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Abstract: γ-valerolactone (GVL) is a crucial chemical feedstock used in the production of fuel
additives, renewable fuels, and fine chemicals alternative to petroleum-based solvents and chemicals,
supporting the transition to sustainable energy solutions. It is promptly acquired by hydrogenating
levulinic acid (LA) in a gaseous or liquid phase with a homogeneous or heterogeneous catalyst
using a variety of recognized catalytic processes. Herein, this work focuses on the use of silica-
supported copper (Cu/SiO2) catalysts for the gas-phase hydrogenation of LA to GVL under mild
reaction conditions. The study analyzes how copper loading can affect the catalytic activity of the
Cu/SiO2, while the flow rate of LA, time-on-stream, reaction temperature, and LA concentration
affect the catalytic efficiency. The SiO2 support’s various Cu loadings are crucial for adjusting the
catalytic hydrogenation activity. One of the studied catalysts, a 5 wt% Cu/SiO2 catalyst, demonstrated
~81% GVL selectivity with ~78% LA conversion and demonstrated stability for ~8 h while operating at
atmospheric pressure and temperature (265 ◦C) and 0.5 mL/h of LA flow rate. The ability to activate
hydrogen, high amount of acidic sites, and surface area were all discovered to be advantageous for
increased GVL selectivity.

Keywords: biomass; γ-valerolactone; biofuel additive; green solvent; vapour-phase hydrogenation;
selectivity

1. Introduction

In recent years, the search for sustainable alternatives to fossil fuels and petrochemical-
based products has gained significant momentum. Biomass, an abundant and renewable
resource, has emerged as a promising feedstock for the production of various chemicals
and fuels [1–5]. Among the many biomass-derived compounds, levulinic acid (LA) has
garnered attention due to its versatile nature and potential applications [6]. LA is a platform
chemical derived from biomass, primarily agricultural and forestry residues, such as corn

Reactions 2023, 4, 465–477. https://doi.org/10.3390/reactions4030028 https://www.mdpi.com/journal/reactions

https://doi.org/10.3390/reactions4030028
https://doi.org/10.3390/reactions4030028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/reactions
https://www.mdpi.com
https://orcid.org/0000-0001-8533-3338
https://orcid.org/0000-0002-9535-8771
https://orcid.org/0000-0002-5806-9583
https://orcid.org/0000-0003-1958-9524
https://orcid.org/0000-0003-1115-3590
https://orcid.org/0000-0001-8535-2731
https://doi.org/10.3390/reactions4030028
https://www.mdpi.com/journal/reactions
https://www.mdpi.com/article/10.3390/reactions4030028?type=check_update&version=1


Reactions 2023, 4 466

stover, wheat straw, and wood chips. It can also be obtained from cellulose, hemicellulose,
and other carbohydrate-rich materials through various conversion processes. LA possesses
several desirable properties that make it an attractive starting material for chemical syn-
thesis [6–8]. It is water-soluble, stable under mild reaction conditions, and exhibits a high
degree of functional group compatibility.

One particularly exciting development is the conversion of LA into γ-valerolactone
(GVL), a cyclic ester derived from LA and a valuable chemical with a wide range of appli-
cations in the chemical industry, including as a solvent, reaction medium, and precursor
for the synthesis of various chemicals and materials such as 2-methyl tetrahydrofuran,
polyesters, and bioplastic industries [9–11]. GVL is highly valued for its favorable physical
and chemical properties, such as low vapor pressure, high boiling point, and good solubility
in water and common organic solvents. One of the key advantages of biomass-derived LA
conversion into GVL is the utilization of a renewable feedstock. By leveraging biomass
resources, this process reduces dependence on fossil fuels and mitigates greenhouse gas
emissions. Moreover, the production of GVL from LA offers an alternative to petroleum-
based solvents and chemicals, contributing to the transition towards a more sustainable
and environmentally friendly chemical industry. The versatility of GVL opens up vari-
ous possibilities for its applications. As a green solvent, it can be employed in a range
of industrial processes, including coatings, adhesives, and pharmaceutical formulations.
GVL’s potential as a fuel additive or precursor for the production of renewable fuels further
highlights its significance in the quest for sustainable energy solutions. Additionally, GVL
can serve as a building block for the synthesis of polymers, resins, and other high-value
chemicals, thereby expanding its potential applications across multiple industries [11].

The conversion of LA into GVL involves a catalytic process known as hydrogena-
tion. Several processes exist today for hydrogenating LA in the presence of molecular
hydrogen, alcohol, or formic acid, plus a catalyst to produce GVL. The choice of catalyst
significantly impacts the yield and selectivity of GVL production. Catalysts commonly used
include metal catalysts (e.g., iridium (Ir) [12–14], palladium (Pd) [15], platinum (Pt) [16],
and ruthenium (Ru) [17–19], Raney nickel (Ni) [20], etc.) supported on appropriate sub-
strates (alumina, zirconia, alumina titania, niobia, etc.) (Table 1) [17,21–23]. Heterogeneous
catalysts are more frequently utilized in biomass valorization compared to homogeneous
catalysts (Table 1) [11]. When comparing Cu-based catalysts with other catalysts for the
conversion of biomass-derived LA into GVL, several factors come into play, including
catalytic activity, selectivity, stability, and cost-effectiveness (Table 1). For example, noble
metal catalysts, such as Pt, Pd, Ir, and Ru, exhibit high catalytic activity for the hydrogena-
tion of LA derivatives (Table 1). Non-noble metal catalysts generally offer comparable or
slightly lower selectivity towards GVL production compared to supported noble metal
catalysts (Table 1) [24–26]. Supported noble metal catalysts are known for their excellent
stability and can withstand harsh reaction conditions. Noble metal catalysts, including Pt
and Ru, are more expensive than Cu/SiO2 catalysts, making the latter more cost-effective
for large-scale applications.
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Table 1. Various catalytic systems for hydrogenation of LA to GVL transformation.

S. No. Catalyst
Reaction Conditions LA

Conversion
(%)

GVL
Selectivity
(%)

Ref.Temperature
(◦C)

Pressure
(MPa)

Time
(h)

1 [Cp*Ir(dpa)(OSO3)] a,b 100 0.5 72 92 - [14]
2 Ir complex (6) a,b,c 120 1.01 36 - 78 [27]
3 [Ir(COE)2Cl]2

a,b 100 5 17 100 99 [28]
4 [Ru(acac)3]/TPP a,b 140 8 168 >99 95 [29]
5 [Ru(acac)3] + TPPTS a,b 140 5 5 99 97 [30]
6 [Ru(acac)3]/DPPB a,b 140 10 1.8 99.9 99.9 [31]
7 Pt/ZrO2

b,c 240 4 24 97 90 [32]
8 Ru/C b,c 190 1 5 81 57 [33]
9 Ru/C b,c 150 - 5 100 97 [34]
10 Ru/C + A70 b 70 3 3 100 99 [35]
11 Pd/C b,c 150 - 5 9 17 [34]
12 Pt/C b,c 150 - 5 13 13 [34]
13 Ru/ZrO2

b,c 150 - 5 11 18 [34]
14 Ru/ZrO2

b,c 150 1 12 73 >99 [36]
15 Ru/SBA-15 b,c 150 - 5 31 71 [34]
16 Ru/HAP b 70 0.5 4 99 99 [37]
17 Au/ZrO2-VS b,c 150 0.5 6 95 99 [38]
18 Co8Pd2@N-C b,c 150 - 9 ~100 99.3 [39]
19 Ru0.18/Al2O3/NC b 150 4 3 - 99.7 [40]
20 Ni1-Zn1@OMC b 180 2 1.5 100 93 [41]
21 Raney Ni b 100 1.5 4 99.3 98.1 [42]
22 Co-LA@SiO2-800 b,d 120 3 24 >99 97 [43]
23 Co@NC-700 b,d 190 1.9 2 100 100 [44]
24 4Co/Al2O3

b,d 180 5 3 100 >99 [45]
25 Sn/Al-SBA-15 b,e 200 0.1 3 99 100 [46]
26 Cu/Ni hydrotalcite b,d 140 3 3 100 100 [47]
27 CuAl b,e 110 3 2 100 95.3 [48]
28 Cu/MCM-41 f 265 0.1 5 85 77 [22]
29 Cu/MCM-48 f 265 0.1 5 92 92 [22]
30 Cu/KIT-6 f 265 0.1 5 78 69 [22]
31 Cu/SBA-15 f 265 0.1 5 100 98 [22]
32 Cu/Al2O3

f 265 0.1 1 98 87 [23]
33 Cu/ZrO2

f 200 2.7 4 - 75 [49]
34 Cu/ZrO2

f 265 0.1 - 81 83 [21]
35 Cu/SiO2-Q6 f,c 250 66 81 [50]
36 Cu/Zr0.8-Ce0.2

f,c 260 0.5 2 88.5 94.2 [51]
37 Cu-hydrotalcite f 265 0.1 2–3 87.5 95 [52]
38 Cu/ZrO2-Al2O3

b 130 3 5 100 100 [53]
39 Cu/Al2O3-ZrO2

b 200 3 2 100 100 [54]
40 Cu/Al2O3

f 240 3 1–5 93.7 91.5 [55]
41 CuCo-Al2O3

f 250 0.1 24 100 99 [56]

42 Cu/SiO2
f 265 0.1 1 78 81 This

work

Note: a = homogeneous; b = liquid phase; c = formic acid as hydrogen donor; d = 1,4-dioxane as hydrogen donor;
e = 2-propanol; f = vapour phase.

Cu catalysts generally offer higher selectivity towards GVL production compared to
Ni, which may show side reactions leading to the formation of undesired by-products [11].
Moreover, Raney nickel is relatively expensive due to the complex and energy-intensive
production process, while Cu-based catalysts can be more cost-effective. It is important
to note that the choice of catalyst depends on specific process requirements, such as de-
sired selectivity, reaction conditions, and economic considerations. The performance and
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suitability of different catalysts can vary depending on the specific reaction system and
optimization efforts. Introducing promoter elements or modifying the support material can
improve the catalyst’s efficiency. Cu/SiO2 catalysts are typically prepared by impregnating
copper (Cu) precursors onto high-surface-area silica (SiO2) support. The catalyst’s structure
depends on factors such as copper loading, method of synthesis, and calcination conditions.
Cu/SiO2 catalysts exhibit excellent catalytic activity for various reactions, including hy-
drogenation, dehydrogenation, oxidation, and coupling reactions [10,57–60]. The presence
of Cu nanoparticles on the SiO2 support enhances the catalyst’s performance due to its
high surface area and dispersion of active sites. The selectivity of Cu/SiO2 catalysts can be
tuned by controlling the copper loading, reaction conditions, and support characteristics.
These catalysts often demonstrate good selectivity towards specific products, making them
valuable tools for fine-tuning chemical processes. The stability of Cu/SiO2 catalysts is cru-
cial for continuous and large-scale applications. Careful design of the catalyst composition
and support properties can enhance stability and reduce catalyst deactivation. Therefore,
Cu/SiO2 catalysts find application in several industries, including petrochemicals, fine
chemicals, pharmaceuticals, and renewable energy. They are particularly useful in biomass
conversion processes and green chemistry applications due to their ability to promote
sustainable and eco-friendly transformations. Ongoing research focuses on optimizing the
performance of Cu/SiO2 catalysts through the development of new synthesis methods,
understanding catalytic mechanisms, and exploring novel support materials to enhance
their activity, selectivity, and stability.

While the conversion of biomass-derived LA into GVL holds immense promise, there
are still challenges to address. The development of efficient and selective catalysts capable of
operating under mild conditions remains a focal point of research. This article explores the
process of biomass-derived LA conversion into GVL over silica-supported copper catalysts
and its significance for sustainable chemical production. The previous study provided
descriptions of the measurements conducted on the Cu/SiO2 catalysts, including X-ray
diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission
electron microscopy (TEM), UV–Vis diffused reflectance spectra (UV-DRS), hydrogen
temperature-programmed reduction (H2-TPR), temperature-programmed desorption of
NH3 (NH3-TPD), N2O decomposition, Brunauer–Emmett–Teller (BET) surface area, and
pore size distribution [10]. In this study, the parameters/variables (activity, conversion,
selectivity, and stability) tuning their LA catalytic performance to GVL were examined herein.

2. Materials and Methods

Copper nitrate, silica, and levulinic acid were purchased from Sigma–Aldrich, Ger-
many. Wet impregnation is a simple and effective technique for preparing catalysts with
SiO2 support and variable Cu loadings (2–20 wt%) after calcination [10]. In the study, the
vapor-phase hydrogenation of LA to GVL was evaluated using a continuous fixed-bed
stainless steel tube reactor (length: 32 cm and inner diameter: 9 mm) under 0.1 MPa hydro-
gen pressure over a temperature range of 250 to 310 ◦C. Glass wool packed from both ends
was placed in the center of the reactor along with the catalyst (0.3 g), which was combined
with glass beads. The catalyst was pretreated with a H2 stream at 350 ◦C for 3 h before the
activity test. After the reduction, the reactor temperature was lowered to 265 ◦C, and H2 and
a stream of LA aqueous solution (10 wt%) were introduced at WHSV 0.550 h−1. The liquid
products were collected every hour in an ice-cold trap and subsequently analyzed using a
HP5973 quadruple GC-MSD system with a HP-1MS capillary column. The temperatures of
the injector and detector were set to 250 and 260 ◦C, respectively. The column temperature
was programmed to initiate heating at 40 ◦C, maintain the temperature for 2 min, and
then increase the temperature to 250 ◦C at a heating rate of 10 ◦C min−1. To calculate the
conversion of LA and the selectivity of desired products, the following formulas were
utilized.

LA conversion (%) =
mole of LA.(in)− moles of LA (out)

Moles of LA in the feed (in)
× 100 (1)
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Product selectivity (%) =
Moles of one product
moles of all products

× 100 (2)

TOF = rate of reaction/number of active Cu sites (the number of Cu active sites was
determined by a N2O decomposition method) [10].

3. Results and Discussion

During the conversion of LA to GVL production over a Cu/SiO2 catalyst, molecular
hydrogen dissociates into hydrogen atoms, which then migrate from CuO sites. The
reduction of CuO into metallic Cu species demonstrates that hydrogen spillover from
Cu is crucial for in situ catalyst reduction. Cu nanoparticles may interact strongly with
SiO2 support (Cu-O-Si-O-), leading to a partially electropositive state due to oxygen atoms
on the support’s surface [57]. There exist various reaction pathways to generate GVL
(Scheme 1). During LA hydrogenation, the main and favored product was determined
to be GVL. However, by-products such as angelica lactone (AL) and pentanoic acid or
valeric acid (VA) were also generated (Scheme 1). One pathway involves hydrogenating
LA, which generates 4-hydroxypentanoic acid (4-HPA), an unstable intermediate. Upon
ring closure by intramolecular esterification, GVL is produced by the spontaneous loss of a
water molecule. Another pathway to producing GVL from LA involves dehydrating LA to
form AL, followed by hydrogenation [11].
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The catalyst loading, reaction temperature, reactant flow rate and concentration, effect
of turnover frequency (TOF) and catalyst stability are crucial parameters that significantly
impact the conversion of biomass-derived LA into GVL. Let us examine the effects of each
parameter.

3.1. Effect of Copper Loadings on Catalytic Activity

The catalytic performance of LA hydrogenation using Cu/SiO2 catalysts with varying
copper metal loading was examined, and the findings are presented in Table 2. The
conversion of LA and the selectivity to GVL for an optimized catalyst (5 wt% Cu/SiO2)
containing 5 wt% Cu loading were ~78% and ~81%, respectively. Increasing the copper
loading from 2 to 20 wt% resulted in a decrease in the conversion of LA from 56% to 33%
and GVL yields from 61% to 29%. Generally, increasing the catalyst loading can enhance
the reaction rate and increase the conversion of LA into GVL. However, there is an optimal
catalyst loading beyond which further increases may not lead to substantial improvements.
The active site density, dispersion of copper species, and acidity/basicity of the catalyst
support can impact the reaction kinetics. The concentration of copper on the catalyst surface
affects the availability of active sites for the reaction. An optimal copper loading can lead
to higher catalytic activity and selectivity. Higher catalyst loadings may potentially favor
side reactions or by-product formation, leading to decreased selectivity towards GVL. The



Reactions 2023, 4 470

decline in activity with increasing copper content from 2 to 20 wt% is tentatively attributed
to a reduction in copper surface area and surface acidity. Higher catalyst loadings increase
the overall cost of the process. Thus, it is important to strike a balance between activity,
selectivity, and cost-effectiveness. It is important to note that the support material has a
small surface area, so higher copper loading does not necessarily lead to increased activity
due to the deposition of active sites in multiple layers on the support. This implies that the
conversion of LA and selectivity towards GVL are directly influenced by the acid strength
and active copper sites of the catalyst.

Table 2. Comparison between catalytic activity with catalyst properties in different Cu/SiO2 catalysts.

Catalyst (% Cu
Loading)

Specific Copper
Surface Area
(m2 g−1

Cu) a

Average Particle
Size of Cu

(nm) b

Conversion of
LA

(%) a

Selectivity (%) c

GVL AL VA Others

2 120 5.55 56 61 27 1 11
5 132 5.11 78 81 11 1 7
10 76 8.97 61 57 29 - 14
15 52 13.2 49 41 48 - 11
20 34 20.7 33 29 59 - 12

a Reaction conditions: feed rate of LA: 10 wt%; weight of Cu/SiO2 catalyst 0.3 g; reaction temperature: 265 ◦C; H2
pressure: 0.1 MPa; H2 flow rate: 30 mL min−1. b Determined from N2O decomposition values [10]. c AL: angelica
lactone; VA: valeric acid.

3.2. Effect of TOF

To determine the relation between catalytic activity and copper loading, the turnover
frequency (TOF) values were calculated and are reported in Table 2. The number of
Cu active sites was determined by a N2O decomposition method [10]. The TOFs were
calculated from N2O decomposition data as the number of molecules of LA converted by
one surface copper atom per second. The TOF calculation gives insight into the efficiency
of a catalyst and allows for the comparison of different catalysts with varying active site
densities. It is an essential parameter for understanding catalytic kinetics and optimizing
reaction conditions in heterogeneous catalysis. Figure 1, which presents the relationship
between turnover frequency (TOF) and copper loading, illustrates the connection between
copper dispersion and hydrogenation activity. Conversion of LA decreases as the copper
loading increases up to 20 wt% due to the formation of CuO crystallites on the surface of
the SiO2 support. The decline in GVL selectivity, as shown in Table 2, may be attributed
to the lower dispersion and larger particle size of copper, which is evident from the N2O
decomposition and XRD studies. The results reported in Table 2 demonstrate a strong
correlation between the data from N2O decomposition and the activity of the catalyst.
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3.3. Effect of LA Flow Rates on Catalytic Activity

Generally, increasing the reactant flow rate can potentially enhance the reaction rate
by maintaining a higher concentration of reactants near the catalyst surface. Faster flow
rates may limit the residence time of reactants, potentially reducing side reactions and
improving selectivity. Reactant flow rate can impact the selectivity towards GVL.

The experiment investigated the hydrogenation process of LA using a 5 wt.% Cu/SiO2
catalyst with varying flow rates of LA, ranging from 0.5 mL/h to 1.5 mL/h (Figure 2). The
findings demonstrate that as the flow rate of the LA reactant increases, the conversion of
LA and the selectivity of GVL decrease. This phenomenon can be attributed to the longer
interaction time between LA molecules and the catalyst when a lower flow rate is employed
during the reaction. The reactant flow rate needs to be optimized to ensure efficient mass
transfer and reaction kinetics while considering the limitations of the system.
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3.4. Effect of Reaction Temperatures on Catalytic Activity

The reaction temperature can influence the selectivity towards GVL. The reaction
pathways leading to GVL formation and competing side reactions may have different tem-
perature dependencies. Certain reactions may have lower activation energies and become
more dominant at higher temperatures, leading to the formation of undesired by-products.
Understanding the temperature dependence of different reaction pathways is crucial for
controlling the selectivity of the reaction. The impact of reaction temperature on the hydro-
genation activity of 5 wt% Cu/SiO2 (5 wt% Cu loading) towards LA was assessed in the
250–310 ◦C range and documented in Table 3. Results indicate that LA conversion rises
with temperature, with low conversion rates at lower temperatures potentially caused by a
lack of sufficient energy input for LA dehydration to GVL. Higher temperatures generally
increase the reaction rate, but they can also influence the distribution of intermediates and
products, affecting selectivity. In some cases, higher temperatures may favor the formation
of undesired by-products or lead to thermal degradation of GVL. However, higher reaction
temperatures often require increased energy input, impacting the overall process economics
and sustainability. As the temperature increases from 250 to 310 ◦C, GVL selectivity falls
from 74% to 54%. However, temperatures above 265 ◦C are not recommended since the
dehydration product of LA becomes predominant.
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Table 3. LA hydrogenation over 5% Cu/SiO2 catalysts over various temperatures.

Reaction Temperature (◦C) Conversion of LA (%) a
Selectivity (%) b

GVL AL VA Others

250 55 74 20 0 6
265 78 81 11 1 7
280 89 69 21 1 9
295 100 61 27 2 10
310 100 54 31 5 9

a Reaction conditions: feed rate of LA: 10 wt%; weight of Cu/SiO2 catalyst: 0.3 g; H2 pressure: 0.1 MPa; H2 flow
rate: 30 mL min−1. b AL: angelica lactone; VA: valeric acid.

3.5. Effect of LA Concentrations on Catalytic Activity

The concentration of LA can influence the reaction kinetics. High LA concentrations
may favor certain reaction pathways, leading to specific by-products. The effect of LA
concentration on the 5 wt.% Cu/SiO2 catalyst activity was analyzed at 265 ◦C, and the
results are shown in Figure 3. Higher concentrations of LA were discovered to result in
a decrease in its conversion. This decline in activity may be attributed to the obstruction
of active sites by reactant molecules that are strongly adsorbed, potentially impeding the
dehydration process of LA to angelica lactone (AL).
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3.6. Effect of Time-on-Stream on Catalytic Activity

Catalyst stability is crucial to maintaining consistent catalytic activity throughout
the reaction. Catalyst deactivation or degradation can lead to decreased conversion and
selectivity. Various factors can influence catalyst stability, including the nature of the
catalyst, reaction conditions, presence of impurities, and catalyst preparation methods.
To examine the effect of time on stream (TOS) on the conversion of LA and selectivity of
GVL, the study observed the 5 wt% Cu/SiO2 at 265 ◦C for 20 h, with findings displayed
in Figure 4. The conversion of LA remained stable for up to 8 h on stream before sharply
decreasing to 19% at TOS-20 h. The catalyst’s decrease in hydrogenation activity can be
attributed to its deactivation, which happens when the Cu metal particles clump together
and coke forms in the active sites. As a consequence, the surface area of the metal reduces,
and the number of active sites decreases.
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3.7. Deactivation Study

As shown in Figure 5, the X-ray diffraction (XRD) characterization was performed on
a 5 wt.% Cu/SiO2’s catalyst before (fresh) and after (spent) the stability. A fresh catalyst
calcined and reduced Cu/SiO2, showing high-intensity peaks at the 2θ values of 35.5◦ and
38.4◦, which indexed to the CuO (JCPDS 45–0937). After 20 h stability performance, the
spent catalyst examined by XRD shows 2θ values of 44.5◦ and 50.7◦ peaks, which indexed
to the pristine Cu (JCPDS 04–0836). The spent catalyst revealed that the reduced catalyst
showcases two primary diffraction peaks specifically intended for metallic Cu [10,21]. The
deactivation was noticed for all the studied catalysts due to the formation of coke as well
as an agglomeration of Cu particles.
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Overall, optimization of catalyst loading, reaction temperature, reactant flow rate,
and catalyst stability is essential to achieve high conversion, selectivity, and economic
feasibility in the conversion of biomass-derived LA into GVL. Balancing these parameters
allows for efficient utilization of catalyst resources, improved product quality, and process
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sustainability. The ability to activate hydrogen, a large number of acidic sites, and surface
area were all discovered to be advantageous for increased GVL selectivity.

4. Conclusions

The transformation of biomass-derived levulinic acid into γ-valerolactone using a
Cu/SiO2 catalyst represents a significant advancement in sustainable chemical production.
The study analyzes the effect of copper loading, flow rate of LA, time-on-stream, reaction
temperature, and LA concentration on the catalytic hydrogenation activity of the Cu/SiO2
catalyst. The findings indicate that as the copper loading increases from 2 to 20 wt%, the
conversion of LA and the selectivity to GVL both declines. The analysis further implies
that the dispersion of the Cu species corresponds directly to the activity observed during
the LA hydrogenation. Moreover, this study demonstrates that as the flow rate of the
reactant increases, the conversion of LA and the selectivity of GVL decrease. The catalyst
maintains stability for up to 8 h of time-on-stream, beyond which rapid deactivation
occurs due to sintering and the formation of coke in the active sites. The conversion of
LA rises with a higher reaction temperature ranging from 250 to 310 ◦C, although the
selectivity of GVL decreases above 265 ◦C. Finally, the study finds that the conversion of LA
decreases at higher LA concentrations in the feed. By leveraging renewable feedstocks and
employing a highly active and selective catalyst, this process offers a greener alternative to
petrochemical-based solvents and chemicals.
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