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Abstract

Although the novel coronavirus disease 2019 (COVID‐19), caused by the severe

acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), primarily manifests as

severe respiratory distress, its impact on the cardiovascular system is also notable.

Studies reveal that COVID‐19 patients often suffer from certain vascular diseases,

partly attributed to increased proliferation or altered phenotype of vascular smooth

muscle cells (VSMCs). Although the association between COVID‐19 and VSMCs is

recognized, the precise mechanism underlying SARS‐CoV‐2's influence on VSMC

phenotype remains largely under‐reviewed. In this context, while there is a con-

sistent body of literature dissecting the effect of COVID‐19 on the cardiovascular

system, few reports delve into the potential role of VSMC switching in the patho-

physiology associated with COVID‐19 and the molecular mechanisms involved

therein. This review dissects and critiques the link between COVID‐19 and VSMCs,

with particular attention to pathways involving cholesterol, calcium, and phosphate.

These pathways underpin the interaction between the virus and VSMCs. Such

interaction promotes VSMC proliferation, and eventually potentiates vascular cal-

cification as well as worsens prognosis in patients with COVID‐19.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID‐19) is a contagious disease caused

by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2),

a Beta‐coronavirus genus in the Coronaviridae family (Martinez‐Salazar

et al., 2022; SeyedAlinaghi et al., 2021). SARS‐CoV‐2 is an enveloped,

positive‐sense, single‐stranded ribonucleic acid (RNA) virus (Harrison

et al., 2020). Two‐thirds of its genome encodes 16 nonstructural

proteins (Harrison et al., 2020). Four structural proteins, namely the

spike (S), envelope (E), membrane (M), and nucleocapsid (N), are en-

coded by the remaining one‐third of the genome (Harrison et al., 2020).

The spike S protein plays an essential role in mediating the entry

of SARS‐CoV‐2 into the target cells (Harrison et al., 2020). In

addition, another component that allows the virus to “enter” target

cells is the angiotensin‐converting enzyme 2 (ACE2) receptor (Salabei

et al., 2022). This receptor is more ubiquitously expressed on myocytes,

fibroblasts, endothelial cells, and smooth muscle cells (SMCs) (Salabei

et al., 2022).

Respiratory involvement remains the primary manifestation of

COVID‐19. According to a systematic review and meta‐analysis,

more than half of patients with COVID‐19 present with cough (da

Rosa Mesquita et al., 2021). However, COVID‐19 has also been

shown to promote systemic symptoms. In essence, robust evidence

suggests that significant portion of SARS‐CoV‐2 morbidity and

mortality is attributed to cardiovascular complications, such as acute

coronary syndrome, myocarditis, arrhythmia, and venous thrombo-

embolism (Clerkin et al., 2020). A meta‐analysis reported that the

prevalence of cardiac injury in hospitalized patients with COVID‐19 is

22%, and this proportion increases with disease severity, suggesting

that cardiac injury is associated with worse prognosis and higher

mortality (Fu et al., 2021). Furthermore, CVD is the most common

comorbidity in patients with COVID‐19, and COVID‐19 patients with

underlying cardiovascular disease demonstrate a worse prognosis (Li,

Dong, et al., 2020). Among the mechanisms proposed to explain the

bidirectional interaction between COVID‐19 and the cardiovascular

system, the ACE2 receptor appears to play a key role, as evidenced

by both animal and human studies (Chilazi et al., 2021). The presence

of ACE2 on the surface of endothelial cells and vascular smooth

muscle cells (VSMCs) mediates cardiovascular injury and contributes

to increased mortality (Liu et al., 2020).

VSMCs play integral roles in regulating vasotone and blood flow

(Deng et al., 2021; Zhang et al., 2016). In healthy vasculature, VSMCs

perform many of the physical homeostatic functions of arteries and

arterioles, as well as the production and remodeling of the extra-

cellular matrix (ECM) (Deng et al., 2021; Zhang et al., 2016). Under

certain environmental factors, these highly specialized quiescent cells

may undergo certain morphological, followed by functional, altera-

tions that may lead to VSMC‐driven vascular diseases (Deng

et al., 2021; Zhang et al., 2016). This plasticity of VSMCs is most

evident when they respond to various stimuli by switching from a

differentiated to a dedifferentiated phenotype (Frismantiene

et al., 2018; Zhang et al., 2016). In addition, when blood vessels are

damaged or stimulated by growth factors, VSMCs can respond by

increased proliferation, migration, and synthesis of extracellular

components, a phenomenon referred to as phenotypic switching

(Frismantiene et al., 2018; Zhang et al., 2016). Many critical regula-

tors can be implicated in the pathogenesis of this phenotypic

switching, such as ions and molecules, including cholesterol, calcium,

and phosphate.

The role of cholesterol, calcium, and phosphate in VSMC phe-

notypic switch has been extensively studied (Tang et al., 2022;

Vengrenyuk et al., 2015). In patients with atherosclerosis, VSMC

dedifferentiation plays a pivotal role in plaque formation. Indeed, it

was shown that in atherosclerotic patients, approximately 40% of

cells identified as macrophages were derived from VSMCs

(Vengrenyuk et al., 2015). Interestingly, one molecule that plays a role

in VSMCs transition from a contractile phenotype to a macrophage‐

like one is cholesterol (Vengrenyuk et al., 2015). Moreover, con-

tractile VSMCs may exhibit resistance to vascular calcification, a

process wherein calcium and phosphate are deposited in the form of

hydroxyapatites (Furmanik et al., 2020). Intriguingly, phenotypic re-

modeling of VSMCs promotes vascular calcification (Furmanik

et al., 2020), while calcification upregulates transcription factors that

mediate differentiation of VSMCs to an osteoblastic phenotype

(Bundy et al., 2021). Therefore, an imbalance of calcium and phos-

phate may also play an important role in the VSMC phenotype

switching, and vice versa (Bundy et al., 2021; Furmanik et al., 2020).

Although the relationship between COVID‐19 and arterial mus-

cle cells has been suggested in recent studies, the exact mechanism

of the interplay between SARS‐CoV‐2 and VSMC phenotypic

switching remains largely unknown (Kar, 2022; Martínez‐Salazar

et al., 2022; Naeem et al., 2023). Thus, this review was undertaken to

determine the molecular mechanism implicated in this switch while

highlighting the active role of calcium, phosphate, and cholesterol in

the pathophysiology of vascular outcomes and disease progression in

COVID‐19 patients. Moreover, pinpointing the dysregulation of

VSMC modulation in patients with comorbidities may explain why

COVID‐19 is more serious in these individuals.

2 | COVID‐19 AND THE
CARDIOVASCULAR SYSTEM

As mentioned earlier, cardiovascular involvement is a common

complication of COVID‐19, and this is attributed to the powerful

expression of ACE2 receptor on the surface of epithelial and vascular

smooth muscle cells (Chatzis et al., 2022; Salabei et al., 2022; Wehbe,

Hammoud, et al., 2021). The interaction between SARS‐CoV‐2 and

ACE2 disrupts signal transduction pathways and cellular hemostasis,

resulting in myocardial and vascular injury (Soumya et al., 2021).

Furthermore, other mechanisms such as hypoxia and systemic

inflammation put an additional burden on the heart and vessels,

leading to a worse prognosis (Nishiga et al., 2020). Acute cardiac

injury, defined by the elevation of serum cardiac biomarker levels

>99th percentile of upper reference limit, is a common extra-

pulmonary manifestation of COVID‐19 (Tajbakhsh et al., 2021).
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About 21% of patients hospitalized for COVID‐19 demonstrate car-

diac injury, and this proportion rises to almost 100% in critically ill

patients (Li, Yang, et al., 2020). The pathophysiological mechanisms

underlying myocardial injury in COVID‐19 patients include direct viral

damage, endothelial dysfunction, hypoxia, and systemic inflammation

(Helms et al., 2022). Clinical evidence has also demonstrated that

SARS‐CoV‐2 can trigger acute coronary syndrome, and this has been

attributed to endothelial injury, thrombus formation, and plaque

rapture (Schiavone et al., 2020). In addition, patients with COVID‐19

are at increased risk of arrhythmias and sudden cardiac arrest. Ac-

cording to a systematic review, the incidence of arrhythmias in pa-

tients with COVID‐19 is up to 18%, and this can be attributed to

myocardial injury, electrolyte imbalances, fever, and sepsis (Hessami

et al., 2021). Acute or decompensated heart failure, as evidenced by

the development of cardiogenic pulmonary edema, has been re-

ported in 6.5% of COVID‐19 patients (Harrison et al., 2021). The

development of systemic symptoms, such as fever, tachycardia, and

hypoxia, in patients with underlying comorbidities might result in the

decompensation of cardiac function. Furthermore, myocardial injury

and acute coronary syndrome triggered by COVID‐19 can also result

in cardiac dysfunction (Mehra & Ruschitzka, 2020). Clinical obser-

vations showed that COVID‐19 patients are also at increased risk of

venous thromboembolism. Studies from China demonstrate that high

levels of D‐dimer (≥0.5 mg/l) were present in 46% of patients (Guan

et al., 2020). In another study, elevated D‐dimer was associated with

greater odds of death (Zhou et al., 2020). It is suggested that the

systemic inflammatory response and endothelial dysfunction pro-

mote a condition of hypercoaculable state in COVID‐19 patients

(Bikdeli et al., 2020).

Several studies highlighted that the course of COVID‐19 is not

only dependent on the effect of SARS‐CoV‐2 infection on the host

cells, but also on the downstream signaling pathways initiated by

the binding of coronavirus' spike protein to its receptor on the

endothelial cells and VSMCs (Parums, 2022; Suzuki et al., 2021).

The endothelial cells, which constitute the innermost layer of the

blood vessels, play a pivotal role in maintaining tissue homeostasis,

through the regulation of systemic blood flow, immune system,

coagulability state, and tissue perfusion, in accordance with other

cells, such as pericytes and VSMCs (Pelisek et al., 2022; Soumya

et al., 2021; Xu et al., 2023). However, disruptions in cellular

homeostasis in the settings of COVID‐19, such as the upregulation

of reactive oxygen species production and subsequent imbalance

in redox status, promote endothelial dysfunction and organ injury

(Soumya et al., 2021). Furthermore, accumulating evidence sug-

gests that SARS‐CoV‐2 infection causes various instances of

VSMC dysfunction, including phenotypic switch, proliferation, and

hypertrophy. These modifications are deemed to increase con-

tractility and induce vascular remodeling. Essentially, a study

highlighted that SARS‐CoV‐2 infection promotes vascular dys-

function characterized by enhanced vasoconstriction and impaired

vasorelaxation by acting on the RhoA/Rho‐kinase signaling path-

way (Sykes et al., 2023). Furthermore, some studies focused on the

involvement of SARS‐CoV‐2 in enhancing the systemic

inflammation mediated by the NLRP3 inflammasome in VSMCs via

the SCAP‐SREBP signaling pathway; which can put into relief the

interconnectedness between COVID‐19 and VSMCs (Liu

et al., 2024a, 2024b). Another study elucidated the mechanisms

underlying the increased cardiovascular risk after coronavirus

infection by focusing on the IL18/IL18R1/HIF‐1 signaling pathway

(Zhang et al., 2021). Essentially, IL18 induction during SARS‐CoV‐2

infection results in the abnormal activation of HIF‐1 signaling

pathway, thereby promoting the synthetic phenotype of VSMC.

Interestingly, HIF‐1 overexpression has been demonstrated a key

mechanism in the pathogensis of vascular disease, such as ather-

osclerosis and aneurysm formation (Gao et al., 2012).

3 | COVID‐19 AND VSMC PHENOTYPIC
SWITCH: A FOCUS ON CHOLESTEROL,
CALCIUM, AND PHOSPHATE

3.1 | Role of cholesterol and calcium in SARS‐
CoV‐2 entry and replication

One of the factors that play a role in SARS‐CoV‐2 infection is lipid

metabolism, particularly the one involving cholesterol. Indeed, it

was demonstrated that the coronavirus entrance into the cell

involves plasma fusion and endocytosis, a mechanism that pri-

marily involves the lipid raft microdomains characterized by the

presence of cholesterol, glycosphingolipids, and glycosylpho-

sphatidylinositol (GPI)‐anchored proteins (Casari et al., 2021; Ko-

čar et al., 2021). These domains are considered the docking site of

SARS‐CoV‐2 to pass through the cell membrane and release their

genome (Casari et al., 2021; Kočar et al., 2021). In effect, it was

shown that the cholesterol‐rich lipid rafts are highly concentrated

in receptors and co‐receptors (Casari et al., 2021; Clausen

et al., 2020; Li, Zhu, et al., 2021; Palacios‐Rápalo et al., 2021).

These receptors could have synergistic effects with the SARS‐

CoV‐2 surface proteins and modulate the virus entry through the

cell membrane (Figure 1) (Casari et al., 2021; Clausen et al., 2020;

Li, Zhu, et al., 2021; Palacios‐Rápalo et al., 2021). For example, one

of these receptors, particularly the ACE2 receptor, binds to the S

protein‐receptor binding domain (RBD) of SARS‐CoV‐2 and facil-

itates its entry (Casari et al., 2021; Clausen et al., 2020; Palacios‐

Rápalo et al., 2021). Viral entry through this receptor also neces-

sitates the interaction between the coronavirus spike protein and

the heparan sulfate proteoglycan (HSPG) (Clausen et al., 2020;

Palacios‐Rápalo et al., 2021; Zhang et al., 2020). Another receptor,

the toll‐like receptor 4 (TLR4), which interacts with the S1 subunit

of spike protein, facilitates SARS‐CoV‐2 entry even in the absence

of the ACE2 receptor (Aboudounya et al., 2021; Butnariu

et al., 2021; Palacios‐Rápalo et al., 2021). To further elucidate the

role of cholesterol in the life cycle of SARS‐CoV‐2, several studies

have demonstrated that the manipulation of host membrane

cholesterol alleviate virus entry into host cells. Indeed, it was

demonstrated that depletion of membrane‐bound cholesterol from
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the lipid raft of ACE2‐rich cells impaired SARS‐CoV‐2 entry into

host cells (Sanders et al., 2021).

Another component contributing to the clinical manifestations of

COVID‐19 patients is calcium. A recent systematic review and meta‐

analysis showed that coronary calcification is associated with

increased mortality in patients with COVID‐19 (Cereda et al., 2022).

This may be attributed to the greater activation, in these patients, of

the renin‐angiotensin‐aldosterone system (RAAS), which increases

the expression of ACE2 receptors on VSMC surface, thereby en-

hancing viral replication and vascular injury (Figure 1) (Beyerstedt

et al., 2021; Cereda et al., 2022). This is in concordance with another

study which showed that increased intracellular calcium load acti-

vates cathepsin L, which in turn aids in the cleavage of the spike S

into S1 and S2 (Tang et al., 2020; Wei et al., 2022). S1 can bind to the

ACE‐2 receptor, while S2 facilitates the endocytosis of the virus into

the host cells (Pizzato et al., 2022; Wei et al., 2022). The binding of

the S2 to the lipid raft microdomains of the target cell is enhanced by

elevated Ca2+ levels (Sultan et al., 2022).

3.2 | Role of calcium, cholesterol, and phosphate in
VSMC phenotypic switch

Increasing evidence suggests that one of the major precipitating

factors of the COVID‐19 course is vascular calcification (Possari

et al., 2021; Shabestari et al., 2022). Coronary artery calcification was

associated with a worse prognosis in patients infected with SARS‐

CoV‐2 (Dillinger et al., 2020; Luo et al., 2022; Shabestari et al., 2022).

Moreover, many studies shed light on the higher mortality rate in

COVID‐19 patients who had vascular calcification, in comparison to

those without calcified vessels (Gupta et al., 2021; Meyer et al., 2023;

Slipczuk et al., 2021). It is important to mention that vascular calci-

fication mainly emerges from the osteo‐/chondrocyte phenotypic

switch of VSMCs, which makes it highly essential to discuss the role

of calcium, cholesterol, and phosphate on the VSMC phenotypic

switch (Liu et al., 2022). Several studies show that the transient

receptor potential vanilloid 4 (TRPV4) channel enables the entry of

extracellular calcium (Figure 1) (Cao et al., 2018; Li, Gao, et al., 2021;

F IGURE 1 Potential mechanisms promoting vascular smooth muscle cells (VSMC) calcification and its phenotype switch, resulting in
increased severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) replication and entry. Calcification plays an important role in the
VSMCs phenotypic switch. On one hand, an increased Ca2+ flow can be mediated through the transient receptor potential vanilloid 4 (TRPV4) on
the VSMCs surface, resulting in their dedifferentiation. On the other hand, phenotypic switch can itself promote Ca2+ deposition. This
calcification further enhances the SARS‐CoV‐2 replication via the renin‐angiotensin‐aldosterone (RAAS) activation. Moreover, lipid molecules
can have a stimulatory effect on calcium, as well as on the coronavirus entry through toll‐like receptor 4 (TLR4) and angiotensin‐converting
enzyme 2 (ACE2) receptor enhanced by heparan sulfate proteoglycan (HSPG). In fact, other mechanisms can also stimulate calcium deposits. For
instance, ascorbate, O2, Fe

2+, and 2‐oxyglutarate result in hyperphosphatemia, which activates the hypoxia‐inducible factor‐1 (HIF‐1),
responsible of stimulating the vascular endothelial growth factor (VEGF), an important factor for calcification. Moreover, high HiPO4− levels
heighten beta‐adrenergic receptor activity, thus stimulating the protein kinase A (PKA)/cAMP response element‐binding protein (CREB)
pathway and increasing Ca2+ levels. SRY‐box transcription factor 9 (Sox9) expression is also involved in Ca2+ deposition. Created with
BioRender.com. Ca, calcium; Fe2+, ferrous ions; HDL, high‐density lipoprotein; HiPO4−, inorganic phosphate; LDL‐P: low‐density lipoprotein
particle; O2, dioxygen; PDGF‐BB, platelet‐derived growth factor BB; TGF‐β1, transforming growth factor beta 1.
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Toft‐Bertelsen et al., 2019). This entry can result in neointimal

hyperplasia and VSMC migration, while the L‐type voltage‐gated

calcium channel has no effect on VSMC phenotype (Li, Gao,

et al., 2021). Interestingly, medial calcification triggers changes in cell

wall morphology and results in higher arterial stiffness (Jaminon

et al., 2019), suggesting that this calcification is highly correlated with

phenotypic switch of VSMCs where cells acquire some features of

chondrocytes and osteoblasts (Jaminon et al., 2019) (Figure 2).

One of the factors affecting VSMC calcification, therefore pro-

moting phenotypic switching, is cholesterol. A prospective study

investigated this in 1980, with a follow‐up period of over 28 years

(Armstrong et al., 2021). In each stage of development, mainly in

adolescence, non‐HDL‐c was associated with coronary artery calci-

fication (Armstrong et al., 2021). Moreover, low‐density lipoprotein

particles (LDL‐P) were highly associated with the presence of coro-

nary artery calcification, independently of other lipid particles (Prado

et al., 2011; Zaid et al., 2016). In addition, the low‐density lipoprotein

cholesterol (LDL‐C) was shown to be dependent on other LDL‐Ps and

to be associated with coronary artery calcification, even if the asso-

ciation was weaker than that of LDL‐P (Figure 1) (Prado et al., 2011;

Zaid et al., 2016).

Levels of phosphate are yet another factor that affects VSMC

differentiation. Interestingly, increased inorganic phosphate (HiPO4−)

levels rapidly activate the hypoxia‐inducible factor‐1 (HIF‐1), a tran-

scription factor implicated in VSMC phenotype (Figure 1) (Mokas

et al., 2016). HiPO4‐‐induced HIF‐1 activation drives expression of

various genes like including vascular endothelial growth factor

(VEGF), a critical angiogenic factor (Mokas et al., 2016; Zimna &

Kurpisz, 2015). Interestingly, VEGF is expressed in osteoblast pre-

cursor cells that boost VSMC calcification and osteogenic trans‐

differentiation (Figure 1) (Hu & Olsen, 2016; Mokas et al., 2016).

Similarly, hyperphosphatemia in chronic kidney disease (CKD)

increases the expression of β‐adrenergic receptors (Moser

et al., 2021). Stimulation of these receptors activates the protein

kinase A (PKA)/cyclic adenosine monophosphate (cAMP) response

element‐binding protein (CREB) signaling pathway, which then en-

hances the osteogenic transdifferentiation of VSMCs (Figure 1)

(Moser et al., 2021).

3.3 | Effect of VSMC switch on calcification

Although the role of vascular calcification in promoting VSMC phe-

notypic switch is well established, some studies stated that these two

processes may happen in a reversed order (Figure 2). For instance,

VSMC phenotype switch was detected 4 weeks before arterial medial

calcification (AMC) (Pai et al., 2011). Another study in ApoE−/− mice

reported that vascular remodeling results in the transdifferentiation

of VSMCs, evident by increased migration and proliferation (Augstein

et al., 2018). This switch was concomitant with increased expression

of the SRY‐box transcription factor 9 (Sox9) (Augstein et al., 2018).

Consequently, an increase in the number of apoptotic cells is noted,

and ECM remodeling and increased calcium deposition ensue

(Augstein et al., 2018; Faleeva et al., 2023) (Figure 1).

4 | DEFENSE MECHANISMS OF THE
PATHWAYS INVOLVING CALCIUM,
PHOSPHATE, AND CHOLESTEROL

4.1 | Inhibitors of SARS‐CoV‐2 entry into VSMCs

Inhibiting SARS‐CoV‐2 entry into host cells has been of much

interest. A factor that plays an essential role in viral life cycle

inhibition is lipid levels, especially at the stage of the virus fusion

with the target cell membrane. While non‐HDL‐c is essential for

VSMC calcification, allowing the SARS‐CoV‐2 to enter VSMCs

more readily, HDL‐c has a markedly different effect. Indeed, as

F IGURE 2 Summary of the interplay between vascular smooth muscle cell (VSMC) phenotypic switch, vascular calcification, and severe
acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) entry into the cell. Contractile VSMCs can undergo a phenotypic switch under
hyperphosphatemia, which results in dedifferentiated VSMCs. This can lead to vascular calcification, which can exert positive feedback on the
phenotypic switch. Vascular calcification enhances the SARS‐CoV‐2 entry into the host cell, and can be stimulated by high cholesterol levels.
Created with BioRender.com.
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pertains to infection with this virus, multiple studies have shown

that low levels of HDL‐c are associated with an increased risk of

hospitalization, more severe disease, and even mortality (Lahoz

et al., 2022; Zang et al., 2020). Among other studies, a cohort

study involving half a million participants demonstrated the ex-

istence of this inversely proportional relation between HDL‐c

level and the risk of SARS‐CoV2 infection (Lahoz et al., 2022;

Zang et al., 2020).

The role of cholesterol role in inhibiting coronavirus entry is also

related to another pathway involving 25‐hydroxycholesterol (25HC)

(Kočar et al., 2021). This 25HC, the product of cholesterol‐

25‐hydroxylase (CH25H), can block the sterol‐regulatory element

binding protein‐2 (SREBP2), and can stimulate the liver X receptor

(LXR), hence activating the Acyl‐coenzyme A: cholesterol acyl‐

transferase (Figure 3) (Kočar et al., 2021; Mao et al., 2022). These

actions repress the cholesterol and the lipid raft microdomains

present in the cell membrane, thus blocking membrane fusion and

disrupting viral protein maturation (Figure 3) (Kočar et al., 2021; Mao

et al., 2022; Zang et al., 2020). Supportably, 25HC was found to

suppress SARS‐CoV‐2's infection in lung epithelial cells (Wang

et al., 2020). Since 25HC is an endogenous particle with

unrecognized toxicity at adequate concentrations, it is considered an

effective therapeutic substance for COVID‐19 (Wang et al., 2020).

Multiple studies in recent years have demonstrated the broad‐

spectrum antiviral activity of 25HC by virtue of its ability to suppress

SARS‐CoV‐2 spike protein‐catalyzed membrane fusion, thus viral

entry into VSMCs.

Entry of SARS‐CoV‐2 may also be inhibited by

27‐hydroxycholesterol (27OHC). 27OHC exerts an antiviral effect

against many viruses, including two human CoVs belonging to the

β‐coronavirus genus: SARS‐CoV‐2 and Human Coronavirus Organ

Culture 43 (HcoV‐OC43) (Mao et al., 2022; Marcello et al., 2020). It

has been suggested that 27OHC acts by modifying the cell structure

rather than by targeting viral components (Marcello et al., 2020). This

mode of action makes the 27OHC able to impede SARS‐CoV‐2 entry

into cells including VSMCs, and hence rendering it as a potentially

potent inhibitor.

Another process involved in inhibiting coronavirus entry is ACE2

shedding. As mentioned earlier, the ACE2 catalytic ectodomain is a

required entry receptor for SARS‐CoV‐2 infection (García‐Escobar

et al., 2022; Glende et al., 2008). The liberation process of the ACE2

catalytic domain is facilitated by disintegrin and metalloproteinase

domain‐containing protein 17 (ADAM17) through the calcium sig-

naling pathway field (García‐Escobar et al., 2022; Zipeto et al., 2020).

This mechanism “releases” a soluble catalytic ectodomain of ACE2

(García‐Escobar et al., 2022). Such soluble forms of ACE2 block

SARS‐CoV‐2 infection, thus offering a prognosis improvement in

COVID‐19 patients (García‐Escobar et al., 2022; Glende et al., 2008;

Haga et al., 2010; Zipeto et al., 2020). The shedding of the ACE2

catalytic ectodomain is a predictor of all‐cause death, including

F IGURE 3 Mechanism by which 25HC blocks severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) fusion with the vascular
smooth muscle cell (VSMC) lipid raft microdomain. 25‐hydroxycholesterol (25HC) inhibits sterol‐regulatory element binding proteins‐2
(SREBP‐2) and activates liver X receptor (LXR), which in turn stimulates acyl‐CoA cholesterol acyltransferase. This results in the depletion of
cholesterol, glycosphingolipids, and the glycosylphosphatidylinositol (GPI)‐anchored proteins from the lipid raft microdomain, which then inhibits
the entry of the SARS‐CoV‐2 into the host cell. Created with BioRender.com. ACAT, acyl‐CoA cholesterol acyltransferase.
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cardiovascular mortality, cardiac remodeling, and endothelial dys-

function (García‐Escobar et al., 2022; Haga et al., 2010).

4.2 | Inhibitors of calcification or VSMC switch

As stated above, vascular calcification and VSMC phenotypic switch

affect SARS‐CoV‐2 entry (Figure 2). Therefore, it is not surprising

that efforts are being expended to determine whether inhibitors of

calcification could be efficacious against COVID‐19. Contextually,

patients with low calcium scores are more resilient to the SARS‐

CoV‐2 infection (Cereda et al., 2022). Similarly, other studies confirm

the antiviral effect of calcium channel blockers especially against

coronaviruses, and further suggest their potential in suppressing viral

entry as well as treating SARS‐CoV‐2‐infected patients (Crespi &

Alcock, 2021; Fani et al., 2023; Straus et al., 2021).

Calcification and phenotypic switch of VSMCs can be modulated

by various enzymes. One such enzyme is superoxide dismutase 2

(SOD2), which downregulates mitochondrial reactive oxygen species,

resulting in the downregulation of Ca2+‐sensitive intracellular cys-

teine protease calpain‐1 (Roman‐Garcia et al., 2011; Tsai et al., 2021).

This leads to lower expressions of alkaline phosphatase and increases

the expression of adenosine 5′‐triphosphate (ATP) synthases, as well

as calcification inhibitors (Roman‐Garcia et al., 2011; Tsai

et al., 2021). This, in turn, leads to diminished VSMC apoptosis and a

low phosphate‐induced VSMC calcification, thereby inhibiting VSMC

phenotype switch (Roman‐Garcia et al., 2011; Tsai et al., 2021).

Some endogenous molecules may also be involved in this phe-

notypic switch. For instance, ATP, uridine‐5′‐triphosphate (UTP), and

the ubiquitous mineralization inhibitor pyrophosphate (Ppi) can pro-

tect VSMCs from apoptosis (Opdebeeck et al., 2020; Patel

et al., 2018). As such, those cells will no longer create a nucleation

site for the hydroxyapatite crystal formation (Patel et al., 2018),

hence preventing VSMC calcification from taking place (Patel

et al., 2018). In addition, calcium and phosphate play an essential role

in the VSMC phenotypic switch. These two minerals induce vascular

calcification (Freise et al., 2015), which triggers VSMC

dedifferentiation into a synthetic osteoblast‐like phenotype (Houben

et al., 2016; Opdebeeck et al., 2020). However, the coexistence of

calcium and phosphate in large quantities yields a feedback loop; they

upregulate Matrix Gla protein (MGP) levels, and in turn block calci-

fication (Houben et al., 2016).

5 | COMORBIDITIES, VSMC, AND
COVID‐19

5.1 | CKD and COVID‐19

Several studies highlight the notion that CKD may increase the risk of

COVID‐19 (Schiffl & Lang, 2023). In patients with renal failure, the

immune system is suboptimal, and a decrease in important immu-

nologic mediators such as antibodies and complement is noted

(Schiffl & Lang, 2023). This implies a consequent decline in the innate

and adaptive immune system efficiency, resulting in more suscepti-

bility to infections.

Because lower calcium levels may put a brake on SARS‐CoV‐2

entry, abating vascular calcification in CKD patient can potentially

reduce their risk of being infected with SARS‐CoV‐2 (Jdiaa

et al., 2022). In this context, interactions between VSMCs and che-

merin, a biomarker of declined renal function, have been noted to

play a role in calcification (Figure 4) (Carracedo et al., 2019; Su

et al., 2021). Indeed, chemerin binds to its G‐protein coupled

receptor on VSMCs. This triggers a signaling pathway that culminates

in increased expression of two calcification inhibitors, namely

fetuin‐A and MGP (Carracedo et al., 2019; Sun et al., 2021). Both

these proteins suppress osteogenic differentiation of VSMCs, and

hence reduce vascular calcification (Figure 4) (Carracedo et al., 2019).

5.2 | Atherosclerosis and COVID‐19

Atherosclerosis, a major cardiovascular disease, is the most common

cause of worldwide mortalities. It is characterized by the formation of

vascular plaques made up of fats, cholesterol, fibrin, among others,

and it also involves VSMC phenotypic switching (Bennett et al., 2016;

Ibrahim et al., 2023). Indeed, contractile phenotype markers like

smooth muscle cell myosin heavy chain (MYH11), and smooth muscle

aortic alpha‐actin (ACTA2), SMC lineage‐restricted protein are

reduced in atherosclerosis (Bennett et al., 2016). This downregulation

is concomitant with increased VSMC‐derived secretion of exosomes

carrying molecules, like phosphatidylserine or annexin A6, that

F IGURE 4 The mechanism of inhibiting calcification through
chemerin's effect on vascular smooth muscle cells (VSMC). Chemerin,
an adipokine found in patients with impaired renal function binds to
its receptor on VSMC surface, promoting in the expression of two
calcification inhibitors, the fetuin A and matrix Gla protein (MGP).
Created with BioRender.com.
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induce calcification in the atherosclerotic plaque (Bennett

et al., 2016; Grootaert & Bennett, 2021). Furthermore, production of

membrane‐bound apoptotic bodies in the plaque ensue (Bennett

et al., 2016; Grootaert & Bennett, 2021). These bodies induce the

recruitment of macrophages to this plaque, making it a nucleation site

for the calcification (Figure 5) (Bennett et al., 2016; Grootaert &

Bennett, 2021).

In the context of atherosclerosis, VSMCs may follow another

dedifferentiation path. For instance, they may switch to an os-

teochondrogenic phenotype (Sanyour et al., 2020) by virtue of a

notable suppression of smooth muscle 22 alpha (SM22α) along

with the upregulation of osteochondrogenic markers such as runt‐

related transcription factor 2 (RUNX2), osteopontin, osteocalcin,

Type II and X collagen, alkaline phosphatase, and Sox9, hence

precipitating calcification (Grootaert & Bennett, 2021). Another

cause for this calcification in atherosclerotic patients is the dep-

osition of calcifying vesicles, and the downregulation of mineral-

ization inhibitory molecules such as vit K‐dependent MGP and

fetuin‐A (Figure 5) (Durham et al., 2018; Grootaert &

Bennett, 2021). Consequently, microcalcification in the fibrous cap

and macrocalcification in the necrotic core of the plaque are

induced (Grootaert & Bennett, 2021). Given that vascular calcifi-

cation is a player in the pathogenesis of COVID‐19, patients suf-

fering from atherosclerosis, especially ones with calcified plaques,

are at higher risk of suffering from COVID‐19 or acquiring its

severe symptoms (Poznyak et al., 2021).

6 | CONCLUSION

The interplay between VSMCs phenotypic switch and cholesterol,

calcium, or phosphate is crucial for the pathogenesis of SARS‐CoV2

or its remission, especially in patients with CKD and atherosclerosis.

That would be especially important, as it represents a potential for

targeting viral entry inhibition, thus antiviral therapy, since currently,

many studies aim at targeting pathways that mediate viral entry.

Furthermore, despite the currently available therapeutic options,

more studies are needed to identify molecules other than cholesterol,

F IGURE 5 The effect of various vascular smooth muscle cell (VSMC) phenotypes on the calcification state of the atherosclerotic plaque.
Some contractile VSMCs' markers, such as myosin heavy chain (MYH11), smooth muscle aortic alpha‐actin (ACTA2), and smooth muscle 22
alpha (SM22α) are downregulated in atherosclerosis; however, others like runt‐related transcription factor 2 (RUNX2), osteopontin, osteocalcin,
type II and X collagen, alkaline phosphatase (ALP), and SRY‐box transcription factor 9 (Sox9) are upregulated. This prompts VSMCs to assume
another phenotype. Synthetic VSMCs secrete PS and annexin A6, recruit macrophages to the plaque, and decrease calcification inhibitors like
matrix Gla protein (MGP) and fetuin‐A, therefore inducing in calcium deposits. Created with BioRender.com.
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calcium, and phosphate that could prove to be tractable targets in the

fight against this virus (Bhimraj et al., 2024; Giordo et al., 2021; Issa

et al., 2021; Kaddoura et al., 2020; Wehbe, Wehbe, et al., 2021;

Younis et al., 2020, 2021; Zareef et al., 2020). This will aid in

developing new drugs that can treat patients who are resistant to the

current standard of care.
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