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a b s t r a c t

Automatic speech recognition (ASR) has recently become an important challenge when using deep
learning (DL). It requires large-scale training datasets and high computational and storage resources.
Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training
and testing data come from the same domain, with the same input feature space and data distribution
characteristics. This assumption, however, is not applicable in some real-world artificial intelligence
(AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or
rarely occurring, which cannot meet the data requirements of DL models. deep transfer learning (DTL)
has been introduced to overcome these issues, which helps develop high-performing models using
real datasets that are small or slightly different but related to the training data. This paper presents
a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments
and helps academics and professionals understand current challenges. Specifically, after presenting
the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical
analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a
comparative study is introduced to highlight the current challenges before deriving opportunities for
future research.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Preliminary

The human–machine interaction (HMI) has become increas-
ngly ubiquitous with the development of AI techniques that
an reproduce speech ready for transmission to a system that
xecutes actions. Automatic speech recognition is considered as
cutting-edge communication technology in HMI [1]. Large com-
anies and even service providers widely use ASR-based systems,
here orders or transactions can be completed by communi-
ating with some AI servers, such as a chat robot or virtual
ssistant [2]. Spoken language is the basis of these communica-
ions, which is a critical component to properly consider when
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building an AI-based system dedicated to ASR. ASR takes into
account (i) acoustic, lexical, and syntactic information; and (ii)
semantic knowledge. Acoustic model (AM) processing includes
speech coding [3], speech enhancement [4], source separation [4,
5], speech security (e.g., steganography [6–8] and watermark-
ing [9–11]), and other technologies that can all be used in audio
analysis. On the other hand, semantic model (SM), commonly
known in the literature as language model (LM) processing, in-
cludes all techniques of natural language processing (NLP). This
branch of AI is concerned with teaching computers to compre-
hend and interpret human language. It is the foundation of music
information retrieval [12], collecting sound files based on simi-
lar content [13], audio tagging and sound event detection [14],
converting speech to text and vise versa [15], hate speech detec-
tion [16], etc. When NLP is employed as a tool in various domains,
AI models can understand humans and respond to them appro-
priately, revealing immense research possibilities in a variety of
sectors.

ASR has significantly benefited from the latest advances made
possible by deep learning (DL) algorithms, where a plethora of
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Fig. 1. Summary of the main speech processing disciplines where DTL can be applied.
DL models have been proposed in the literature, offering promis-
ing performance and outperforming actual state-of-the-art tech-
niques [17,18]. However, using DL in ASR is a challenging task
that plays a crucial role in natural HMI. Despite all its advantages,
its suffers from different problems. The complexity of DL models
is enormous due to the huge amounts of training data required for
their training to achieve excellent performance. Thus, DL models
require high computational and storage resources [19]. Moreover,
data scarcity is among the challenges of ASR, which refers to the
case of having insufficient quantities of training data to develop
and completely explore complex DL algorithms [20]. Additionally,
the lack of annotated data is another issue that impedes building
supervised DL-based ASR models. On the other hand, generally,
DL models (and ML tools) assume that training and testing data
come from the same domain, with the same input feature space
and data distribution characteristics. This assumption, however,
is not applicable in some real-world applications [21]. Conse-
quently, DL models cannot perform well if (i) small training
datasets are utilized and; (ii) there is a discrepancy or data
distribution inconsistency between training and test data [22].

Deep transfer learning (DTL) targets the mentioned prob-
lems by pooling knowledge from the source domain (SD)/task
and transferring it to a target domain (TD)/task or multiple
domains/tasks. This concept can also be named the teacher-to-
student (T/S) knowledge transfer [23]. Put differently, in DTL, a
pre-trained model is reused as the starting point for a DTL model
on a new task, which helps (i) optimizing and rapidly progress-
ing the second task, (ii) achieving higher performance on small
datasets, and (iii) reducing the effect of overfitting. Furthermore,
DTL can merge pre-trained knowledge from different domains
and tasks to deal with data distribution inconsistency. In DL, some
trainable neurons and hyperparameters can be frozen to better
preserve the knowledge learned from the original datasets [24].
Fig. 1 points out some critical areas in speech processing that can
apply DL and DTL. Accordingly, ASR, speech emotion recognition
(SER), NLP, and speech security (SS) domains are significantly
related. ASR provides the acoustic parameters to NLP, which
provides the semantic details to ASR. Frequently, SER is similar to
ASR but with a form recognition (FR) module. Additionally, ASR
can be used in the SS domain, as a steganalytic process, to check
the integrity of the speech [6,25].
2

To that end, the importance of DTL to resolve the above-
mentioned problems encountered with the use of DL tools in ASR
has motivated the scientists to propose numerous DTL-based ASR
solutions for different applications. Typically, DTL methodologies
have been widely applied in speech processing, such as speaker
verification (SV) [26], ASR [27], SER [20,28,29] and NLP field [30].
Additionally, DTL has been widely used in the speech-based med-
ical disease diagnosis, such as the heart sound classification [31]
and early diagnosis of Parkinson’s disease (PD) [32], Speech-based
depression prediction [33].

1.2. Contribution of the paper

This paper overviews existing DTL-based ASR frameworks
published in the 2015–2023 period. Accordingly, a well-defined
taxonomy is introduced to classify them into various categories
based on different aspects, including the nature of transferred
knowledge, availability of labels in the source and TDs and
adopted strategy. To the best of the authors’ knowledge, to date,
there is no research paper that goes into the details and reviews
critically DTL-based ASR contributions. Moreover, this review is
conducted by focusing on different aspects: (i) presenting the
background of DTL, introducing the issue of ASR and expounding
the importance of DTL for it; (ii) analyzing the DTL frameworks
and identifying their limitations and comparing their perfor-
mance; (iii) discussing the importance applications of DTL-based
ASR; (iv) clarifying the methodological merits and elucidating
the main DTL challenges and issues; and (v) suggesting future
directions to further improve the performance of DTL-based ASR
solutions and predicting the prospective development of DTL for
ASR applications in the near future.

On the other hand, despite that, there were some attempts to
survey the generic applications of transfer learning (TL), most of
them did not investigate recent DTL advances for ASR tasks. Ta-
ble 1 summarizes some of the main contributions of the proposed
study compared to other TL surveys. It is clearly seen that this
survey article has numerous major enhancements and additions
since it merge works that employ both ASR and DTL as compared
to previous TL surveys. It also provides a quantitative analysis
of existing ASR-based DTL solutions, discusses the application of
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Table 1
Contribution comparison of the proposed study against other TL surveys. The tick mark (✓) indicates that the specific field has been addressed, whereas the cross
ark (✗) means addressing the specific fields has been missed. When (∼) is presented, it indicates that most critical concerns/fields have not been addressed.
Survey Description TL Quantitative TL-ASR ASR attacks Current challenges Future

Background analysis in medical and security Negative Knowledge Unification Directions
diagnosis transfer gain of TL for ASR

[34] TL for computational intelligence ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[35] General information on TL ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[22] Generic TL contributions ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[36] DTL for video surveillance ✓ ✓ ✗ ✗ ✓ ✗ ✗ ∼

[37] Focus on homogeneous TL ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[38] TL for NLP ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[39] TL in EEG ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[40] TL for text data ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[41] DTL for intrusion detection ✓ ✓ ✗ ✗ ✗ ✗ ✗ ∼

Ours DTL for ASR applications ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DTL-based ASR for medical diagnosis and describes DTL-based
ASR attacks and security. Moreover, actual current challenges
such as the negative transfer (NT), knowledge gain measurement
and unification of DTL have been covered. The main contributions
of this article can be summarized as follows:

• Describing the evaluation metrics and datasets used for
validation of DTL-based ASR schemes.

• Presenting a well-defined taxonomy of DTL-based ASR
methodologies with regard to AM and LM domains.

• Investigating for the first time adversarial DTL-based ASR
methods and summarizing DA techniques used in ASR ap-
plications.

• Explaining the relationship between DTL-based ASR and
other application fields, such as speech translation (ST),
speech evaluation, medical diagnosis, etc.

• Identifying DTL-based ASR challenges and gaps, such as NT,
knowledge gain measurement and unification of DTL.

• Suggesting future directions to further improve the per-
formance of DTL-based ASR solutions and predicting the
prospective development of DTL for ASR

The remainder of this survey article is structured as follows.
ection 2 explains the review methodology of our survey. Moving
n, existing DTL-based ASR are reviewed in Section 3 using a
ell-defined taxonomy. Next, Section 4 describes the main con-
ributions made in different DTL-based ASR-based applications,
ncluding acoustic models, language models, cross-domain ASR,
edical diagnosis, and attacks and security. After that, Section 5
rovides a critical discussion and outlines the open challenges
efore identifying future research directions in Section 6. Lastly,
oncluding remarks are derived in Section 7.

. Review methodology

The methodology of conducting this survey is outlined in this
ection, where the search strategy is discussed first, followed
y a section on study selection. The inclusion criteria is then
escribed, including the keyword match, creativity and effect, and
niqueness. All these procedures contribute to the development
f our paper quality assessment protocol.

.1. Literature search strategy

To identify and determine existing DTL-based ASR studies, a
horough search has been conducted on the popular publication
atabases, which are considered as the main source of high-
uality scientific research articles. Thus, the search has been done
n Scopus, Web of Science, Elsevier, IEEE, ACM Digital Library,

iley and IET Digital Library.

3

Table 2
Literature acquisition databases.
Database Research articles Conference papers Book chapter Total

ACM 7 3 – 10
Elsevier 32 – – 32
Springer 29 – 13 42
IEEE 46 40 – 86
Others 65 29 – 94

2.2. Selection study

The following three criteria have been considered to search
and select the studies included in this review.

1. Keyword match: the preliminary references’ keywords
were manually extracted and grouped. These publications
were grouped using ‘‘theme clustering’’ based on keywords
that construct to the following query:

References=SELECT
(
Papers WHERE keywords=(‘‘Trans

fer learning’’ OR ‘‘Knowledge transfer’’ OR ‘‘Model
adaptation’’ OR ‘‘domain adaptation’’ ‘‘Model combi-
nation’’ OR ‘‘Fine-tuning’’) AND (‘‘Automatic speech
recognition’’ OR ‘‘Speech processing’’ OR ‘‘Natural lan-
guage processing’’ OR ‘‘Spoken language’’ OR ‘‘Appli
cations’’)

)
.

2. Innovation and impact: the publications have been filtered
according to ASR-based innovation, the quality of the study
and presented contributions and results, and the nature
of publication (i.e., journal papers, conference proceedings
articles and book chapters). The articles that present repeti-
tive contributions (or highly similar content) or not written
in English, have been eliminated.

3. Novelty: only the research contributions published during
the 2015–2023 period have been included.

Table 2 summarizes the number of included papers per
database after applying the selection protocol.

2.3. Quantitative analysis

With the advance of DL, a large number of studies have been
introduced to improve ASR, in which a significant part has been
reserved for treating DTL-based contributions. Fig. 2 presents the
statistics extracted from the Scopus database, with reference to
the (i) yearly published papers using adopted keywords (includ-
ing “ASR & knowledge transfer”, “ASR & domain adaptation” and
“ASR & transfer learning”), (ii) included papers per keyword, and
(iii) published DTL-based ASR articles compared to the overall

ASR papers. In general, the number of published DTL-based ASR
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Fig. 2. The number of publications on ASR and DTL-based ASR (source ‘‘Scopus database’’) from 2015 to 2023, where: (a) papers searched using ASR and Knowledge
transfer (KT) keywords, (b) papers searched using ASR and DA keywords, (c) papers searched using ASR and TL keywords, (d) comparison-based Keywords search,
and (e) pure ASR vs. TL-based ASR papers search.
i
D

studies increases yearly, and this was clear even by using different
keywords as depicted in Fig. 2(a), (b) and (c). In addition, most in-
cluded contributions have been found using the “transfer learning
& ASR”, “domain adaptation & ASR” and “knowledge transfer &
ASR” keywords, as depicted in Fig. 2(d). Besides, it can be seen
from Fig. 2(e) that DTL-based ASR contributions stand for 17% of
all existing ASR studies. Moreover, it is worth noting that there
is an overlapping between these keywords, where some articles
search by one keyword could be found by the others.

3. Overview of DTL techniques for speech recognition

3.1. DTL conceptual background

Overall, DTL consists of training a DL model on a specific
omain (or task) and then transferring the acquired knowledge to
new, similar domain (or task). In what follows, we present some
f the definitions that are essential to understand the principle of
TL for ASR applications.

efinition 1 (Domain). Let us consider a specific dataset X =

x1, . . . , xn} ∈ χ , in which χ represents the feature space, and
(X) refers to the marginal probability distribution of X . A domain
s defined as D = {X, P(X)}. In DTL, the domain that contains the
nitial knowledge is defined as the SD, where it is represented by
S . By contrast, the domain including the unknown knowledge to
e learnt is named the TD, it is corresponding to DT [42].

efinition 2 (Task). Considering the previously defined dataset
= {x1, . . . , xn} ∈ χ , which corresponds to a set of labels

= {y1, . . . , yn} ∈ γ , where γ represents the label space. A task
an be defined as T = {Y , F (X)}, where F denotes the learning
bjective predictive function that could be represented as well as
conditional distribution P(Y |X). Following the definition of task,
he label spaces of the source and TDs are represented as γs and
T , respectively [43].

efinition 3 (DTL). A learned function FS may be viewed as the
nowledge gained in D using T if we consider a SD D and
S S S

4

ts related task TS . When domains or tasks differ, the purpose of
TL is to find the target predictive function FT for the target task
TT with the TD DT . To put it another way, DTL tries to increase
the performance of FT by leveraging the knowledge FS , where
DS ̸= DT and TS ̸= TT are used. As a result, DTL may be written
as follows [34]:

DS = {XS, P(XS)}, TS = {YS, P(YS/XS)} → DT = {XT , P(XT )},
TT = {YT , P(YT/XT )}

(1)

Definition 4 (Domain Adaptation (DA)). Considering the SD DS
for the task TS and the TD DT for the task TT , where DS ̸= DT .
DA tries to learn a prediction function FT that can be utilized to
improve FT using the knowledge gained from DS and TS . In other
words, in FT , the domain divergence is adapted [44].

All in all, classifying data where DS ̸= DT or TS ̸= TT is
the main challenge that DTL algorithms attempt to meet. One
popular idea to do so is by reducing the difference between
domains or tasks, which ensures certain similarity between the
corresponding feature or label spaces [45]. Fig. 3 explains the
difference between conventional DL and DTL techniques.

3.2. Taxonomy of existing DTL techniques

DTL and classical TL differ in terms of the models used and
the level of abstraction in feature representation. Classical TL
employs traditional ML models with shallow architectures and
relies on handcrafted features. In contrast, DTL utilizes DNNs with
millions of parameters to automatically learn features from raw
data. Classical TL directly applies a trained model to a related task,
while DTL involves pre-training on a large dataset and fine-tuning
on the target task. DTL generally exhibits higher generalization
capability, as DNNs can capture complex patterns and transfer
knowledge across domains.

To date, there is no standardized and comprehensive tech-
nique for classifying DTL into categories. However, DTL algo-
rithms could be classified into several types depending on what,
when, and how knowledge is transferred. Moreover, some stud-
ies have attempted to introduce a taxonomy of DTL-based ASR
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Fig. 3. Difference between conventional DL and DTL techniques for multiple tasks: (a) conventional DL and (b) DTL.
Table 3
DTL possibilities. whereas the mark (⊊) indicates that the domains/tasks are different but related, (∃!) indicates that there exists one and only one domain/task, and
∼=) indicates that domains, tasks, or spaces are not always equals.

Domains Tasks Math. propriety Sub-categories/Usage

Traditional ML/DL DS = DT TS = TT XS ̸= XT ,
YS = YT

ASR model trained with XS database and used to
recognize XT database.

Inductive DTL DS ∼= DT TS ̸= TT XS ̸= XT ,
YS∃, YT∃

If YS∃, DTL is multitask learning. If YS∄, DTL is
self-taught learning, thus χS ∼= χT .

Transductive DTL DS ̸= DT TS = TT P(XS ) ̸= P(XT ),
YS∃, YT∄ ,
χS = χT

When χS = χT , DTL is related to DA. If DT∃! and
TT∃!, DTL is used for sample selection bias or
covariate shift.

Cross-modality DTL DS ̸= DT TS ̸= TT P(YS/XS ) ̸=

P(YT /XT ),
YS ̸= YT , χS ̸= χT

i,e. the dataset XS of DS is speech data, and the
dataset XT of DT is text data.

Unsupervised DTL DS ⊊ DT TS ⊊ TT YS∄, YT∄ DTL used for clustering, dimensionality reduction,
and density estimation, etc.
techniques. For example, Niu et al. [22] divide the DTL methods
into two levels. The first one is divided into four sub-groups
based on (i) the availability of labeled data, and (ii) the data
modality in the source and TDs. Typically, this has resulted in
inductive DTL, transductive DTL, cross-modality DTL, and unsu-
pervised DTL [41]. Table 3 summarizes these possibilities. Going
deeper, each sub-group in the first level can be further subdivided
into four distinct learning types, including learning on instances,
learning on features, learning on parameters, and learning on
relations.

3.2.1. Inductive DTL
In comparison to classical ML, which may be used as a ref-

rence for DTL comparison, and given that the target tasks TT
are distinct from the source tasks TS , the goal of inductive DTL
is to enhance the target prediction function FT in the TD, men-
tioned above in Section 3.1. However, the SD DS and TD DT may
not always be the same (Table 3). The inductive DTL can be
stated similarly to the following two cases, depending on whether
labeled or unlabeled data is available:
(a) Multi-task DTL: The SD has a huge labeled database (XS la-
beled with YS), which is a distinctive form of multi-task learning.
However, with multi-task approaches, many tasks (T1, T2, . . . , Tn)
are learned at the same time (in parallel), including both source
and target activities (tasks).
(b) Sequential DTL: (Commonly known as self-taught learning)

Dataset is not labeled in the SD (XS is not labeled with YS) but

5

the labels are available in the destination domain (XT is labeled
with YT ). Sequential learning is a DL system that can be realized in
two steps for classification purposes. The first step is the feature
representation transfer, which is learned from a large collection
of unlabeled datasets, and the second stage is when this learned
representation is applied to labeled data to accomplish classifi-
cation tasks. Hence, sequential DTL is a method of sequentially
learning a number of activities (Tasks). The spaces between the
source and destination domains may differ. For example, let us
suppose we have a pre-trained model M and consider applying
DTL to a number of tasks (T1, T2, . . . , Tn). We learn a specific task
TT at each time step t , which is slower than multi-task learning.
However, when not all the tasks are present during training time,
it might be beneficial. Sequential DTL is additionally classified
into several types [46]:

1- Fine-tuning: The principle is to learn a new function FT that
translates the parameters FT (WS) = WT by using M , given
a pre-trained model MS having WS as weights and target
task TT having WT as weights. The settings can be adjusted
across all layers or just some of (Fig. 4(a)). The learning rate
for each layer could be distinct (discriminative fine-tuning).
A new set of parameters K could be added to most of the
tasks so that FT (WT , K ) = WS ◦ K .

2- Adapter modules: Given an MS model that has been pre-
trained and output WS , for a target task TT . The adapter
module aims to lunch a different set of parameters K that
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Fig. 4. Structures of: (a) Fine-tuning, (b) DA, and (c) DTL-based GAN.
is too much less than WS , i.e, K ≪ WS . K and WS must have
the ability to be decomposed into more compact modules
such that, WS = {w}n and K = {k}n. The adapter module
permit learning the following new function FT :

FT (K ,WS) = k′

1 ◦ w1 ◦ . . . k′

n ◦ wn. (2)

According to Eq. (2), during the adaptation procedure, the
set of original weights WS = {w}n is left unaltered, but the
set of weights K is changed to K ′

= {k′
}n. The principle of

the adaptation domain is illustrated in Fig. 4(b).
3- Feature-based: Interested only in learning concepts and

representations, at various levels, such as word, character,
phrase, or paragraph embedding E. The collection of E based
on a model M remains unaltered, i.e., FT (WS, E) = E ◦W ′, in
the way thatW ′ is fine-tuned. For example, researchers have
applied the generative adversarial network (GAN) principle
to DTL where, the generators send features from the SD and
the TD to a discriminator, which determines the source of
the features and feeds the result back to the generators until
they can no longer be distinguished. In this procedure, GAN
obtains the common properties of two domains, as shown
in Fig. 4(c).

4- Zero-shot: Is the easiest method among all of the others.
Making the assumption that the parameters WS cannot be
modified or add K as a new parameter to a pre-trained
model MS using WS . To put this into context, in zero-shot
there is no training technique to optimize or learn new
parameters.

3.2.2. Transductive DTL
Compared to the traditional ML, which can be considered as

a reference for DTL comparison, and given that the TDs DT are
distinct from the SDs DS . The SD has a labeled dataset (XS labeled
ith YS), whereas the TD has no labeled dataset, the source and
arget tasks are equal (Table 3). The goal of transductive DTL is to
uild the target prediction function FT in the DT by knowledge
f the DS and TT . Furthermore, the transductive DTL environ-
ent may be further classified into two categories depending on
ifferent conditions between the source and destination domains:

a) Domain adaptation (DA): The feature spaces across domains,
S and χT , are the identical, but the marginal probability distri-
utions of the input dataset are not, P(YS/XS) ̸= P(YT/XT ). For

example, an assessment may be done on the topic of the resort
in the DS and it will be used to train a model for restaurants in the
DT . DA is mostly effective when the TT has a distinct distribution
or there is a scarcity of labeled data.

(b) Cross-modality DTL: Also known as cross-lingual DTL in the
spoken language field, most DTL methods, more or less, a con-
nection in feature spaces or label spaces is required between D
S

6

and DT . In other words, DTL can only occur when the source and
destination data are both in the same modality, like video, speech,
or text. cross-lingual DTL, in contrast to all other DTL approaches,
is one of the most complicated issues in DTL. It is assumed that
the feature spaces of the source and destination domains are
completely distinct (χS ̸= χT ), as in speech-to-image, image-to-
text, and text-to-speech. Furthermore, the label spaces of source
YS and destination YS domains might differ (YS ̸= YT ).

(c) Unsupervised DTL: Intends to enhance the learning of the
target predictive function FT in DT using the knowledge in DS
and TS , where TS different from TT but related, and YS and YT are
not visible, given a SD DS with a learning task TS , a TD DT and a
matching learning task TT (DS different from DT , but related).

3.2.3. Adversarial DTL
In contrast to the methods described above for DTL, adversar-

ial learning [47] aids in the learning of more transferable and dis-
criminative representations. The work in [48], was the first that
introduced the domain-adversarial neural network (DANN). In-
stead of using a predefined distance function like maximummean
discrepancy (MMD), the core idea is to use a domain-adversarial
loss in the network. This has greatly aided the network’s ability to
learn more discriminative data. Many studies have used domain-
adversarial training as a result of DANN’s idea [49–52]. All of
the previous work ignores the different effects of marginal and
conditional distributions in adversarial TL, whereas in [47], the
proposed scheme, named dynamic distribution alignment (DDA),
can dynamically evaluate the importance of each distribution.

3.3. ASR conceptual background

3.3.1. Structure of ASR systems
The speech signal is embedded in an ASR module, which in

turn, converts the speech to a list of words (text format). A list of
candidate texts is generated throughout the ASR process, and the
most suitable text for the original sound signal is eventually cho-
sen. An acoustic front-end processes the speech data to extract
usable characteristics in a conventional ASR system before creat-
ing a feature vector. In doing so, different kinds of features can be
extracted using the principle component analysis (PCA) charac-
teristics, Cepstral mean subtraction (CMS) data, linear predictive
coding (LPC), independent component analysis (ICA), linear dis-
criminant analysis (LDA), Cepstral analysis, filter-bank analysis,
Mel-frequency cepstral coefficients (MFCC), kernel-based feature
extraction, wavelet analysis dynamic feature extraction, spectral
subtraction [53]. Moving on, a decoder (search algorithm) uses
the acoustic lexicon and LM to construct the hypothesized word
or phoneme in the processing stage, as demonstrated in Fig. 5.
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Fig. 5. Flowchart of end-to-end ASR framework.
The AM comprises acoustic characteristics for each of the dif-
erent phonetic units. It often refers to the operation of generating
tatistical measures for characteristic vector sequences of the
udio waveform. Typically, HMM is one of the most frequently
tilized AMs. Segmental and super segmental models, neural net-
orks, maximum entropy models, and conditional random fields
re some of the other auditory models. A file containing statistical
easures of various speeches that make up a word is known as an
M. The lexicon comprises terms from the current application’s
ocabulary. The limits connected with the word sequence that
s acceptable in a specific language form the LM [53]. The Stan-
ord research institute language modeling and statistical language
odeling (SLM) are two widely used toolkits for language mod-
ling. Using appropriate models, the decoder attempts to identify
he most likely word sequences that match the audio stream. The
ecoding algorithms then generate the n-best list [53].

.3.2. Evaluation criteria in ASR
ASR techniques, including voice search, games, and interac-

ive systems in the context of ASR, have substantially improved
uman–machine communication in recent years. For this pur-
ose, several methods have been adopted by the ASR research
ommunity to assess the quality and generalizability of ASR tech-
iques, which are as follows:

• WER: the proportion of wrong words in terms of the total
number of words processed represents the word error rate
(WER), which is the most often used statistic for ASR assess-
ment. This has been used in a large number of studies, such
as in [54–57]. It is described as:

WER =
S + D + I

N
=

S + D + I
H + S + D

. (3)

where I,D, S,H, and N represent the number of insertions,
deletions, substitutions, hits, and input words, respectively.
The greater the performance of an ASR system, the lower
the WER (i.e., better AM or LM). There are schemes that
process character-by-character instead of word-by-word in
the ASR evaluation, such as in [18,57,58]. To that end, the
character error rate (CER) has been used instead of WER,
although the evaluation principle remains the same. Besides,
7

WER is also called phoneme error rate (PER) in schemes
that adopt phoneme as a unit of measure rather than a
word [59–61]. The word recognition rate (WRR) is a version
of WER that may be used to assess ASR performance such
that WRR = 1 − WER and N − (S + D) is the total number
of successfully predicted words [27].
Despite being the most widely utilized, WER has different
pitfalls or weaknesses. For example, it does not indicate
how excellent a system is because there is no scale for
comparison. Furthermore, it may reach 100% under noisy
situations since it gives more weight to I than D because
WER is not D/I symmetric.

• RIL: relative information lost (RIL) is determined using the
Shannon entropy H and is based on mutual information
I [62], which evaluates the statistical dependency between
the input words X and output words Y (Eq. (4)).

RIL =
H(Y/X)
H(Y)

, (4)

where

H(Y) = −

n∑
i=1

P(yi)logP(yi), (5)

and

H(X/Y) = −

n∑
i=1

P(xi, yi)logP(xi, yi). (6)

However, the RIL is still so far from becoming a good per-
formance metric because it is challenging to assess zero
error for any one-to-one mapping of input/output words,
which does not meet the criteria for an ideal ASR assessment
metric. The alternative is called word information lost (WIL),
and it is a rough approximation of RIL. WIL, on the other
hand, is easy to use since it is based only onWER parameters
and is presented as [62]:

WIL = 1 −
H2

. (7)

(H + S + D)(H + S + I)
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• Accuracy, recall, precision, and specificity: to test the ef-
ficiency of a suggested method in ASR field, the classifi-
cation accuracy, recall (sensitivity) or commonly known as
true positive rate (TPR), precision (known also as positive
predictive value), and specificity (commonly known as true
negative rate (TNR)) are often used as assessment criteria for
experiment results, such as in [32,63,64]. The accuracy rate
is defined as the proportion of properly assessed samples
to the total number of samples. Three often used metrics to
illustrate the accuracy of ASR tests are recall, precision, and
specificity. The above-mentioned indications could well be
written as follows:

Accuracy(%) =
TP + TN

TP + FP + TN + FN
· 100, (8)

Recall(%) =
TP

TP + FN
· 100, (9)

Precision(%) =
TP

TP + FP
· 100, (10)

Specificity(%) =
TN

TN + FP
· 100. (11)

where TP, TN, FP, and FN refer to true positive, true negative,
false positive, and false negative, respectively. Equal error
rate (EER) is a metric used to predetermine the threshold
values for its false acceptance rate and false rejection rate.
The EER has been adopted as a metric in many ASR frame-
works, such as in [65,66]. It is calculated using the following
formula:

EER = 1 −
1
2
(specificity + sensitivity). (12)

where, 1
2 (specificity + sensitivity) is called the area under

curve metric (AUC). The lower the EER value, the higher the
accuracy of the ASR algorithm. If the measure of recall and
precision at a pre-specified global threshold Th, the metric
is called term weighted value (TWV) [67], such that:

TWV(θ, Th) = 1 −
1

|Th|

∑
t∈Th

(
Pmis(t, θ ) + β.Pfa(t, θ )

)
. (13)

where, Pmis(t,θ ) and Pfa(t,θ ) are the probabilities of misses and
false alarms respectively, and β is a parameter that controls
the relative costs of false alarms and misses.
Another famous metric inspired by measures of recall and
precision metrics is F-measure (or F1-score), which is calcu-
lated as follows:

F − measure(%) =
2 · Precision · Recall
Precision + Recall

· 100. (14)

The F1 score replaces the accuracy metric when the FN and
FP are crucial; besides, when imbalanced class distributions
exist, the F1 score is a much better metric to evaluate ASR
models, as explained in [68–70].

• Unweighted average recall (UAR): it is also called the bal-
anced accuracy. It is calculated by averaging the recall of all
the classes regardless of how many samples exist in each
class. UAR gives the correct expectation on class predictions
despite the correlation between UAR and accuracy. UAR is
defined as follows [38,71,72]:

UAR =

∑Nc
i=1 Recalli

Nc
, (15)

where Nc is the number of classes.
• Mean opinion score (MOS): is widely used as subjective

metric for assessing the naturalness of audio and audiovi-
sual quality. The MOS is usually a single rational number
8

between 1 and 5, with 1 being the worst and 5 being the
best-perceived quality. In [73], MOS has been used as a
subjective means to assess text-to-speech (TTS) conversion
using DTL. In [74], MOS has been used to subjectively evalu-
ate the performance of the proposed WaveNet-based speech
synthesizers, LSTM-RNN-based statistical parametric, and
HMM-driven unit selection concatenative schemes.

• Perceptual evaluation of speech quality (PESQ): is an ob-
jective voice automated evaluation of speech quality as per-
ceived by a telecommunication system user [75]. It provides
raw scores in the range –0.5 to 4.5. For example, in [76],
PESQ is used to assess speech enhancement concerning ASR.
Besides, PESQ is used to evaluate DTL-based ASR scheme
dedicated for PD patients in [57]. On the other hand, map-
ping between MOS and PESQ results in a new evaluation
metric called mean opinion score-listening quality objective
(MOS-LQO), also known as PESQ Rec.862.1, that allows a
linear comparison of PESQ with MOS [77]. The mapping
function is expressed as follows:

MOS − LQO = 0.999 +
4.999 − 0.999

1 + e−1.4945.PESQ+4.6607 . (16)

Moving on, different frameworks, including [6,25,77] have
utilized ASR principles as a steganalysis process and MOS-
LQO as an assessment tool to check the integrity and/or the
steganography quality-loss (SQ-Loss) between the original
unprocessed speech and degraded speech version that has
been passed through the steganography distorting system.

• Real time metrics: the real-time factor (RTF) and the aver-
age processing time (APT) are frequently used to evaluate
speed [58]. RTF is a standard metric for assessing an ASR
system’s processing time cost. It is the average processing
time for a one-second speech, which is defined as follows:

RTF =
Total Processing Time

Total Duration
(17)

Computing the APT helps account for the impact of ut-
terance duration on processing time. Moreover, using APT
helps demonstrate how quickly one utterance can be pro-
cessed. It is estimated as:

APT =
Total Processing Time

Total Number of Utterance
(18)

• Quantitative measure of generalizability in DTL In DTL,
quantitatively measuring the generalizability can be chal-
lenging since it depends on various factors such as the spe-
cific task, the source and target domains, and the chosen DTL
approach. However, there exist a few common techniques
and metrics that can be used to assess generalizability:

– DTL Performance: compare the model’s performance
with a baseline model that is trained from scratch on
the target task alone. Metrics such as accuracy, preci-
sion, recall, F1-score, or AUC can be used to quantify
the model’s performance.

– Domain similarity metrics: Domain similarity metrics,
such as domain adaptation or domain discrepancy
measures, can be used to quantify the differences be-
tween the feature distributions of the source and tar-
get domains. Some popular metrics include maximum
mean discrepancy (MMD) as described in Eq. (19),
and Kullback–Leibler divergence (KLD) as described
in Eq. (22).

MMD(DS,DT ) =

 1
n

ns∑
xis.βs −

1
n

nt∑
xit .βt

 (19)

s i=1 t i=1 H
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Table 4
List of publicly available datasets used for DTL-based ASR applications.
Dataset Used by Default ASR task Characteristics

TIMIT [79] [60,63,80] Acoustic-phonetic knowledge and ASR
evaluation

630 speakers speak 10 phonetically-rich phrases,
reflecting eight major dialect divisions of American
English.

LibriSpeech [81] [5,15,26,82] Train and evaluate speech recognition
systems

corpus comprises 1000 h of speech sampled at 16 kHz
and is derived from audiobooks that are part of the
LibriVox project.

MuST-C [83] [15] Facilitate the training of end-to-end
systems from English into 8 languages

Contains at least 385 h of audio recordings from English
Talks that are automatically matched with their hand
transcriptions and translations at the sentence level.

VCTK [84] [26] English multi-speaker corpus for voice
cloning

Speech data from 110 English speakers with diverse
accents is included. Approximately 400 sentences are
read by each speaker.

GlobalPhone [85] [86] Multilingual speech processing
dictionary resources

Contains more than 400 h of transcribed audio record
from over than 2000 native participants in 20 different
languages.

IARPA Babel [87] [67,88] Analysis of cross-language Consists of 25 languages with approximately 40 h of
transcribed speech.

CinC [89] [71] Classification of heart sound It contains 2435 heart sound recordings from 1297
healthy and sick people, including those with heart
valve dysfunction and coronary artery disease.

UASpeech [90] [91,92] Dysarthric speakers classification There are 15 dysarthric speakers with cerebral palsy
and 13 normal speakers. Each speaker has three blocks
of speech.

DCASE [93] [14,69,94] Acoustic scene classification and sound
event detection

Binaural recordings from 15 distinct sound settings.
where ns and nt are the numbers of samples of the
source and target domain, respectively. βs and βt de-
note the representation of the source and target
datasets (i.e., xis xit ), respectively. ∥.∥H represents the
2-norm operation in reproducing kernel Hilbert space
[78].

– Fine-tuning Analysis: When the pre-trained model is
fine-tuned on the target task, the convergence behav-
ior can be analyzed by observing the rate of conver-
gence of the training and validation curves for the
target task. Faster convergence and better generaliza-
tion to the target task indicate higher generalizabil-
ity [95].

– DTL stability: generalizability can also be assessed by
evaluating the stability of the DTL process. The steps
are as follows: randomly split the source and target
domains into multiple train–test splits, perform DTL on
each split, and measure the variance in performance
across different splits. Higher stability indicates better
generalizability [96].

– Ablation studies: gradually remove or modify elements
such as pre-training, specific layers, or specific data
augmentation techniques, and observe the impact on
the model’s performance. This helps to understand
which factors contribute the most to generalizabil-
ity [97].

– Cross-validation: split the target data into multiple
folds, train and evaluate the model on each fold while
ensuring that the training and validation data remain
independent. Calculate the average performance across
all folds to obtain a more robust estimate of generaliz-
ability [98].

.3.3. ASR datasets
Many datasets have been used in the literature for different

SR tasks. Table 4 lists some of the datasets used for DTL-based
SR applications and their characteristics. Typically, only publicly
vailable repositories are reported in this table. It is also worth
oting that some of these datasets have been updated many times

nd have become more developed over time.

9

4. DTL-based ASR applications

As detailed in Section 1, the ASR field is split into two main
axes, LM and AM. The LM in the ASR algorithm guides applicant
searches and evaluates decoding output quality. Conventional
statistical LMs, like the backoff n-gram LM, have been used in this
field for decades because of their simplicity and reliability [54].
The work in [99] proposes the bidirectional encoder representa-
tions from transformers (BERT), which uses the popular attention
model for an LM. It has been demonstrated that bidirectionally
trained LMs have a better meaning of language context and
flow than single-direction LMs. In terms of AM, DL-based AMs
like the deep neural network-hidden Markov model (DNN-HMM)
have made significant progress in the ASR research field, such
as in [100–102]. The connectionist temporal classification (CTC),
as suggested in [100,103,104], is a fully end-to-end AM training
method that does not need data pre-alignment and only requires
one input and output sequence to train. The challenge of ASR
is simply a direct conversion problem between two variable-
length sequences. The excellent model structure and outstanding
performance of the sequence-to-sequence (Seq2Seq) [105] model
allow the voice recognition problem to be solved without using
an LM or a pronunciation dictionary.

On the other hand, ASR systems often offer ‘‘one-model-fits-
all’’ to all users. Due to the disparity between trained and tested
data, ‘‘one-model-fits-all’’ ASR systems invariably experience sub-
stantial performance loss in certain circumstances. Meanwhile,
because the quantity and variety of utterances used to train the
ASR algorithm are crucial for AM rendering, the speech data
kept on users’ devices (due to security and property protection
reasons) is an excellent resource for ASR researchers looking to
improve their ASR framework. With tight data privacy protec-
tion, ASR researchers have confronted problems in getting speech
data generated in real-life circumstances. As a result, developing
new frameworks that effectively incorporate DTL is becoming
increasingly important to evade the above issues and achieve
excellent performances. To date, numerous research studies have
focused on investigating how to enhance the performance of
existing ASR schemes, and many frameworks have suggested
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Fig. 6. Summary of DTL-based ASR subcategories and their most used models.
pplying DTL and DA. For example, the work in [106] describes
echniques to improve the performance of target-domain models
n the field of ASR. The authors explore the use of encoder layers
nd embeddings from a well-trained ASR model, along with the
pplication of spectral augmentation (SpecAug), to enhance the
erformance of low-resource target-domain models using DA
long with model-based CTC that employs multi-task learning
s DTL techniques. The proposed method shows a significant
verage relative improvement of approximately 40% over the
aseline. Always in the field of DA, [107] explores the possibility
f improving DA for self-supervised models, with a specific focus
n child ASR. The researchers introduce a novel framework called
RAFT, which aims to reduce domain shifting in pre-trained
peech models. Through extensive experiments, they evaluate
he effectiveness of DRAFT on different transformer architec-
ures such as autoregressive predictive coding (APC), Wav2vec2.0,
nd HuBERT. Tests indicate that HuBERT when fine-tuned with
he DRAFT framework, demonstrates the highest performance
n terms of ASR accuracy on the OGI dataset. Similarly, Bethan
t al. [108] discuss the efficient transfer of self-supervised speech
odels for ASR using adapters. The paper explains the con-
ept of self-supervised learning and demonstrates how adapters
an effectively reduce the number of parameters in pre-trained
pstream models, enabling task-specific adaptation for target
ownstream ASR tasks.
Fig. 6 summarizes the existing state-of-the-art DTL-based ASR

ubcategories.

.1. DTL for acoustic models (AMs)

The end-to-end and layered DNN-HMM models are two types
f current DL-based AMs. In AM, DNN extracts high-level features
rom acoustic signals, e.g., MFCCs and HMM lexical sequences re-
uired for decoding into transcripts. The DNN takes acoustic char-
cteristics as input and outputs context-dependent lexical units
tri-phonemes) that correspond to the input of the HMM com-
onent downstream. On the other hand, the end-to-end model
s purely a DNN technique that receives acoustic characteristics
features) as input and immediately outputs the recognition rate.
typical end-to-end framework for voice recognition is shown

n Fig. 7. The neural network creates embeddings from input
eatures, passing to a stack of recurrent layers. The recurrent
ayers create a final output by looking for patterns based on prior
nd current input information. Backpropagation is used to train
he network with the CTC loss [109]. Generally, three main DTL
trategies have been used with AMs:
10
4.1.1. Feature normalization based-DTL
The idea behind the linear transformation is that speech char-

acteristics can be normalized by linear mapping. To perform lin-
ear mapping, a transformation network (or transformation layer)
is simply added to an existing network. It is a prominent neural
network adaption approach. The last hidden layer is generally
designed to be a bottleneck in order to limit the number of
parameters to adjust (less neurons), as described in Fig. 8. The
transformation can be a linear input network or a linear output
network.

If the last hidden network (LHN) is considered as a feature
extractor and the output layer as a discriminative source model
(MS). The weights of the output layer’s linear transform matrix,
WL, represent the target model, MT , parameters. MT may now be
written as follows [110]:

MT = softmax(WLMS). (20)

where the activation at the last hidden layer of MS can be used
as the new feature representation extracted by the hidden layers
in MT . Applying a transformation matrix WLHN on the model
parameters to generate an adapted model parameter set is equal
to adding an extended LHN after the last hidden layer [110]:

MT = softmax(WLHNWLMS). (21)

Many existing ASR research studies adopt the linear transfor-
mation strategy. For instance, the authors in [111] attempt to
improve current models of a computer-aided language learner
(CAPL) system that teaches Arabic pronunciation for Quran recita-
tion regulations. They implemented four significant improve-
ments: first, they used speaker adaptive training (SAT) to reduce
inter-speaker variability; second, they integrated a hybrid DNN-
HMM model to improve the AM and reduce the PER. Third, they
combined the hybrid DNN with minimum phone error (MPE).
Finally, they employed a grammar-based decoding graph in the
testing phase to narrow the search area to the most common
sorts of mistakes. In [112], a multi-target learning approach is
used to present a combined optimization technique for the output
of denoising auto-encoder (DAE) and the input of DNN. The
output of DAE is trained in the first stage to reduce the mistakes
propagated by the input of DNN. After that, the DAE and DNN
unified network is fine-tuned for the phone state ASR objective,
with an additional target of input voice augmentation placed
on the DAE portion. Besides, in [113], the authors included an
adaptation layer for fine-tuning and employed non-linearity to
learn a function that is considerably more complicated than the
linear transformation in the softmax layer. In the pre-trained



H. Kheddar, Y. Himeur, S. Al-Maadeed et al. Knowledge-Based Systems 277 (2023) 110851
Fig. 7. An example of end-to-end source model for DTL-based ASR [109].
Fig. 8. The fundamentals of transformation in DTL. The weights connected with the links in the dashed rectangles are estimated, while the rest of the weights are
left unaltered: (a) feature normalization for mono-task DTL, and (b) feature normalization for multi-task DTL.
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model, they adjusted the cluster softmax and NNadapt layers dur-
ing the fine-tuning phase while leaving the settings of the other
layers unchanged. The authors in [114] explores data augmenta-
tion techniques to address data scarcity challenges and improve
neural network consistency. Elastic spectral distortion and TL,
particularly spectrogram augmentation, are proposed as meth-
ods to create synthetic datasets. Perturbation-based domain data
augmentation is performed. The proposed ASR system utilizes
DNN with concatenated feature analysis (MFCC, pitch features)
and vocal tract length normalization on pooled datasets, resulting
in a considerable improvement over the baseline system. More
schemes that employ linear transformation techniques and their
performance details are summarized in Table 5.

4.1.2. Conservative training for DTL
Since trained models and only a limited quantity of spoken

data can be used to accomplish performance adaptation, conser-
vative training has become a widely used method of accent adap-
tion. It is efficient and does not require excessive data to provide
a reasonable outcome. However, it requires too many parameters,
which may disrupt the model’s structure. KL-Divergence (KLD)
is a widely used conservative DNN-based DTL algorithm for ASR.
KLD regularization has a neat and distinct mathematical model,
essential for DL training. By minimizing the loss, KLD-regularized
adaptation aims to make the output distributions of the source
model MS and target model MT more similar. The KL-divergence
prevents overfitting and keeps the adapted MT closed to the MS
domain [54,115]. Assuming that the loss functions in the source
and TDs for training DNNs are DS and DT , respectively, the con-
servative approach can be mathematically summarized in terms
of model-based DTL with KLD-regularization as follows [54,115]:
11
DKLD
T = (1 − ρ)DS +

ρ

N

∑
PS(xT/xT )logPT (yT/xT ), (22)

here (xT , yT ) is the speech sample collected from the DT , N is the
umber of speech samples in DT , and ρ is a hyper-parameter that
ontrols the transfer ratio from DS . For example, DTL-based ASR
sing conservative training and a KLD-regularization algorithm
ave been employed in [54] to build target AM. In [115], both
LD and LHN have been employed for speaker adaptation using
pre-trained seq2seq ASR model. Other techniques deploying

onservative techniques along with their performance details are
ummarized in Table 5.

.1.3. Subspace-based DTL
It aims to identify a subspace of every model parameter or

ransformation and creates them as a point in the subspace.
CA, singular value decomposition (SVD), and nonnegative matrix
actorization (NMF) are unsupervised approaches for data dimen-
ionality reduction. They are widely used in subspace-based DTL
or ASR applications. PCA is an orthogonal transformation that
aps higher-dimensional data to smaller-dimensional subspaces
hile keeping the original variables’ correlation and the original
ata’s maximum variance on the lower-dimensional represen-
ation. When data comes to dimensionality reduction, SVD and
CA are practically similar. Only a specific number of singular
alues are chosen while using SVD to condense networks. The
arget weight matrix has several nonlinearities in the left-singular
nd right-singular matrices. As a result, neglecting some ma-
rix components to build a linear project layer might result in
armful losses in some cases. In contrast to SVD, practically all
MF algorithms require at least one nonnegative matrix. As a
esult, the target matrix might be defined as the weighted sum
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Table 5
A summary of the recent state-of-the-art frameworks organized by the pre-trained models employed, the tasks addressed, the sort of DTL technique utilized, and
the performance metric used. Whereas the marks (↗) and (↘) indicate improvement and reduction, respectively. If many scenarios have been conducted in one
metric, only the best result is mentioned.
Ref. Model-based ASR Tasks (TT ) ↗ DTL LM/AM Adaptation Metric Code available?

[38] ResNet34
(English)

Speech affect
(Urdu)

Cross-lingual AM Fine-tuning 12.05% UAR↗ No

[54] TFE Vendor-client
ecosystem

Inductive Both KLD and
Linear norm.

≃ 50% WER ↘ Yesa

[58] BERT
(Text model)

LASO
(speech model)

Cross-modality Both Linear transform. APT 50× ↘,
12% CER↘

Yesb

[60] CTC-attention learning-based
end-to-end

Multilingual
Multi-task

LM NMF 03.90% PER↘ No

[65] ResNet-34
(Near-Field)

Speaker
verification
(Far-field)

Inductive AM Feature norm.
and space-level

38.6% EER↘ No

[66] PLDA Speaker
verification

Transductive AM KLD 6.6% EER↘ No

[68] AlexNet Marine mammal
sounds
classification

Inductive AM Fine-tuning Accuracy = 99.96% No

[71] PANNs Heart sound Transductive AM Fine-tuning 89.7% UAR No

[92] S-CNN Dysarthric speech Inductive AM Fine-tuning 67% Accuracy ↗ No

[115] Seq2Seq Speaker adapt. Transductive Both KLD and LHN 25.0% WER↘ No

[116] RNNLM Multi-genre
broadcast

Fine-tuning Both LHN with
K-Component

16.0% WER↘,
02.0% F1-score↗

No

[117] LDA DSTM Inductive LM Fine-tuning 1.48% WER↘ No

[118] RNNLM LDA Feature norm. LM LHUC 16.0% WER↘

[119] DNN-HMM Children’s speech Transductive Both LDA, STC, and
fMLLR

15% CER↘ No

[120] DARTS-ASR Multilingual adapt. Transductive LM Sub-spacing 10.2% CER ↘ No

[121] Clean speech
training

Noisy speech
testing

Unsupervised AM DDA 37.8% WER↘ No

[122] LF-MMI LF-MMI Multi-task LM TDNN with
i-vectors

02.0% WER↘ No

[123] CD-DNN-HMM Speaker adapt. Sequential
and Multi-task

AM Feature norm. 02.16% WER↘ No

[124] CNN/HMM Throat
microphones

Cross-domain LM SDA 12% PER↘ No

[125] DNN adult’s
speech

Children’s speech Cross-domain AM SAT
VTLN

14.66% WER↘

03.25% WER↘

No

[126] VGGFace2 Audiovisual Cross-modality AM BiVAE ≃ 2.79% Accuracy
↗

No

[127] PIT Speech separation Self-transfer AM KLD and T/S 30% WER↘ No

[128] Seq2Seq BABEL speech Multilingual LM Fine-tuning 6% WER, 4%CER ↘ No

[129] AllenNLP Low-resource
languages

Multi-level
cross-lingual

LM Neural adapters 12.21% F1-score↗ No

[130] MCNN Air traffic control Cross-modality AM Fine-tuning 250% CER ↘ No

[131] Wav2vec WSJ data speech Unsupervised AM Affine transform. 36% WER↘ Yesc

[132] TDNN-LSTM Arabic MGB-3 Multi-task LM Weights transfer 32.78% WER↘ Yesd

[133] BLSTM Part of speech
tagging

Cross Lingual LM Fine-Tuning Accuracy = 93.26% No

[134] ARoBERT Spoken language
understanding

Self-supervised LM Fine-tuning F1-score = 92.56% Yese

[135] Speech-XLNet Speech represent.
learning

Unsupervised AM Fine-tuning 68% WER↘ No

[136] Wav2vec MOS assessment Multi-task AM Fine-tuning MSE = 5.2 Yesf

[137] MOSNet Text-to-child-
speech
synthesis

Inductive AM Fine-tuning MOS = 3.96 Yesg

(continued on next page)
of the base matrix’s columns. This is an important limitation
since it reduces the importance of the coefficient matrix when
it simply needs to maintain the fundamental component of the
original matrix. This can explain why NMF is more interpretable
12
than SVD, and PCA [60]. Convex nonnegative matrix factorization
(CNMF), a variant of NMF, has been used in [60] to extract
high-level features. Then, a DTL is applied for both high and
low-level features through multilingual training and multi-task
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Table 5 (continued).
[138] DNN Pronunciation

scoring
Inductive AM Fine-tuning 20% GOP-FT↗ Yesh

[139] BERT Cognitive
impairment recog.

Inductive LM fine-tuning Accuracy = 81% Yesi

[140] CNN-MLP-LiGRU Dysarthric speech
recognition

Inductive AM Parameters fusion
(VT and Exc)

WER = 30.3% Yesj

[141] Wav2vec Speech
representations

Sequential LM Fine-tuning 33.33% Training
time↘

No

[142] RoBERTa Semantic
alignment

Multi-task LM Cross-modal 27% Accuracy↗ No

[143] DNN-HMM Improve low
resource Lhasa
dialect

Multilingual LM Feature adapt.
(Self-fusion)

14.2% CER↘ Yesk

[144] Wav2vec Classroom environ. Inductive LM Fine-Tuning 59% CER↘ No

[145] QuartzNet15 Speech-to-Text Transductive LM DA WER = 5.03% No

ahttps://gitee.com/WeBank/FATE.
bhttps://github.com/kaldi-asr/kaldi/blob/master/egs/aishell/s5/.
chttps://github.com/facebookresearch/fairseq.
dhttps://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/segment_long_utterances.sh.
ehttps://github.com/alibaba/EasyTransfer/tree/master/scripts/arobert.
fhttps://github.com/s3prl/s3prl.
ghttps://github.com/C3Imaging/ChildTTS.
hhttps://github.com/MarceloSancinetti/epa-gop-pykaldi.
ihttps://github.com/monicagoma/masters_thesis_dementia.
jhttps://github.com/zhengjunyue/bntg.
khttps://github.com/tensorflow/tensor2tensor.
learning. These techniques produce an incredibly relative perfor-
mance compared to state-of-the-art speech ASR studies. Other
studies that employ subspace techniques and their performance
details are summarized in Table 5.

4.2. DTL for language models (LMs)

The backoff n-gram model is widely used as an LM since it is
he most prevalent option in ASR systems. The backoff n-gram LM
ay be defined as a collection of tuples containing an n-gram and

ts related logarithm probability. In [54], the LM of the source MS ,
which is considered the teacher model, is used to perform a DTL
by linearly interpolating the LM trained on student speech (XT )
with the teacher LM already trained on teacher speech (XS) to get
target model MT (or student LM), the process can be expressed as
follows:

P(w) = λPS
LM(w) + (1 − λ)PT

LM(w), (23)

where P(w) and PT
LM(w) represent the probability of the n-gramw,

provided by the source (teacher) LM, and the probability provided
by the LM trained on the student data, respectively. λ is a hyper-
parameter that adapts the teacher and student semantic model’s
weights. This type of DTL works well to increase the probability
of n-grams and simultaneously maintain a broad coverage of
general-purpose n-grams.

Besides, it is persistent in the field of data mining to transfer
information from pre-trained models to new tasks [146]. Accord-
ing to [116], n-gram LMs are based on relative frequencies of
n-gram events. Therefore, the adaptation techniques can further
be broadly classified (in addition to the model interpolation)
into (i) the constraint specification, which entails the combination
of multiple sources of data in the form of characteristics using
methods, such as exponential models and the maximum entropy
criterion; and (ii) the mixture language models that extract topic
information from the implicit text data to calculate the sub-
models weights. Besides n-gram LM, LM-based ASR is built based
on other state-of-the-art pillar models:
13
4.2.1. BERT-based DTL
It is based on using the BERT model [146], which pretrains LMs

and shows that they perform better on a variety of downstream
tasks. DTL approaches for LM, utilized in the voice recognition
sector, are known as the LM adaptation. They attempt to narrow
the gap between the DS and the DT . Song et al. [147] present
a unique learning-to-rescore (L2RS) process, which relies on (i)
using various textual data from the state-of-the-art NLP models,
including the BERT model, and (ii) automatically selecting their
weights to rescore the N-best lists for ASR algorithms. Kubo et al.
in [148] propose a method to improve the performance of end-to-
end speech recognition systems by transferring knowledge from
large-scale pre-trained language models. The proposed method
involves multi-task learning with an auxiliary regression to the
word embeddings. The experiments were conducted on the Lib-
riSpeech dataset using a BERT language model pre-trained with
BooksCorpus and Wikipedia text data. The results show that the
proposed method can further reduce the WER even from a strong
baseline with a pre-trained encoder. However, the advantage is
relatively small, and future work highlights the possibility to
improve the configuration for this type of combination.

4.2.2. LDA-based DTL
For discrete data collection, generative probabilistic models,

such as the latent Dirichlet allocation (LDA), are used. Typically,
LDA is a three-level hierarchical Bayesian model in which each
item in a collection is modeled as a finite mixture over a set
of underlying topics. Every topic is then modeled as an infinite
mixture of topic probabilities. To catch the connection between
words and construct LMs of a specific document, topic model-
based techniques, e.g., LDA, have been applied in [117]. In [118],
LDA features are transformed by a linear layer with the weight
matrix and bias vector; then, they are used as features in the LHN
input during the network training and evaluation.

4.2.3. NNLM-based DTL
In many tasks, neural network LMs (NN-LMs) outperform

count-based LM models in ASR. Specifically, when applied to
N-best rescoring, NN-LMs achieve a lower WER [118]. In this

https://gitee.com/WeBank/FATE
https://github.com/kaldi-asr/kaldi/blob/master/egs/aishell/s5/
https://github.com/facebookresearch/fairseq
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/segment_long_utterances.sh
https://github.com/alibaba/EasyTransfer/tree/master/scripts/arobert
https://github.com/s3prl/s3prl
https://github.com/C3Imaging/ChildTTS
https://github.com/MarceloSancinetti/epa-gop-pykaldi
https://github.com/monicagoma/masters_thesis_dementia
https://github.com/zhengjunyue/bntg
https://github.com/tensorflow/tensor2tensor
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Fig. 9. DTL-based RNNLM with different adaptation techniques, where the out-of-vocabulary (OOV) node represents an input word that does not belong to the
pecified vocabulary but can be included in the input. Similarly, out-of-shortlist (OOS) nodes can also be included in the output: (a) RNNLM with LHN adaptation
ayer. (b) RNNLM with feature-based adaptation layer.
ontext, adapting NN-LM to new domains is a research challenge,
nd current approaches can be classified as model-based or
eature-based. The input of an NN-LM is augmented with aux-
liary features in feature-based adaptation, whereas the model-
ased adaptation includes fine-tuning and network layers
daptation. The authors in [116] develop a recurrent-neural-
etwork-based LM (RNN-LM) approach, where both types of
daptation are investigated. Considering this study as an example,
ig. 9(a) and (b) explain in details the adopted RNN-based DTL.
oving forward, the authors in [119] propose a DNN-based
odel to modify the LM for ASR, where a factorized time-delay
eural network (TDNN-F) has been considered. Concretely, it is
rained using a combination of cross-entropy and lattice-free
aximum mutual information objective functions (LF-MMI). The
DNN-F is shown to be effective in recognizing English child
peech [119].

.2.4. LSTM-based DTL
Generally, the NNLM models used in ASR are still trained on
sentence-level corpus, despite the attempts to train them at

he document level. This is due to various factors; for example,
more extended context may not be relevant for enhancing
ext-word prediction in conventional ASR systems. It is also
hallenging to gather training data representing extended ses-
ion contexts in many conversational circumstances. Long-span
odels are becoming more common in scenarios where they are
eneficial. Long-span models will likely help scenarios, such as
ranscriptions of conversations and meetings, human-to-human
ommunication, and document production by voice [149]. LSTM
odels are widely employed, and their architectures are well-
uited to variable-length sequences. Therefore, they can exploit
xtreme long-range dependencies without using n-gram approx-
mation. For instance, by employing equal context, the authors
n [150] demonstrate that the deep 4-gram LSTM outperforms
ig interpolated count models by performing considerably better
acking off and smoothing. In another example, the central part
f a shared encoder is constructed using BLSTM [128].
14
4.2.5. DTL-based sequence-to-sequence model
Recent advances in seq2seq models have demonstrated their

promising outcomes for training monolingual ASR systems. The
CTC [103] and encoder–decoder models [151–153] are two pop-
ular architectures for end-to-end speech recognition. Moreover,
end-to-end architectures have been further investigated by jointly
training these designs in a multi-task hybrid approach [154,155],
where it has been discovered that they can increase the overall
model’s performance. For example, the architecture portrayed in
Fig. 10, aims to build a seq2seq model [109]. The seq2seq’s en-
coder network consists of a stack of RNNs that create embedding
vectors. The RNN decoder collects the embedding vectors and
generates final results. The RNN, on the other hand, has access to
the prior prediction (Pi, i = 0, . . . , n). As a result, the succeeding
prediction has a better chance of being accurate.

Moving on, combining AM and LM techniques can improve or
build an efficient DTL-based ASR model, such as in [54,58,115,
116,119]. Table 5 summarizes the most recent DTL-based ASR
techniques used in the LM domain.

4.3. Cross-domain ASR

4.3.1. DTL-based ASR for emotion recognition
When language information is combined with acoustic data,

multiple investigations have found that SER accuracy improves.
As a result, it would be beneficial to combine both systems in
order to improve ASR systems’ ability to cope with emotional
speech while also giving linguistic input to SER systems. For
example, this can be realized when a spectrogram is input into
shared convolutional layers, which are then followed by a number
of specialized layers that share one or more levels in order to
interact.

The scheme in [156] used the internal representation of a
speech-to-text system to investigate the relationship between
valence/arousal and different modalities by the means of DTL. A
speech-to-text system or ASR system learns a mapping between
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Fig. 10. An example of sequence-to-sequence source model for DTL-based ASR [109].
two modalities: an audio speech signal and its transcription. DTL
is used to estimate valence and arousal using features learned for
an ASR task, the proposed method has the advantage of allowing
large datasets of speech with transcriptions to be combined with
smaller datasets annotated in emotional dimensions. Another
work in [157] fine-tune the speaker recognition TDNN-based
model on the task of emotion detection using the multi-modal
emotion dataset crema-D with the canonical label clustering. The
work in [158] aims to extract features from the audio segments
with the most extreme positive and negative ratings, and the
audio’s ending, they used the peak-end rule and DTL approach
to extract the acoustic features. They used a pre-trained CNN
speech model named YAMNet and a linear SVM to perform binary
classification of partner valence.

4.3.2. Cross-language DTL
Cross-language DTL is one of the application of cross-modality

DTL. It is one of the most common methods for constructing
ASR models for low resource languages from a model trained
for another language, and it is based on the assumption that
phoneme features can be shared across languages. A generic ASR
model can also be adapted to another narrow domain using DTL.
With the help of high-resource languages, several knowledge
transfer methods are investigated in [159] to overcome the data
sparsity problem. The first is the DTL and fine-tuning techniques,
which uses a well-trained neural network to initialize the LHN
parameters. Second, progressive neural networks (Prognets) are
examined. The latter is immune to the forgetting effect and
excel at knowledge transfer owing to lateral connections in the
network architecture. Finally, using cross-lingual DNN, bottleneck
features are extracted as an enhanced feature to boost the ef-
fectiveness of the ASR system. Tables 5 and 6 summarize most
recent schemes related to ASR using cross-language DTL and their
performances.

4.3.3. Cross-corpus SER (CC-SER)
In SER, it is usually assumed that speech utterances in train-

ing and testing domains are recorded at the same conditions.
However, in real-world, this is not the case since speech data
is frequently gathered from different environments or devices.
Thus, a discrepancy exists between the two domains negatively
impacting recognition performance. To that end, the problem of
cross-corpus SER (CC-SER) has recently been investigated, where
different DTL models have been deployed. For instance, a transfer
linear subspace learning (TLSL) scheme is proposed in [168] to
develop a CC-SER framework, enabling learning of shared feature
space for source and TDs. Accordingly, to estimate the similarity
between different corpora, a nearest neighbor graph algorithm
is utilized. Moreover, with the aim of dividing emotional fea-
tures into two high transferable part (HTP) and low transferable
part (LTP), a feature grouping method is developed. Moving on,
15
in [169], unsupervised CC-SER is explored, where only the train-
ing data is annotated. Specifically, a domain-adaptive subspace
learning (DoSL) technique is introduced to learn a projection
matrix that allows transforming the source and target speech
data from the initial domain to the labeled domain. In doing
so, the classifier learned on the labeled SD data can efficiently
forecast the emotional states of the unlabeled TD data. Similarly,
in [170], the DoSL-based CC-SER method has further been im-
proved by using a transfer subspace learning (TRaSL). In [171], a
semi-supervised CC-SER approach is designed using non-negative
matrix factorization (NMF). It is built upon the idea of incorpo-
rating the information of training corpus labels into NMF, and
seeking a latent low-rank feature space, where the conditional
and marginal distribution differences between the two corpora
can be minimized simultaneously.

Moving forward, a transfer sparse discriminant subspace
learning (TSDSL) is introduced in [172] to learn a shared fea-
ture subspace of various corpora by initiating the ℓ2,1-norm
penalty and discriminative learning. This has helped in learn-
ing the most discriminative characteristics across multiple cor-
pora. Besides, in [173], a non-negative matrix factorization-based
transfer subspace learning (NMFTSL) scheme is proposed, which
aims at minimizing the distances in the common subspace be-
tween the marginal distributions and conditional distributions.
Typically, these distances have been estimated using the maxi-
mum mean discrepancy (MMD) criterion. In [174], a joint transfer
subspace learning and regression (JTSLR) technique is adopted,
which learns a latent subspace using the discriminative MMD as
the discrepancy metric. Next, a regression function is put in the
latent subspace to model the relationships between features and
related annotations. Also, a label graph is considered for better
transferring the knowledge from relevant SD data to TD data.

Similarly, a target-adapted subspace learning (TaSL) approach
for CC-SER is proposed in [175], which aims at finding a projec-
tion subspace to enable the features regressing the labels more
accurately. Moreover, this helps efficiently bridge the gap of fea-
ture distributions in the TD and SD. Moving forward, the ℓ1-norm
and ℓ2,1-norm penalty terms have been mixed with other regular-
ization terms to get a more optimal projection matrix. In the same
way, Zhang et al. [176] use sparse subspace transfer learning
(SSTL) to develop a CC-SER technique by learning a robust com-
mon subspace projection using discriminative subspace learning.
Then, knowledge from the source corpus is transferred to the
target corpus using a sparse reconstruction based on ℓ2,1-norm.
In this case, the target samples are appropriately represented as
a linear combination of the SD data.

On the other hand, the impact of cross-corpus data comple-
mentation and data augmentation is investigated in [177] on the
performance of SER models in from the same corpus and different
corpus. The investigations have been conducted on six emotional
speech corpora, including (i) single and multiple speakers, and (ii)

variations in emotion style (natural, elicited, and acted).
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Table 6
A summary of the recent ASR-based cross-language DTL technique. Whereas the marks (↗) and (↘) indicate improvement and reduction, respectively. If many
scenarios has been conducted in one metric, only the best result is mentioned.
Ref. Model-based ASR Tasks (TT ) Characteristic Performance Code available?

[67] EDML Framework of performing the DTL that
reduces the impact of the prevalence of
out-of vocabulary terms.

query-by-example
task

74% TWV↗ Yesa

[86] DNN W Schemes are used to combine the
ensemble’s constituents, with the
combination weights being trained to
minimize the cross-entropy objective
function.

Weights
interpolation

7.7% WER↘ No

[159] Prognets Improving ASR scheme quality by
overcoming the data sparsity problems by
means of high-resource languages.

Fine-tuning
LHN adapt.

38.6%
WER↘

No

[160] FNN and CNN Indo-European speech samples used to
improve the identification of African
languages.

Fine-tuning
PLP coeff.

2.1% EER↘ No

[161] CNN-GMM-HMM Fully-automatic segmentation,
semi-supervised training of ASR systems for
five-lingual code-switched speech

Semi-supervised 1.1% WER↘ No

[162] TDNNF Unsupervised cross-lingual modeling for
ASR to aggregate 13 languages.

Zero-shot Depends on
phone

Yesb

[163] DeepSpeech2 Train new model for south Asian accents
based native English speakers taken from
LibriSpeech dataset.

Fine-tuning 24.92%
WER↘

No

[164] BERT, GPT2 Improve CTC model by knowledge transfer
from BERT and GPT2. Experiments was on
AISHELL-1 corpus.

Cross-modal 16.1% CER↘ No

[165] Wav2vec-2.0 The monolingual version of Wav2vec-2.0
has been adapted to perform similarly to
the multilingual model.

Self-supervised 3.6% WER↘ No

[166] HMM-DNN ASR systems utilize the GlobalPhone
database for the purpose of implementing
speech recognition across multiple
languages.

Multi-task learning 33.21%
WER↘

No

[167] HMM-DNN Novel approach that combines resources
from various languages to improve the
effectiveness of ASR systems for children’s
less-resourced languages.

Multi-task learning 7.73%
WER↘

No

ahttps://github.com/ysfb/crosslingual_exemplars.
bhttps://github.com/pzelasko/kaldi/tree/discophone/egs/discophone.
4.4. Adversarial TL-based ASR

In most cases, the source model is trained in multiple lan-
uages (multilingual training) for which there is a large amount of
peech data [60,128]. Multilingual training can be thought of as a
eries of shared hidden layers (SHL) and language-specific layers
r classifier layers for various languages. The source model’s SHL
erve as a feature converter, converting various language features
o a common feature space [159]. However, some language-
ependent features may exist in the common feature space,
hich is not a positive factor for cross-lingual knowledge trans-

er. Language-adversarial training can effectively address this
roblem. Adversarial training aids in the creation of a language
nvariant feature space. After preparing the source model, the
irst n SHL can be transferred to the target model of an unknown
anguage. Authors in [88], proposed language-adversarial TL as
solution to the problem of target model performance degra-
ation caused by shared features that may contain unnecessary
anguage-dependent information. Fig. 11 illustrate the suggested
anguage-adversarial TL method’s architecture [88]. The adversar-
al SHL-model, also known as the source model, is on the left. The
arget model is the correct one. The adversarial SHL Model implies
he presence of an extra language discriminator in the SHL-
odel. The completely connected layer is denoted by the letter
C. The gradient reversal layer (GRL) ensures that the feature
istributions across all languages are as similar as feasible for
16
Fig. 11. An example of proposed model architecture language-adversarial TL for
limited ASR resource [88]. Senones refers to feature cluster’s name, representing
similar acoustic states/events.

the language discriminator. The language discriminator’s output
labels are language labels.

https://github.com/ysfb/crosslingual_exemplars
https://github.com/pzelasko/kaldi/tree/discophone/egs/discophone
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Table 7
A summary of the recent ASR-based adversarial-language TL technique. Whereas the marks (↗) and (↘) indicate improvement and reduction, respectively. If many
cenarios has been conducted in one metric, only the best result is mentioned.
Ref. Model-based ASR tasks (TT ) Characteristic Performance Code available?

[55] Adversarial
SHL-Mode

Use three Indian languages (Hindi,
Marathi, and Bengali) cross-lingual to
improve Hindi ASR

Semi-supervised WER = 5.5%
(25.65%
WER ↘)

No

[88] SHL Model Improve the performance of
low-resource ASR

Cross-lingual 10.1% WER
↘

No

[178] BERT Improve the performance of
punctuation predicting

Multi-task 9.4%
F1-score ↗

No

[180] LAS and TTS
models

Expressive speech synthesis using
joint ASR and TTS training

Cross-domain 0.7% WER↘,
1.8 WIL↘

No
To achieve better ASR effectiveness in low-resource situations,
he authors in [55] combined both semi-supervised training and
anguage adversarial TL. The work in [178] proposes using ad-
ersarial TL to improve punctuation prediction performance. A
re-trained BERT model is used to transfer bidirectional represen-
ations to punctuation prediction models. The proposed approach
as been applied on ASR application as the target task. Table 7
ummarizes the performance of the most recent work in ASR-
ased adversarial TL. Authors in [179] proposes a sequence distri-
ution matching approach for unsupervised domain adaptation in
SR. The approach uses sequence pooling to capture and match
equential statistics, which improves the performance of distribu-
ion matching. The authors conducted experiments on different
ccent mismatches and found that the sequence pooling method
utperformed the MMD-based approach and slightly improved
he domain adversarial training (DAT)-based approach. By com-
ining sequence pooling features and original features, the MMD-
ased and DAT-based approaches reduced WER up to 14.72%
ver the source domain model. DTL was used by fine-tuning the
av2vec base model pre-trained on the source domain.

.5. DTL-based ASR for medical diagnosis

The field of ASR, especially the DTL-based ASR, has provided a
ualitative leap in the field of medicine for the early detection of
iseases. This progress is in several medical areas summarized in
able 8, including:

.5.1. Heart sound classification
The heart sound is made up of several components. the first

S1) and second (S2) heart sounds are considered normal, while
he third (S3) and fourth (S4) heart sounds are often associated
ith murmurs, and ejection clicks are usually associated with
ome illnesses or abnormalities. Koike et al. [71] proposed a novel
TL PANNs-based model pre-trained on large scale audio data for
heart sound classification task. Another scheme for heart sound
lassification is proposed by Boulares et al. [181]. Without any
enoising or cleaning steps, DTL is applied to the Pascal public
ataset to provide an experimental benchmark. The main goal is
o produce a set of experimental results that can be used as a
tarting point for future cardiovascular disease (CVD) recognition
esearch that uses cardiac cycle vibration sound and is based on
honological cardiogram (PCG). The proposed scheme addresses
he lack of a CVD recognition benchmark, as well as the fact that
lassification results are highly variable and cannot be compared
bjectively.

.5.2. Parkinson disease detection
PD is a progressive neurodegenerative disease that affects

illions of people globally. The diagnosis of PD is critical for
nhancing the quality of workday activities and prolonging the
atients’ lives. Because each person’s symptoms and disease pro-
ression differ so much, it is difficult to predict how PD symptoms
17
will change over time and how they will affect the patient’s
life. Traditional PD detection techniques, on the other hand, are
frequently handcrafted and require specialized knowledge. Over
90% of patients with PD have distinctive patterns of language
disability and atrophy, which is one of the early symptoms of
the disease. The voice becomes hushed, and the speech becomes
monotonous and rapid. With time, the patient’s voice becomes
less audible, and in later stages of the disease, the patient can
only whisper. Mumbling can be a warning sign of illness. Kara-
man et al. [32] developed a robust automated PD detection re-
lies on DTL-based ASR. The pre-trained models SqueezeNet1_1,
ResNet101, and DenseNet161 were fine-tuned and retrained. The
proposed scheme presents an acceptable PD detection. In order
to solve the scarcity of speech-based PD, and the existence of
inconsistency in the distribution between subjects, a novel two-
step unsupervised DTL algorithm called two-step sparse transfer
learning (TSTL) [63] is proposed to deal with the above two
mentioned problems. The method can assist in extracting use-
ful information from large amounts of unlabeled speech data,
aligning the distribution of the training and test sets, and pre-
serving the original structure between samples all at the same
time. Another strategy proposed by Qing et al. [57] which is
based on pre-trained long short-term memory (LSTM) neural
network model. The aim of the proposed scheme is to enhance
ASR for Parkinson patient. To alleviate the over-fitting problem
and reduce the WER, the frequency spectrogram masking data
augmentation method was used in the latter-mentioned scheme.

4.5.3. Other medical diagnosis
The proposed technique in [33] investigated a speech-based

DTL method that employs a lightweight encoder and only trans-
fers the encoder weights, allowing for a simplified run-time
model for speech-based depression prediction. For speakers with
dysarthria, an improved DTL framework was applied to robust
personalized speech recognition models is proposed by Xiong
et al. [91]. With the limited data available from target dysarthric
speakers, the CNN-TDNN-F ASR AM is adapted onto the TD
via neural network weight adaptation. Another framework for
dysarthria speaking identification, Takashima et al. [182] pro-
pose a method for Japanese people with articulation disorders
to transfer two types of knowledge corresponding to differ-
ent datasets: the language-dependent (phonetic and linguistic)
characteristic of unimpaired speech, which corresponds to non-
dysarthric speech data, and the language-independent charac-
teristic of dysarthric speech, which corresponds to non-Japanese
dysarthric speech data. The work in [183] presents a novel fea-
ture representation for end-to-end DTL-based ASR framework
for health states identification. The use of ASR DNNs as feature
extractors, the fusion of several extracted feature representations
using compact bilinear pooling (CBP), and finally inference using
a specially optimized RNN classifier are all part of latter pro-

posed approach. The authors in [184] discuss the development
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Table 8
A summary of a DTL-based ASR technique in medical diagnosis, whereas the marks (↗) and (↘) indicate the improvement and reduction, respectively. If many
cenarios have been conducted in one metric, only the best result is mentioned.
Scheme Model-based ASR tasks (TT ) ↗ DTL type Performance Code available?

[32] DenseNet-161 PD detection Fine-tuning Accuracy = 91.17% No

[63] TSTL-based
CSC&SF

PD speech diagnosis Unsupervised Accuracy = 97.50% Yesa

[57] Proposed four
layers

PD speech Fine-tuning 13.5% WER↘ No

[71] PANN CNN14 Heart sound classification Fine-tuning UAR = 89.7% No

[33] EH-AC Depression prediction LHN (encoder
weights)

27% AUC ↗

[91] CNN-TDNN-F Dysarthric speech Neural weight
adapter

11.6% WER↘ No

[181] InceptionResNet-
v2

PCG-based CVD classification Fine-tuning Accuracy = 0.89% No

[182] LAS Dysarthric Speech Multilingual 45.9% PER↘ No

[183] Wav2Letter and
DeepSpeech

Health states classification Transductive UAR = 73.0%
(8.6% ↗)

No

[185] ResNet, Xception PD detection Fine-tuning Accuracy = 99% No

[186] Resnet50 COVID-19 detection in cough Fine-tuning AUC = 98% No

[187] VGG Large-scale depression screening Feature trans. AUC = 79% No

[188] RNN Clinical depression recognition and
assessment from speech

Feature trans. Accuracy = 76.27% No

[189] CNN Dysarthric speech recognition Feature fusion 1.7% WER↘ No

[190] CNN and Attention Dysarthric speech recognition Fine-tuning 25.75%↗ No

[191] DNN Overcome dysarthria acoustic data
scarcity

Adaptation 5.67% Accuracy↗ Yesb

[192] Wav2vec Depression recognition Map feature F1-score = 76% No

ahttps://share.weiyun.com/14a0OH0B.
bhttps://github.com/rshahamiri/SpeechVision.
n
f
a
(
a
p

v
e

of ASR systems for the radiology domain in the context of low-
resourced languages. TL and fine-tuning of transformer models
are employed to achieve state-of-the-art results. A 30-hour in-
domain speech corpus and a text corpus of over 1 GB are used for
training. The best results obtained consist of WER ranging from
20% to 60% for individual reports. Efforts are made to create a
cleaner test dataset for more objective evaluation.

4.6. DTL-based ASR attacks and security

Adversarial examples are produced by slight perturbation, a
alid audio file or speech characteristics, with a few quantities of
oise in order to either boost or fool ASR systems. Even though
he added noise is imperceptible to humans auditory system or
re only perceived as faint background noises by the ASR model,
hey can cause the inputs to be well-classified or misclassified.
or example adding a small disruption to the following speech:
‘At the still point, there the dance is’’ makes an ASR generate ‘‘At
he tail point, there the tense is’’, which is a wrong result [193].
he key idea behind attacking ASR scheme is that the model
an be easily fooled or boosted by adversarial examples. As a
esult, it naturally motivates speech researchers to create speech
dversarial examples. Based of this, researchers can generate
dversarial examples for time and/or frequency speech represen-
ations, which represent different speech features and can all be
sed as inputs to neural networks, allowing the developers to
nhance or decrease ASR performances. DTL aims to realize the
oncept of transferability, this latter allows adversarial examples
argeting a source model to gain the potential to attack the
arget models classifying the same kind of data. For that, the
dversarial attacks for DTL-based ASR models can be divided into
wo categories as shown in Fig. 12, which are:
18
4.6.1. Positive adversarial attacks
Includes all methods that increase or secure the effectiveness

of existing ASR schemes. In [194], the authors proposed, us-
ing natural data combined with adversarial data, to train robust
AM. They focused on MFCC features and used the gradient sign
based method to generate adversarial MFCC features based on the
network model and inputs parameters for each mini-batch. The
neural network was then trained using teacher/student training
concept on natural data that had been supplemented with adver-
sarial data. Experiments on CHiME-4 and Aurora-4 tasks using a
customized CNN validated their scheme.

4.6.2. Negative adversarial attacks
Includes all methods that decrease or threatens the effective-

ess of existing ASR schemes. In [195], the authors suggest a
ramework that employs google (Phone) as the source model
nd examined the impact of adversarial attacks on target model
deep-speech 1). The adversarial attacks have been applied to
udio waveform just after signal decomposition and thresholding
rocesses, and the resulting output fed the ASR source model.
According to [193], the adversarial attack model can be di-

ided into two sorts based on the adversary’s objective, knowl-
dge, and background, which are (Fig. 12):

• Adversary knowledge: It is divided into:

– White-box attack: Assumes the adversary has com-
plete knowledge of MT , including its architecture, type,
training weights, and the values of all parameters,
among other things.

– Black-box attack: Assumes the adversary has no access
to MT and acts as if he or she is a regular user who only
knows the model’s output.

https://share.weiyun.com/14a0OH0B
https://github.com/rshahamiri/SpeechVision


H. Kheddar, Y. Himeur, S. Al-Maadeed et al. Knowledge-Based Systems 277 (2023) 110851

m

4

m
v
t
s
t
b
f
t
a
t
t
i
m
f
w
f
T
h
p

Fig. 12. Possible adversarial attacks in DTL-based ASR schemes.
Table 9
A summary of the recent DTL-based ASR for adversarial attacks. Whereas the marks (↗) and (↘), indicate improvement and reduction respectively.
Ref. Model-based ASR tasks (TT ) Target object Adversary

knowledge
Adversarial
specificity

Performance Code available?

[194] Aurora-4 Boost MFCC White-box Targeted 23% WER ↘ No

[196] DNN-HMM (Kaldi) Boost Waveform White-box Targeted Accuracy = 98% No

[197] DeepSpeech Fool Waveform White-box Targeted 4%–5% WER↗ Yesa

[198] VGG13 Fool (Dense_mel) Mel-spectro. White-box Non-targeted SNR = 29.06 dB No

[199] DeepSpeech Fool
(Speech-to-Text)

Waveform White-box Targeted Attack success rate
= 100%

Yesb

[195] Google
(Phone)

Fool
(Deep-Speech 1)

Waveform Black-box Non-targeted Attack success rate
= 87%

No

[200] DeepSpeech Fool (victim
DeepSpeech)

Mel-frequency
cepstrum

White-box Targeted Attack success rate
= 91.67%)

No

ahttps://github.com/pzelasko/espresso/tree/feature/librispeech-wav-model.
bAudio adversarial examples: Targeted attacks on speech-to-text.
• Adversarial specificity: It is divided into:

– Non-targeted attack: Aims to make the adversarial ex-
ample’s MT predict any incorrect class. Its sole goal is
to take out the ASR algorithm.

– Targeted attack: Its goal is to deceive MT into assigning
the adversarial example to a specific class (selected
by the attacker). An attack like this imposes an ASR
scheme to carry out specific instructions.

Moving on, Table 9 shows a summary of DTL-based adversarial
odels for existing works.

.7. DTL-based ASR for other applications

DTL-based ASR is applied in different fields other than those
entioned above. For example, the work in [14] examines the
alue of DTL for two types of sound recognition tasks: audio
agging and sound event detection. The authors adapt a baseline
ystem that only uses spectral acoustic inputs to include pre-
rained auditory and visual features extracted from networks
uilt for different tasks and trained with external data using
eature fusion. Another work in [69] employ the concept of DTL
o address the lack of large annotated databases for real-life
udio event detection. For deep speech enhancement applica-
ion, the scheme in [80] proposes an environment adaptation
echnique to enhance deep speech enhancement models by min-
mizing the KLD between posterior probabilities obtained by a
ulti-condition senone classifier (teacher) fed with noisy speech

eatures and a clean-condition senone classifier (student) injected
ith clean speech characteristics. In [94], DTL has been employed

or a wearable device for long-term social speech evaluations.
he authors use social sensing to measure a person’s mental
ealth by extracting and analyzing speech characteristics in com-
letely natural daily situation. DTL is used to transfer the model
19
to the audio segmentation process using the following charac-
teristics: formant, energy, brightness, and entropy. The output
results showed promise in classifying several acoustic scenarios
in normal conditions.

In [201], the authors investigate whether self-supervised pre-
trained speech can help with the ST in both high and low re-
source features, i.e., whether they can be transferred to other
languages, and whether they can be effectively merged with other
schemes for improving low-resource end-to-end ST, e.g., using
a pre-trained high-resource ASR framework. Results show that
self-supervised pre-trained features can always enhance ST per-
formance, and cross-lingual DTL allows the ease of expansion
to many languages with little or no tuning. Most end-to-end ST
models performed poorly in the absence of source speech infor-
mation. As a result, the authors in [202] propose a self-supervised
bidirectional distillation processing system for low-resource non-
native ST. It improves speech ST performance by combining a
large amount of untagged speech and text with source informa-
tion in a complementary manner. The framework is based on
an seq2seq model that guides the encoder in reconstructing the
acoustic representation using wav2vec2.0 pre-training model. For
SV field, the authors in [66] make the assumption that SV of short
utterances, in particular, can be thought of as a task in a domain
with a limited number of long utterances. DTL for probabilistic
linear discriminant analysis (PLDA) can thus be used to learn
discriminative information from domains with a large number of
long utterances. AlexNet pre-trained model was used in [68] to
efficiently recognize and classify killer whale noises, pilot whales,
harp seals, and long-finned, in very overlapping living areas using
DTL. Because the training samples were insufficient, DTL was
employed to prevent the over-fitting problem of deep networks.
The proposed method was tested using a challenging dataset
containing both target and non-target sounds. Even though the
sounds used in the test dataset were completely independent of

https://github.com/pzelasko/espresso/tree/feature/librispeech-wav-model
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he sounds used in the training dataset, the proposed method
dentifies well the real distinctions between the sounds of several
arine mammals. The paper in [203] uses hierarchical DTL to im-
lement multilingual TTS using DNNs for low-resource languages.
sing the same model architecture, a pre-trained monolingual
TS on the high-resource language is fine-tuned on the low-
esource language. Then, A partial network-based DTL is used on
pre-trained monolingual TTS model to generate a multilingual
TS model.
The authors of paper [204] introduces the so-called PhyAug

cheme,1 a physics-directed data augmentation approach for
deep model transfer to specific sensors. PhyAug leverages the first
principle governing domain shift to transform source-domain
training data into augmented target-domain data. It effectively
calibrates deep neural networks and reduces the need for target-
domain data. The results show that PhyAug achieves the lowest
WERs for all tested microphones, reducing WER up to 70%. It
outperforms alternative approaches such as data calibration, and
Cycle-GAN methods. PhyAug enhances recognition accuracy by
mitigating the impact of smartphone microphone variations, re-
sulting in a significant improvement ranging from 33% to 80%.
Tropea et al. [205] propose an automatic stone recognition sys-
tem based on a Two-Stage Hybrid Model that combines CNNs
and ML algorithms. Four pre-trained CNN models were utilized
as feature extractors, and the output of the penultimate layer,
representing the feature vector, was used as input to the ML
classifier to perform stone recognition. The proposed system was
tested on a dataset of stones from Calabrian quarries, and the
authors compared different DL and ML combinations to evaluate
the performance of their proposed model. The results showed
that the two-stage hybrid model achieved high accuracy, up to
99.9% for ResNet50 CNN in the first stage and a kNN ML in the
second stage, in stone classification, providing a useful tool for
non-geologists to identify and classify different types of stones.

For knowledge distillation (KD) application, [206] discusses
he use of intermediate knowledge distillation (Inter-KD) in the
TC-based ASR framework. Inter-KD transfers the source model’s
nowledge to the intermediate CTC layers of the target net-
ork, improving performance without the need for LMs or data
ugmentation. Experimental results on LibriSpeech show that
nter-KD significantly reduces the WER of the target model com-
ared to other KD methods. The distilled student model achieved
WER of 6.24% on dev-clean and 6.3% on test-clean, outper-

orming conventional KD approaches. Similarly, [207] focuses on
roposing a new AM training method that combines multi-task
earning and KD. It experimentally demonstrates the effectiveness
f the proposed method in compensating for the weaknesses of
he interpolation-based KD method. Additionally, a hierarchical
istillation method is proposed, which reduces the relative WER
f the speech recognition system by 9%.
Spoken hesitations like ‘‘um’’, ‘‘uh’’, and ‘‘er’’ commonly occur

n speech, impacting ASR system performance in human–machine
nteractions. Chatziagapi et al. [208] proposed a DTL approach
sing CNNs for audio and an RNN method for text, leverag-
ng ASR-derived textual information. Pre-training the CNN on
peaking rate and fine-tuning for filled pause detection improved
esults. The framework achieved a 73.9% F-score (4% improve-
ent) on the internal dataset, and 82.3% (4.1% improvement)
n the Switchboard corpus with fusion (Fine-tuning) on the in-
ernal dataset. Moving on, [209] discusses a proposed frame-
ork, called MIC_FuzzyNET, for the automatic classification of
usical instruments using DTL and fuzzy integral-based ensem-
le techniques. The fuzzy rank-based ensemble approach com-
ensates for individual classifier faults and reduces errors and

1 https://github.com/jiegev5/PhyAug.
20
biases. The use of pre-trained models, such as EfficientNetV2
and ResNet18, allowed for better classification accuracy with
smaller datasets. The validation and testing accuracies are 98.74%
and 96%, respectively, for the IRMAS dataset. For the PCMIR
dataset, the validation and testing accuracies are 98.74% and 98%,
respectively.

5. Discussion of key challenges

The studies reviewed in this document underscore the effec-
tiveness of DTL-based ASR methods across various application
scenarios, attributed to their computational efficiency and the
capability to outperform existing ML algorithms. This superior-
ity becomes especially evident when the TD samples diverge
significantly from those deployed in the training of ML models.

However, there are other pressing challenges that warrant
attention to enhance the performance and generalization of DTL-
based ASR systems. A number of DTL studies, for instance, have
overlooked describing the selection process of SD samples that
could potentially bolster learning at the TD. The effectiveness of
DTL algorithms commonly hinges upon accurately defining the
similarity between the SD and TD. Consequently, an insufficient
level of similarity between the SD and TD may drastically limit
the advantages of DTL, or worse, lead to negative transfer [35,
210].

In addition, most DL frameworks necessitate pre-processing,
such as time-scale domain feature calculation, time–frequency
domain transformation, or frequency-domain analysis. These
frameworks demand a high level of similarity between the SD
and TD and consistency in their dimensions. Regrettably, limited
research has focused on addressing the inconsistency between
the dimensions of SD and TD data. In this regard, Hu et al. [211]
proposed a DTL approach to examine knowledge transfer across
heterogeneous domains. This section aims to illuminate the most
urgent issues currently gaining substantial attention in the field.

5.1. The problem of NT

However, NT, which signifies a decline in learning perfor-
mance when data/knowledge is transferred from the SDs to TD,
can affect the effectiveness of DTL. Experiments in [212] first un-
covered NT. The author showcased that a significant discrepancy
between the SD and TD can lead to a drop in DTL performance.
Additionally, the study proved that the performance of the tar-
get task could be negatively influenced by the ‘‘inductive bias’’
learned from the additional tasks. Subsequently, a mathematical
definition of NT was provided in [213], wherein the concept of
the negative transfer gap (NTG) was introduced to determine the
occurrence of NT.

Moreover, [214] presented the authors’ detailed quantitative
and qualitative analyses investigating the covert NT resulting
from the knowledge transfer from the ‘‘News’’ domain to the
‘‘Tweets’’ domain for Natural Language Processing (NLP) appli-
cations. The exploration of positive and NT in a multi-domain
ASR scenario was undertaken in [215]. The study employed sub-
modular functions based on the acoustic similarities between the
source and target sets, consequently utilizing the positive transfer
to enhance performance across domains while concurrently mit-
igating the effects of NT. Lastly, the link between the quality and
performance of TL and the estimated Kullback–Leibler divergence
between the SDs and TD was demonstrated in [216].

https://github.com/jiegev5/PhyAug
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.2. The problem of overfitting

Overcoming overfitting when developing DTL-based ASR
chemes is among the key goals and challenges. Although DTL
an manage overfitting better than other ML and DL models, this
ssue can be significant when developed models learn noises from
he SDs, which negatively impacts their outputs [217]. Typically,
n DTL, we cannot remove the network layers for identifying with
onfidence the appropriate classification/prediction parameters
f DL models. Accordingly, if the first layers are removed, the
ense layers can negatively be impacted as the number of train-
ble parameters will change. On another hand, we can reduce
he number of dense layers, although analyzing the number
f layers to be removed while alleviating model overfitting is
omputationally costly and laborious [218].
Besides, it is doable to partially overcome overfitting in DTL

y introducing regularization methods, including dropout tech-
iques for DL models [219,220] and least absolute shrinkage
nd selection operator (LASSO) regularization for multiple linear
egressions [221]. Additionally, overfitting can be alleviated by
laborately designing a model development scheme. This means
sing cross-validation to optimize model parameters, where a
hole dataset is divided into three groups for training, validation,
nd testing [222]. Additionally, it is possible to address overfitting
sing data augmentation techniques to generate synthetic data
or better training DL models [223,224].

.3. Reproducibility of DTL-based ASR results

With the increasing attention put into developing DTL-based
olutions, there are new challenges that still hinder the extensive
se of DTL models and largely affect their reproducibility [225].
onsequently, empirical comparisons of the performance of DTL-
ased ASR techniques is still a challenge because of (i) the diffi-
ulties encountered when evaluating the generalizability of DTL
etworks since some studies have been tested on private cus-
omized datasets which are not available online; (ii) the absence
f an online platforms that integrate previous DTL-based ASR
lgorithms and corresponding datasets. This is because of the
imited number of existing open-source, benchmarked datasets;
nd (iii) the diversity of the evaluation metrics and parameters
sed to measure the performance of DTL models or quantify the
istances between the SDs and TD [226]. Therefore, the afore-
entioned issues make a fair comparison between DTL-based
SR solutions a complex, even impossible task.

.4. Measuring knowledge gains

Measuring the knowledge gained when adopting a DTL model
or specific ASR tasks holds paramount importance, yet the prob-
em remains underexplored. To date, only a handful of research
fforts have been directed toward this issue.
An analysis of how we quantify DTL gain was conducted

n [227], where the authors proposed four metrics for assessing
nowledge gain: the transfer ratio, transfer loss, transfer error,
nd in-domain ratio. Despite these metrics’ ability to circumvent
nterpretation issues associated with performance results derived
rom varying SDs, predicting their behavior in other DTL-based
echniques can be challenging. This is particularly evident in
SR tasks where class sets differ between problems. Further-
ore, deriving a perfect baseline network can lead to indefinite
erformance results.
In light of these complexities, simpler evaluation metrics, such

s accuracy, MSE, RMSE, MAE, PIR, F1 score, and other statistical
easures (including class agreement), are often used to gauge

he performance of DTL-based ASR solutions. Furthermore, [228]
21
investigates a practical approach to quantifying the similarity
between two domains using a universal and domain-independent
distance. While this provides a robust means of intelligently
selecting suitable models and evaluating DTL techniques’ perfor-
mance, its application remains limited.

For instance, [229] uses WER to quantify the knowledge gain
when a pre-trained wav2vec 2.0 [230,231] model is fine-tuned
under a range of L1 and L2 training conditions. Similarly, WER is
employed in [91] to measure the knowledge gain of a CNN-TDNN-
F ASR acoustic model, which is initially trained on SD data before
transferring its knowledge to a target dysarthric speaker dataset
using neural network weight adaptation.

5.5. Unification of DTL

The development of effective and reliable DTL-based ASR
strategies is often hindered by the broad range of mathematical
formulations used to explain the underpinnings of DTL-based
SRT techniques. For instance, heterogeneous DTL is advocated
by Hu et al. in [211], whereas Fan et al. [219] pursue statistical
examinations of DTL-based methodologies. Meanwhile, works
like [232–234] focus on deep DA.

Although the studies covered in this review share the central
concept of DTL, their definitions and implementations vary based
on the scenarios considered. In other words, the employment
of diverse terminologies and their variants can lead to reader
confusion. Therefore, it is crucial to standardize DTL definitions
and background formulations to avoid such confusion. An attempt
to unify DTL formulation and definitions has been made by Pa-
tricia et al. [235], though further efforts are still needed in this
direction.

5.6. Other challenges

Processing DTL in a speech-based context appears more chal-
lenging than its image-based counterpart, largely due to the
potential for extensive discrepancies between source and tar-
get databases, which could be attributed to language, speaker
variation, age groups, ethnicity, and most notably, acoustic sur-
roundings [32,68]. Thus, even with DTL implementation, some
instances of ASR continue to struggle under limited resource
conditions and the lack of clean data.

While the CTC has demonstrated significant potential in end-
to-end speech recognition, it is bounded by frame independence
assumptions where the output of one frame does not influ-
ence subsequent frame outputs, mirroring the unary potential of
conditional random fields [56].

The challenges of cross-lingual DTL can be bifurcated into two
categories: (i) For DTL, multilingual shared knowledge should
encapsulate differing degrees of linguistic characteristics from
multiple sources. The definition and acquisition of such informa-
tion in a consistent manner is pivotal. (ii) A pursuit for integra-
tion at all levels of the knowledge hierarchy is necessary while
accounting for linguistic variations [129]. Moreover, the compu-
tational load presents a substantial hurdle in the DTL deep DA
processes. Transfers between SD and TD can lead to an increase
in computational expenses. Adding to this, the deep architectures
upon which DTL techniques rest inherently contribute to further
computational burden.

6. Future directions in DTL-based ASR

6.1. Overcoming NT and measuring the cross-domain transferability

While different research perspectives can be derived to im-
prove DTL-based ASR solutions and facilitate their implementa-
tion in smart cities, two important directions are (i) to overcome
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he NT and (ii) to measure the cross-domain transferability, es-
ecially when there is a discrepancy between SDs and TD. It is
xpected that addressing these challenges will attract significant
esearch and development in the near and far future. Besides,
here is increasing interest from the AI research community to
nvestigate NT from different sides, such as NT mitigation, distant
ransfer, domain similarity estimation, and secure transfer [213,
36,237]. Additionally, some approaches have been proposed to
lleviate the impact of NT; for example, when the domain sim-
larity is measured, different methods can be selected according
o the similarity level. First, if the similarity level is high, the SD
nd TD data can be directly concatenated to train DTL algorithms.
econd, if the similarity level is medium, an NT mitigation scheme
an be adopted. Third, if the similarity level is low, a distant
ransfer or no transfer should be considered [238].

.2. Privacy preservation

With ML, DL, and DTL advances, ASR systems have become
ore practical and more scalable. However, serious privacy

hreats can be posed since speech is a rich source of sensi-
ive acoustic and textual information. Although open-source and
ffline ASR systems can eliminate privacy risks, online DTL-
ased systems can increase these threats. Moreover, offline and
pen-source ASR systems’ transcription performance is inferior
o that of cloud-based ASR systems, particularly in real-world
cenarios [239]. Besides, in this case, the SD data can encom-
ass vulnerable data that might be safeguarded. Accordingly,
he knowledge transfer from the SD to the TD that can pre-
erve users’ privacy is a primary issue. Future research efforts
ust be considered by suggesting to integrate effective security
nd privacy protection strategies, e.g., decentralized DTL using
lockchain [240,241] and federated DTL [242,243].

.3. Interpretation of DTL models

Although DTL-based ASR models have achieved great success,
hey are still perceived as “black box” schemes that lack interpre-
ation. This does not provide convincing insights into “how” and
why” they can reach final decisions [244]. This can doubt the
redibility of reached decisions and lack compelling evidence for
onvincing users or companies that these algorithms can work
epeatedly. Moreover, applications of speech processing in gen-
ral, and ASR in particular, have strict requirements for privacy
reservation and accuracy. Thus, explaining the reasonableness
f the prediction decisions is essential. Recently, the theory of
xplainable and interpretable ML/DL is attracting the growing
nterest of academic scientists not only for speech processing
ut also for other applications [245,246]. For instance, the study
n [247] presents the first attempt to introduce interpretable
xplanations for DTL in sequential tasks. Accordingly, an agent
as set to explain how it learns a new task given prior common
nowledge. This can then help in enhancing users’ trust and
cceptance of the system results and enabling iterative feedback
o improve the system. Moving on, interpretable features are
efined in [248] and used to train a DTL algorithm for a new task.
ypically, the relationship between the SD and TD in a DTL task
as been explained, and the interpretability of the pretrained DTL
as been examined.
Besides, lee et al. [249] introduce a knowledge distillation

pproach that (i) generates interpretable embedding procedure
IEP) knowledge based on PCA, and (ii) distills it in a form that can
e transferred to the student network using a message passing
eural network. Following, the teacher’s knowledge and student
etwork’s target task have been trained via multi-task learning.
22
Moreover, a DTL scheme that provides accurate, explainable clas-
sification results of optical coherence tomography (OCT) scans
using a small sample size of images is proposed in [250]. It has
been named interpretable staged TL (iSTL). The latter has signif-
icantly outperformed DTL techniques for unseen data, for which
attention maps have shown that iSTL utilized clinical features for
making predictions (and not uninterpretable abstractions).

6.4. Online DTL

An important issue that can be raised in ASR is related to how
to transfer useful knowledge from the universal classifier trained
on the SD data to personalize the speech recognition of each user
in an online learning manner (TD data). To that end, online deep
transfer learning (ODTL), which aims at transferring knowledge
from an offline SD to an online TD learning task (represented
by a similar or different feature space), can be explored. ODTL
is challenging, especially if the data in the SD and TD can be
different in terms of their class distributions as well as their
feature representations. In this case, ODTL will assume that the
SD feature space is a subset of the TD [251].

To overcome these problems, some studies have investigated
two different solutions based on ODTL. The first is based on
homogeneous ODTL that relies upon a common feature space for
SD and TD. In contrast, the second refers to the heterogeneous
ODTL, which considers domains of different feature spaces [252].
For instance, to overcome the problem of heterogeneous ODTL
in [253], unlabeled co-occurrence instances are considered as
intermediate supplementary data to link the SD and TD before
performing knowledge transition. In the same context, an ODTL
scheme with an extreme learning machine is introduced in [254].
Typically, to address the data scarcity problem in the TD, a trans-
fer learning with lag (TLL) technique that relies on embedded
shallow neural networks is adopted. The latter enables knowledge
transfer when the number of active features changes.

All in all, when applied in an online or incremental learning
setting, ODTL is able to handle situations where the data distribu-
tion changes over time (concept drift) or where new tasks appear
over time. The idea is to update the model continually as new
data comes in, often by using a fraction of the incoming data to
fine-tune the existing model while retaining the knowledge from
previous tasks. Typically, the challenge in ODTL, similar to other
online learning scenarios, is to balance between the adaptation to
new data (plasticity) and the preservation of previously learned
knowledge (stability), often referred to as the stability-plasticity
dilemma.

6.5. DTL-based large language models (LLMs)

6.5.1. Using chatGPT as an ASR source model
DTL-based LLM, such as chatGPT models, have shown promis-

ing potential for ASR tasks, specifically for both AM and LM
components. The utilization of TL techniques in ChatGPT models
allows for the transfer of knowledge learned from large-scale pre-
training tasks to improve ASR performance. In the case of the
AM, DTL-based ChatGPT models can benefit from the knowledge
learned from pre-trained models that have been exposed to vast
amounts of acoustic data [255,256]. The AM component of the
ChatGPT model can learn to extract acoustic features, such as
MFCCs or spectrograms, and leverage the pre-trained knowledge
to improve its capability to recognize and transcribe speech ac-
curately. By fine-tuning the AM component using TL, the model
can adapt and specialize in specific acoustic domains or datasets,
leading to improved performance in ASR tasks [257].

Similarly, in the LM component, DTL-based ChatGPT models
can leverage TL to enhance the language modeling capability
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f the ASR system. By pre-trained on large text corpora, Chat-
PT models have already learned rich language representations,
hich can be useful for ASR [258]. The LM component can in-
orporate these pre-learned language features to better handle
anguage-related challenges, such as handling different accents,
ialects, or out-of-vocabulary words. Fine-tuning the LM using TL
llows the model to adapt to the specific language characteristics
f the ASR task, leading to more accurate and contextually appro-
riate transcriptions. Furthermore, DTL-based ChatGPT models
or AM and LM can also benefit from domain adaptation [259].
y using auxiliary data from the target domain, such as additional
abeled or unlabeled speech data, the models can be further fine-
uned to the specific characteristics and vocabulary of the ASR
ask. This helps to reduce domain mismatch and improve the
verall performance and generalization of the ASR system.
All in all, DTL-based ChatGPT models for both AM and LM

omponents offer the advantage of leveraging TL and domain
daptation to enhance ASR performance. By incorporating pre-
earned knowledge from large-scale pre-training and fine-tuning
n domain-specific data, these models can improve acoustic and
anguage modeling capabilities, leading to more accurate and
obust speech recognition.

.5.2. Using chatGPT for ASR assessment tools
The utilization of the ChatGPT model for objective testing in

SR and MOS scale evaluation involves several steps. Firstly, a
ataset comprising objective test cases for ASR and MOS eval-
ation, including audio recordings, transcripts, and MOS scores,
hould be assembled. The dataset should be diverse in terms of
peech patterns, accents, and background noise [260]. Next, the
hatGPT model is fine-tuned using this objective test dataset to
enerate accurate transcriptions and MOS scores for the given
udio inputs. The fine-tuned ChatGPT model is then integrated
nto the ASR system, either as a component in the ASR pipeline
or refining transcriptions or for directly generating MOS scores
or MOS evaluation based on the audio inputs [261].

The performance of the integrated system can be evaluated by
omparing the refined transcriptions and generated MOS scores
rom the ChatGPT model with the ground truth transcriptions and
uman-rated MOS scores. Evaluation metrics such as WER for ASR
nd correlation coefficients, like Pearson’s correlation, for MOS
valuation can be utilized [262]. After analyzing the results, areas
or improvement in the ASR system and MOS scale generation
an be identified. The ChatGPT model can be further fine-tuned
f necessary, and the evaluation process can be repeated until
atisfactory performance is achieved [263,264].

. Conclusion

This comprehensive review has explored the vast landscape
f DTL within the sphere of ASR. Beginning with foundational
spects such as the literature search strategy, selection study,
nd quantitative analysis, the survey has unraveled the intricate
hreads of this emerging technology, illuminating its immense
otential. Delving into the conceptual background of DTL and
SR, we dissected the structure of ASR systems, evaluation cri-
eria, and the pivotal role of datasets. We established a taxon-
my for existing DTL techniques, from inductive and transductive
TL to adversarial DTL, all significant in their contributions to
peech recognition. The examination of DTL’s application to AMs
nd LMs demonstrated its versatility. From feature normaliza-
ion based-DTL, conservative training, and subspace-based DTL
o BERT, LDA, NNLM, and LSTM-based DTL, DTL’s multifaceted
pproaches to AMs and LMs showcased the method’s breadth.
he review’s exploration of cross-domain ASR and medical di-
gnosis illuminated how DTL has been instrumental in emotion
23
recognition, cross-language DTL, cross-corpus SER (CC-SER), and
adversarial TL-based ASR. The role of DTL in heart sound classifi-
cation, Parkinson’s disease detection, and other medical diagnosis
applications further underlined its real-world implications.

While acknowledging the advancements in DTL-based ASR,
we addressed key challenges like NT, overfitting, reproducibility,
measuring knowledge gains, and the need for unification in DTL,
shedding light on the roadblocks impeding the full realization
of DTL’s potential. Turning our gaze to the future, we discussed
promising directions in DTL-based ASR, such as overcoming NT,
privacy preservation, interpretation of DTL models, online DTL,
and more. The final leg of our exploration ventured into DTL-
based LLMs, focusing on ChatGPT’s potential as both an ASR
source model and an assessment tool. In its entirety, this sur-
vey has not only provided a comprehensive overview of the
current state of DTL and ASR but also charted the course for
future exploration and innovation. As we navigate through these
uncharted waters, it is crucial to remember that each challenge
represents an opportunity for further growth and discovery. As
we continue to refine and expand our understanding, we edge
closer to fully harnessing the transformative potential of DTL in
Automatic Speech Recognition.

Overall, it has been seen that the intersection between DL/DTL
and ASR in this era will significantly speed up the research
advancement of speech technology in general and particularly
ASR and NLP. Typically, the speech technology and AI scien-
tific communities look forward to the substantial advances and
progressive significance of DTL technology not only for the ASR
problematic but also for other research fields, including medical
diagnosis, energy, smart cities, fault and anomaly detection, etc.

Lastly, it is worth noting that DTL, as a promising area in DL,
has shown an ensemble of benefits over conventional ML and
DL, including less computational cost in some scenarios, less data
dependence, less label dependence, and better performance in
some case studies. However, further research and development
efforts still need to be devoted to improve the generalizability and
overall performance of DTL models. We hope this study will help
the AI and speech-processing communities better understand the
research status and the research ideas for using DTL for ASR
applications.
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