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A B S T R A C T   

Wooden structures, over time, are challenged by different types of defects. Due to mechanical and 
weathering effects, these defects can occur in the form of cracks, live and dead knots, dampness, 
and others. Because of the risk of damage or complete failure, treatment of these defects is 
necessary, but doing so necessitates their proper identification and classification (categorization). 
Crack identification and categorization must be part of the inspection procedure for engineering 
structures in the built environment. Convolutional neural networks (CNNs), a sub-type of Deep 
Learning (DL), can automatically classify the images of wooden structures to identify such defects. 
In this study, ten pre-trained models of CNN, namely ResNet18, ResNet50, ResNet101, Shuf
fleNet, GoogLeNet, Inception-V3, MobileNet-V2, Xception, Inception-ResNet-V2, and NASNet- 
Mobile are evaluated for the tasks of classification and prediction of defects in wooden struc
tures. Each pre-trained CNN model is additionally trained and validated on an image dataset of 
9000 images, equally divided into three classes: cracks, knots, and intact (undamaged). A smaller 
dataset of 300 images is separately used for testing purposes. Statistical parameters such as ac
curacy, precision, recall, and F1-score are computed for each CNN model. The Inception-V3 
model proved to be the best CNN model for classifying defects in wooden structures based on 
the model’s accuracy, processing time and overall performance.   

1. Introduction 

The development of advanced engineered wood products has made wood a competitive material for large construction projects. 
Consequently, there has been an increase in the use of wooden structures in new buildings. As timber structures, particularly in public 
buildings, have become more abundant [1], the need for evaluating and monitoring these structures has become crucial. Wooden 
defects encompass imperfections or irregularities in wood, including knots, cracks, decay, insect damage, and other structural issues. 
These defects have a significant impact on important qualities and characteristics of wood, such as its strength and durability. Knots, 
for example, can affect the quality of surface finishes and diminish the aesthetic appeal of the final product. Additionally, knots affect 
mechanical properties such as elasticity, stiffness, and rigidity [2]. Cracks are also well-known defects in wooden structures, as 
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depicted in Fig. 1. They can arise from various factors such as drying, growing stresses, or environmental conditions [3]. 
Artificial intelligence (AI) and machine learning (ML) techniques have been widely applied in the field of civil and structural 

engineering [4,5]. These applications include various areas such as structural health monitoring [6], identification of structural 
damage [7,8], structural modeling [9–12], dynamic analysis of structures [13], planning and management of construction projects 
[14], risk assessment [15], prediction of strength and other structural attributes [16,17], enhancement of energy efficiency [18], 
among others. Recently, AI methods have also been utilized for classifying wooden defects, which has significantly reduced the time 
and cost associated with assessing the condition of wooden structures [19,20]. By automatically and rapidly identifying, evaluating, 
and addressing structural defects, the risk of damage to the structure and its occupants can be greatly minimized. Therefore, using 
modern ML-based monitoring techniques, wooden structural defects can be quickly identified and rectified more efficiently, providing 
an early indication of any potential issues. 

Deep learning (DL) is an effective approach in machine learning for feature extraction, transformation, and pattern analysis in both 
supervised and unsupervised conditions. It involves multiple layers of nonlinear information processing [21]. In particular, Con
volutional Neural Networks (CNNs), a type of DL model designed for visual data analysis, have been proven to be highly successful in 
tasks such as image recognition and classification. Therefore, they are well-suited for capturing and learning complex features from 
images, identifying patterns and anomalies, and detecting and analyzing various types of defects, including wood defects [22,23], and 
tire defects [24–27], among others. To give an example, consider an image which is composed of a matrix of pixel values. The initial 
layer of representation in the learning process often detects the presence of edges at specific angles and locations within the image. 
Even with minor variations in the positioning of these edges, the subsequent layer is capable of recognizing patterns by identifying 
specific combinations of edges. Similarly, subsequent layers continue this process by identifying features as combinations of other 
elements. For example, the third layer may combine patterns to form larger combinations that correspond to recognized parts of 
well-known features. This particular subset of deep learning places emphasis on discernible visual features in order to differentiate 
between different images. 

Initially, CNNs were predominantly employed for solving relatively straightforward tasks such as recognizing hand-written digits 
or character recognition [28]. However, in modern times, approaches based on CNNs have gained widespread recognition and 
acceptance as the preferred method for tasks such as image classification, object identification, and image segmentation. The typical 
architecture of a CNN is illustrated in Fig. 2. 

This study utilizes ten pre-trained CNN models to classify defects in wooden structures. The models used are ResNet18, ResNet50, 
ResNet101, ShuffleNet, GoogLeNet, Inception-V3, MobileNet-V2, Xception, Inception-ResNet-V2, and NASNet-Mobile. Each model 
undergoes training, validation, and finally testing on the same datasets to assess their performance. The evaluation is based on pro
cessing time and accuracy in predicting true defect classifications. A comparative study is conducted by calculating the confusion 
matrix of each model. Additionally, each model independently tests three images to validate its performance. This work stands out due 
to the utilization of pre-trained CNN models, which are subsequently trained on a unique dataset comprising custom-made images of 
wood defects. This training is conducted specifically to accurately classify these structures and their potential defects. It is worth noting 
that new pre-trained CNN models continue to emerge in current literature, demonstrating impressive performance in various computer 
vision tasks. Examples of such models include GhostNetV2 [29] and FasterNet [30]. 

The first section of this work provided an introduction to wooden defects and the use of CNN in defect classification. Section 2 
provides a summary of previous research studies on wooden defect classification and the application of CNN in this field. Section 3 
outlines the proposed methodology for this study. The experimental study is presented and summarized in Section 4. The results and 
discussions are presented in Section 5, and the conclusions are summarized in Section 6. 

Fig. 1. Cracks in a wooden structure.  
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2. Background study 

Numerous researchers have utilized pre-trained CNNs for the purpose of object and image recognition. The CNN architecture 
consists of convolutional, pooling, fully connected, and non-linear layers. The commonly used non-linear operations include sigmoid, 
tanh, and ReLU. To classify a dataset of 1.2 million images into 1000 classes, a deep CNN was trained using the ImageNet and Alexnet 
pre-trained models [31]. He et al. [32] developed a residual learning framework called ResNet, which was trained on the ImageNet 
dataset and emerged as the winner in the 2015 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) classification compe
tition. Howard et al. [33] created a mobile and embedded vision application model known as MobileNet, which achieved exceptional 
performance in various tasks such as face recognition, fine-grained categorization, item identification, and extensive geolocalization, 
particularly in ImageNet classification. GoogLeNet, proposed in ILSVRC 2014, is another pre-trained CNN model whose architecture 
was assessed for image detection and classification [34]. Additionally, there are several other pre-trained CNN models available for 
image classification, such as InceptionV3 [34], VGG-16,19 [35], DenseNet [36], ResNet [37], Inception-ResNet [38], DarkNet-19 [39], 
Xception [40], EfficientNet [41], ShuffleNet [42], and SqueezeNet [43]. 

The inspection and analysis of wooden structures are crucial due to their widespread use as the primary material in many large 
public buildings. Computer vision-based inspection systems have gained significant attention for quality control purposes. The failure 
of timber structures is often attributed to the propagation of cracks along the direction of the grain, accounting for 75% of failures [44]. 
Magnière et al. [1] carried out an investigation to gather information about the most frequent characteristics of cracked timber 
structures. The research presented an analysis of the key features of timber elements and crack distributions that are commonly 
observed. These features were utilized to establish a numerical model that aimed to understand the effects of cracks on the stiffness and 
load-bearing capacity of timber beams [1]. 

He et al. [45] used deep CNNs for feature extraction and detection of wood defects. The CNN used in the study consisted of an input 
layer, a softmax layer, 4 convolutional layers, 4 max-pooling layers, 3 fully connected layers, and an output layer. It was trained using 
DCNN TensorFlow. A dataset of 600 slices of red and camphor pine wood was created for wood defect analysis, which was divided into 
training, validation, and testing groups. The training dataset included 42,750 knots, 40,050 cracks, and 41,200 mildew stains, while 
the achieved overall accuracy reached 99.13% [45]. Kamal et al. [2] attempted the classification of wood defects using laws texture 
energy measures and supervised learning approach. Texture feature extraction was performed using the gray level co-occurrence 
matrix and laws texture energy measures, while a feed-forward back-propagation neural network was used as classifier. The Mean 
Square Error (MSE) for training data was found to be 0.0718 when laws texture energy measures based features were used (with 90.5% 
overall average classification accuracy), as compared to gray level co-occurrence matrix based input features where MSE for training 
data was found to be 0.10728 (with 84.3% accuracy) [2]. 

In their study, Ma et al. [46] created the first collection of image data capturing cracks in historic timber constructions. They 
employed the YOLO model to successfully recognize and identify cracks in ancient timber architecture. This breakthrough enabled the 
development of a new theory for the effective operation and maintenance of historic timber buildings [46]. Similarly, Cabaleiro et al. 
[47] introduced a crack detection system specifically designed for timber beams. They utilized LiDAR data to sample the beams and 
demonstrated that their method could automate the detection and assessment of cracks wider than 3 mm. The point clouds used in 
their analysis had an average resolution of less than 1 mm. 

Fig. 2. Typical CNN architecture.  
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Munawar et al. [48] conducted a comprehensive review of studies on crack detection using machine learning and image processing 
techniques. They reviewed 30 research articles published in reputable journals and conferences within the last decade. Maniat et al. 
[49] conducted a detailed examination and comparison of various methodologies for automated crack detection. They investigated the 
potential of these methods to identify cracks accurately. In their study on pavement quality evaluation, image patches acquired from 
Google Street View (GSV) and categorized by CNN were compared to those from a commercial visual inspection company. The 
comparison showed that utilizing GSV images for assessing pavement condition can be practical and efficient. Furthermore, the tested 
network was also applied to new data, demonstrating how CNN can assist in categorizing pavement photos into multiple crack 
categories. 

The study of Sony et al. [50] focuses on addressing the challenges associated with post-disaster inspections, which are often difficult 
to complete promptly due to their labor-intensive, risky, and time-consuming nature. The researchers have conducted a systematic 
review of contemporary structural health monitoring (SHM) research that utilizes CNNs to overcome these challenges. The use of 
modern CNN-based designs and advanced SHM technologies, such as cameras, drones, and robots, enables infrastructure owners to 
accurately and autonomously detect various types of damage in different structures [50]. In the study by Cha and Choi [51], CNN was 
trained on a dataset of 40,000 images with a resolution of 256 × 256 pixels to detect concrete cracks. The results were promising with 
accuracy levels reaching 98%. 

In their study, Zhang et al. [52] utilized sliding windows in conjunction with a trained CNN to analyze images with resolutions 
exceeding 256 × 256 pixels. The flexibility and robustness of this methodology were assessed by testing it on a set of 55 photos, each 
with a resolution of 5888 × 3584 pixels. It is important to note that these photos were obtained from a distinct structure that was not 
utilized during the training or validation stages. Different types of pavement distress, including linear or longitudinal cracks, network 
cracks, fatigue cracks or potholes, patches, and pavement markings, were taken into consideration. The proposed method demon
strated an accuracy and detection rate of 83.8% when classifying the images in the test set. This performance is particularly 
encouraging when compared to existing research in this field [52]. 

Chaiyasarn et al. [53] developed a crack detection technique that utilizes deep CNNs and Support Vector Machines (SVMs). In order 
to enhance the classification performance, CNN is used to extract features from digital images, while SVM acts as a substitute classifier 
for a softmax layer. The researchers collected images of masonry fissures from historical locations using digital photography and an 
unmanned aerial vehicle. The proposed system was trained and validated using these digital photos. The results demonstrate that the 
model combining CNN and SVM outperforms the one using only CNN, with a detection accuracy of approximately 86% in the vali
dation images [53]. Ehtisham et al. [54] adopted four pre-trained CNN models to classify cracks and their orientations. They obtained a 
dataset of 32,000 images from available web resources, with 75% of the photographs displaying cracks and 25% not showing cracks. 
Among the models used, the ResNet50 model exhibited the best average training time of 8208 s and achieved a classification accuracy 
of 86.2%, surpassing the performance of other models. 

In their study, Ahmed et al. [55] utilized a dataset consisting of 48,000 images and employed Resnet50 for the purpose of crack 
detection. Resnet50 was trained on this dataset and achieved an impressive accuracy rate of 99.8%. The dataset was divided equally 
into two classes: crack and normal (non-crack), with 24,000 images assigned to the crack group and another 24,000 to the normal 
group. In contrast, Mohamed et al. [56] proposed a feedforward backpropagation NN scheme. Their research demonstrated that the 
NN yielded an average error rate of 18.81%. This is a significant improvement of 10% compared to the prior learning technique 
(updated 3D Make toolkit) used for depth recovery. 

Özgenel and Sorguç [57] conducted a comprehensive analysis of the performance of popular pre-trained networks, examining 
factors such as the size of the training dataset, network depth, number of training epochs, and adaptability to different construction 
materials. The objective of their study was to provide valuable insights for new researchers and highlight important considerations 
when using CNNs for crack detection tasks. Guzmán-Torres et al. [58] investigated the impact of different DL topologies, network 
depths, regularization approaches, and transfer learning methods on the performance of learning strategies. They proposed a novel 
transfer learning technique to enhance the accuracy of a micro- and macro-crack DL classifier in their research. In a study conducted by 
Qayyum et al. [59], the performance of three models, namely GoogLeNet, MobileNet-V2, and Inception-V3, was evaluated. These 
models were trained using 48,000 images to classify them as cracked (C) or uncracked (UC), and 24,000 images to classify them as 
diagonal crack (DC), horizontal crack (HC), or vertical crack (VC). The accuracy rates for GoogLeNet, MobileNet-V2, and Inception-V3 
in categorizing C and UC were found to be 95.7%, 96.3%, and 97.2%, respectively. On the other hand, when using DC as the positive 
case, the accuracy rates for GoogLeNet, MobileNet-V2, and Inception-V3 in categorizing DC, HC, and VC were determined to be 84%, 
91%, and 92% respectively. 

In their study, Mishra et al. [60] utilized sensor data and applied their methodology to various tasks including predicting the 
early-stage compressive strength of concrete, determining when to remove formwork, monitoring vibration and curing quality, 
identifying cracks in buildings and potholes on roads, assessing the quality of construction, diagnosing corrosion, detecting different 
types of damage, and evaluating seismic risk. Munawar et al. [61] conducted experiments using the deep hierarchical CNN 

R. Ehtisham et al.                                                                                                                                                                                                      



Case Studies in Construction Materials 19 (2023) e02530

5

architecture, comparing the GF technique, Baseline method, deep crack BN, deep crack GF, and SegNet. The results showed that the GF 
technique outperformed the other methods, with a global accuracy of 99%, class average accuracy of 93.9%, mean intersection of 
union overall classes (IoU) of 87.9%, precision of 83.8%, recall of 87.9%, and F-score of 85.8%. 

Fig. 3. Flowchart of the methodology.  
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Gopalakrishnan et al. [62] utilized a deep CNN (DCNN) that was trained on the ImageNet database, which contains a vast amount 
of images. The purpose of their research was to automatically identify cracks in images of hot-mix asphalt and Portland cement 
concrete surfaced pavement. These images also contained other irregularities and defects aside from cracks. The researchers achieved 
the best results by using a single-layer neural network classification algorithm, with the “Adam” optimizer, that was trained on 
pre-trained ImageNet VGG-16 DCNN parameters. They also fine-tuned and tested AlexNet, comparing it to a current network based on 
the suggested architecture and sampling and training technique proposed by Wang et al. [63]. The suggested framework demonstrated 
exceptional results in terms of detection accuracy, precision, and the F1-score measure due to its nonlinear learning capability, training 
dataset integrity, and active learning method. 

3. Methodology 

This study utilizes a six-step procedure for classifying and predicting wooden defects, as demonstrated in Fig. 3. The initial step 
involves collecting the dataset, which is then sorted into the appropriate categories. Subsequently, one of the ten pre-trained CNN 
models is chosen. This selected model is trained and validated using the same input datasets and subsequently tested using images 
obtained from a wooden structure in Taxila, Pakistan. Finally, a confusion matrix is generated for these pre-trained models to compare 
their performance in predicting defects in wooden structures. Additionally, the processing time for each model is recorded to facilitate 
a comparative analysis. 

3.1. Pre-trained CNN models 

CNN models are constructed using multiple deep layers and interconnected convolutional blocks in a specific order, as shown in  
Fig. 4. Currently, there exists a wide variety of pre-trained CNN models available in the literature. The primary advantage of utilizing 
pre-trained models is their capacity to learn comprehensive and meaningful visual feature representations through extensive training 
with large datasets. These pre-trained models have the ability to capture complex patterns and features in images. By utilizing pre- 
trained models, researchers and practitioners can leverage the knowledge and feature extraction capabilities gained during 
training, even when working with limited task-specific training data. This approach is particularly valuable in situations where it is not 
feasible or practical to obtain a large labeled dataset for training from scratch. 

When utilizing a pre-trained CNN model, the typical procedure involves the following steps: (i) Model Initialization, (ii) Feature 
Extraction, (iii) Fine-tuning or Transfer Learning, and (iv) Training and Evaluation. The Model Initialization comprises the importation 
of the model, including its layers, configurations, and the weights acquired during the pre-training phase. The feature extraction phase 
entails removing the final fully connected layers, thereby considering the output of the preceding layers as a high-level representation 
of the input images’ features. During the training and evaluation step, the adapted or fine-tuned model is trained using a new dataset 
specific to the task at hand. The training process involves inputting the dataset into the model, calculating the loss, and updating the 
model’s weights through techniques like backpropagation. Subsequently, the model is evaluated on a separate validation or test 
dataset to assess its performance. This is done using various evaluation metrics such as accuracy, precision, recall, or F1 score. 

In the present study, some of the most widely used pre-trained models are employed, namely (i) ResNet18, (ii) ResNet50, (iii) 
ResNet101, (iv) ShuffleNet, (v) GoogLeNet, (vi) Inception-V3, (vii) MobileNet-V2, (viii) Xception, (ix) Inception-ResNet-V2, and (x) 
NASNet-Mobile. These pre-trained models are acquired from MATLAB’s Deep Network Designer App (version 2020a) and have been 
further trained on the wooden defects’ dataset. 

The concept of residual learning is developed by the residual neural network (ResNet) models. These models are trained to learn 
residual functionality by analyzing the inputs towards each layer of the network. Instead of assuming that each layer perfectly matches 
the fundamental mapping as planned, residual nets allow multiple layers to match a residual mapping. These residual blocks are 
layered together to construct networks, such as ResNet-50 which consists of 50 deep layers. 

ShuffleNet is specifically developed for usage on portable computers with limited computing power. The design combines channel 
shuffling and parameter group convolution to increase efficiency while maintaining accuracy. The Inception design serves as the 
foundation of GoogLeNet. It utilizes Inception modules that enable the network to choose between different convolutional filter sizes in 
each block. These modules are stacked on top of each other within the Inception model’s network. Periodically, the model reduces the 

Fig. 4. CNN’s deep layers.  
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grid’s resolution through max-pooling layers with a stride of two. Inception-V3, a member of the Inception family, uses label 
smoothing, factorized 7 × 7 convolutions, and an auxiliary classifier to transport label data to deeper levels of the network. 

MobileNetV2 is a CNN architecture that aims to improve performance on mobile devices. The design of this architecture focuses on 
the connections between the residual layers of a backward residual architecture. To introduce non-linearity, lightweight depth-wise 
convolutions are applied to the features in the intermediate expansion layer. MobileNetV2 starts with a 32-filter fully convolu
tional layer, followed by 19 layers of residual constraints [64]. 

The specifications of the CNN models used in the present study are presented in Table 1. Each model is capable of classifying images 
into 1000 categories. The resolution of the input image is determined by the requirements of the pre-trained models used in the study. 
Each pre-trained model has its own default input size, which is typically determined by its architecture and training process. In our 
study, seven of the models (ResNet18, ResNet50, ResNet101, ShuffleNet, GoogLeNet, MobileNet-V2, NASNet-Mobile) use a resolution 
of 224 × 224 × 3, while three of them (Inception-V3, Xception, Inception-ResNet-V2) use a resolution of 299 × 299 × 3. 

4. Experimental study 

4.1. Acquisition of the dataset 

The dataset used for training and validation in this study consists of images that were collected from various online sources [65]. 
The smaller testing dataset, on the other hand, was obtained by the authors from a real-world wooden structure. The dataset consists of 
a total of 9000 RGB images, which have been categorized into three groups based on the type of defects present. These defects are 
classified into three categories: (i) cracks, (ii) knots, and (iii) undamaged, as shown in Fig. 5. Each category has a dataset of 3000 
images, with each image having a resolution of 3472 × 4624 pixels. Additionally, there is a separate dataset for each category con
sisting of 100 images, which is used for testing purposes. 

4.2. Training, validation and testing 

In order to train and validate the CNN pre-trained models, a total of 9000 RGB images are utilized. These images are divided into 
three equal categories, with a training and validation ratio of 70% and 30% respectively. For testing purposes, an additional set of 300 
images is employed, with 100 images per class. It is important to note that the same training, validation, and testing datasets are used 
for all models. The CNN models utilized undergo training and testing using consistent parameters. These parameters include an epoch 
value of 3, a minimum batch size of 10, and an initial learning rate of 0.003. 

Table 1 
Characteristics of the ten pre-trained CNN models.  

Pre-trained Model of CNN No. of Deep Layers (DL) Syntax (net =) Size (Mb) Parameters (Millions) Input Image resolution 

ResNet18  18 resnet18  44  11.7 224 × 224 × 3 
ResNet50  50 resnet50  96  25.6 224 × 224 × 3 
ResNet101  101 resnet101  167  44.6 224 × 224 × 3 
ShuffleNet  50 shufflenet  5.4  1.4 224 × 224 × 3 
GoogLeNet  22 googlenet  27  7.0 224 × 224 × 3 
Inception-V3  48 inceptionv3  89  23.9 299 × 299 × 3 
MobileNet-V2  53 mobilenetv2  13  3.5 224 × 224 × 3 
Xception  71 xception  88  22.9 299 × 299 × 3 
Inception-ResNet-V2  164 inceptionresnetv2  215  55.9 299 × 299 × 3 
NASNet-Mobile  58 nasnetmobile  23  5.3 224 × 224 × 3  

Fig. 5. Example wood images and their classifications: (a) Cracks, (b) Knots, (c) Undamaged.  
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5. Results and discussion 

The current study assesses ten CNN models used for predicting defects in wooden structures. These models, namely ResNet18, 
ResNet50, ResNet101, ShuffleNet, GoogLeNet, Inception-V3, MobileNet-V2, Xception, Inception-ResNet-V2, and NASNet-Mobile, are 
based on their implementation in MATLAB [66]. Each CNN model is trained, validated, and tested using a large dataset. The study 
compares the accuracy, precision, recall, F1-score, and confusion matrix of the models, while also recording the processing time 
required for training. The training involves three different classifications: cracks, knots, and undamaged. All CNN models are trained 
on a desktop workstation equipped with a 10th generation Core i7 CPU, 32 GB DDR4 RAM and a 12 GB 3060 graphics card. 

In the context of machine learning classifications, the accuracy performance of a model can be quantified by the ratio of correctly 
predicted values to the total number of predictions made. This can be further explained as the ratio of true positives and true negatives 
to the sum of all positive and negative predictions generated by the model, as stated in Eq. (1). 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

where TP is a true positive prediction, TN is a true negative prediction, FP is a false positive prediction, and FN is a false negative 
prediction value [58]. 

Table 2 presents the accuracies achieved by the trained networks in each of the three categories. The Inception-V3 model exhibited 
the highest accuracies, with 99% and 98% for crack and undamaged image predictions, respectively. The Inception-ResNet-V2 model 
achieved a maximum accuracy of 99% in knot prediction. On the other hand, the MobileNet-V2 model demonstrated the lowest ac
curacies, with a crack accuracy and undamaged image prediction accuracy of 83%. The ShuffleNet model had the lowest accuracy in 
classifying knot images, with a rate of 93%. 

The precision of the model’s performance is defined as the accuracy of all positive prediction values. In other words, the precision 
metric quantifies the percentage of accurately predicted positive labels as follows [58]: 

Precision =
TP

TP + FP
(2) 

The recall parameter of the model’s performance is defined as the true positive prediction rate. In other words, the model uses the 
recall score to evaluate its accuracy in correctly predicting positive values compared to the actual positive values. The calculation for 
the recall score is provided as [58]: 

Recall =
TP

TP + FN
(3) 

Table 3 displays the precision values for the trained networks across the three categories. The ResNet18, ResNet101, and Inception- 
V3 models exhibit the highest precision of 99% in predicting cracks. Similarly, the Inception-ResNet-V2 model shows a precision of 
99% in predicting knots and undamaged images. On the other hand, the MobileNet-V2 model demonstrates the lowest precision of 
67% in predicting crack images. For the prediction of knots and undamaged images, the ShuffleNet model exhibits the lowest precision 
values of 89% and 79%, respectively. 

Table 4 shows all the recall values for the trained networks for each of the three classification categories. For the prediction of 
knots, the maximum recall parameter is obtained as 98%, achieved by the Inception-ResNet-V2 model. The maximum (best) recall 
value for the prediction of undamaged images is 97%, achieved by the ResNet101, ResNet18, and Inception-V3 models. On the other 
hand, the maximum recall value for the prediction of crack images is 99%, achieved by Inception-V3 and Inception-ResNet-V2. The 
minimum recall value for the prediction of undamaged images is 50% (by MobileNet-V2 model); for crack images, it is equal to 81% 
(by NASNet-Mobile model), and for knots images, it is equal to 91% (by Xception and NASNet-Mobile models). 

The F1-score of the model is defined as the harmonic mean of the recall and precision values for the predictions. The F1-score is a 
metric used to evaluate the accuracy of a model, considering both precision and recall equally. The calculation for the F1-score is 
provided as follows [45]: 

Table 2 
Accuracies of predictions related to (i) cracks, (ii) knots, and (iii) undamaged state.  

ID CNN’s Models Accuracy (%) 

Cracks Knots Undamaged 

1 ResNet18  96  97  95 
2 ResNet50  96  97  95 
3 ResNet101  98  97  97 
4 ShuffleNet  93  93  86 
5 GoogLeNet  95  97  94 
6 Inception-V3  99  97  98 
7 MobileNet-V2  83  97  83 
8 Xception  91  94  91 
9 Inception-ResNet-V2  97  99  97 
10 NASNet-Mobile  88  94  89  
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The model’s F1-score is specified as the harmonic mean of the recall and precision of the prediction values. The F1-score is a model 
evaluation measure that assesses a model’s accuracy by giving Precision and Recall equal weight and is calculated as follows [58]: 

F1 − score =
2
(

TP
TP+FP

)
×
(

TP
TP+FN

)

(
TP

TP+FP

)
+
(

TP
TP+FN

) (4) 

Table 5 shows all the F1-score values for the trained networks for each of the three categories. The maximum value of the F1-score 
for the prediction of cracks is 99%, exhibited by the Inception-V3 model. The maximum F1-score for knots prediction is 98%, achieved 
by the Inception-ResNet-V2 model, and for the prediction of undamaged images, the corresponding maximum F1-score is 97%, by the 
Inception-V3 model. The minimum overall F1-score is 66% by the MobileNet-V2 model for the prediction of undamaged images. For 
the cases of cracks and knots, the corresponding minimum F1-score values are equal to 80% and 89%, by the MobileNet-V2 and 
ShuffleNet models, respectively. 

Fig. 6 illustrates the performance of pre-trained models in predicting 100 test images in each wooden structure category. These 
images were not used in any training process and are therefore new to the models. The Inception-V3 model achieved the highest overall 
accuracy of 97.3% when predicting cracks, knots, and undamaged images. Conversely, the MobileNet-V2 model had the lowest overall 
accuracy of 79.7%. In terms of predicting knots, the Inception-ResNet-V2 model demonstrated the best overall performance, while the 

Table 3 
Precision in predicting cracks, knots, and undamaged state.  

ID CNN Model Precision (%) 

Cracks Knots Undamaged 

1 ResNet18  99  96  89 
2 ResNet50  98  96  95 
3 ResNet101  99  96  93 
4 ShuffleNet  86  89  79 
5 GoogLeNet  93  95  92 
6 Inception-V3  99  96  97 
7 MobileNet-V2  67  96  96 
8 Xception  88  91  85 
9 Inception-ResNet-V2  93  99  99 
10 NASNet-Mobile  84  91  83  

Table 4 
Recalls on predicting cracks, knots, and undamaged state.  

ID CNN Model Recall (%) 

Cracks Knots Undamaged 

1 ResNet18  90  96  97 
2 ResNet50  91  96  90 
3 ResNet101  95  96  97 
4 ShuffleNet  83  89  81 
5 GoogLeNet  93  96  91 
6 Inception-V3  99  96  97 
7 MobileNet-V2  90  96  50 
8 Xception  85  91  88 
9 Inception-ResNet-V2  99  98  93 
10 NASNet-Mobile  81  91  85  

Table 5 
F1-Score of cracks, knots, and undamaged predictions.  

ID CNN’s Models F1-score (%) 

Cracks Knots Undamaged 

1 ResNet18  94  96  93 
2 ResNet50  94  96  96 
3 ResNet101  97  96  95 
4 ShuffleNet  84  89  80 
5 GoogLeNet  93  96  91 
6 Inception-V3  99  96  97 
7 MobileNet-V2  80  96  66 
8 Xception  86  91  87 
9 Inception-ResNet-V2  96  98  96 
10 NASNet-Mobile  82  91  84  
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Fig. 6. Confusion matrix, for each model.  
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Inception-V3 model produced the most accurate predictions for cracks. 
Fig. 7 presents a graphical representation of the correlation between the accuracy, training time, and deep layers of ten pre-trained 

CNN models. In the graph, the training time is in the horizontal axis, the accuracy on the vertical axis and the size of the circle is related 
to the number of deep layers for the CNN models. Among these models, the Inception-ResNet-V2 stands out with a maximum of 164 
deep layers, a training time of 163 min, and an overall accuracy of 96.7%. On the other end of the spectrum, the NASNet-Mobile model 
required the longest training time, consuming 215 min. It had 58 deep layers and achieved an overall accuracy of 85.6%. The 
Inception-V3 model, with only 48 deep layers, demonstrated the highest overall accuracy of 97.3%, and it had a training time of 
97 min. In contrast, the MobileNet-V2 model had the lowest accuracy of 79.7%. This model consisted of 53 deep layers and required 
109 min for training. ResNet18 with 18 deep layers had the lowest training time of 37 min with an overall accuracy of 91.3%. 

One randomly selected image from each class is chosen to demonstrate the performance of each trained CNN model on a practical 
example. The results indicate that the trained models of ResNet50, ResNet101, Inception-V3, GoogLeNet, Xception, and Inception- 
ResNet-V2 accurately predicted the images according to their respective classes. Fig. 8A and B depict that the trained models of 
ResNet18, MobileNet-V2, and NASNet-Mobile exhibit confusion in predicting the undamaged image, while ShuffleNet and MobileNet- 
V2 display confusion in predicting the knot image. However, all models correctly predicted the crack image. 

6. Conclusions 

The purpose of this research is to conduct a comparative study on the classification and prediction of defects in wooden structures. 
To achieve this, ten pre-trained CNN models, including ResNet18, ResNet50, ResNet101, Inception-V3, GoogLeNet, ShuffleNet, 
InceptionResNet-V2, MobileNet-V2, Xception, and NASNet-Mobile, were further trained, validated, and tested on images with cracks, 
knots, and undamaged areas. A dataset containing 9000 images was used for training and validation purposes. The models were then 
independently tested on 300 images (100 images per class), and their performance was evaluated using the confusion matrix, accuracy, 
precision, recall, F1-score, overall performance, and training time. The InceptionNet-V3 model, with 48 deep layers, outperformed the 
other models with an overall accuracy rate of 97.3% and a training time of 97 min. The ShuffleNet model, with a small size of 5.4 MB 
and 50 deep layers, achieved a marginal overall accuracy rate of 84.4%, making it suitable for low-configured machines. The ResNet50 
model had the highest accuracy of 94.3% and the shortest training time of 76 min. To demonstrate the results, one image from each 
category was randomly selected for testing the models. The outcomes showed that the models ResNet50, ResNet101, Inception-V3, 
GoogLeNet, Xception, and Inception-ResNet-V2 correctly classified images according to their respective classes. 

Accurately identifying and classifying defects enables manufacturers to eliminate or address faulty wood prior to its use in con
struction or manufacturing processes. This endeavor is vital for upholding the overall quality and reliability of wood products, thereby 
reducing the risk of structural failures or product malfunctions. Additionally, early identification and classification of wood defects 
during production contribute to cost reduction efforts. By removing defective wood or applying appropriate treatments, manufacturers 
can avoid the utilization of subpar or compromised materials, thereby minimizing waste and sidestepping expensive rework or re
placements. Manual inspection of wood defects can be a time-consuming and labor-intensive task. However, by leveraging a CNN 
model, the classification of defects can be automated, resulting in a significant reduction in the time and effort required for inspection. 
This work enables faster and more efficient evaluation of wood products, facilitating increased production throughput and quicker 
response times. After the classification of defects, specific characteristics such as crack width, orientation, knot area, etc., can be 
computed, which could be explored in future research. 

Fig. 7. Accuracy, training time, and number of deep layers for the CNN models.  
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Fig. 8. A. CNN model results of randomly selected testing images (ResNet18, ResNet50, ResNet101, ShuffleNet and Inception-V3). B. CNN model 
results of randomly selected testing images (GoogleNet, MobileNet-V2, Xception, Inception-ResNet-V2 and NASNet-Mobile). 
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Fig. 8. (continued). 
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