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A B S T R A C T   

Image processing (IP), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) are 
innovative techniques in computer science that have been widely used to predict the properties of materials in 
structural engineering. The stability of reinforced concrete structures mainly depends on the mechanical prop-
erties of concrete, i.e., its compressive strength fc and tensile strength ft. Different kinds of inexpensive cement 
replacement materials (CRM) can be used to form hybrid concrete (HC) with enhanced mechanical and other 
properties. In this study, the IP, ANN, and ANFIS methods are properly combined and used to predict the me-
chanical properties of hybrid concrete. For this, 162 cylindrical specimens of HC with 0%, 15%, and 25% silica 
fume and fly ash as replacement material with three mix ratios, 1:3:6, 1:2:4, and 1:1.5:3 were cast at 14 days and 
28 days curing. The specimens were divided into three equal sets as follows: (i) the first to find the compressive 
strength, (ii) the second to find the split cylinder strength, and (iii) the third to develop a database of images. For 
the image acquisition, each cylinder of the third set is cut into three slices using a stone cutting saw, resulting in 
six faces and a total of 324 images (6 × 54). Photos (digital images) are then taken in fully controlled lighting 
conditions from a height of 600 mm between the concrete surface and the camera lens. The acquired images are 
pre-processed (converted to grayscale, cropped, and resized to 256 × 256 pixels), and the statistical features are 
extracted to predict the fc and ft by using ANN and ANFIS techniques. Finally, the predicted values are tested and 
validated through nondestructive testing methods. The actual values of the compressive and the tensile strength 
of concrete were compared to the corresponding values estimated by the proposed methods, i.e. (IP, ANN) and 
(IP, ANFIS). The accuracy of the results largely depends on the data set. The accuracy obtained by IP/ANN is 
99.7% while the one obtained with IP/ANFIS is 97.8%.   

1. Introduction 

Over the last decades, image processing (IP) and artificial neural 
networks (ANN) have been frequently applied to solve categorization 
and prediction problems in many scientific and engineering domains. In 
civil engineering, these methods have been applied as alternative 
problem-solving techniques for problems associated with structural 
health monitoring (SHM) [1], among various other applications. SHM is 
crucial for taking preventive measures for possible damage and future 
structural failures. It is generally carried out by leveraging the infor-
mation obtained through monitoring processes which involves 
measuring the physical quantities to build a quantifiable understanding 

of the structure’s current condition. The physical quantities, such as 
material characteristics, displacements, accelerations and strains, pro-
vide quantitative information about the condition of the civil structure 
or infrastructure. Therefore, they can be measured continuously to 
observe the structural integrity in real-time [2,3]. However, measuring 
these quantities is time-consuming, labor-intensive, complex, and 
costly. Moreover, the acquired measurements are highly dependent on 
the knowledge and experience of the person conducting the monitoring 
process. 

Computer-vision and machine learning based techniques have been 
recently proposed to estimate the physical quantities and monitor the 
health of an entire structure or any specific member of a structure in a 
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cost-effective and reliable manner. One of the available strategies 
involve the use of IP, ANN and ANFIS (adaptive neuro-fuzzy inference 
system) to predict the material characteristics through information ob-
tained from images [4,5]. Such techniques employ digital cameras for 
vision-based inspection and monitoring [6] and model correlation 
criteria for damage identification in structures [7]. Damages in the 
structures are due to unanticipated loading, inappropriate shape or ge-
ometry of the member and flaws present in the material used [2]. 
Concrete, a compound of sand, fine aggregate, and coarse aggregate 
bonded together with cement, is arguably the most notable and widely 
used construction material in the world. Cement is the costliest material 
in the composition of concrete. Partly due to the increasing demand, 
production, and eventually use of cement, CO2 levels in the environment 
are also on the rise [8]. To reduce the cost of cement, hybrid concrete 
(HC) is manufactured using waste materials [9] such as silica fumes (SF) 
and fly ash (FA) as replacements for cement. HC has several benefits: low 
production cost, reduction in CO2, increased environmental sustain-
ability, and long-term performance [10,11]. 

The main indicators of structural health and integrity have to do with 
the mechanical properties of concrete, primarily the compressive 
strength fc and the tensile strength ft. Several studies [12–19] have been 
performed on the mechanical properties of the concrete. The concrete 
properties can be quantified through conventional testing procedures, 
such as compression test according to ASTM C39 [20] and split-tensile 
test, according to ASTM C496 [21]. The techniques involved in these 
tests include core drilling, ultrasonic pulse velocity (UPV) [22], elec-
trical resistivity measurement, and Schmidt hammer (SH) [23–26]. 
Based on the mode of their applications, the techniques for estimation of 
concrete properties can be classified into two main categories (i) 
destructive testing (DT) and (ii) non-destructive testing (NDT). A com-
bination of DT and NDT can potentially reduce the error in measure-
ments from 15% to 4% [23,26]. Several studies based on ANN and IP 
have been recently conducted to predict the mechanical properties of 
concrete [27–32]. Asteris et al. [33,34] estimated the compressive 
strength of concrete in an existing building through ANN utilizing the 
experimental results from two NDTs, UPV and SH. The compressive 
strength of concrete through ANFIS was predicted by Behnam et al. [35] 
using slump flow and the proportion of mixture as input. Haibang et al. 
[36] used an improved ANFIS model to predict the compressive strength 
of manufactured sand concrete, while Danial et al. [5] made a 
comparative study on estimating the compressive strength of cement- 
based mortar through ANN and ANFIS. Ahmad et al. [37] developed a 
ANN-based framework to estimate the load-carrying capacity of rein-
forced concrete (RC) structural members. Mansour et al. [38] developed 
an ANN model for predicting the shear strength of RC beams. 

Basyigit et al. [39] estimated the compressive strength of concrete 
using IP, achieving an accuracy of 94.8%. The air gap feature of self- 
consolidating concrete was assessed through IP by Özerkan [40]. 
Lopez et al. [18] examined high-performance, lightweight concrete 
characteristics such as unit deformation, shrinkage, yield, and elasticity 
via image analysis. Nambiar and Ramamurthy [41] investigated the 
effects of shape, size, and volume of the air gap of foam concrete on its 
density and strength using the IP method. Dantas et al. [42] used an ANN 
model to estimate the strength of concrete mixed with construction and 
demolition scrap. Kim et al. [43] estimated the strength of concrete 
using a probability-based ANN model. Aworeya et al. [44] predicted the 
compressive and tensile strength of laterized concrete using ANN-based 
predictive models. Almashi et al. [45] proposed an ANN-based tool for 
the estimation of the strength and slump value of bentonite plastic 
concrete. Afaq et al. [46] developed ANN models to investigate the RC 
beam behavior in comparison with the physical models adopted by 
several concrete codes, including ACI, EC2 and JSCE, and found ANN to 
be a reliable tool for studying the response of RC beams. 

Alshihri et al. [47] used ANN to estimate the strength of structural 
lightweight concrete exposed to a particular curing environment and 
evaluated ANN as a reliable method. Oreta and Kawashima [48] 

investigated the strength of confined concrete circular columns through 
ANN. Gupta [49] applied the ANN model to calculate the mixture for the 
normal pressure strength concrete. Moreover, compression tests were 
performed against different water/cement ratios of fiber-reinforced 
concrete to enable the ANN model to take into account the mixture 
characteristics. Gupta et al. [50] used parameters such as mixtures 
design, specimen shape, concrete size, environmental conditions, curing 
period, curing technique, etc., for ANN training and prediction to obtain 
an accurate estimation of the concrete strength. Compared to other 
methodologies, the adopted approach produced significant performance 
improvements in predicting the mechanical properties of concrete. 

Yeh et al. [51] used ANN and second-order regression (SOR) to study 
the slump flow of high-performance concrete (HPC) and concluded that 
ANN is a more accurate model for the prediction of slump flow in 
comparison to second-order regression. Oztas et al. [52] predicted the 
strength and slump of high strength concrete containing several input 
parameters such as water to binder ratio, SF, FA, superplasticizers, air- 
entraining agent through neural networks. Cheng et al. [53] explored 
the relationship between a concrete slump and concrete components 
such as FA and slag using ANN. Bilim et al. [54] used ANN to predict the 
strength of blast furnace slag concrete. It was concluded that the 
shooting distance between the image of a concrete surface and the 
camera can affect the accuracy of the result. Liu et al. [55] performed 
regression analysis to develop a relationship between the shooting dis-
tance and the detection accuracy. They found that the accuracy in 
detection results through images decreases with the increase in the 
shooting distance. Celalettin et al. [39] used an IP technique to assess the 
compressive strength of concrete cubes after cutting them into four 
pieces and imaging the surfaces of the slices at the same height under 
fixed light intensity. 

ANN and ANFIS are two of the most extensively used machine 
learning methods, having shown great ability of forecasting. These 
methods simulate, to some extent, the human brain processes. ANN 
emulates the connection between the neurons in the human brain and 
ANFIS uses both the human inference ability and the connection of 
biological neurons [56]. In structural engineering, these models are very 
useful for investigating the behavior of RC elements, vulnerability 
assessment of RC frames and predicting mechanical properties of con-
crete [57–60], among other applications in masonry structures [34,61] 
and other related fields [62]. One of the main advantages of neural 
networks is the possibility of considering various influential variables in 
the models and providing an appropriate estimation of the behavior of 
nonlinear and complex systems. Nasrin et al. [63] proposed a Bat al-
gorithm based ANN model to predict the compressive strength of con-
crete. Armaghani et al. [5] presented a comparative study of ANN and 
ANFIS models for the prediction of the compressive strength of cement 
based mortar. Hosein and Mirrashid [64] introduced three bio-inspired 
ANN models to estimate the shear strength of RC beams with steel 
stirrups. Previously, these models have been developed using the 
quantities of the constituents of concrete as input values to determine 
the properties of concrete. In this article, ANN and ANFIS models have 
been formulated using statistical features extracted from concrete im-
ages through IP as input value to predict concrete properties. The pixel 
values of the concrete images provide information of the constituents of 
the concrete that can be related to its mechanical properties [39]. 

In the present work, a novel NDT technique based on IP, ANN and 
ANFIS is proposed for predicting the mechanical properties of hybrid 
concrete. Towards achieving this goal, 162 cylindrical concrete samples 
of varying compressive and tensile strengths were manufactured, first 
using different mix ratios (MR). For this purpose, cement replacement 
material (CRM), water-cement (W/C) ratio, water content (WC), 
compaction, and curing time were varied during sample manufacturing. 
Three identical concrete samples were prepared against each mix ratio. 
Two of these samples were utilized in conventional compression and 
split-tensile destructive tests to get the ground-truth compressive and 
tensile strengths of the material. The third identical concrete sample was 
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cut into three slices for image processing and acquisition. Statistical 
features from the acquired concrete slice images were then extracted to 
train and test the ANN and ANFIS models for predicting the concrete 
compressive and tensile strength using images only. The predicted 
values by ANN and ANFIS were compared with the ground truth 
experimental values obtained with the destructive tests. The proposed 
NDT technique results were also compared with other NDT methods 
such as SH and UPV. 

The remainder of the paper is organized as follows: Section 2 in-
troduces IP, ANN, and ANFIS. Section 3 discusses conventional 
destructive tests (CDT) and the specimens’ preparation, testing, and 
cutting procedures. Section 4 elaborates the proposed method based on 
image processing artificial neural network (IPAN) that includes the 
processing of images and training of ANN and ANFIS models. The results 
of the research are presented in Section 5, while Section 6 includes the 
conclusions of the study. 

2. Image processing, artificial neural network and adaptive 
neuro-fuzzy inference system 

Image processing is about processing an image using computer al-
gorithms to extract useful information. Several software packages, such 
as MATLAB, ImageJ, and specialized Python libraries [65–67], have 
been successfully utilized to process images. An image file can be 
transformed into a digital form through an image processing technique 
called digitalization. In a digitized image, each element of the matrix 
represents a pixel. A pixel, the basic logical element of the image, re-
flects the brightness of the unit area of a grayscale picture [68]. Image 
processing techniques include image digitalization, image quality 
enhancement, segmentation, classification, image recognition, and 
pattern recognition. In aeronautics and aerospace, image processing is 
used to process satellite images, in biology and medicine to evaluate 
biomedical images, in engineering and physics for processing spectro-
metric images and electron microscopy [69]. The matrix acquired 
through image processing can be used in conjunction with ANN to 
resolve problems. 

Artificial neural network is an algorithm inspired by the human brain 
to deal with complex and time-consuming problems. The computer al-
gorithm can carry out duties similar to the ones of the human brain, such 
as learning, making decisions, recalling and concluding. ANN can learn 
from input and output data and can model the relationship between 
them, based on which it can be asked to predict new outputs on unseen 
input data. Although ANNs show analogies to only some of the human 
brain’s operations, they were originally inspired and established by 
modeling the structure of the brain. In an ANN structure, there is usually 
one input layer, one output layer, and one or more hidden layers (HL) 
[70]. 

ANFIS combines two separate computational techniques, namely the 
ANN and the fuzzy inference system (FIS). ANFIS provides the ANNs 
with the ability to learn from the data and develop and use the rela-
tionship between input and output data through fuzzy rules [71]. In this 
hybrid technique, first, the inputs and outputs of the dataset are intro-
duced to the algorithm to derive the input of the initial fuzzy model 
using fuzzy rules. Next, the ANN is utilized to improve the derived fuzzy 
model to develop the final ANFIS model for the provided data. The ar-
chitecture of the ANFIS model contains five layers and a membership 
function (MF). The MF of the ANFIS is a curve that reads the gap of an 
input value from 0 and 1 in the input data [71,72]. The first layer is the 
input layer that controls the position of the fuzzy set, and input values 
are introduced to the model through it. The input values are transferred 
to the second layer after the application of the MF. The second layer in 
the model determines the degree of activation of the fuzzy rule and 
computes the input for the third layer through fuzzy input. The nodes in 
the third layer normalize the extent of activity of the fuzzy rule. In the 
fourth layer, fuzzy “if-then” rules are applied to the output values of the 
third layer. The fifth layer is the output layer which is represented by Σ, 

denoting the summation of the values of the fourth layer. The nodes in 
the ANFIS model are of two types, adaptive and fixed nodes. Layers 1 
and 4 contain adaptive nodes that are depicted as square boxes. The 
other layers in the model have fixed nodes represented by circular boxes 
[5,72]. In the proposed study, the ANFIS model is adopted to estimate 
the compressive and tensile strength of hybrid concrete. 

3. Sample production and testing 

In this section, details about the materials and mixing used in the 
preparation of the concrete cylindrical samples are presented. Then, the 
procedure followed in the image acquisition stage is elaborated. Finally, 
details of different DT and NDT techniques utilized in this study are 
given. 

3.1. Sample preparation 

162 cylindrical concrete samples with dimensions 150 mm (diam-
eter) × 300 mm (height) were prepared. It is well known that the final 
mechanical characteristics of concrete are affected by several parame-
ters. In this study, 9 mix designs with three different percentages of 
replacement (0%, 15%, 25%) of SF and FA were considered. In each mix 
design, 6 parameters were taken into account, namely: MR, W/C ratio, 
aggregate quantity, compaction method, curing age, and use of CRM. 
The whole procedure from the casting of specimens to the imaging of 
slices is depicted in the flowchart of Fig. 1. Three classes of the samples 
with replacement (R) of cement with 0%, 15%, and 25% of SF and FA 
and their subclasses are given in Table 1. Each MR for sample prepa-
ration was given a unique name. The nomenclature of the samples is as 
described in the following example: “10S0.4WC”, where 10S is the sum 
of MR component (1 + 3 + 6), 0.4WC shows the W/C ratio, and the last 
part, (0C, 15C or 25C), whenever present, shows the percentage of CRM 
(0%, 15% or 25%). To observe the effect of each variable on the prop-
erties of concrete, a sufficient number of concrete samples were 
produced. 

The water/cement ratio is a significant parameter for concrete 
mainly because of its role in concrete’s surface appearance and the 
number of voids in concrete. In the present study, three W/C ratios (0.4, 
0.5, and 0.6) have been used in the production of the samples, as 
described in Table 1. The water used was according to the ASTM C 94 
[73] and ACI 318 [74] requirements. Besides that, three different 
cement dosages were chosen. It was expected that the color of concrete 
will differ, depending on the change in the cement dosage. CRM de-
creases the void ratio and fluidizes concrete according to ASTM 31 [75]. 
During the fabrication of the 81 specimens, FA and SF were used as CRM 
in 54 samples. The specifications of cement and the CRM used are given 
in Table 2. 

54 specimens, one sample, identical to the others from each class, 
were selected for the photography. A schematic diagram of the cutting to 
be done with a cutting saw is shown in Fig. 1. Every sample opted for the 
photography was cut into three equal pieces of approximately 100 mm 
(height) each, to study the effect of the aggregate distribution on the 
mechanical characteristics of concrete. If samples were not cut and only 
images of the top surface were utilized, the results would be misleading 
due to the accumulation of fine material on the top concrete surface 
[39,76]. Therefore, the parameters influencing the concrete’s mechan-
ical characteristics, such as the feature of cement paste, void ratio, 
aggregate distribution, etc., were observed at each face of the sample 
slice. The cutting scheme of samples to acquire concrete slices is 
depicted in Fig. 2. The cutting of the samples was done with a stone 
cutting saw. The top and bottom faces of the slices for a particular 
sample are shown in Fig. 3. 

3.2. Image acquisition setup 

A special small room (2.00 m by 2.50 m) was designed, built and 
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used for generating the image acquisition setup for taking the prepared 
concrete slice sample images. Since the efficiency of image processing 
techniques is largely dependent on the quality of the obtained images, 
the images need to be acquired in a fully controlled environment. For 
this reason, special arrangements were made to ensure that the acquired 
images of the cylinder slices will be free of light variations, shadows and 
noise. To this end, the sunlight was first fully blocked by using special 
black sheets on each entry point of light in the room. The cylinder slice 
samples were then illuminated from a specific direction and angle by 
two 30 W LED bulbs that produced an artificial light of 2000 lx measured 
through a lux meter (Lutron LX 1109) [68]. The use of artificial lighting 
ensures uniform illumination in the room and that the captured images 
will be as free of unwanted shadows as possible. A digital camera with 
24 megapixels resolution (Nikon DSLR 3300) was used for the imaging. 
The ISO value, which is generally known as the camera’s sensitivity to 
light, was kept constant at 1000. The camera was mounted on a stand, 
and images were captured directly from the top with a fixed distance of 
600 mm between the camera and the sample slice surface. The collected 
images had a 6000 × 4000 pixels resolution. The complete image 
acquisition setup is depicted in Fig. 4 (a). 

3.3. Destructive testing (DT) 

The destructive tests were performed to obtain the mechanical 
characteristics of concrete through conventional methods. The 
compression test and split-cylinder tests were performed on hardened 
concrete to examine the behavior of concrete samples under compres-
sive and tensile loading. Besides DT, NDT techniques such as SH and 
UPV tests were performed on the cut slices. 

3.3.1. Compressive strength 
The prepared cylindrical concrete samples of HC containing CRM FA 

and SF replaced by 0%, 15%, 25% against the weight of cement were 
examined through compression test to acquire the value of the 
compressive strength fc. The compressive strength of hardened concrete 
was measured according to ASTM C39 [20] depicted in Fig. 4 (b). The 
obtained values of fc are represented in Fig. 5. 

The pozzolanic action (PA) of FA and SF generates supplementary 
calcium silicate hydrate (CSH), which contributes to the strength of HC. 
The increase in the compressive strength at a later age is because the 
pozzolanic action of FA starts late while the one of SF starts at an early 

Fig. 1. Flowchart of the process from casting to performing laboratory tests and imaging.  
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age [77,78]. The compressive strength of concrete with SF and FA was 
low at an early age, but a significant increase was noticed in a specimen 
of 28 days. At 14 days age with 0% of SF and FA and W/C 0.6, the 
compressive strength of the specimen is 13 MPa, while a similar spec-
imen with 25% of SF and FA has a compressive strength of 17 MPa. The 
same trend can be noticed for other mix ratios. The obtained results 
reveal that the replacement of cement with SF and FA has a positive 
effect on the strength of HC. The rise in the strength of concrete was 
rapid with the increase in the SF content. 

Table 1 
Three classes of samples and their subclasses. Compressive and tensile strengths are reported at 14 and 28 days, as averages of 3 specimens (tests), per case.  

Mix Design Mix Ratio W/C Ratio CRM CRM fc (MPa) ft (MPa) 

FA (%) SF (%) 14 Days 28 Days 14 Days 28 Days 

0% Replacement (R)   
10S0.4WC 1:3:6  0.4 0 0  13.44  16.94 4.28  4.55 
10S0.5WC 1:3:6  0.5 0 0  10.81  12.07 3.24  3.51 
10S0.6WC 1:3:6  0.6 0 0  10.2  11.96 3.54  5.43 
7S0.4WC 1:2:4  0.4 0 0  13.71  16.56 8.5  8.28 
7S0.5WC 1:2:4  0.5 0 0  10.86  14.7 4  6.53 
7S0.6WC 1:2:4  0.6 0 0  11.24  14.32 3.84  4.39 
5.5S0.4WC 1:1.5:3  0.4 0 0  15.74  16.02 4.39  5.83 
5.5S0.5WC 1:1.5:3  0.5 0 0  13.55  15.9 3.57  4.06 
5.5S0.6WC 1:1.5:3  0.6 0 0  13.82  14.81 3.51  4.33 
15% Replacement (R)   
10S0.4WC 1:3:6  0.4 15 15  13.91  15.25 8.23  8.78 
10S0.5WC 1:3:6  0.5 15 15  11.24  14.1 6.47  8.12 
10S0.6WC 1:3:6  0.6 15 15  10.1  13.6 4.39  4.55 
7S0.4WC 1:2:4  0.4 15 15  14.7  16.75 5.76  6.42 
7S0.5WC 1:2:4  0.5 15 15  13.99  16.13 3.4  4.11 
7S0.6WC 1:2:4  0.6 15 15  13.44  14.7 4.17  5.02 
5.5S0.4WC 1:1.5:3  0.4 15 15  17.8  16.02 5.92  6.31 
5.5S0.5WC 1:1.5:3  0.5 15 15  17.1  15.9 5.2  6.4 
5.5S0.6WC 1:1.5:3  0.6 15 15  15.91  14.81 5.5  6.53 
25% Replacement (R)   
10S0.4WC 1:3:6  0.4 25 25  13.99  16.78 8.75  7.91 
10S0.5WC 1:3:6  0.5 25 25  12.89  14.92 6.58  6.28 
10S0.6WC 1:3:6  0.6 25 25  10.81  14.43 5.46  4.86 
7S0.4WC 1:2:4  0.4 25 25  20.57  23.2 6.91  6.47 
7S0.5WC 1:2:4  0.5 25 25  17.61  18.54 5.16  5.54 
7S0.6WC 1:2:4  0.6 25 25  18.04  18.21 9  6.47 
5.5S0.4WC 1:1.5:3  0.4 25 25  24.35  27.09 7.19  5.27 
5.5S0.5WC 1:1.5:3  0.5 25 25  21.39  21.83 7.29  9.87 
5.5S0.6WC 1:1.5:3  0.6 25 25  16.84  21.05 6.2  5.27  

Table 2 
Specifications of cement and CRM.  

Chemical composition (%) Cement Silica fume FA 

Silica 22.5 84–86 57–65 
Aluminum oxide 5 1.0 (max.) 28–32 
Iron oxide 4.0 2.0–3.5 1–4 
Calcium oxide 64.25 1.0–1.5 1–2 
Loss on ignition 0.64 4–7 9.01  

Fig. 2. Schematic representation of the cutting of a sample into three slices.  
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3.3.2. Split-Tensile strength 
The split tensile test was performed according to the ASTM C496 

[21] standard test method shown in Fig. 4 (c). The experimental values 
of the tensile strength are presented in Fig. 6, where it can be observed 
that the split tensile strength of the cylindrical sample with 0% of CRM is 
low compared to the samples containing CRM. The increase in split 
tensile strength is because of the improved interfacial bond, which was 
attained by replacing cement with SF and FA, which are finer materials 
compared to cement [79]. 

3.4. Non-destructive testing (NDT) 

3.4.1. Schmidt hammer 
After the imaging of the samples, the surface of the slices was made 

smooth and the Schmidt hammer test was conducted on each slice ac-
cording to ASTM C805 [80]. The obtained R-value was used to calculate 

the compressive strength of the slices. Fig. 7 shows the compressive 
strength obtained from the SH test. 

3.4.2. Ultrasonic pulse velocity 
UPV test was performed on the slices according to [81]. The time 

travel of 250 kHz frequency waves through the slice was obtained and 
the value of the velocity was calculated from the formula given in Eq. 
(1), where v is the velocity, T is the thickness of the concrete slice, and t 
is the time of travel of the ultrasonic wave. Then, based on the speed, the 
UPV-based compressive strength is estimated. The corresponding results 
are presented in Fig. 8. 

v = T/t (1)  

Fig. 3. Three slices of a sample with their photographed (top and bottom) faces.  

Fig. 4. Laboratory tests, (a) Image processing setup, (b) Compression test, (c) Split-Tensile test.  
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4. Proposed method (IPAN) 

4.1. Image processing of samples 

Using a MATLAB-based image processing tool, the acquired images 
of concrete slice samples were transformed into matrix form of size 

4000 × 6000 in accordance with the resolution of the image (24 Meg-
apixels). Images were cropped to contain only the concrete portion. The 
original images were true color images (RGB images). The RGB images 
were converted to grayscale format by creating a weighted sum of the R 
(red), G (green) and B (blue) components using Eq. (2), 

GS = 0.298 × R + 0.589 × G + 0.113 × B (2) 

Fig. 5. Graphical representation of compressive strength: (a) at 14 days, (b) at 28 days.  

Fig. 6. Graphical representation of the tensile strength: (a) at 14 days, (b) at 28 days.  

Fig. 7. Graphical representation of the compressive strength obtained from the Schmidt Hammer test: (a) at 14 days, (b) at 28 days.  
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where R, G and B represent the red, green and blue color component of a 
pixel and GS is the calculated grayscale component. The grayscale im-
ages were then resized to a smaller size of 256 × 256 pixels. Pixel values 
of the matrix represent the appearance of the concrete sample and the 
brightness at a point in an image and produce an input segment of ANN. 
Statistical features, namely, the arithmetic mean, standard deviation 
and median, third moment, skewness, and entropy, were calculated to 
reduce ANN processing time and increase the accuracy of the prediction 
[68,82,83]. A description of these features is given in Table 3 and their 
mathematical formulas are given in Eqs (3)–(8) [84]. 

M =
1
k

∑k

i=1
Vi (3)  

Me = {(k + 1) ÷ 2 }th (4)  

Std =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
∑k

i=1
(Vi − M)

2

√
√
√
√ (5)  

Mo =
1
k
∑k

i=1
(Vi − M)

3 (6)  

E = −
∑

i
pi*log2

(

pi

)

(7)  

Sk =
1
k

∑k
i=1(Vi − M)

3

Std3 (8)  

where M denotes mean value, k is the total number of data values for the 
variable, V shows the variables in the digitized matrix, Me is the median 
value of the pixels in the digitized pictures, Std denotes the standard 
deviation, Mo denotes the third moment, E is the entropy, p contains the 
normalized histogram counts, and Sk is the skewness value. 

The matrix size was further reduced to 6 × 256. The 6 × 256 matrix 

contains six rows and 256 columns, where the rows contain the mean, 
standard deviation, median, third moment, skewness and entropy, 
respectively, for every image of the sample. For six images of the con-
crete sample, a combined matrix (CM) of 6 × 256*6 (6 × 1536) was 
obtained. The CM has 1536 matrix values of the mean, standard devi-
ation and the other statistical features for every specimen. The histo-
gram diagrams for six images of a concrete sample are shown in Fig. 9. 
The histogram represents the distribution of the color values of each 
color in the numerical image. By observing the histogram of the top face 
of the image specimen, it was noted that pixels are well distributed in the 
images. Similarly, the pixel distribution (PD) in images of the remaining 
specimens was observed. The histogram of the above-mentioned figures 
also contains a black region, so images were cropped at the center 
portion and the distribution of pixels in the histogram of the cropped 
region was observed. 

In Fig. 10, the histogram of the top faces of images of the specimen 
with MR 1:03:06 shows the effect of W/C and CRM on PD. The rela-
tionship between the compressive strength of concrete and its surface 
appearance can be noticed in the graphs. Also, the effect of the camera 
distance from the surface of the sample and the effect of FA and SF on air 
voids can be observed. 

In addition to the histogram bars distribution depending on the 
availability of aggregate, air gap and amount of cement and sand on the 
cut surfaces, masking was also performed to obtain only the concrete 
related portion of the image after removing the non-concrete portion. 
Masking was done using the thresholding technique of image processing 
technology. The image was divided into two areas, white and black, with 
pixel values “1” and “0”, respectively, with white representing the 
concrete area and black the remaining (non-concrete) part of the image. 
The resultant image was obtained as the input for the ANN. The original 
image and its mask are shown in Fig. 11. 

4.2. Ann modelling 

The input data produced from the matrix acquired through image 
digitalization was then used for the ANN training. The outputs of the 
ANN used for its training are the fc and ft values obtained from the 
laboratory tests. Both input and output data were normalized to a range 
between 0 and 1 using Eq. (9), where N denotes the normalized value of 
the variable Ѵ, while Ѵmin and Ѵmax are the lowest and highest values of 
the variable Ѵ, respectively. 

N =
(V − Vmin)

(Vmax − Vmin)
(9) 

The architecture of the ANN with one input layer, two hidden layers 
(HL), and one output layer is shown in Fig. 12. The number of hidden 

Fig. 8. Graphical representation of the compressive strength obtained from UPV: (a) at 14 days, (b) at 28 days.  

Table 3 
Statistical features.  

Feature Expression Description 

Mean M Measure of average intensity 
Median Me Middle value of pixel in an ordered column 
Standard deviation Std Measure of average contrast 
Third moment Mo Measure of the distribution skewness 
Entropy E Measure of randomness in pixels 
Skewness Sk Measure of asymmetry in matrix  
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layers (2 in this case) was selected based on the experience of the authors 
and on several trial-and-error attempts in order to optimize the network 
performance. 6 nodes were also determined suitable for each hidden 
layer as a result of these trial attempts. The number of nodes for the 
input layer and output layer vary based on the given parameters of in-
puts and outputs in the data set. These are kept to a minimum to reduce 
the processing time, as extra calculations caused by the neurons and the 
weight vectors in any layer can increase the processing time. The output 
layer consists of two nodes, based on the targeted mechanical properties 
of the concrete (i.e. the fc and ft values). 

The Levenberg-Marquardt back-propagation (LM-BP) supervised 
learning algorithm [85,86] is one of the most powerful and widely used 
training algorithms which has been used in the present study for the 
ANN training. The logarithmic function was employed as the nodes 
under constant learning values (lr) and learning ratio values under 
constant hidden nodes were changed in both the HL. An optimal ANN 
structure can be considered as the one corresponding to the lowest error 
value. The learning value is a common parameter that updates the 
weights to minimize the loss function of the network and affects the 
speed of the ANN process. Another significant parameter for the 

Fig. 9. Histograms of three slices of a concrete sample at 600 mm.  
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performance of the network is the moment constant (mc) which is also 
user-defined. There is no general rule for the selection of these param-
eters for an ANN. In this study, the maximum number of iterations was 
set to 10000, while lr = 0.9 and mc = 0.2 [68,87–89]. In this study, 
different ANN models have been used. All ANN models share the same 
activation functions (i.e., log sigmoid and Hyperbolic tangent functions) 
between the layers. Their difference lies in the network architecture, i.e. 
the number of hidden layers and the number of neurons in each of them. 

After normalization of the data (statistical features, DT values), 
several ANN models of the LM-BP algorithm were trained, tested and 
validated by varying the number of HL and HN for every model, while 
the number of neurons in the input and output layers were kept constant. 
The optimal ANN model was the one with 2 hidden layers each having 6 
neurons, exhibiting the minimum training and testing error. The for-

mula for calculating the error for training and testing is given in Eq. (10) 
and it is usually expressed as a percentage (%). 

ET =
1
j

∑j

m=1
|D(m) − E(j) | (10) 

In the above formula, D(m) denotes the output (target) values, E(j) 
denotes the ANN predicted values and j is the number of data points in 
the model. 

4.3. Training and testing 

For the training, validation and testing of the proposed method, 
relevant features extracted from 324 images of 54 samples and values 
from experimental tests were used. The training and testing process 
were carried out using features either individually, in a combination of 
two, or using all three together. The total dataset was divided into three 
parts, with 70% of the data used for training, 15% for validation, and 
15% for testing purposes. The output from the ANN and ANFIS model 
was determined as the value of the compressive and the tensile strength, 
respectively, from each output node, as shown in Fig. 12. Results ob-
tained from the training and testing of the ANN and ANFIS model were 
compared with the laboratory results for the 54 samples and the NDT 
performed on slices. Fig. 13 depicts the steps followed from the casting 
of the specimen until the training of the ANN and ANFIS model. 

4.4. ANFIS modelling 

Similar to ANN, Adaptive Neuro-Fuzzy Inference System (ANFIS) can 
be used to solve complex engineering problems. ANFIS is also a powerful 
tool for predictions by building a relationship between input and target 
values. The architecture of ANFIS contains five principle layers 
described as fuzzyfing layer, implication layer, normalizing layer, 
defuzzyfing layer, and combining layer [5,90]. The optimized ANFIS 
model was achieved by adjusting the five respective parameters of 
ANFIS, namely the type of input fuzzy sets, the membership function, 
number of epochs, type of output membership function and optimiza-
tion technique. 

In this study, ANFIS models with three membership functions, 
namely Generalized bell-shaped, Triangular, and Gaussian MFs (gbellmf, 
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trimf, gaussmf commands in MATLAB, respectively) were used with 
randomly varying number of epochs between 50 and 200. The mathe-
matical representations of the membership functions are given in Eqs. 
(11), (12) and (13). 

trimf (u, a, b, c) = max(min
(

U − a
b − a

)

, 1,
(

c − U
c − b

)

(11)  

gaussmf (u, c, σ) = e− 1
2 (

U− c
σ )

2
(12)  

gbellmf (u, a, b, c) =
1

1 + |U− c
a |

2b (13)  

where U is the input value and a, b, and c are parameters of the mem-
bership functions to determine width, tip and locate center of the curve 
for Eqs. (11) and (13). In Eq. (12), σ determines the width of the curve. 
The ANFIS model with triangular MF showed accuracy of 91.43%, while 
accuracy of 94.24% was obtained for the Gaussian MF model. The 
optimized ANFIS model was the one obtained at epoch 100, with the use 
of the Generalized bell-shaped (gbellmf) membership function, achieving 
accuracy of 96%. The input number of the membership functions was 
also changed to achieve optimization. The curves with input value be-
tween 0 and 10 for the three MFs [91,92] applied in this study are 
presented in Fig. 14. 

5. Results 

In the present study, an amalgam of three artificial intelligence 
techniques, namely IP, ANN and ANFIS, in two ways were applied to 
determine the mechanical characteristics of concrete. In the first one, IP 
and ANN were properly combined, while the second one consists of a 
combination of IP and ANFIS. 54 × 3 = 162 specimens of HC were 
produced with three identical samples in each mix ratio. One set of the 

identical samples (54 pieces) was selected for the compressive labora-
tory testing (fc), another one (54 pieces) for the tensile laboratory testing 
(ft), and the last one (54 pieces) for the digital photography. The 
experimental results and the results from the adopted method were 
compared and found similar. The results from tests and the adopted 
method can be compared as follows. 

Numerous factors can affect the mechanical properties of concrete. A 
data set could be produced including most parameters such as water/ 
cement ratio, curing, CRM, the quantity of cement, compaction, size of 
aggregate, size, and shape of the specimen. The specimens of the hybrid 
concrete which contained 25% CRM (SF and FA) showed better strength 

Fig. 13. Flowchart depicting the step-wise process from casting of samples to ANN training.  

Fig. 14. Curves of the ANFIS membership.  
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compared to the specimens with 15% or 0% CRM. In a similar manner, 
the samples with 15% CRM showed better results than the samples with 
0% CRM. This effect in the strength was due to enhanced PA because of 
the presence of SF and FA. 

The size and range of data set affect the outcomes of an ANN model. 
In this study, 54 × 2 = 108 concrete cylinders with different parameters 
such as water/cement ratio, CRM, curing (14 days, 28 days), compaction 
etc. were used. The experimental results obtained from the specimens 
vary between 10.1 MPa and 27.09 MPa for compressive strength and 
2.19 MPa to 9.87 MPa for tensile strength. 

An ANN model with 2 hidden layers and 6 nodes in each hidden layer 
was employed, while the parameters lr and mc were taken equal to 0.9 
and 0.2, respectively. The chosen parameters affect the performance of 
ANN such as processing time, accuracy, among others. The most 
preferred values of the effective parameters for ANN used by researchers 
are favored. The regression values obtained from the trained ANN 
models and the different ANFIS models are reported in Table 4. 

The results of regression values at the overall stage obtained from the 
optimized (IP, ANN) model, with R = 99.7%, and (IP, ANFIS) model, 
with R = 97.8%, are also depicted in Fig. 15 and Fig. 16, respectively. At 
this point it has to be noted that different combinations of parameters 
are used mainly because of their effect on the mechanical properties of 
concrete. Therefore, the obtained results are specific to the parameters 
used and this can be considered as a limitation of the study. 

Moreover, it was noticed that the mechanical properties of concrete 
are affected by the mix ratio, WC, and the amount of replacement (SF, 
FA) used to produce a specimen. Mix ratio 10S with 0.6 WC, 0% R, and 
14 days of curing showed lower fc and ft values of 10 MPa and 3.5 MPa, 
respectively. The specimens of the same MR with a rise in the percentage 
of R, curing age, and reduction in WC showed enhanced fc and ft values. 
It was observed that the increase in the amount of SF, FA causes a sig-
nificant rise in fc and ft. Overall, specimen 10S25R28D at 0.4 WC showed 
better results of fc and ft than other specimens of 10S because of the 
higher amount of R, curing age and low WC [77,78]. The trends of fc and 
ft results of 10S can be seen in Fig. 17. 

The fc and ft values of MR 7S with respect to WC, R, curing age and 
quantity of SF and FA are presented in Fig. 18. The trend of the bars of fc 
and ft values is similar to that of the trend of 10S. The MR 7S showed 
better results than 10S due to higher amount of OPC, SF, and FA. 
7S0R14D at 0.6 WC ratio showed fc of 11.24 MPa and ft value of 3.84 
MPa that are the lowest values of fc and ft compared to the remaining 
specimens of 7S. 7S0R14D with 0.4 WC ratio gave a higher ft value of 
8.8 MPa while 7S25R28D with 0.WC ratio showed a higher fc value of 
18.21 MPa. 

The MR 5.5S showed better mechanical properties than 10S and 7S. 
The improvement in fc and ft of 5.5S due to higher quantity of OPC, FA, 
and SF compared to the OPC, FA, SF amount used in 7S and 10S. 
5.5S0R14D with WC 0.6 has low fc and ft of 13.82 MPa and 3.51 MPa, 
respectively. On the other hand, 5.5S25R28D at 0.4 WC showed higher 
fc value of 21.05 MPa but 5.27 MPa value of ft lower than ft value of 6.53 
MPa at 0.5WC. The behavior of fc and ft of 5.5S is presented in Fig. 19. In 
general, the variation of the dataset generated experimentally can be 
observed in Fig. 17, Fig. 18 and Fig. 19. 

The compressive strength obtained from DT, such as the hydraulic 
press test, was compared with the one acquired through NDTs. The 
comparison of results showed that UPV and SH results also deviate from 
DT results. So, the NDT results popularly used, such as the ones based on 
UPV and SH, also contain some error and cannot be considered abso-
lutely accurate. 

The fc values from conventional methods, such as HM, RH, UPV, for 
all specimens at 14 days and 28 days were compared. The results ob-
tained from HM follow a pattern according to MR, WC ratio, amount of 
OPC, FA, and SF used, and curing age. On the other hand, the values of fc 
calculated from RH and UPV do not follow the same pattern at few 
points. The irregular behavior presented by the values of fc was probably 
due to error and inaccuracy of these techniques. The fc values from HM 
are higher with 25% of SF, FA replacement, 28 days curing, and low WC 
ratio of 0.4 for all mix ratios. On the other hand, mix ratios with lower 
replacement, higher WC ratio, and 14 days of curing gave low fc values. 
The fc value calculated from RH for mix ratio 10S at 0.4 WC ratio at 14 
days was higher at 15% of SF, and FA than the sample with 25% of SF, 
FA. Similarly, the fc value calculated from UPV for 7S at 0.6 WC ratio 
and 14 days with 0% of SF and FA is higher than the fc value for the 7S 
with 25% of SF and FA, 0.6 WC ratio, and 14 days of curing. The 

Table 4 
Regression values of the trained ANN and ANFIS 
models.  

IPAN Model R-value 

ANN-fc  0.997 
ANN-ft  0.948 
ANFIS-gbell-fc  0.978 
ANFIS-gbell-ft  0.923 
ANFIS-tri-fc  0.921 
ANFIS-tri-ft  0.890 
ANFIS-gauss-fc  0.956 
ANFIS-gauss-ft  0.914  

Fig. 15. Regression values of the optimized ANN model.  

Fig. 16. Regression value of the optimized ANFIS model.  
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comparisons of fc values acquired from all methods and devices at 14 
days and 28 days are presented in Fig. 20 and Fig. 21, respectively. The 
pattern in results of HM obtained values and irregularity in RH and UPV 
calculated values can be noticed. 

6. Conclusions 

In this work, we used Image processing, artificial neural network, 
and adaptive neuro-fuzzy inference system computational techniques 
for predicting the mechanical properties of hybrid concrete. The results 
obtained from destructive and non-destructive testing showed a high 

Fig. 17. Compressive and Tensile strength of mix ratios 1:3:6 at different W/C ratios.  

Fig. 18. Compressive and Tensile strength of mix ratios 1:2:4 at different W/C ratios.  

Fig. 19. Compressive and Tensile strength of mix ratios 1:1.5:3 at different W/C ratios.  
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correlation with the mechanical features of concrete predicted using the 
proposed methodology. The proposed method (IPAN) is a combination 
of image processing and artificial neural network which utilizes statis-
tical features extracted using image processing for training testing and 
validation of ANN and ANFIS. IPAN was trained using DT results and 
predicted results were calibrated with NDT results. IPAN-predicted re-
sults were compared with the DT results acquired from the laboratory 
tests as well as with NDT results of compressive strength obtained 
through UPV and SH. A comparison of the results showed that the 
proposed method can be utilized as an alternative NDT technique to 
predict the mechanical properties of concrete with high reliability and 
accuracy. The main conclusions of this research work are highlighted in 
the next paragraph. 

The specimens of hybrid concrete which contained 25% cement 
replacement material (silica fume and fly ash) showed better strength 
compared to the specimens with 15% or 0% CRM. In a similar manner, 
the samples with 15% CRM showed better results than the ones with 0% 

CRM. This effect in strength was due to enhanced pozzolanic action 
because of the presence of silica fume and fly ash. Further, the 
compressive strength obtained from DT such as the hydraulic press test 
was compared with the one acquired through NDTs. The comparison of 
the results showed that UPV and SH results also deviate from DT results. 
So, the NDT results popularly used, such as the ones based on UPV and 
SH, also contain some error and cannot be considered 100% accurate. 
Values of the compressive and the tensile strength of concrete were 
related to the corresponding values estimated from the proposed 
methods, (IP, ANN) and (IP, ANFIS), together. The accuracy of the re-
sults largely depends on the data set. The accuracy obtained by IP/ANN 
(in terms of the R value) is 99.7% while the one obtained with IP/ANFIS 
is 97.8%. 
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