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Abstract: The implementation of tumor grading tasks with image processing and machine learning
techniques has progressed immensely over the past several years. Multispectral imaging enabled
us to capture the sample as a set of image bands corresponding to different wavelengths in the
visible and infrared spectrums. The higher dimensional image data can be well exploited to deliver
a range of discriminative features to support the tumor grading application. This paper compares
the classification accuracy of RGB and multispectral images, using a case study on colorectal tumor
grading with the QU-Al Ahli Dataset (dataset I). Rotation-invariant local phase quantization (LPQ)
features with an SVM classifier resulted in 80% accuracy for the RGB images compared to 86%
accuracy with the multispectral images in dataset I. However, the higher dimensionality elevates the
processing time. We propose a band-selection strategy using mutual information between image
bands. This process eliminates redundant bands and increases classification accuracy. The results
show that our band-selection method provides better results than normal RGB and multispectral
methods. The band-selection algorithm was also tested on another colorectal tumor dataset, the Texas
University Dataset (dataset II), to further validate the results. The proposed method demonstrates
an accuracy of more than 94% with 10 bands, compared to using the whole set of 16 multispectral
bands. Our research emphasizes the advantages of multispectral imaging over the RGB imaging
approach and proposes a band-selection method to address the higher computational demands of
multispectral imaging.

Keywords: multispectral; histopathology; colorectal cancer; infrared image; RGB image

1. Introduction

Cancer has emerged as a threatening disease, with its rising incidence and high mor-
tality rate in recent years. Research has so far yielded treatments that only modestly extend
life expectancy. However, early screening can identify the disease at an earlier stage, which,
in turn, promotes a better life-saving treatment outcome [1,2]. Histopathological analysis,
or biopsy, is regarded as the primary screening method for most cancers. Automating
the inspection of biopsy samples allows for screening a larger number of individuals in a
shorter period of time while maintaining or even improving diagnostic accuracy. These
tools can also be cost-effective [3]. Additionally, digital histopathology can aid in several
applications, such as predicting genetic alterations and identifying prognostic biomarkers
from biopsy slides [4]. In image-processing-based methods, features are extracted from
digitized biopsy samples to differentiate between various cell types or tumor grades. Im-
ages of the biopsy samples can be acquired in the form of RGB and multispectral images.
Multispectral imaging provides both spectral and spatial information. Moreover, imaging
the sample in the infrared bands is also possible with multispectral imagery.

Automated systems to detect and classify cancerous regions are not a novel research
area. Several algorithms have been proposed to build such diagnostic systems by utilizing
biopsy images. This approach provides faster screening for cancers affecting different body
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parts, including, but not limited to the breast, cervix, colon, and prostate. The automatic
grading of breast cancer cells into three malignancy levels was performed in [5]. Shape
and textural features could achieve an accuracy of up to 94.24% with an SVM classifier.
The dataset was comprised of 110 biopsy images. Statistical and textural features were
utilized in [6] for the grading of breast cancer into three malignancy grades. The system
yielded 90% accuracy using a probabilistic neural network, where the images considered
were taken under lower magnification. Apart from using hand-crafted features, Refs. [7,8]
relied on convolutional neural networks (CNNs) for breast cancer cell classification. The
texture analysis method deployed in [9] makes use of a grey-level run length matrix for
feature extraction to differentiate prostate cancer cells from normal ones. After analyzing
42 cancerous and 6280 normal regions, the algorithm achieved a classification accuracy
of 89.5% with a multilayer perceptron classifier. Haralick’s Grey-Level Co-occurrence
Matrix (GLCM) feature-based algorithm was implemented in [10] for the Gleason grading
of prostate cancer. A four-class grading scheme delivered an 87% rate of correct grading of
the samples. Wavelet and fractal features for prostate cancer detection were investigated
in [11,12]. An accuracy close to 97% was claimed in [12] with the usage of an SVM classifier.

A colorectal tumor-classification system was proposed in [13]. The benefits of several
feature extraction techniques, such as HOG and color-component-based statistical moments,
were exploited by Haralick to build the algorithm. Using an ensemble classifier, the system
could detect cancer at a recognition rate of 98.85%. Detecting and classifying cell nuclei in
cancerous tissue is a significant task, which has been achieved using a spatially constrained
convolutional neural network in [14]. The experiments performed on 20,000 annotated
nuclei belonging to four different classes indicated better performance compared to several
works to date. The algorithm in [15] for cancer classification from microscopic biopsy
images was performed on four types of tissues, such as connective, epithelial, muscular,
and nervous. A k-means segmentation algorithm was followed by the extraction of a range
of features, including texture, morphology, color, tamuras, and wavelet. An accuracy of
92.19% was reported for the dataset of 2828 images.

A streaming implementation of convolutional layers was employed to train a ResNet
CNN for detecting prostate cancer from whole-slide images (WSIs) of biopsies [16]. This
approach demonstrated that it could extract meaningful features from high-resolution
images and deliver comparable performance to patch-based and multi-instance methods,
utilizing whole-slide labels instead of pixel-level annotations. Another deep neural network
(DNN) algorithm was proposed in [17] to detect and grade cancer in prostate biopsy sam-
ples. This research used two convolutional DNN ensembles: the first ensemble performed
binary classification of image patches into benign or malignant and the second ensemble
classified the patches into Gleason patterns from 3 to 5. The system achieved an area under
the ROC of 0.997 for distinguishing benign from malignant tissue. A transformer-based
holistic attention network [18] was introduced to classify breast biopsy images into four
categories, benign, atypia, ductal carcinoma in situ, and invasive breast cancer, achieving
classification accuracy comparable to 87 U.S. pathologists. A deep learning model based on
vision transformers was presented in [19] for Gleason grading in prostate biopsy images.
This system extracted patches from the detected regions of interest in WSIs, followed by the
application of vision transformers for classification, and achieved a recall rate of 79.8% on
10,616 WSIs. The two-stage transformer-based multiple instance learning method [20] was
used for the classification of WSIs of breast cancer pathology. The first-stage hierarchical
swin transformer captured global and local information of pathological images, while the
second-stage transformer encoder produced powerful bag-level features for classification.
Connectivity-aware Graph transformers were used for the classification of breast cancer
subtypes in [21]. Although this method surpassed state-of-the-art methods, it was only
validated on patch-level image datasets.

The papers discussed so far make use of RGB images of biopsy samples. Multispectral
image (MSI)-based tumor-grading systems are also available, with which the rich infor-
mation from different spectral bands could also be utilized. Raquel et al. [22] proposed a
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technique for in vivo brain tumor detection using hyperspectral imaging (HSI). Here, data
are acquired simultaneously in the spatial dimension and numerous spectral wavelengths.
The resultant image comprises the reflectance values, which indicates the fraction of elec-
tromagnetic radiation that is reflected from the particular material surface. This capability
of HSI enables material identification and, hence, tissue classification. This non-invasive
nature of HSI has been exploited in [23–25] for the classification of skin cancer into Benign
Epithelial, Benign Melanocytic, Malignant Epithelial, and Malignant Melanocytic classes.
In addition to these in vivo cancer-detection approaches, HSI/MSI has also been used for
the analysis of digitized histopathological specimens. A review of multispectral imaging
and machine learning techniques for cancer detection has been given in [26]. This study
discusses the works that utilize multispectral images of biopsy samples for cancer cell
classification. The image acquisition described in those papers consisted of generating
multispectral image cubes from visible bands of the electromagnetic spectrum. Another
review [27] explores a broader application of HSI, which covers areas such as staining
and color correction, immunohistochemistry, and autofluorescence, in addition to the
histopathological analysis. Moreover, it includes a number of major diseases including
cancer. In contrast to those experiments, one of our prior works [28] applied multispectral
imaging of biopsy samples in the near-infrared range.

Numerous studies in the literature have employed RGB or multispectral imaging
modalities for the digitization of histopathological slides. These images have been inde-
pendently used to develop systems for detecting and classifying various tumor categories.
However, a comparison is essential to comprehend the relative advantages and limitations
of each modality in automated tumor grading. Our paper offers two main contributions.
First, we compare tumor grading approaches using RGB and multispectral images. Second,
we applied a band-selection method to reduce the dimensionality of multispectral image
data. In this paper, we conduct a comparative study to explore the benefits of multispectral
imaging over RGB for colorectal grading applications. Texture feature extraction followed
by an SVM classifier is used to differentiate the four major types of tumor cells captured
in both RGB and multispectral images. Processing a multispectral image cube is more
computationally complex than processing a standard RGB image. Therefore, we propose a
band-selection strategy based on the mutual information between image bands to select the
most informative bands. We also tested this band-selection approach on another colorectal
tumor dataset, which showed a significant improvement in classification accuracy.

The paper is organized as follows. Section 2 gives a brief description of our data
acquisition procedure, an overview of the proposed band-selection methodology, and the
feature extraction and classification stages. The experimental results for the comparison of
the imaging modalities, as well as for the proposed band selection are shown in Section 3.
A discussion is provided in Section 4, followed by the Limitations and Future work in
Section 5 and the conclusion in Section 6.

2. Materials and Methods

This section details the methodology used in our study. We start with a description
of the data acquisition process, including the types of colorectal tissue samples utilized
and the imaging techniques applied. Next, we elaborate on the band-selection technique
employed to improve the performance of our multispectral imaging system, followed by
the feature extraction and classification algorithms. Lastly, we discuss the performance
metrics used in this research.

2.1. Image Acquisition

Our research, which includes the collection and analysis of biopsy samples from Al-
Ahli Hospital, received approval from both the Qatar University Institutional Review Board
(QU-IRB) and the Al-Ahli Hospital Ethical Committee. The biopsy samples were collected
from the Pathology and Laboratory Medicine lab of Al Ahli Hospital, Qatar. The specimens
are H&E-stained and comprise normal, hyperplastic, tubular adenoma with low-grade
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dysplasia, and the carcinoma grades of colorectal cells. We collected a total of 164 colorectal
biopsy slides between 2007 and 2016. From these slides, we obtained 200 images, each
of which was divided into 4 patches, resulting in 800 individual images for analysis. The
biopsies were collected and processed in accordance with standard clinical procedures to
ensure the consistency and reliability of the samples. The multispectral image acquisition
of the samples is detailed in [28]. We have a 320 × 256 × 39-dimensional multispectral cube
corresponding to the 200 samples belonging to the 4 classes (dataset I). The same samples
were then acquired using a Canon power shot A650 IS camera to obtain the RGB digitized
version. Figure 1 shows examples of the tissues in the multispectral and RGB images. The
six sub-images on the left display the multispectral images of a tubular adenoma sample,
with the first four bands from the visible spectrum and the next two from the NIR spectrum.
The right side shows the same sample captured by an RGB camera.

Figure 1. Sample images from ‘tubular adenoma class’: (Left) Multispectral image bands (4 VIS
bands followed by 2 NIR bands). (Right) RGB image.

2.2. Band-Selection Method

In this paper, we aim to explore the efficiency of multispectral imaging technology for
a computer-aided cancer diagnostic system. Our dataset consists of multispectral images
in both the visible and infrared bands and can fully demonstrate the significance of using
both type of bands compared to mere RGB data. It is obvious that the numerous bands
coming in the multispectral image cube can increase the processing time in proportion
to the number of bands included. Apart from the comparative study, we introduce a
band-selection approach that can reduce the computational burden of huge data. The
methodology is depicted in Figure 2.

With a multispectral image acquisition system, we are able to capture numerous
bands of images from a sample. This may include visible and infrared ones. It is expected
that different modes of information can be perceived from the multiple bands. However,
there is a possibility that too much information can decrease our computational accuracy.
The discriminative capability of a classifier deteriorates with redundant data. It is not
practical to quantify the range of information contained in each of the bands at the image
acquisition stage. Therefore, this process must be effectively managed as a band-selection
approach after the initial epoch. This approach could yield a higher classification rate,
which demonstrates that certain unwanted outlier bands have been successfully eliminated.
A better classification could result in reduced processing time as well. It would be better
to capture sufficient bands in the first set of samples from a particular setup. Once the
information-rich bands are identified following the band-selection methodology, further
acquisition can make use of only the required set of bands.
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Figure 2. Proposed methodology for band selection.

Many band-selection algorithms have been developed to date for dimensionality
reduction. Our proposed approach is based on mutual information. In information the-
ory, mutual information quantifies the statistical dependence between two random vari-
ables [29], indicating how much information one variable provides about another. It has
been used as a tool for image registration, where it measures the similarity between two
images. Mutual information MI(A, B) measures A–B dependence by measuring the dis-
tance between a joint distribution pAB(a, b) and the distribution associated with complete
independence, represented as pA(a) · pB(b).

MI(A, B) = ∑
(a,b)

pAB(a, b) log
(

pAB(a, b)
pA(a) · pB(b)

)
(1)

The mutual information can also be expressed in terms of the entropy. Entropy is
a measure of uncertainty regarding a particular random variable. High entropy images
correspond to good-contrast ones and, hence, have abundant information.

MI(A, B) = H(A) + H(B)− H(A, B) (2)

= H(A)− H(A|B) (3)

where

• H(A) is the entropy of random variable A;
• H(B) is the entropy of random variable B;
• H(A, B) is the joint entropy of A and B;
• H(A|B) is the conditional entropy of A given B.

H(A|B) is the amount of uncertainty left in A in the case where B is known. MI(A, B)
shows the reduction in the uncertainty of A by the knowledge of another random variable B,
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as per Equation (3). This value can otherwise be depicted as the amount of information that
B contains regarding A, which can represent the similarity between them. The redundancy
in the image bands can be captured with the calculation of mutual information between the
neighboring bands. Higher values of MI come with the bands that are highly similar, and it
is expected to have more similarity between the adjacent bands. Therefore, the redundancy
can be traced out by a close investigation of the nearby bands. Figure 3 shows a plot
of mutual information against the respective bands for several sample images from the
database. It is evident that all the curves exhibit a similar pattern, suggesting that the bands
to be retained for a dataset can be generalized based on this observation. This process
requires the band-selection algorithm to be performed as an offline procedure, eliminating
the need for repetition with new images collected from the same setup. Unlike existing
methods, this approach aims to reduce computational time, achieving the desired efficiency.
Mutual information (MI) is calculated between neighboring bands, and bands with an MI
value below a specified threshold are retained. If multiple neighboring bands have similar
MI values (above the threshold), the band with the highest information, determined by
its entropy value, is selected. The band with the highest entropy, indicating maximum
information, is kept. As the threshold is adjusted from high to low, the number of selected
bands decreases. The whole band-selection procedure is applied to a random set of images
from the dataset. We take approximately 25 images, with each belonging to the different
class, and the resultant bands are noted. As inferred from Figure 3, the obtained set of
bands is common for a majority of samples with a few exceptions. A majority-based rule
could finally select the bands under each threshold condition.

Figure 3. Mutual information between thirty-nine bands adjacent: the plot is given here for seven
random images from the database.

2.3. Feature Extraction

The four textural features local binary pattern (LBP), uniform rotation-invariant LBP,
local phase quantization (LPQ), and rotation-invariant LPQ are used in this paper for the
experimentation. The LBP is a special case of a texture spectrum model [30], proposed
by Ojala et al. Initially, the image is partitioned into blocks and subsequently into cells.
For each pixel, the intensity difference with its neighboring pixels is captured as a binary
code word. These binary values are then converted to decimal values, and a histogram
is computed for each cell. This process results in a feature vector. By concatenating the
feature vectors from all cells, the LBP feature descriptor is obtained. Various LBP variants
exist, such as the uniform LBP and the uniform rotation-invariant LBP [31]. All of these
variants will reduce the original LBP feature size by a representation that involves the same
bin for several similar patterns.
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The LPQ feature was proposed by Ville Ojansivu [32]. This technique is based on
the quantized phase of the discrete Fourier transform (DFT), calculated over local image
windows. The LPQ identifies texture by performing local computations at each pixel and
concatenating the resulting codes into a histogram, similar to the local binary pattern (LBP)
texture algorithm. This method has been applied in areas such as blurred face recognition
and fingerprint liveness detection. The LPQ operator’s codes are robust against centrally
symmetrical blur, and using only phase information makes it invariant to uniform illumi-
nation changes. Additionally, a rotation-invariant extension of the local phase quantization
texture descriptor has been proposed [33]. This extension commences with the estimation
of local characteristic orientation followed by the extraction of a binary descriptor vector.
In both stages, the phase of the locally computed Fourier transform coefficients is used.

2.4. Classification

Once the feature extraction is performed from the images, a classifier needs to be
applied to differentiate the various cell types. We are using the supervised learning
technique support vector machine (SVM). The SVM is a discriminative classifier that is
defined by a separating hyperplane. Given a labeled training data input, the algorithm
outputs an optimal hyperplane that categorizes new data, that is the test dataset [34]. The
separating hyperplanes can differ in the length of the separation margin that they introduce
between the classes. Accordingly, the generalization error can also vary. The optimal
margin hyperplane is computed in the feature space instead of the input space utilizing
the kernel trick method. The SVM classifier was applied using the MATLAB software
R2019b with the libsvm toolbox [35]. This classifier is built on a radial basis function kernel
with the parameter estimations (cost ‘c’ and gamma ‘g’) using a grid search method. The
classification algorithm utilizes 70% of the data for training and 30% for testing.

2.5. Performance

We have utilized accuracy as the metric to assess and compare the classification
performance of the two image modalities (multispectral and RGB), as well as to evaluate
the performance of the proposed band-selection method. Accuracy is defined as the
percentage of correctly predicted instances from the total number of instances in the dataset.
This metric offers a clear measure of how well the model classifies samples correctly.

3. Results

In this section, we present the experimental results, comparing the performance of
multispectral and RGB imaging in automated tumor grading. We start with a detailed
presentation of the classification accuracy achieved by each imaging modality, followed by
a discussion of the improvements observed with our proposed band-selection algorithm.
Additionally, we compare the computational complexity of the multispectral and RGB
imaging techniques before presenting the results of the band-selection process.

3.1. RGB vs. Multispectral Imaging

Each of the feature extraction techniques were applied on the multispectral image
dataset, and the results were already presented in [36]. Similar methods were applied over
the RGB images of the four classes of pathological samples. The images were split in the
same way as the multispectral ones in order to enlarge the database. All the classification
accuracies were based on the 50-fold data shuffling method of holdout validation [37]. The
hyper parameters (cost ‘c’ and gamma ‘g’) determined for the SVM classifier using the grid
search method are listed in Table 1. The RBF kernel was used in all instances.
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Table 1. Estimated hyper parameters for SVM classifier.

Method (c, g) for Multispectral
Images (c, g) for RGB Images

LBP 8, 0.0625 8, 2
Uniform rLBP 4, 1 8, 2

LPQ 2, 0.0625 8, 0.0625
rLPQ 8, 0.0625 8, 0.25

Table 2 shows that the multispectral imaging approach yields the best results across
all methods, with the most significant accuracy improvement observed using the uniform
rotation-invariant LBP (Uniform rLBP). This higher accuracy, however, comes at the cost
of increased computational complexity. Figure 4 illustrates the processing time for each
algorithm. The rotation-invariant LPQ (rLPQ) with multispectral imaging, which achieves
the highest accuracy, requires considerably more time compared to its RGB counterpart.
Therefore, selecting the relevant bands from the multispectral data is the optimal solution
for this scenario.

Table 2. Comparison of classification accuracies with multispectral and RGB images.

Method Multispectral Images
(320 × 256 × 39)

RGB Images
(320 × 256 × 3)

LBP 77.86 65.32
Uniform rLBP 83.61 66.99

LPQ 67.52 65.29
rLPQ 86.05 80.71

Figure 4. Computational time for the algorithms.

3.2. Band-Selection Approach

We have implemented the proposed band-selection algorithm for tumor grading using
the rotation-invariant LPQ features, as it is the most accurate method among the four
listed in Table 2. The default local window size for the precomputed LPQ filters with the
rotation-invariant LPQ descriptors was set to 9. We now test window sizes of 3, 5, 7, and 9
to investigate the corresponding band-selection results. Table 3 displays the results using
all 39 bands. To determine the acceptable MI, we have selected four different thresholds,
allowing for the selection of varying numbers of bands. Table 4 presents the classification
accuracies with different numbers of bands and filter size variations.
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Table 3. Classification accuracies without band selection (for filter window sizes of 3, 5, 7, and 9).

Filter Size 3 5 7 9

Rotation-Invariant LPQ 86.11 86.39 87.70 86.05

Table 4. Classification accuracies with band selection.

Filter Size

No. of Bands 1

22 19 17 10

3 86.17 85.30 83.62 78.86
5 86.83 87.31 86.82 85.12
7 87.87 87.91 87.50 87.15
9 86.52 86.77 86.19 85.37

1 An MI threshold of 3.25 leads to the selection of 22 image bands from the 39-dimensional multispectral image
cube and similarly for 19 bands (MI < 3), 17 bands (MI < 2.75), and 10 bands (MI < 2.5).

A brief examination of the two tables indicates that the classification accuracies either
improve or remain largely consistent compared to the results obtained using the full set of
39 bands. Specifically, accuracy increases from 87.70% to 87.91% when using only 19 bands.
This suggests that eliminating redundant bands through band selection can notably reduce
processing time. Moreover, focusing on features from relevant bands enhances accuracy.
Even with just 10 bands, an accuracy of 87.15% is achieved, which is comparable to the
result obtained without band selection.

To assess the significance of the band-selection algorithm, we conducted a similar
analysis on another dataset. This dataset is a colorectal tumor dataset [38] consisting of
29 images from three classes (dataset II). The database is enlarged in a similar manner, which
generated 464 images containing 16 spectral bands each. Table 5 presents the classification
accuracies achieved using the original set of 16 bands. The results are shown for various
window sizes of 3, 5, 7, and 9 for the LPQ filters. The band-selection algorithm yields the
results depicted in Table 6.

Table 5. Classification accuracies without band selection for dataset II.

Filter Size 3 5 7 9

Rotation-Invariant LPQ 92.21 91.96 91.68 90.32

Table 6. Classification accuracies with band selection for dataset II.

Filter Size

No. of Bands 1

22 19 17 10

3 92.57 93.83 93.77 90.11
5 91.44 94.09 93.96 92.75
7 91.22 92.24 92.60 92.86
9 90.73 92.39 92.55 91.84

1 An MI threshold of 3 leads to the selection of 13 image bands from the 16-dimensional multispectral image cube
and similarly for 13 bands (MI < 3), 10 bands (MI < 2.75), 8 bands (MI < 2.5), and 5 bands (MI < 2.25).

Similar to the previous dataset, the classification accuracy in this study improves with
band selection. The initial accuracy of 92.21% using 16 bands has increased to 94.09% after
removing six bands. This result underscores the benefits of band selection for enhancing
classification accuracy, in addition to reducing computational complexity.

4. Discussion

Hyperspectral imaging (HSI) and multispectral imaging (MSI) have proven to be
valuable for identifying various diseases and tissues, with cancer detection being the
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most common application. However, determining the optimal spectral range remains
challenging [27]. Several studies have shown that MSI can outperform standard RGB
imaging for cancer cell classification. For instance, a comparative performance study
in [39] on breast tissue microarrays demonstrated that MSI consistently yielded better
classification results than standard RGB images. Another study [40] found that MSI
significantly improved automated analysis of single-stained bright-field images of breast
tissue microarrays. The analysis of H&E-stained MSI images was shown to be superior
to conventional RGB images in predicting colorectal cancer prognosis [41]. All these
studies used MSI images in the visible range (420 to 720 nm). Conversely, Ref. [42] used
MSI in the near-infrared (VNIR) spectral range (400–1000 nm) to differentiate between
normal and tumor breast cancer cells, comparing the results to synthetically generated
RGB images. However, the dataset in this study was very small, consisting of only two
patients. In contrast, our study compared the classification performance of multispectral
and RGB imaging using a more comprehensive dataset (164 slides, 151 patients, four types
of colorectal tissues, 1150 nm to 1650 nm NIR wavelength bands, in addition to visible
bands). Our findings indicate that MSI outperformed RGB imaging when experimented
with four different textural features.

Regarding multispectral and hyperspectral imaging techniques, we have to trade-off
their benefits with the computational complexity due to increased dimensionality. Selecting
the relevant bands from the numerous ones is a critical task, and we should ensure that
the significant bands are still preserved after band selection. The band-selection algorithm
in [43] utilizes the mutual information concept, where the mutual information is calculated
between each band and the reference map. This map refers to the ground truth map in
which each pixel is correctly assigned to a class. A higher MI indicates more resemblance
to the ground truth, and those specific bands will be selected. Reference [44] is also based
on a similar idea, with the reference map is generated using a priori knowledge of the
scene. Redundant neighboring bands, having small differences in the MI values, are further
excluded from the selection. The mutual information calculation in [45] is based on spatial-
entropy-based mutual information (SEMI) and relies on the reference ground truth image.
A higher SEMI indicates that the bands are to be selected. Band distance allows one to
take distant bands to avoid correlation between adjacent bands. Maximum discrimination
and information (MDI) based on the joint MI is defined in [46] using both labeled and
unlabeled samples, which make up a semi-supervised criterion for band selection. To
maximize the discriminative information of the selected bands, the DIR approximation
method selects the bands having maximum relevance with the class label with the help
of labeled samples. All of the methods described to date require a reference ground truth
map for the computations. Moreover, the proposed approaches will be applicable only for
such datasets as AVIRIS 92AV3C, as described in those works. The methodology in [47] is
different in the sense that it does not need a ground truth map. This method follows a series
of procedures, such as dissimilarity measurements between each set of bands based on
mutual information and the Kullback–Leibler divergence method, a hierarchical clustering
to group the bands based on the dissimilarity matrix for the entire band set, and finally, the
identification of one representative from each cluster. The application of this band selection
for each sample prior to the feature extraction and classification stages adds an increased
computational burden, as previously mentioned.

Compared to other methods, our band selection is a simpler approach and computa-
tionally less complex. Since the selection of bands is performed as an offline task, the main
algorithms will run normally with reduced time due to the reduced number of bands. The
algorithms mentioned in [47] itself consume a major amount of time, which may hinder
the objective of shortening the processing time. Our experiments with dataset I have
shown that, with the 19 bands (half the number of original bands), the accuracy could be
improved. Except with the filter window size of three, all other classification accuracies
have increased. With the reduction in the number of bands, accuracies seem to increase
first, reach a maximum, and then, tend to decrease. Even with 10 bands, the results did
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not deteriorate notably. This finding demonstrates that our band-selection algorithm could
extract the most beneficial bands for the classification. The results on dataset II indicate
major improvements for the classification accuracy over [36,38], which are based on similar
feature extraction methodologies. Extracting features from just 5 out of the total of 16 bands
can yield higher accuracy than using the entire set of bands. This highlights our algorithm’s
capability to eliminate redundant bands using mutual information and identify prominent
bands based on image entropies.

5. Limitations and Future Work

Despite the promising results, our study has a few limitations. Our study focused on
colorectal tumors, which may limit the generalizability of our findings to other types of
cancers or diseases. Another limitation is the potential variability in imaging conditions and
sample preparations, which could affect the reproducibility of our results across different
datasets and settings.

We plan to expand our study to include a wider variety of tissue types and other
forms of cancer to test the generalizability of our findings. Standardizing imaging protocols
and sample-preparation methods will be crucial to enhancing the reproducibility of our
results. Additionally, we will investigate the integration of advanced machine learning
algorithms with multispectral imaging data to develop more sophisticated and accurate
classification models.

6. Conclusions

We have performed a study to demonstrate the advantages of multispectral imaging
over RGB imaging in the aspect of automated tumor grading. The results on a four-class
colorectal tumor dataset indicate an improvement of classification accuracy from 80.71% for
RGB to 86.05% with the multispectral image data. An increase in data dimensionality will
be clearly accompanied by a rise in computational complexity. This finding makes sense of
band-selection approaches to remove the redundant bands. Our proposed algorithm for
band selection identifies the similarity between neighboring bands and selects the relevant
ones. The offline band-selection procedure can identify the set of bands that should be
retained, which will be the same for all images captured from a common setup. This finding
ensures that the computational complexity declines in further experiments. Moreover, the
classification accuracy increases when processing with the selected bands alone, even if it is
less than half the original number of bands. Experiments on two colorectal tumor datasets
have supported the hypothesis. In our multispectral image dataset, the accuracy improved
from 86.05% to 87.91% with the 19 bands selected from the whole 39-band multispectral
dataset. The results on the other dataset showed that the band selection yielded accuracy
values of 92.21% and 94.09% using 16 whole bands and 10 selected bands, respectively.
Compared to previous methods [36,38], our method outperformed those by 2.6% and 2.8%,
respectively, for dataset II.
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