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1 |  INTRODUCTION

The benefits of exercise training are numerous and well 
documented. It protects against serious illnesses including 
cardiovascular diseases, diabetes, cancer, and neurodegen-
erative diseases (Ji et al., 2021; Quindry & Franklin, 2021; 
Nagpal & Mottola, 2020). Exercise can also improve body 
immunity, neuromuscular performance, sleeping time, and 

individual mood (Kelley & Kelley, 2017; Mikkelsen et al., 
2017; Simpson et al., 2020).

Ample evidence showing the importance of exercise for 
cognitive function has accumulated (Hotting & Roder, 2013; 
Intzandt et al., 2018; Mikkelsen et al., 2017). For example, 
exercise protects animals from the decline in cognition as-
sociated with aging (Kim et al., 2019). In addition, volun-
tary and forced exercises were shown to enhance memory 
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Abstract
The beneficial effects of exercise training on memory formation are well documented. 
However, the memory enhancement profile following the time- course of exercise 
training remains unknown. In this investigation, changes in the spatial hippocam-
pal memory following a time- course of swimming exercise training were examined. 
Young adult Wistar rats were tested for both short- term and long- term memories 
using the radial arm water maize (RAWM) paradigm following 0, 1, 7, 14, and 
28 days of swimming exercise training (60 min per day, 5 days/week)s. The mean 
total errors on RAWM during the learning phase and memory testing remained the 
same (p  >  0.5) after 1  day of swimming exercise. On the other hand, swimming 
exercise- induced significant enhancement to the learning phase and memory forma-
tion after 7 days of training (p < 0.01). Errors decreased (p < 0.0001) after 7 days of 
training and remained lower (p < 0.0001) than baseline without differences between 
7, 14, and 28 days (p > 0.5). Similarly, short-  and long- term memories improved after 
7 days (p < 0.05) of training as compared to the baseline without differences between 
7, 14, and 28 days (p > 0.05). The time course of improvement of learning and both 
short-  and long- term memories after swimming exercise were evident after 7 days 
and plateaued thereafter. Results of the current study could form the base for future 
utilization of exercises to enhance cognitive function in healthy individuals.
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formation (Alomari et al., 2016). The cognitive benefits of 
exercise have been demonstrated across all ages (O'Leary 
et al., 2019) and attributed to changes in gene expression 
(Kim et al., 2019). Furthermore, a recent study on mice 
showed that exercise benefits could be transmitted from par-
ents into progeny (McGreevy et al., 2019). Similar findings 
were observed in humans. Exercise protects individuals from 
cognitive decline associated with aging and diseases (Lopez- 
Fontana et al., 2018). In addition, exercise can improve 
cognitive function in adolescents, adults, and the elderly 
(Fernandes et al., 2018; Marston et al., 2019; McSween et al., 
2019; Stern et al., 2019).

Acute and chronic exercise training are both associated 
with improved cognitive function (Loprinzi et al., 2018; 
McSween et al., 2019; Suarez- Manzano et al., 2018; Wheeler 
et al., 2019). In a meta- analysis involving 25 studies, exercise 
occurring before memory encoding and during early memory 
consolidation enhanced episodic memory function (Loprinzi 
et al., 2019). However, changes in the magnitude of cognitive 
function following a time- course of exercise training are yet 
to be investigated. Therefore, the current investigation aimed 
to examine spatial hippocampal memory following a time- 
course of exercise training using the radial arm water maize 
(RAWM) paradigm.

2 |  METHODOLOGY

2.1 | Animals and design

Male Wistar rats (weight: 180– 220 g) were used in the study. 
The rats were kept in stainless steel wired cages for 2 weeks 
prior to the exercise intervention for acclimating to a 12:12 
light/dark cycle at 24±1°C temperature. Sanitized water and 
regular rodent food were supplied to the rats while in the 
cages throughout the study period. Caring, feeding, exercise, 
and memory testing were conducted in the animal care facil-
ity of Jordan University of Science and Technology, Irbid, 
Jordan.

Five groups of 12 animals each were used in the exper-
iments. The rats were administered a swimming exercise 
program 60 min per day, 5 days/week. Each group was exer-
cised for either 0, 1, 7, 14, or 28 days. The RAWM paradigm 
(Alzoubi et al., 2019; Alzoubi et al., 2019; El- Elimat et al., 
2019) was used to determine spatial memory for each group 
at its corresponding time point (0, 1, 7, 14, or 28  days). 
Memory was determined after 30  min (short- term mem-
ory) and 5  h (long- term) of finishing the exercise session 
(Alqudah et al., 2018). The experimental procedures were 
reviewed and approved by the Institutional Animal Care 
and Use Committee of Jordan University of Science and 
Technology.

2.2 | The exercise training protocol

The rats were subjected to a swimming exercise protocol in a 
cylinder tank. During the exercise program, the rats were al-
ternated between 5 min of resting and swimming for 60 min. 
After swimming, each rat was removed immediately from 
the tank, dried with a piece of cloth, and placed for resting 
in a cage. The tank was 50 × 35 × 35 cm in height, diameter, 
and water depth, respectively (Khabour et al., 2013).

2.3 | Memory testing

The RAWM paradigm was used for evaluating spatial mem-
ory in a dimly lit room (Alzoubi, Mayyas, et al., 2019; Alzoubi 
et al., 2019; El- Elimat et al., 2019). The paradigm is a black 
circular vessel that contains preserved water at 24  ±  1°C. 
Inside the vessel, six- V- shaped stainless steel sheets forming a 
central area connected to six arms for swimming, one of which 
is designated as the goal arm. A platform is hidden at 2 cm un-
derwater at the far end of the goal arm (Alquraan et al., 2019).

The rats performed two sets of six consecutive attempts 
separated by 5  min of resting to assure learning the para-
digm, including the goal arm location. Subsequently, short-  
and long- term memories were examined at 30 min and 5 h, 
respectively. During the learning attempts, each animal was 
allowed to swim freely in the RAWM paradigm to find the 
hidden platform within 1 min. Once on the platform, the rat 
was given 15 s to observe visual cues before removing it off 
the platform to resume the next trial. Visual cues were placed 
in the same positions during the experiment. The rat was 
guided toward the platform to observe the cues for 15 s when 
was unable to find the platform within the permitted 1 min.

An error was scored when the rat arrived at the wrong 
arm during the 1- min- search for the platform. An entry to an 
arm was recorded, when the whole body of the rat (excluding 
the tail) is inside the arm. Memory tests were administered 
in a similar pattern as to the acquisition trials. However, in 
the memory tests, animals were neither guided to the goal 
arm, nor observed cues for 15- s while on the hidden platform. 
Instead, once the rat reached the platform, it was returned to 
the home cage immediately. During testing for memory, all 
animals reached the hidden platform within <1 min.

2.4 | Statistical analyses

Statistical analyses were completed with SPSS software for 
Windows (version 22.0). Data are expressed as mean ± SD, 
and α was preset at p < 0.05.

One- way repeated measure ANOVA was used to com-
pare the average number of errors committed by the rats to 

 2051817x, 2021, 11, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.14814/phy2.14851 by Q

atar U
niversity, W

iley O
nline L

ibrary on [12/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 3 of 6ALOMARI et AL.

determine the change short-  and long- term memories during 
the time course of the study.

3 |  RESULTS

3.1 | Learning effect

The ANOVA presented in Figure 1 shows differences 
(p < 0.001) in spatial learning among the rats. According to 
the post hoc analysis, the mean total errors on RAWM re-
mained the same (p > 0.5) after 1 day of swimming exercise. 
However, errors decreased (p < 0.001) after 7 days and re-
mained lower (p < 0.001) than baseline and 1 day of exercise 
without differences between 7, 14, and 28 days (p > 0.5).

3.2 | Effect of swimming exercise on memory

The one- way ANOVA revealed changes in short-  (p < 0.009) 
and long- term (p < 0.004) memories with exercise. Post hoc 
analysis showed that the short- term memory remained un-
changed (p > 0.5) after 1 day of exercise (Figure 2). However, 
the number of errors committed, on the RAWM, decreased 
after the 7th (p < 0.02), 14th (p < 0.03), and 28th (p < 0.008) 
days of exercise as compared to the baseline without differ-
ences (p > 0.5) between 7th, 14th, and 28th days of the exer-
cise time- course.

Another post hoc analysis showed that the long- term 
memory remained unchanged (p > 1.0) after 1 day of exer-
cise (Figure 3). However, the number of errors committed, 
in the RAWM, decreased after the 7th (p < 0.04), 14th (p < 
0.01), and 28th (p < 0.004) days of exercise as compared to 

the baseline without differences (p > 0.05) between 7th, 14th, 
and 28th days of exercise (Figure 3).

4 |  Discussion

The study examined the time- course effect of swimming ex-
ercise on memory in rats. The results revealed that swim-
ming can improve short-  and long- term memories similarly. 
Improvements in short-  and long- term memories were evi-
dent after the 7th day of exercise then plateaued thereafter 
(i.e., after 14 and 28 days of exercise) without changes after 
one day of exercise. The study confirms the importance of 
exercise for memory. Additionally, the plateau indicates that 
the improvements in memory seem to be rapid. However, 

F I G U R E  1  Changes in spatial learning with swimming exercise. 
*: p < 0.05 versus baseline. †: p < 0.05 versus 1 day. Data are 
presented as mean ± SD (n = 12 rats/group)

F I G U R E  2  Short- term memory changes with swimming exercise. 
*: p < 0.05 versus baseline. †: p < 0.05 versus 1 day. Data are 
presented as mean ± SD (n = 12 rats/group)

F I G U R E  3  Long- term memory changes with swimming exercise. 
*: p < 0.05 versus baseline. †: p < 0.05 versus 1 day. Data are 
presented as mean ± SD (n = 12 rats/group)
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more studies are needed to determine changes in memory 
after voluntary and forced exercise in animals and humans 
with more time points and longer periods. Furthermore, stud-
ies are needed to investigate the sustainability of exercise 
training on memory with training cessation (i.e., detraining). 
Examining the mechanisms for these exercise- induced adap-
tations in memory is also warranted.

The advantages of exercise are now undeniable. 
Cardiovascular, respiratory, metabolic, immunological, neu-
romusculoskeletal, mental, and social benefits can be gained 
from regular engagement in exercise (Lahart et al., 2019). 
Similarly, evidence of neurocognitive improvements of ex-
ercise has recently accumulated (Lee et al., 2019). Regular 
participation in exercise seems to enhance academic-  and 
work- related achievements among children, and young 
and old adults, with and without cognitive deficits. These 
achievements have been attributed to enhanced information 
perception, retention, and retrieval in verbal, mathematic, and 
memory tasks (Raichlen & Alexander, 2017). Interestingly, 
the benefits were related to the amount of time committed to 
physical activities (Raichlen & Alexander, 2017). These im-
provements are usually combined with neural structural and 
functional alterations. Among these alterations are enlarged 
brain parts (Sexton et al., 2016), enhanced brain connectiv-
ity (Li et al., 2017), and increased cerebral and hippocampal 
blood flow (Steventon et al., 2019), coupled with neurogene-
sis (Voss et al., 2019).

In animals, exercise also enhances data acquisition, reten-
tion, and retrieval (Mello et al., 2008). These cognitive adapta-
tions are associated with cerebral neurogenesis, angiogenesis, 
and increased brain volume and activity, synaptic plasticity, 
cerebral blood flow, and spine density (Stimpson et al., 2018). 
The molecular bases of these adaptions have been attributed 
mainly to neutrophils, particularly BDNF (Kondo, 2017).

Uniquely, the current improvement was evident after 
7 days of exercise without additional development of cogni-
tive function after 14 and 28 days of exercise. These findings 
indicate that the improvements are rapid and can level- off 
even if the exercise of the same components (i.e., type, in-
tensity, frequency, and duration) persisted. The exercise in-
tervention was performed 5Xs/week for 60 min throughout 
the study period. Maybe, this exercise program was sufficient 
enough for the first week of the exercise program; thus an 
increase in the exercise program intensity, frequency, and 
duration might be needed to induce further adaptations. 
Therefore, more studies with gradual progressive exercise 
programs are warranted.

The short- term effect of exercise on cognitive function mea-
sures is sparse. In animals, a single bout of low, but not high, 
intensity exercise can improve memory during the early stage 
of brain injury in rats (Yoon & Kim, 2018). In healthy rats, 
however, memory improvements were evident after 2 weeks 
of exercise (Lovatel et al., 2012). In a study for Berchtold 

and colleagues, improvements in memory were shown after 
3  weeks of daily exercise and persisted thereafter, however 
gradually decreased to baseline level, after 1– 2 weeks of de-
training (Berchtold et al., 2010). These improvements were 
observed in adult rats after 4, but not 2, weeks, while were 
observed in adolescent rats after 2 and 4 weeks of exercise 
(Hopkins et al., 2011). According to these studies, the time- 
course adaptations in memory to exercise are still uncertain 
and seem to be exercise time- , protocol- , and age- dependent. 
Therefore, more studies are needed to examine the contribu-
tion of exercise time and protocol as well as age on memory.

The precise mechanism for these cognitive adaptations is 
still elusive; a cascade of neural adjustments, however, has 
been proposed. Rhythmic muscular contraction during exer-
cise seems to stimulate the growth of neurons in certain brain 
compartments (i.e., hippocampus and cerebral cortex) essen-
tial for learning and memory to release BDNF. Subsequently, 
BDNF seems to induce neural plasticity thus enhances cog-
nitive function, learning and memory (Hopkins et al., 2011). 
However, these are mere speculations in need for substantia-
tion in future mechanistic studies.

In conclusion, the current findings show the time- course 
of improvement of short-  and long- term memories after 
swimming exercise. Interestingly, these improvements were 
evident after 7 days of exercise and plateaued thereafter. The 
results could form the base for future utilization of swimming 
exercises to ameliorate neuropsychiatric diseases- induced 
learning and memory impairment.
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