
Evolution of Information, Communication and Computing Systems (EICCS)

https://publisher.uthm.edu.my/bookseries/index.php/eiccs

*Corresponding author: kadir@uthm.edu.my

2023 UTHM Publisher. All rights reserved.

Implementation and Simulation of UDP Client-

Server Environment using Contiki Cooja

Simulator

Muhammad Asif Khan1, Mohd Anuaruddin Ahmadon2, Natasha Amira Abdul

Rauf3, Abang Muhamad Zaid3, Abd Kadir Mahamad3*, Sharifah Saon3, Nik

Shahidah Afifi Md Taujuddin3, and Ansar Jamil3

1Qatar Mobility Innovations Center,

 Qatar University, Doha, QATAR

2Graduate School of Science and Technology for Innovation,

 Yamaguchi University, Yamaguchi, 755-8611, JAPAN

3Faculty of Electrical and Electronic Engineering,

 Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, MALAYSIA

*Corresponding Author

Abstract:

This paper presents a simulation and evaluation of a UDP (User Datagram Protocol) client-server

model using the Cooja simulator and Contiki OS System. The goal is to establish communication

between the router, client, and server to monitor the data transmission and reception through a web

server. The UDP protocol allows for fast and efficient data transfer without the need for a pre-

established virtual path. The simulation results demonstrate the feasibility of utilizing UDP for real-

time services and live communication. The findings highlight the flexibility of UDP in selecting

multiple paths for data transmission, enhancing robustness and reliability. Further research can

explore optimization techniques for UDP-based communication in diverse Internet of Things (IoT)

networks.

Keywords:

UDP protocol  UDP Client-Server  RPL border router  Contiki Cooja  TCP protocol

1. Introduction

UDP (User Datagram Protocol) is a transport layer protocol that operates within the Internet

Protocol (IP) suite of network protocols. UDP serves as a connectionless and lightweight alternative to

TCP (Transmission Control Protocol) and is widely employed in network communication. UDP is

renowned for its simplicity and efficiency, making it well-suited for specific types of applications where

low latency and reduced overhead take precedence over reliable data delivery [1].

The foremost characteristic of UDP is its connectionless nature. While TCP establishes a persistent

connection between sender and receiver, UDP treats each datagram or packet as an independent data

unit. This lack of connection setup and teardown overhead grants UDP a faster and lighter-weight nature

https://publisher.uthm.edu.my/bookseries/index.php/eiccs

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 59

compared to TCP. It proves exceptionally advantageous in situations where real-time data transmission

holds paramount importance, and the reliability guarantees provided by TCP are unnecessary.

UDP finds common usage in scenarios that demand low-latency communication. Real-time

applications such as video streaming, online gaming, and Voice over IP (VoIP) prioritize immediate data

transmission over-delivering every individual packet [2]. Small delays or sporadic packet loss may be

tolerable in such cases as the primary focus is sustaining a continuous data flow. UDP's connectionless

and lightweight design allows for expedited data transmission, resulting in lower latency and enhanced

responsiveness in real-time scenarios [3].

Another advantage of UDP is its reduced overhead. TCP ensures reliable data delivery through

mechanisms like error detection, retransmission, and flow control. While these features guarantee data

reliability, they also introduce additional processing and network resource overhead. In contrast, UDP

does not incorporate these mechanisms by default, leading to reduced overhead. Consequently, UDP is

well-suited for applications prioritizing minimal processing and resource utilization.

However, it is important to acknowledge that UDP's lack of reliability guarantees can pose

limitations in certain contexts. Without error detection and recovery mechanisms, there is no assurance

that packets will reach their destination or be received in the correct order. In situations where reliable

data delivery is critical, UDP-based applications must implement their own error detection and recovery

mechanisms. This allows developers to customize the behavior of UDP-based applications based on

their specific requirements and strike an appropriate balance between reliability and performance.

1.1 UDP in Contiki OS

Contiki OS is an open-source operating system designed explicitly for resource-constrained IoT

devices. It offers a lightweight and energy-efficient platform for developing IoT applications, making it

highly suitable for a wide range of devices, such as sensor nodes and embedded systems. The modular

architecture of Contiki OS allows for efficient utilization of memory and energy, enabling IoT devices to

operate effectively with limited resources. One of the notable features of Contiki OS is built-in support

for various networking protocols, including UDP. The integration of UDP in Contiki OS makes it well-

suited for implementing UDP client-server communication in IoT environments.

Cooja provides a simulated environment where developers can emulate and assess the behavior of

their Contiki-based applications without the need for physical devices. This brings several advantages

in saving cost and time by eliminating the need for physical hardware. Moreover, the Cooja simulator

provides a controlled and reproducible environment for testing and evaluating the performance of UDP

client-server communication in the development process.

Hence, by leveraging the capabilities of Contiki OS and the Cooja simulator, researchers and

developers can effectively design, develop, and evaluate UDP client-server systems in IoT environments

[4]. They can ensure efficient resource utilization reliable communication, and address the challenges

posed by resource-constrained devices. The combination of Contiki OS and Cooja provides a

comprehensive framework for developing and evaluating UDP-based IoT applications, contributing to

advancing IoT technologies.

2. Literature Review

Figure 1 shows the UDP client-server model architecture. The UDP (User Datagram Protocol) client-

server model architecture is a widely used model in network communication. It comprises two essential

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 60

components: the UDP client and the UDP server. Each component performs specific functions that

enable data exchange between them [5].

The UDP client is responsible for initiating communication with the server. Its primary functionalities

include creating a UDP socket, which serves as an endpoint for sending and receiving UDP datagrams.

By specifying the IP address and port number of the UDP server, the client establishes a connection to

the desired server. It can then send UDP datagrams by encapsulating the data it wishes to transmit into

packets. These datagrams contain the destination server's address and port, ensuring they are routed

correctly. Once a datagram is sent, the client waits for a response. Upon receiving a response, the client

processes the data contained within and takes appropriate actions based on the application's

requirements [6].

On the other hand, the UDP server waits for incoming requests from clients and responds

accordingly. It begins by creating a UDP socket to establish communication. By binding its socket to a

specific port on its host machine, the server can listen for incoming datagrams on that port. The server

enters a continuous loop, waiting for datagrams from clients. When a datagram arrives, the server

extracts the data contained within and processes it according to the application's logic. Upon receiving

a request from a client, the server formulates a response by encapsulating it into a UDP datagram. This

response is then sent back to the client's address and port, as specified in the received datagram.

Meanwhile, to handle multiple clients simultaneously, the UDP server can employ concurrent or

multithreaded programming techniques. This capability allows the server to respond to requests from

multiple clients concurrently, enhancing its scalability and responsiveness.

Figure 1: UDP Client-server model architecture

2.1 RPL Border Router

A RPL Border Router serves as the crucial interface between an RPL network and external networks,

particularly the Internet. Figure 2 shows the RPL border router architecture. Its primary purpose is to

establish connectivity and facilitate communication between the RPL network and other networks or

devices that exist beyond its boundaries. The RPL Border Router performs a diverse range of crucial

functions. Firstly, it acts as a bridge, establishing interconnection between the RPL and external networks

UDP Client A

UDP Client B

UDP Server

sendto()

sendto()

sendto()

sendto()

recvfrom()

recvfrom()

recvfrom()

recvfrom()

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 61

[7]. This enables seamless communication between devices within the RPL network and devices or

services located outside, including cloud servers or other IoT networks.

Additionally, the RPL Border Router has the capability to engage in protocol translation. This ensures

compatibility between the protocols used within the RPL network and those employed in external

networks. It promotes efficient interoperability by facilitating seamless data exchange and

communication between the RPL network and other networks that may operate using different

protocols. Lastly, the RPL Border Router is responsible for routing and forwarding packets between the

RPL network and external networks. By evaluating routing metrics and policies, it determines the most

suitable paths for data transmission, ensuring efficient packet forwarding and maintaining effective

network performance [8].

Figure 2: RPL border router [9]

3. Methodology

Several methods were employed to develop a UDP client-server model with a built-in web server

to view the simulation results. The most important methods involved mote setup, topology design, and

router enabling, as shown in Figure 3.

Figure 3: Development of UDP client-server model in Cooja

Motes
Setup

Design
Topology

Enabling
Router]

Simulation

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 62

Launching Cooja involves initiating the Cooja simulator, which serves as a platform for emulating

and evaluating Contiki-based IoT applications. Figure 4 shows the command to launch the Cooja

simulator.

Figure 4: Terminal command launching Cooja simulator

Once Cooja is operational, a new simulation project can be created by selecting the corresponding

option from the menu, enabling the definition of simulation parameters and settings in accordance with

specific requirements. Subsequently, the motes or nodes participating in the simulation need to be

chosen. In the context of the UDP client-server model, it is customary to select three types of motes: the

UDP client mote(s), the UDP server mote, and the RPL Border Router mote. Figure 5 shows the mote

type and the specification of their roles as either clients, servers, or routers. ID type 1 for the border, 2

for UDP server mote, and 3 until ID type 7 are UDP client motes.

Figure 5: Motes type

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 63

Once all the configurations are set, the simulation can be executed in Cooja. Figure 6 shows the

Cooja layout simulator. This allows for observing the behavior of the UDP client-server model within the

simulated environment. Monitoring communication between client and server motes, tracking UDP

datagram exchanges, and analyzing the obtained results become feasible. The green, orange, and

purple nodes referred to a router, UDP server, and UDP clients.

Figure 6: Start simulation

However, at that point, the communication between the RPL border router and the UDP client and

UDP server had not yet been established. In order to enable communication with the web server, several

steps needed to be performed. Figure 7 illustrates the instructions to enable the RPL border router in

the terminal. By executing the command "make connect-router-Cooja," The terminal displayed the

public and private IP addresses. The web server header used the public IP address to establish

communication with the RPL border router.

Figure 7: Terminal command enabling RPL border router

The process of enabling the router continued by clicking the start button on the serial socket for

the server motes. This action initiated the motes to listen to the desired port, as depicted in Figure 8.

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 64

Figure 8: Serial socket (Server)

The final steps involve opening the browser on the same machine and entering the previously

generated public address, as illustrated in Figure 9. In the event of a connection failure, reloading the

network topology and restarting the simulation is recommended.

Figure 9: Web server header

4. Results and Discussion

Figure 10 presents the simulation results in the form of output messages. The UDP client successfully

transmits the message to the UDP server, and the UDP server successfully receives the message from

the UDP client. However, it is worth noting that the system has not yet established a connection with

the web server.

Figure 10: Output message between UDP client and UDP server

In the meantime, Figure 11, with purple color, illustrates the output message displayed once the

UDP server and UDP client have successfully established a connection with the router. Figure 12 shows

that the server connected to the UDP server, UDP client, and border and successfully received messages

to be viewed on the web page.

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 65

Figure 11: Output message web server successfully connected

Figure 12: Web server page

4.1 Evaluate Radio Transmission and Radio Reception

Figure 13 presents an ideal condition (case 1) in which all nodes are within the UDGM (Underneath

the Direct Global Mote) of the border. Consequently, the UDP client and UDP server can directly transmit

messages to the border motes. As a result, all nodes become neighbor nodes to the border mote, and

no nodes function as router nodes.

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 66

Figure 13: Simulation layout (case 1)

Figure 14 illustrates a non-ideal case (case 2) where Node 5 and Node 7 are located outside the

UDGM radius of the border node. Consequently, Node 5 and Node 7 must pass the message to Node

4 to transmit the message to the router. As a result, Node 5 and Node 7 function as router nodes and

their presence is reflected in the web server.

Figure 14: Simulation layout (case 2)

Figures 15(a) and 15(b) compare the transmission and reception ratios between the two

aforementioned cases. Based on this simulation, it can be concluded that the ideal case, where all nodes

are within the UDGM radius of the router, exhibits a lower radio transmit average of 0.18% and a higher

radio receive average of 0.23%. This can be attributed to the favorable positioning of the nodes, allowing

for direct connectivity to the border node.

Conversely, in case 2, where only a few nodes are within the UDGM radius, the radio transmission

percentage increases to 0.31% compared to the ideal case. Moreover, the radio receive ratio for case 2

decreases to 0.13% compared to case 1.

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 67

Figure 15(a): Radio duty cycle case 1

Figure 15(b): Radio duty cycle (case 2)

In conclusion, these results highlight the significance of proximity to the border router in achieving

higher transmission and reception rates in the network based on two case studies.

5. Conclusion

In conclusion, this paper presented the design and simulation of a network using Cooja as the

simulator and the Contiki OS System for User Datagram Protocol (UDP). The communication between

the client and server was observed through a web server. Due to the nature of UDP, the specific

transmission and receiving paths between the server and client could not be determined, as the data

can be transmitted through multiple available paths in the network channel. The use of UDP offers fast

data transmission, as it does not require the establishment of a pre-established virtual path for transfer.

This makes UDP well-suited for real-time services and live communication scenarios. Hence, the

simulation results and analysis provided insights into the performance and behavior of the UDP client-

server model in the simulated environment. Further research and experimentation can be conducted to

explore additional aspects of the network and investigate the optimization of UDP-based

communication for various IoT applications.

References

[1] N.J. Ayidu and O. V. Elaigwu, “Probability Prediction of User Datagram Protocol (UDP) Upstream

Throughput in a Network,” Journal of Energy Technology and Environment, vol. 4, no. 2, June

2022, https://doi.org/10.37933/nipes.e/4.2.2022.17

[2] K. Gatimu, A. Dhamodaran, T. Johnson and B. Lee, “Experimental study of QoE improvements

towards adaptive HD video streaming using flexible dual TCP-UDP streaming protocol,”

Multimedia Systems, vol. 26, pp. 479–493, August 2020, https://doi.org/10.1007/s00530-020-

00653-w

[3] Y. Yu and S. Lee, "Remote Driving Control With Real-Time Video Streaming Over Wireless

Networks: Design and Evaluation," in IEEE Access, vol. 10, pp. 64920-64932, 2022, doi:

10.1109/ACCESS.2022.3183758

[4] S. Deshmukh-Bhosale, and S. S. Sonavane, “A Real-Time Intrusion Detection System for

Wormhole Attack in the RPL based Internet of Things,” Procedia Manufacturing, vol. 32, pp.

840–847, 2019, doi:10.1016/j.promfg.2019.02.292

Chapter 5: Implementation and Simulation of UDP Client-Server Environment using Contiki Cooja Simulator

Page | 68

[5] A. Faisal, and M. Zulkernine, “A secure architecture for TCP/UDP-based cloud communications,”

International Journal of Information Security,” vol. 20, pp. 161-179, 2021,

https://doi.org/10.1007/s10207-020-00511-w

[6] E. Gamess, and B. Smith, “Performance Evaluation of TCP and UDP over IPv4 and IPv6 for the

ESP8266 Module,” Proceeding of the 2nd International Electronics Communication Conference,

Singapore, July 8-10, 2020, pp. 161-169. Association for Computing Machinery, NY, US, 2024,

https://doi.org/10.1145/3409934.3409956

[7] T. Czachórski, E. Gelenbe, G. S. Kuaban and D. Marek, "Transient Behaviour of a Network

Router," 2020 43rd International Conference on Telecommunications and Signal Processing

(TSP), Milan, Italy, 2020, pp. 246-251, doi: 10.1109/TSP49548.2020.9163477.

[8] M. Yadollahzadeh Tabari, and Z. Mataji, “Detecting sinkhole attack in rpl-based Internet of

things routing protocol,” Journal of AI and Data Mining, vol. 9, no. 1, pp. 73-85, Jan 2021,

https://doi.org/10.22044/jadm.2020.9253.2060

[9] M. C. Belavagi, and B. Muniyal, “Multiple intrusion detection in RPL based networks,”

International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 467-476, Feb

2022, http://doi.org/10.11591/ijece.v10i1.pp467-476

