the DRL-LVT algorithm continues to perform
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FIGURE 9. The average arrived delay, the reward, and the full delay of the DRl model compared to Dijkstra, while varying the average link delay.

robustly, dynamically optimizing transmissions within the
capacity constraints, though its efficiency is challenged as
the network approaches these limits. Figure 9 shows that
the Dijkstra algorithm achieves the lowest propagation delay,
which is pivotal for video streaming systems. Consequently,
the subsequent sections will compare the proposed DRL-
LVT model with the Dijkstra algorithm to further evaluate
the efficacy of the DRL approach.

C. DRL FRAMEWORK AGAINST DIJKSTRA
This section focuses on contrasting the performance of the
DRL model with the Dijkstra algorithm within a 5-node
network. Both models operate under the condition that the
upload and download capacities are fixed at 2. The key
metric for comparison is the average link delay, defined
as the time taken from capturing a video chunk to its
display to the viewer. To ensure a fair comparison, limitations
regarding download and upload capacities are also applied
to the Dijkstra algorithm, assessing its efficiency in resource
management. Additionally, the DRL model’s performance is
evaluated against two other strategies:

• Active Links Strategy: This strategy maintains all
network links in an active state, enabling users within
a cluster to utilize any available link for forwarding
packets. This approach ensures maximum connectivity
and flexibility in packet routing but may not be the
most efficient in terms of resource utilization.

• Optimized Links Strategy: By selectively deactivating
links that are not currently handling packet transfers
from users, this strategy aims to streamline network
resource consumption. It focuses on maintaining only
those connections that contribute to active data trans-
mission, potentially enhancing the network’s overall
efficiency and reducing unnecessary bandwidth usage.

Figure 9 depicts a comparison of the average arrived
delay, the full delay, and the reward delay for the DRL,
Dijkstra, all active, and optimized links approaches. The
average link delay varied between 0.005 to 0.5. First, we
can see that when the average link delay is increasing,
the video chunks take more time to reach their destination

(Figure 9 (a)). The active and optimized links have a week
performance since both of them are activating an important
number of links in the network to forward the video chunks.
Dijkstra, instead, has the smallest average delay (Figure 9
(a)) compared to the other techniques. However, in terms of
reward (Figure 9 (b)) and full delay (Figure 9 (c)), Dijkstra
has a lower performance compared to the DRL. The DRL
has dynamically shared the available capacities of nodes
according to the network needs. Thus, the system distributes
the load on the nodes having remaining capacities and
uses the links connected to them to satisfy the constraints
while minimizing the delay. However, contrary to the DRL,
Dijkstra forwards the data without taking into consideration
the nodes’ capacities. The only objective is the arrival delay.
As the average delay in the network increases, traditional

algorithms like Dijkstra face challenges in managing network
constraints effectively. These algorithms often select paths
that surpass the upload and download capacities of partici-
pant nodes, leading to diminished rewards and compromised
performance. This issue becomes particularly critical in
healthcare applications, where delays can directly impact
patient care and outcomes. In contrast, our proposed DRL
model excels by strategically choosing links that distribute
the network load more evenly, significantly alleviating
bottlenecks in high-delay connections. This approach not
only reduces the overall network delay but also ensures
that the stringent requirements for real-time video streaming
in healthcare contexts are met. The DRL model’s superior
performance is demonstrated through its ability to maintain
high rewards and lower overall delays across various connec-
tivity scenarios, as highlighted in Figure 9 (c). Moreover, the
reduction in average arrival delay, crucial for timely patient
monitoring, is clearly illustrated in Figure 9 (a). A notable
example of the DRL model’s effectiveness is presented
in Figure 10, depicting a scenario with increasing video
demand while node capacities remain constant. Unlike the
Dijkstra algorithm, which struggles when requests exceed a
certain threshold, the DRL model adeptly manages even large
numbers of requests. This is paramount in healthcare settings
where the volume of data and the need for its rapid analysis
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FIGURE 10. The number of nodes satisfying the upload and download capacities for the DRL compared with Dijkstra technique for one chunk transmission.

FIGURE 11. Comparison of the full delay, the number of used links and the average network usage for the DRL compared with Dijkstra, all active and optimized links technique.

and transmission can be substantial. Our model ensures that
vital video packets are delivered within the nodes’ capacity
constraints to enhance real-time remote patient monitoring
services in healthcare systems.
Figure 11 shows a comparison of the full delay, the

number of used links, and the average network usage for
the DRL compared with the Dijkstra technique. We remark
that all active links have a high rate of network usage
(100%) (Figure 11 (c)) since all the links in the network are
activated. Optimized links improve the system performance
compared to the full active technique, however, the network
resource usage still very high (50%). Dijkstra is better than
optimized and full links techniques with an average network
usage rate equal to 6%. Importantly, unlike Dijkstra, the
DRL agent optimizes the set of nodes to be used according
to each node’s capacities. The use of adequate nodes leads to
a lower network resource (Figure 11 (a) and (b)). Figure 12

FIGURE 12. Transmission path.

illustrates a scenario of chunk transmission using both the
DRL and Dijkstra algorithms. This example features two
nodes competing for resources while requesting videos V1

VOLUME 5, 2024 3835



CHKIRBENE et al.: ENHANCING HEALTHCARE SYSTEMS WITH DRL

FIGURE 13. The effects of the system changes on the DRL model.

and V2. It is observed that Dijkstra selects distinct paths
for transmitting each video. Conversely, the DRL approach
utilizes the same link for forwarding the video V1 packets.
This pattern suggests that DRL effectively reduces the
usage of network resources during the transmission of video
chunks.

D. THE EFFECTS OF SYSTEM CHANGES
In this section, the effects of the system changes of the
proposed DRL model to the video transmission demand
over time is investigated. In particular, we assume that
each participant node has initially a download and upload
capacities equal to 5. Then, after 3000 episodes, the nodes
reduce their capacities to 2.
Figure 13 (a) depicts the reward function with a varied

number of episodes. The node capacities have been changed
after the system convergence. The DRL agent reacts rapidly
and redistributes the resources according to the new requests
and capacities. In fact, the DRL allocates the links according
to the nodes’ capacities. In particular, if the maximum
download and upload capacities of a node is high, then the
system can use the same link that has the lowest delay to
froward all the data (Figure 13 (b)). However, if the available
capacities is reduced the network has to search for alternative
path to satisfied the capacities constraints without losing a
lot in terms of delay (Figure 13 (c)).

VI. DISCUSSION
In the experimental setup, each node is precisely allocated
fixed capacities for both uploading and downloading, a
critical consideration for assessing performance in healthcare
remote monitoring scenarios where data integrity and timely
delivery are paramount. We evaluate effectiveness through
the Average Upload/Download metric, capturing the mean
video transactions per node to reflect operational efficiency
under the stringent conditions detailed in Table 1, which are
particularly relevant to healthcare applications.
In our comprehensive comparative analysis of the DRL-

LVT algorithm against established methods such as the Flexi,
NoD2D, DR strategies, and the Dijkstra algorithm, we
specifically address the unique requirements of healthcare
systems. These include ensuring high reliability, minimal

delays, and secure transmission key factors in patient
monitoring and emergency communication scenarios. Our
analysis includes critical metrics such as power consumption,
execution time, and propagation delay, which are pivotal for
supporting healthcare applications where delays can impact
patient outcomes.
Preliminary findings highlight the DRL-LVT model’s

capability to adeptly navigate the complexities of network
environments typical in healthcare settings, ensuring
efficient video transmission by adapting dynamically to
node-specific characteristics. This adaptability results in
enhanced performance metrics, significantly reducing delays
and optimizing resource use, factors that are critical in
healthcare where data must be both timely and accurate.
Notably, while the Dijkstra algorithm focuses on minimiz-
ing propagation delays through shortest path calculations.
Furthermore, contrasting with algorithms like the Sch scheme
that suffer from long delays due to their dependency on
continuous updates, our model excels in real-time video for-
warding without such constraints. The DRL-LVT approach
not only demonstrates its superiority in managing propaga-
tion delays but also showcases its robustness in scenarios
characterized by high demand and limited resources, typical
of remote healthcare monitoring. Thus, our comparative
analysis establishes the DRL-LVT algorithm as a superior
choice for live video transmission optimization in demanding
healthcare environments. It affirms our model’s capability to
enhance network efficiency and quality of service, making it
particularly suitable for healthcare applications where these
aspects are critical. This addresses the unique challenges
faced in healthcare remote monitoring, providing a robust
solution that caters specifically to the needs of this sector.

VII. CONCLUSION
This paper introduces the innovative Deep Reinforcement
Learning for Live Video Transmission (DRL-LVT) model,
specifically designed for Real-Time Remote Patient
Monitoring in healthcare settings. The model effectively
merges the capabilities of real-time video streaming with
strategic resource management. Early evaluations of DRL-
LVT show a promising balance in reducing network latency
and optimizing resource use. Utilizing a DRL agent, the
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model skillfully navigates node selection for video trans-
mission, considering their capacity limits to ensure minimal
delay and adherence to network constraints. Our comparative
studies highlight DRL-LVT’s superiority over traditional
methods like the Dijkstra algorithm, particularly in situations
with high resource demand and limited availability. This
advancement positions DRL-LVT as a pivotal development
in the field of real-time patient monitoring. Future research
efforts will focus on refining the DRL-LVT framework,
increasing network incentives, and conducting extensive field
tests to confirm its effectiveness and adaptability in real-
world scenarios. Collaborations with healthcare stakeholders
will be crucial for tailoring the framework to specific needs
and conducting pilot studies in controlled environments.
These studies will assess key performance metrics, inte-
gration with existing infrastructures, and compliance with
privacy standards. This strategic approach will validate
the framework’s practical efficacy in healthcare settings.
Additionally, recognizing the critical importance of data
security, future versions of the DRL-LVT framework will
enhance security measures to protect sensitive patient data
from emerging cyber threats, ensuring a system that is not
only effective and adaptive but also secure and trustworthy.
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