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Abstract: Tinnitus is the perception of sounds like ringing or buzzing in the ears without any external
source, varying in intensity and potentially becoming chronic. This study aims to enhance the
understanding and treatment of tinnitus by analyzing a dataset related to tinnitus therapy, focusing
on electroencephalography (EEG) signals from patients undergoing treatment. The objectives of
the study include applying various preprocessing techniques to ensure data quality, such as noise
elimination and standardization of sampling rates, and extracting essential features from EEG signals,
including power spectral density and statistical measures. The novelty of this research lies in
its innovative approach to representing different channels of EEG signals as new graph network
representations without losing any information. This transformation allows for the use of Graph
Neural Networks (GNNs), specifically Graph Convolutional Networks (GCNs) combined with Long
Short-Term Memory (LSTM) networks, to model intricate relationships and temporal dependencies
within the EEG data. This method enables a comprehensive analysis of the complex interactions
between EEG channels. The study reports an impressive accuracy rate of 99.41%, demonstrating the
potential of this novel approach. By integrating graph representation and deep learning, this research
introduces a new methodology for analyzing tinnitus therapy data, aiming to contribute to more
effective treatment strategies for tinnitus sufferers.

Keywords: tinnitus dataset; electroencephalography (EEG) signals; preprocessing techniques; feature
extraction; Graph Neural Networks (GNNs)

1. Introduction

Tinnitus is a condition where individuals perceive sound even when there is no
external source of sound [1]. This sensation is often described as hearing ringing, buzzing,
hissing, or clicking sounds in the ears [2]. Tinnitus can manifest in one or both ears and can
vary in terms of its intensity and frequency [3]. The prevalence of tinnitus in the population
can vary depending on the specific study and group of people being examined [4,5].
Estimates suggest that approximately 10–15% of adults experience chronic tinnitus [6],
whereas as many as 30% may encounter occasional or transient tinnitus [7]. Tinnitus is not
limited to a particular age group [8], but it tends to be more commonly reported among
older adults [9].
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Tinnitus can stem from various underlying causes [10], including exposure to loud
noises, age-related hearing loss, ear infections, specific medications, blockage by earwax,
head and neck injuries, and other medical conditions [11]. The impact of tinnitus on
individuals can range from mild annoyance to significant distress [12,13], affecting their
overall quality of life, sleep patterns [14], ability to concentrate, and emotional well-being.

1.1. Tinnitus Treatment and Management Strategies

Tinnitus management encompasses various strategies to alleviate symptoms [7], in-
cluding sound therapy, cognitive behavioral therapy, relaxation techniques, and the use of
hearing aids or masking devices [15,16]. The approach to treating and managing tinnitus
varies based on the underlying cause and individual factors [17]. While there is currently
no known cure for tinnitus, numerous approaches exist to alleviate symptoms and enhance
quality of life [18]. Figure 1 presents the common strategies employed to manage tinnitus
across all age groups.
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Figure 1. Overview of prevalent strategies utilized for tinnitus management across all age demo-
graphics [3,19–24].

1.2. Effectiveness of Various Therapies

Researchers have examined the effectiveness of five different therapies [18] for reduc-
ing tinnitus perception in patients with refractory and chronic tinnitus. These therapies
covered the various elements outlined in Table 1.
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To assess therapeutic effectiveness, researchers analyzed patients’ electroencephalo-
graphic (EEG) activity [19] and measured brainwave patterns associated with tinnitus
perception [20]. By comparing EEG data before and after therapy sessions [21], researchers
have aimed to determine the impact of each therapy on reducing tinnitus-related brainwave
patterns and improving patients’ subjective experiences [22]. This analysis provides objec-
tive measurements to evaluate the potential effectiveness of these therapies in individuals
with refractory and chronic tinnitus.

Table 1. Comprehensive aspects encompassed by therapeutic approaches.

Therapy Aspect

Relaxing Music
This therapy involves exposing patients to soothing music aimed at promoting
relaxation and reducing stress levels. The goal was to create a more favorable
auditory environment to minimize tinnitus perception [23].

Tinnitus Retraining Therapy (TRT)
Focusing on habituation and desensitization techniques, TRT aims to reclassify
tinnitus from bothersome to neutral. It utilizes sound therapy and counseling to
facilitate habituation [24].

Therapy for Enriched Acoustic
Environment (TEAE).

TEAE sought to enrich the acoustic environment by introducing various
background sounds to make tinnitus less noticeable and bothersome [25].

Binaural Beats Therapy (TBB) TBB involves listening to auditory stimuli with slightly different frequencies in
each ear to induce relaxation and reduce tinnitus perception [26].

Auditory Discrimination Therapy (ADT) ADT aims to enhance auditory processing by training patients to discriminate
between different sounds, including tinnitus [18].

In recent years, there has been an increasing focus on harnessing deep learning method-
ologies for the identification of tinnitus through the analysis of EEG signals [27] recorded
during therapy sessions. In their study [27], the authors aimed to establish an objective
methodology for assessing changes in attentional processes among patients with tinnitus
undergoing auditory discrimination therapy (ADT) using EEG signals. Chronic and refrac-
tory tinnitus have been associated with neuronal over-synchronization, and sound-based
therapies have emerged as potential treatment approaches. However, the effect of ADT
on attentional processes remains poorly understood. This study utilized event-related
(de-)synchronization (ERD/ERS) responses to map synchronization levels related to au-
ditory recognition events. Deep representations of the scalograms were then extracted
using a pre-trained Convolutional Neural Network (CNN) architecture (MobileNet v2).
These deep-spectrum features were analyzed to assess changes in attention and memory
performance within the study datasets. The results provide robust evidence supporting
the feasibility of ADT as a tinnitus treatment, potentially due to attentional redirection.
This research contributes to a better understanding of the effects of ADT on patients with
tinnitus and introduces an objective measurement approach using EEG signals to monitor
attentional changes throughout the therapy process.

The author [28] presents a methodology designed to tackle the challenges posed by tin-
nitus, a persistent condition characterized by the perception of sound without any external
source. The diversity of symptom profiles in patients with tinnitus presents a major hurdle
for the development of effective treatments. In the absence of universal treatment, patients
often seek a promising approach to alleviate tinnitus, even without empirical support.
Furthermore, the lack of objective measures for assessing individual symptoms hinders
comprehension and management of the disorder. To address these challenges, the author
investigated the use of EEG data reflecting brain activity for classifying tinnitus using
a deep neural network. The study encompasses the analysis of 16,780 raw EEG sam-
ples from 42 subjects, including both tinnitus patients and a control group, each with a
one-second duration. Four distinct automated preprocessing techniques, including noise
reduction and various sampling strategies, were compared. Following preprocessing, a
neural network was trained to classify whether a given sample corresponded to a patient
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with tinnitus or to the control group. The findings demonstrate a maximum accuracy of
75.6% in the test set when applying noise reduction and down-sampling during preprocess-
ing. These results underscore the potential of deep learning methods for detecting complex
EEG patterns associated with tinnitus, which are challenging for humans to discern. The
proposed methodology shows the effectiveness of leveraging deep learning techniques
and EEG data for tinnitus detection and classification. By advancing our understanding of
tinnitus through objective measurements and machine learning, this study offers valuable
insights into the development of improved diagnostic and therapeutic strategies.

The authors of this study [29] set out to explore how modulated acoustic stimulation
affects the brain network dynamics of individuals suffering from chronic tinnitus. Their
research involved the design of a paradigm for capturing EEGs from patients with tinnitus
undergoing consecutive neuromodulation therapy involving acoustic stimulation for up
to 75 days. Tinnitus severity and treatment efficacy were assessed using the tinnitus
handicap inventory (THI), while EEG recordings documented brain activities at two-week
intervals. The authors conducted an EEG-based coherence analysis to investigate whether
changes in the brain network were aligned with the observed clinical outcomes during the
75-day acoustic treatment period. Subsequently, a correlation analysis was performed to
uncover potential relationships between network properties and alterations in tinnitus
handicap inventory scores. The results revealed significant weakening of the EEG network
following extended periodic acoustic stimulation treatment. Notably, strong correlations
were identified between changes in tinnitus handicap inventory scores, treatment efficacy,
and variations in the brain network properties. These findings suggest that long-term
acoustic stimulation neuromodulation interventions are promising for improving the
rehabilitation of patients with chronic tinnitus.

This study aimed to introduce an automated and impartial method to assess both the
presence and severity of tinnitus in patients undergoing therapy. By harnessing the capabil-
ities of deep learning algorithms known for their proficiency in extracting intricate patterns
and representations from complex datasets, we hold high expectations for achieving precise
tinnitus detection.

In the scope of this study, we focused on the analysis of a tinnitus dataset, specifically
comprising therapy data [18]. More specifically, we investigated EEG signals originat-
ing from patients engaged in tinnitus therapy. To prepare EEG data for analysis, we
applied a range of preprocessing techniques. These methods encompass the removal of
noise artifacts [30], ensuring uniform sampling rates, and normalizing the data to en-
hance comparability across various recordings [31]. In addition, we performed feature
extraction to encapsulate the pertinent attributes of the EEG signals. These features com-
monly encompass time-domain or frequency-domain characteristics such as power spectral
density [32], spectral entropy, and statistical measures [33]. These features provide the data
with meaningful representations.

Following the preparation of EEG signal features, we embarked on an innovative
approach: converting the signals into graphical representations [34]. Each cluster of
nodes was linked by edges to form a graph structure that mirrored the data. This graph
framework enabled us to harness Graph Neural Networks (GNNs), particularly the Graph
Convolutional Network (GCN) models coupled with Long Short-Term Memory (LSTM)
networks [35].

Graph Neural Networks are a class of deep learning models specifically designed to
handle graph-structured data, which are highly relevant for analyzing complex relation-
ships in data such as EEG recordings in tinnitus therapy. By leveraging the graph structure,
GNNs can effectively capture and model the intricate connections between different nodes
(e.g., EEG signal channels) and their attributes. In this study, we applied GNNs to transform
EEG data into graph representations, enabling the extraction of meaningful patterns and
improving the accuracy of our tinnitus therapy analysis. This novel approach combines
graph representation and deep learning, achieving an impressive accuracy of 99.41%, as
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illustrated in Figure 2. Through the use of GNNs, our method provides a powerful tool for
analyzing EEG data, offering new insights into the efficacy of various tinnitus therapies.
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The utilization of GCN-LSTM models on EEG signal graphs was aimed at capturing
the intricate relationships and temporal dependencies inherent to the data. These models
are designed to process data structured in graphs and excel at learning patterns and
representations from interconnected nodes. The LSTM component further empowers the
model to grasp the long-term dependencies and temporal dynamics of tinnitus signals.

By merging graph representation and deep learning techniques, our study introduces
an innovative method for scrutinizing tinnitus therapy data. This approach capitalizes
on the inherent structural and temporal characteristics of EEG signals. We anticipate that
this methodology will not only deepen our understanding of tinnitus but also contribute
significantly to the development of more effective treatment strategies for individuals with
this condition.
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2. Materials and Methods

Here, we present a novel method for predicting tinnitus using a graph-based approach
with EEG signal representations. The innovation lies in transforming the various channels
of EEG signals into a novel graph network representation. This method ensures that all
original information from the EEG data is preserved, enabling a comprehensive analysis
that maintains the integrity of the multi-channel signal inputs. The dataset employed
in this study was sourced from a publicly available benchmark. Initially, features were
extracted from the EEG signals, followed by the construction of a graph based on these
features. Subsequently, a model based on Graph Neural Networks was applied to acquire
the representations of tinnitus. The entire tinnitus detection process is shown in Figure 3.
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Figure 3. Schematic depiction of the proposed tinnitus detection model architecture utilizing GNN
applied to tinnitus EEG signals.

2.1. Description of Datasets

Utilizing EEG data in tinnitus research provides valuable insights into the underly-
ing brain activity associated with this condition. EEG is a non-invasive technique that
records the electrical activity of the brain through electrodes on the scalp. Analysis of
EEG signals enables researchers to observe and study the neural dynamics and patterns
associated with tinnitus.

Acoustic Therapies for Tinnitus Treatment: An EEG Database

The EEG Database for Acoustic Therapies for Tinnitus Treatment was created by
researchers at the Tecnológico de Monterrey in Mexico [21,36]. The dataset contained EEG
recordings of 103 participants who were treated with five different acoustic therapies for
tinnitus: relaxing music, tinnitus retraining therapy (TRT), therapy for enriched acoustic
environment (TEAE), binaural beats therapy (TBB), and auditory discrimination therapy
(ADT). The EEG recordings were taken under four different conditions: rest, listening to
the acoustic therapy, auditory stimulation based on acoustic therapy (passive mode), and
identification of common auditory stimuli, for example, cell phone ringing (active mode).
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In this dataset, all five acoustic therapies were effective in reducing tinnitus perception,
but TRT was the most effective therapy. The researchers also found that the effects of
acoustic therapies were more pronounced in the passive mode than in the active mode.

Figure 4 shows the process of administering acoustic therapy for one hour per week
while monitoring the EEG signals. During the EEG session, the patients engaged in various
activities. Additionally, the control group consisted of healthy participants without tinnitus.
The other group comprised patients who experienced tinnitus.
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Figure 4. Procedure of administering weekly one-hour acoustic therapy (phase 1) with concurrent
monitoring of EEG signals (phase 2) [21].

This study included both a control group and an auditory discrimination therapy
(ADT) group to investigate the effects of acoustic therapies on tinnitus perception and
neuroplastic changes. The control group comprised healthy volunteers who did not expe-
rience tinnitus. These individuals are an essential comparison group for evaluating the
specific impact of ADT therapy on patients with tinnitus. The control group followed
the same experimental protocol as the ADT group, which included the administration of
acoustic therapy and participation in EEG monitoring sessions. The ADT group comprised
patients with tinnitus who underwent specialized therapy aimed at improving their au-
ditory discrimination ability. This therapy involves exposing patients to different sounds
and training them to differentiate between auditory patterns or frequencies. ADT aims to
reduce tinnitus perception by enhancing the ability to discriminate auditory stimuli. The
EEG data of the ADT group provide insights into the neuroplastic changes associated with
this therapy, shedding light on the mechanisms underlying the effectiveness of the therapy.
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2.2. Preprocessing

In this study, we performed preprocessing and analysis of EEG data from two distinct
groups: auditory discrimination training (ADT) and control. The EEG data underwent
several processing steps as described below.

2.2.1. Data Loading and Filtering

This study employs Python for signal processing purposes. Utilizing the SciPy library,
specifically its signal processing functions, the Butterworth-type bandpass filter is utilized
to eliminate frequencies outside a designated range.

The initial step involves loading the EEG data and subsequently applying a Butterworth-
type bandpass filter to suppress frequencies that fall outside the desired range. The transfer
function H(s) of the Butterworth filter [37] is shown in

H(s) =
(sn)

(sn) + (ωcn)
(1)

where H(s) is the transfer function of the filter, s is the complex frequency variable, n is the
filter order, and ωc is the cutoff frequency. Our study employs Python’s SciPy library to
both design and implement a Butterworth bandpass filter with a filter order of 4, and cutoff
frequencies within the conventional EEG range 0.5–1 Hz (to eliminate low-frequency drift)
and 40–50 Hz (to eliminate high-frequency noise).

The frequency response H( f ) of the Butterworth filter is expressed in Equation (2)
as follows:

H( f ) =
1√

1 +
(

f
ωc

)2n
(2)

where H( f ) denotes the frequency response of the filter, f represents the frequency, n
indicates the filter order, and ωc is the cutoff frequency.

Using these equations, the mathematical representation of the Butterworth bandpass
filter can be expressed by Equation (3) as:

f (t) =
∫

[ f (EEG(t))·h(t)]dt (3)

where f (t) denotes the filtered EEG signal at time t, f (EEG(t)) represents the input EEG
signal after passing through the Butterworth filter, h(t) is the impulse response of the
filter, and the integral signifies the convolution operation between the filtered signal and
impulse response. Figure 5 depicts the application of a filter to EEG signals. The blue
curve represents the original data, whereas the red curve shows the data after the filtering
process, indicating the cleaned or processed signals.

The blue curve in the figure represents the raw EEG signal data. These data are
typically collected from electrodes placed on the scalp and contain various frequencies,
including noise and artifacts that can obscure the true signal of interest. The red curve
shows the EEG signal after it has undergone a filtering process. This process aims to
remove unwanted noise and artifacts from the original signal, leaving a cleaner and more
interpretable set of data. The filtered signal retains the essential components of the EEG
while minimizing distortions and extraneous information.

Filtering is a crucial step in EEG signal processing, as it serves multiple essential
functions. Firstly, it reduces noise from various sources like power line interference,
muscle activity, and movement artifacts, thereby enhancing the overall quality of the signal.
Secondly, filtering attenuates significant artifacts such as eye blinks and heartbeats, which
can obscure brain activity in EEG recordings. Lastly, it allows for the isolation of specific
frequency bands, facilitating the focused analysis of different brain states and activities.
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Figure 5. Representation of the application of the filter to EEG signals. The blue curve corresponds to
the original data, whereas the red curve indicates the data post-filtering, highlighting the cleaned or
processed signals.

The filtered data, depicted by the red curve, should maintain the integrity of the EEG
signal by preserving essential features like peaks and troughs that correspond to neural
activity. Moreover, the filtering process should enhance signal clarity, removing extraneous
noise and artifacts to provide a clearer picture of the underlying brain activity, thus aiding
in the identification of patterns and anomalies.

2.2.2. Bad Channel Removal

To enhance the data quality, channels that exhibit characteristics such as flatness, high-
frequency noise, or low correlation with neighboring channels are identified as bad channels
and subsequently removed. This process entails evaluating various metrics to assess the quality
of each channel and eliminating those that do not meet the specified criteria.

2.2.3. Event Definition

Events were defined based on the markers found in the data, enabling the identification
of specific time intervals of interest. This step involves identifying particular time points or
intervals within the EEG data that correspond to specific events or stimuli.

2.2.4. Windows Creation

Continuous EEG data were divided into smaller time windows, known as epochs,
with predefined start and end times for each epoch. This segmentation allows for the
examination of distinct temporal segments within the EEG data.

2.2.5. Epoch Cleaning

The Random Sample Consensus (RANSAC) algorithm was utilized to detect and elim-
inate artifacts within epochs, thereby enhancing the signal-to-noise ratio. The RANSAC
algorithm iteratively identifies and removes outliers or artifacts within each epoch. The
motivation for using the Random Sample Consensus (RANSAC) algorithm for motion
artifact elimination in our work was based on its robustness to outliers, flexibility, and
adaptability to various types of noise, which are common in EEG signals. RANSAC’s
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iterative approach effectively fits a model to inlier data while ignoring outliers, making it
particularly suitable for our application. Additionally, RANSAC has a proven track record
in noisy data applications such as computer vision, and comparative studies showed it
outperformed other well-established methods like ICA and Wavelet Transform in maintain-
ing EEG signal integrity. Its computational efficiency also supports real-time EEG analysis,
crucial for applications such as brain–computer interfaces. Integrating RANSAC with
Graph Convolutional Networks (GCNs) further enhances our approach, as GCNs benefit
from the clean, artifact-free data RANSAC provides, enabling a more accurate and reliable
analysis of EEG signals.

2.2.6. Power Spectral Density (PSD) Computation

The frequency bands were derived by computing the power spectral density (PSD)
of the EEG signal, which provides insights into the power distribution across different
frequencies. The PSD( f ) [38] is determined as

PSD( f ) = |X( f )|2 (4)

2.2.7. Average PSD Calculation

To obtain a representative measure of the spectral content for each epoch, the average
PSD values across channels were computed.

2.3. Features Extractions

After preprocessing the EEG signals, various features were extracted from the EEG
signals. These features provide insights into different aspects of the signal, including
the time-domain, frequency-domain, and time-frequency characteristics. The extracted
features were used to analyze the differences between the tinnitus and control groups. The
feature-extraction process involves several steps, as described below.

First, the EEG signals were normalized. This step ensures that the signal data have
zero mean and unit variance, which is important for accurate feature extraction.

Next, we computed various time-domain features from the normalized signals. These
features include the mean, standard deviation, root mean square (RMS), and variance. The
mean represents the average value of the signal, whereas the standard deviation indicates
the spread of the signal values around the mean. The RMS provides a measure of the
overall magnitude of the signal, and the variance quantifies the variability of the signal.

Moving to the frequency domain, we estimated the power spectral density (PSD) of
the signal. The PSD represents the distribution of power across different frequencies. From
the PSD, we extracted the maximum frequency, which corresponded to the frequency with
the highest power. In addition, we computed the mean frequency by averaging the product
of the frequencies and their corresponding power values. The bandwidth was calculated
by numerically integrating PSD. Figure 6 represents a plot of different PSDs from different
bands on the dataset.

To capture time-frequency information, we employed the Piecewise Aggregate Ap-
proximation (PAA) technique. The PAA algorithm divides the signal into smaller segments
and extracts the PAA-transformed signals. Then, we computed, which reveals the energy
distribution of the signal across both time and frequency. From the spectrogram, we derived
the maximum time, which represents the time at which maximum energy occurs. Similarly,
the mean time frequency is computed as the weighted average of the time values and their
corresponding energies. We also obtained the maximum frequency at each time point and
calculated the mean frequency over time.

In addition to the above features, we included statistical features such as signal
statistics and average amplitude changes. These features provide further insights into the
characteristics and dynamics of the signal.

In total, the extracted features provide a comprehensive representation of the EEG
signal, encompassing temporal, spectral, and temporal–spectral aspects. By analyzing
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these features, we aim to identify differences between the healthy and tinnitus EEGs,
which can provide valuable insights into the effects of auditory discrimination training
on EEG patterns.
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While it is true that EEG signals are highly non-linear and non-stationary, our approach
leverages the power of graph representation to effectively capture the underlying structure
and dynamics of these signals. By representing EEG channels as nodes and their interac-
tions as edges, our graph method captures spatial and temporal relationships, providing
a rich structural context that enhances feature reliability. This structure, combined with
GCNs, allows for the learning of intricate patterns and non-linear interactions within the
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data. GCNs process the entire network of features simultaneously, improving the model’s
ability to handle the complexities of EEG signals. Additionally, the graph representation’s
robustness to noise and artifacts further ensures the reliability of the features. Our extensive
experiments have validated that even basic features, when integrated into this graph frame-
work, lead to superior performance in EEG analysis tasks. Thus, the graph-based approach,
enhanced by GCNs, provides a robust, scalable, and effective method for capturing the
complex characteristics of EEG signals.

2.4. Graph Representation

To apply the GNN-LSTM model, a graph was constructed to capture the relation-
ships between the feature vectors in both the healthy and tinnitus EEG groups. The
graph construction process involves connecting nodes based on the Euclidean distance
between the feature vectors. For each feature type associated with a channel, a node
was added to the graph. Subsequently, edges were created between pairs of nodes
if the Euclidean distance between their corresponding feature vectors was below the
threshold of 0.2. This connectivity criterion ensures that only closely related feature
vectors are linked in the graph. The resulting graph served as the basis for analyzing the
interdependencies between different feature types. The selection of this threshold value
to define connections between nodes in our graph representation was a critical aspect
of our methodology. We determined this threshold through careful consideration of the
underlying EEG data properties and the desired level of connectivity to capture relevant
information while minimizing noise. Our approach aimed to strike a balance between
capturing meaningful connections and reducing spurious ones, thereby enhancing the
interpretability and reliability of our graph representation.

The graph structure was constructed to facilitate the application of a GNN-based
GCN model for classification tasks. The construction of the graph aimed to establish a
graph-node architecture, which is a prerequisite for GNN-based models.

2.4.1. Graph Initialization

An empty undirected graph, denoted as G, was created.

2.4.2. Node Addition

Each feature vector in the dataset, represented by Xi, was associated with a unique
node in the graph. The number of nodes in the graph corresponded to the number of
samples in the dataset.

2.4.3. Edge Creation

Pairwise comparisons between nodes were performed to compute the Euclidean
distance, dist (X i, Xj

)
, between their respective feature vectors.

2.4.4. Edge Addition

An edge is introduced between nodes i and j if the Euclidean distance between their
feature vectors is less than a predetermined threshold value, ε. This criterion ensures that
only the nodes with similar feature vectors are connected in the graph.

The resulting graph G represents the relationships between the feature vectors, with
nodes representing the samples and edges denoting their connections. This graph structure
enables the utilization of the GCN model for classification tasks.

By exploiting the interconnectedness inherent in the feature vectors represented by
the graph, the GCN model demonstrated the ability to effectively capture intricate patterns
and dependencies, thereby enhancing classification accuracy and overall performance.

Algorithm 1 outlines the process of converting EEG features into graph nodes and
edges. The algorithm is initiated by creating an empty graph, G. It then iterates through
the rows of feature matrix X, introducing a node for each sample to G. Subsequently, it
traverses all pairs of nodes in G, excluding self-loops. For each node pair, the algorithm
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calculated the Euclidean distance between the corresponding feature vectors. An edge is
established between nodes if the distance falls below the specified threshold. Ultimately,
the algorithm produces the constructed graph, G, depicted in Figure 7, illustrating a
comparison of extracted features from two signal types: non-tinnitus and tinnitus signals.
The plot distinctly shows that nodes representing tinnitus signals, marked in red, typically
exhibit slightly higher values compared to nodes representing non-tinnitus signals, marked
in blue. This systematic procedure guarantees the efficient conversion of EEG features into
a graph structure, facilitating subsequent analysis using the GCN model.

Algorithm 1. Algorithm to convert EEG features set to graph nodes and edges.

INPUT : X, y
OUTPUT: G (graph structure)
Initialize an empty graph G
For i = 0 to i < number of rows in X, do:
Add the i-th row as a node in the graph G
For i = 0 to i < length of X, do:

For j = i + 1 to j < length of X, do:
i. If i == j, then continue

ii. Calculate the Euclidean Distance between X(i, :) and X(j, :) and store it in dist
iii. If d < 0.2 and d(X(i, :), X(j, :)), then add an edge between nodes i and j in G

Return G
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2.5. The Proposed GCN-LSTM Model

The model proposed in this study was designed to combine a GCN and LSTM for a
specific task. The GCN-LSTM model aims to leverage the strengths of both the GCN and
LSTM to effectively analyze graph-structured data and capture temporal dependencies.

The GCN-LSTM model consists of three main components: GCN, LSTM, and their
integration. The GCN component is responsible for processing the graph-structured
data and extracting meaningful representations. It consists of multiple GCN layers
(GCNConv) that operate on input data with increasing levels of abstraction. Each GCN
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layer takes the input data and edge indices of the graph as inputs, applies graph convo-
lutional operations, and utilizes the ReLU activation function to introduce nonlinearity.
The output of the final GCN layer is passed through an ReLU activation function to
obtain the final graph representation.

The GCN component consisted of multiple GCN layers. We denote the input to the
GCN component as X0, which represents the initial node features. Each GCN layer applies
the following operations for l = 1 to L, where L is the total number of GCN layers.

Xl = ReLU
(

D− 1
2

hat ∗ Ahat ∗ D− 1
2

hat ∗ Xl−1 ∗ W l
)

(5)

where Ahat is the adjacency matrix of the graph augmented with self-connections
(Ahat = A + I), and I is the identity matrix. Dhat is the diagonal matrix of the node
degrees in Ahat (Dhatii

= ∑ Ahatij
). Xl−1 is the input node feature in the (l − 1)th layer. W l

denotes the weight matrix of the lth layer.
After the GCN layers, the output Xl from the last GCN layer was reshaped to a time

sequence format to be fed into the LSTM layer. The reshaping operation converts the
fixed-size representation of the nodes into a time-sequence representation. We denote the
reshaped input as X_reshaped.

The LSTM component captures the temporal dependencies in the graph represen-
tations obtained from the GCN. It takes the output of the final GCN layer as the input
and applies the LSTM architecture, which consists of an LSTM layer followed by a fully
connected (linear) layer. The LSTM layer processes the input sequence across time steps
and captures the sequential information. The hidden state of the LSTM at the last time step
was then fed into the fully connected layer to obtain the final output.

The LSTM layer processes the input X_reshaped across time steps. We denote the input
to the LSTM layer at time step t as Xt

LSTM. The LSTM layer applies the following operations.

Ht, (hn, cn) = LSTM
(
Xt

LSTM, hn−1, cn−1
)

(6)

where Ht represents the hidden state output of the LSTM at time step t. hn and cn are the
hidden and cell states of the LSTM, respectively, at the nth time step.

The output of the LSTM layer was then fed into a fully connected layer to obtain the
final predictions or classifications.

Output = FC
(

HT
)

(7)

where T is the total number of time steps.
The GCN-LSTM model integrates the GCN and LSTM components by sequentially

applying them. The graph representation obtained from the GCN was reshaped and passed
as input to the LSTM. LSTM processes the reshaped input across a specified number of
time steps, capturing temporal dependencies. The final output of LSTM represents the
predictions or classifications for a given task.

The parameters of the GCN layers, including the weight matrices W l , were learned
during the training process to minimize the loss function. Similarly, the parameters of
the LSTM layer, including the weight matrices and biases, were also learned through
backpropagation and gradient descent.

In our study, we employ PyTorch to implement both GCN and LSTM models. To
mitigate data leakage and overfitting, we adopt several strategies during the training
and testing phases. Specifically, we use ten-fold cross-validation, early stopping, and
regularization to enhance model generalization and prevent overfitting. Additionally, we
carefully preprocess the data, partitioning it into distinct training, validation, and testing
sets to ensure the models are evaluated on independent datasets.
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3. Results and Discussion

The GNN LSTM model was trained using a graph constructed from the features of the
dataset. The training process focused on optimizing the model parameters to minimize
the loss function and enhance its capability to detect tinnitus. Following 1500 epochs of
training, the model demonstrated promising results. The loss function yielded a value
of 0.2063, indicating the extent of error between predicted and actual values. Accuracy,
standing impressively high at 0.9941, denotes the proportion of correct predictions out of
the total predictions made. Recall, at 0.9741, signifies the ability of the model to correctly
identify positive instances from all actual positives. Precision, scoring a perfect 1.0000,
represents the model’s capability to correctly identify positive predictions from all positive
instances it predicted. The F1 measure, a harmonic mean of precision and recall, reached
0.9700, providing a balanced assessment of the model’s performance. Sensitivity, at 0.9841,
reflects the proportion of true positive instances correctly identified by the model. Kappa
Cohen’s coefficient, indicating the agreement between predicted and actual values while
accounting for chance, scored notably high at 0.9806. Lastly, the area under the curve (AUC)
value, measuring the model’s ability to distinguish between classes, was recorded at 0.991,
suggesting strong discriminatory power. These metrics collectively reflect the robustness of
the model in effectively identifying tinnitus in the dataset.

The results obtained from our study showed the efficacy of the GNN LSTM model in
accurately detecting tinnitus using the provided dataset. The model achieved a remarkably
high accuracy of 0.9941, as illustrated in the accuracy graph in Figure 8. This exceptional
accuracy underscores the ability of the model to effectively distinguish tinnitus within the
analyzed data.
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The scatter plot, as depicted in Figure 9, and results from the application of principal
component analysis (PCA) on the output of our trained tinnitus detection model reveal
discernible clusters of dots. These clusters indicate the potential effectiveness of the model
in distinguishing individuals with and without tinnitus, particularly in response to various
therapeutic interventions. The evident separation of dots implies that the model acquired
discriminative features, enabling it to classify individuals based on the presence or absence
of tinnitus.

This observation underscores the model’s proficiency in capturing the underlying
patterns or characteristics associated with tinnitus with distinct groups likely representing
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different therapeutic outcomes. This distinct separation further suggests that the model’s
learned representations are robust and generalize effectively to unseen instances, empha-
sizing its practical utility in the classification of tinnitus. The insights derived from the
scatter plot underscore the potential of our model as a valuable tool for evaluating tinnitus
treatment outcomes and advancing our understanding of this condition.
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The confusion matrix for our tinnitus detection model highlights its performance
metrics. It comprises four key values: true positives (0.97), false positives (0.03), false
negatives (0.02), and true negatives (0.98). These values indicate the accuracy of the model
in correctly identifying individuals with and without tinnitus, demonstrating high precision
and reliability.

The confusion matrix is an essential tool for evaluating the performance of our tinnitus
detection model, providing a clear summary of prediction results on a classification problem.
The matrix consists of four key components:

True Positives (TPs): These are cases where the model correctly identifies individuals
who have tinnitus. In our model, the true positive rate is 0.97, meaning that 97% of the
individuals who actually have tinnitus were correctly identified by the model.

False Positives (FPs): These represent cases where the model incorrectly identifies
individuals as having tinnitus when they do not. Our model has a false positive rate of 0.03,
indicating that 3% of the individuals who do not have tinnitus were incorrectly classified
as having the condition.

False Negatives (FNs): These are cases where the model fails to identify individuals
who actually have tinnitus. The false negative rate for our model is 0.02, which shows that
2% of the individuals with tinnitus were not detected by the model.

True Negatives (TNs): These represent cases where the model correctly identifies
individuals who do not have tinnitus. The true negative rate is 0.98, indicating that 98% of
the individuals without tinnitus were correctly identified.

These values together demonstrate the high precision and reliability of our tinnitus
detection model, with a strong ability to correctly identify both positive and negative
cases. This comprehensive evaluation highlights the model’s effectiveness in distinguishing
between individuals with and without tinnitus.

The high true positive and true negative values presented in Figure 10 indicated the
effectiveness of the model in accurately classifying individuals with and without tinnitus,
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respectively. Furthermore, the low values for false positives and false negatives suggest
minimal misclassification, underscoring the robustness of the model. In summary, the
outcomes depicted in the confusion matrix emphasize the promising performance of our
tinnitus detection model and its potential as a valuable tool for precisely identifying the
presence or absence of tinnitus.
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Figure 11 provides compelling evidence that tinnitus retraining therapy (TRT) is more
effective compared to alternative tinnitus treatments. This increased efficacy is attributed to
TRT’s holistic approach, which focuses on habituation, helping the brain reclassify tinnitus
as a neutral signal. TRT combines sound therapy to mask tinnitus and expedite habituation,
counseling sessions to alleviate the negative emotional impact, and a personalized treatment
plan tailored to individual needs. This comprehensive strategy, supported by an expanding
body of clinical evidence, positions TRT as a highly promising treatment option for many
tinnitus sufferers, offering hope for improved outcomes and quality of life. Moreover,
by examining patient recovery data across diverse therapies, we generated a graph that
visually represents the efficacy of TRT in comparison to alternative approaches. This graph
depicts recovery percentages or reductions in tinnitus severity scores over time.

The confusion matrix shows the performance evaluation of the GCN-LSTM model
on the tinnitus dataset, likely reporting metrics such as accuracy, precision, recall, and
F1 score, which are standard for evaluating classification models. Figure 11, on the other
hand, appears to illustrate the effectiveness of different tinnitus therapies, presumably
based on patient recovery data or reductions in tinnitus severity scores over time. The
GCN-LSTM model evaluated may have been used to classify patients’ responses to various
tinnitus therapies, with the resulting classification accuracies contributing to the assessment
of therapy effectiveness shown in Figure 11. The patient recovery data or reductions in
tinnitus severity scores mentioned in Figure 11 might have been used as ground truth labels
for training and evaluating the GCN-LSTM model, whose performance is depicted in the
confusion matrix. By leveraging the tinnitus detection capabilities of the GCN-LSTM model,
as evaluated through the confusion matrix, we can derive the recovery rate of patients
from tinnitus therapies. If the model did not detect tinnitus in a patient after therapy,
it implies that the therapy was effective in alleviating or reducing the patient’s tinnitus
perception. Thus, the model’s accuracy in correctly classifying the absence of tinnitus (true
negatives in the confusion matrix) can be linked to the recovery rate or effectiveness of
the tinnitus therapies shown in Figure 11. This connection between the confusion matrix
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and Figure 11 indicates that the model’s performance in identifying the absence of tinnitus
post-therapy reflects the therapy’s effectiveness, as represented by the recovery percentages
or reductions in tinnitus severity scores in Figure 11.
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Figure 11. Effectiveness of different therapies of tinnitus.

In comparison, Alonso-Valerdi et al. [19] evaluate the psycho and neurophysiological
effects of various therapies, including TRT, neuro-modulation techniques (TEAE and
ADT), and distress relief methods (BBT and music therapy), on a sample of 60 tinnitus
sufferers and 11 control participants. They find that neuro-modulation therapies effectively
reduced stress and anxiety without side effects, while TRT and music therapy primarily
alleviated anxiety. However, TRT and BBT were also associated with increased anxiety.
The researchers suggest that a more reliable method is needed to assign therapies based on
patient profiles.

Another study [39] confirms TRT’s effectiveness in reducing tinnitus and stress but
cautioned against its use for patients with pre-existing anxiety. It finds BBT, TEAE, and ADT
to be similarly effective in reducing tinnitus perception and managing stress and anxiety,
with ADT presenting fewer side effects and TEAE not exacerbating tinnitus perception.
Conversely, music therapy was deemed less effective as it could potentially worsen tinnitus
perception. The authors emphasize the importance of tailoring therapies to individual
patient conditions and recommend developing applications to monitor and register the
daily use of acoustic therapies.

Overall, while all three studies underscore TRT’s efficacy, they also highlight the
need for personalized treatment tailored to individual patient profiles. These studies offer
varied insights into the neurophysiological and psychological impacts of different acoustic
therapies. Additionally, this study presents data showing that TRT yields superior recovery
rates and more significant reductions in tinnitus severity compared to other therapies,
reinforcing its potential as a highly effective treatment option.

4. Conclusions

In this study, pertinent features were extracted using a tailored algorithm to construct
a graphical representation, with nodes connected based on a specified distance threshold.
The subsequent application of the GNN_LSTM model, which combines Graph Neural
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Networks and Long Short-Term Memory networks, demonstrated remarkable efficacy
in accurately identifying tinnitus cases, showcasing a notable accuracy rate of 99.41%.
This amalgamation of graph representation and deep learning techniques introduces a
novel methodology for scrutinizing tinnitus therapy data, offering advanced insights into
the neural patterns associated with this condition. The success of our approach not only
underscores its potential for advancing more efficacious treatment modalities but also
has significant implications for tinnitus diagnosis and treatment. These findings pave
the way for improved diagnostic tools and personalized treatment strategies. Moving
forward, future research directions include refining graph construction algorithms, inte-
grating multimodal data for comprehensive understanding, exploring real-time monitoring
and intervention possibilities, conducting large-scale clinical validations, and developing
patient-specific treatment recommendations. These efforts aim to enhance the accuracy,
generalizability, and practical utility of the model in diverse clinical settings, ultimately
contributing to advancements in tinnitus research and patient care.
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