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A B S T R A C T

Automated responses to questions for conversational agents, known as conversation passage retrieval, is chal-
lenging due to omissions and implied context in user queries. To help address this challenge, queries can be re-
written using pre-trained sequence-to-sequence models based on contextual clues from the conversation's history
to resolve ambiguities. In this research, we use the TREC conversational assistant (CAsT) 2020 dataset, selecting
relevant single sentences from conversation history for query reformulation to improve system effectiveness and
efficiency by avoiding topic drift. We propose a practical query selection method that measures clarity score to
determine whether to use response sentences during reformulation. We further explore query reformulation as a
binary term classification problem and the effects of rank fusion using multiple retrieval models. T5 and BERT
retrievals are inventively combined to better represent user information need. Using multi-model fusion, our best
system outperforms the best CAsT 2020 run, with an NDCG@3 of 0.537. The implication is that a more selective
system that varies the use of responses depending on the query produces a more effective conversational refor-
mulation system. Combining different retrieval results also proved effective in improving system recall.
1. Introduction

Conversational Search (CS) is an important research topic in the in-
formation retrieval (IR) and natural language processing (NLP) com-
munities, and it was an essential topic in multiple sessions of the Third
Strategic Workshop on IR (Culpepper et al., 2018) due to the increasing
variety of devices accessible anytime-anywhere, often without a
keyboard, as well as the advancements of speech interfaces. In addition to
chatbots, improvements in machine learning techniques have led to the
rapid popularity of conversational agents, e.g., digital personal assistants
such as Apple's Siri and Amazon's Alexa (Mehrotra et al., 2020). These
Conversational Agents perform well as task-oriented and social bots;
however, they are not yet well suited in handling multi-turn conversa-
tional search.

In CS, the user's (often complex) information need is expressed in a
sequence of queries or “turns” during a conversation with the system
(Liu, 2021). Users often receive single conversation responses from the
system and cannot scan multiple results (as in search browsers), modify
their queries, or look at previous system results (Sa & Yuan, 2020). The
user begins the conversation with a question expressing an initial infor-
mation need. The system attempts to fulfill that need by retrieving
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answers to the query. The user can then ask follow-up questions of a
related (or not) information need, entering a new turn in the dialogue.
Subsequent turns are often ambiguous as stand-alone queries, making
context-awareness of individual turns challenging to build conversa-
tional agents for CS. For example, looking at turn T2 in Table 1, the turn
is difficult to understand without referencing the previous turn T1.

The annual Text REtrieval Conference Conversational Assistance
Track (TREC CAsT) (Dalton et al., 2020a, 2020b) is a large-scale
benchmark for open-domain CS where answers to turns are retrieved
passages from an extensive passage collection. The CAsT 2020 dataset
includes multi-turn conversations with a “canonical response” for every
turn in the conversations. Canonical responses are passages selected by
the organizers to represent relevant responses to turns. TREC organizers
selected canonical responses from the top 5 results of the baseline system,
which is a standard BM25 initial ranker followed by a BERT re-ranker.
Table 1 shows the first three turns and corresponding canonical re-
sponses of topic 83, as an example. Even with the canonical responses,
the challenge is how to ensure context-awareness throughout the con-
versation (Mele et al., 2021). Context-awareness can be achieved when
ambiguous references are resolved for every turn in the conversation.

Currently, the most effective context-awareness solution for passage
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Table 1
TREC CAsT sample topic from the 2020 dataset.

T1: What are some interesting facts about bees?
R1: Fun facts about bees … Honey never spoils.

T2: Why doesn't it spoil?
R2: The water content … support microbial growth.

T3: Why are so many dying?
R3: Honeybees are dying … industry in America itself.

Table 2
Acronyms used in the paper.

Name Description

CS Conversational Search.
TREC Text REtrieval Conference.
CAsT TREC Conversational Assistance Track.
CQR Conversational Query Reformulation.
T5 Text-to-text Transfer Transformer model.
BERT Bidirectional Encoder Representations from Transformers model.
T5-CQR T5 model fine-tuned for conversational query reformulation.
BERT-TC BERT model fine-tuned for conversational term classification.
QCS Query clarity score to predict query performance at retrieval.
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retrieval is a multi-stage pipeline using conversational query reformu-
lation. The conversational query reformulation (CQR) process takes the
conversation history (i.e., some turns and responses from the conversa-
tion so far) concatenated with the current context-dependent raw turn
and rewrites the raw turn by resolving co-references and omissions.
Context-dependent queries, indicated by turns that contain omissions and
co-references, can only be fully interpreted by providing the conversation
history. The goal of the first stage of the pipeline is to convert context-
dependent turns into context-independent turns that can then be used for
more effective retrieval of passages that constitute potential answers to
the question. Context-independent turns are self-contained queries that
express the user's information need without omissions and co-references.
CQR models can be built using pre-trained transformer models. In this
research, a T5 transformer model is fine-tuned for this purpose (T5-CQR).
After retrieval, passages go through one or more re-ranking stages that re-
order passages according to their relevance.

This research aims to improve the query reformulation pipeline. We
explore improvements from three perspectives. The first is to incorporate
system responses into conversation history by reusing existing trained
models originally built for other tasks such as next sentence prediction
and question answering. We then compare text-to-text generative models
with a more computationally efficient system that uses term-
classification. Finally, we investigate how simple traditional IR solu-
tions, such as query performance prediction and rank fusion can be
incorporated to further improve performance. We found using Query
Clarity Score for query prediction improves performance via selective
conversation history. A more fascinating observation is that by
leveraging the power of two pre-trained models (T5 and BERT), multi-
model fusion was able to outperform state-of-art CAsT 2020. This im-
plies many future possibilities of combining the strengths of different pre-
trained models by complementing instead of competing against each
other.

The key to effective CQR implementation is determining how re-
sponses can best be included in conversation history. Appending re-
sponses in their entirety into conversation history can introduce noise
that degrades both efficiency and effectiveness (Wicaksono & Moffat,
2021). Therefore, we propose two response selection models to select a
single sentence from the response; a BERT model trained for next sen-
tence prediction (Devlin et al., 2019) and a T5 model trained for question
answering (Raffel et al., 2020). Our intuition was that these existing
models trained for other applications could be incorporated in a novel
way for conversational response selection without the need for further
fine-tuning, as next sentence prediction and question answering overlap
with areas of conversational search. We also noticed in experimentation
that responses might not be needed for every turn for CQR, so we propose
adding a query clarity score (QCS) to determine whether reformulating a
query benefits from the use of a response.

Training a model for CQR requires a large amount of manually-
labeled training data due to its text generative nature (Hou et al.,
2018). To date, there is no reasonably-sized dataset for conversational
search tasks. The CAsT dataset is still relatively small when compared to
other IR datasets. Other passage retrieval datasets such as MS Marco and
TREC CAR have training sets that contain 530k and 3M queries with
relevant passages respectively. Using T5 is also very computationally
expensive due to the model's large parameter size. An alternative solution
to work around this limitation is to view query reformulation as a binary
classification problem. The model labels each term in the conversational
2

history as either relevant or non-relevant. Relevant terms are then
appended to context-dependent turns to resolve ambiguity. This method
does not generate a grammatically well-formed turn but does addmissing
context as a set of keywords using a more efficient model. To properly
investigate the benefits and costs of T5-CQR, we propose creating a
BERT-based conversational term classifier (BERT-TC) and compare the
performance of the two models.

Another interesting method that can improve our system is to explore
how different reformulations of the same query affect retrieval and
whether combining them improves performance. Rank fusion is when
multiple system outputs are combined in order to better represent the
user's information need (Fox & Shaw, 1994). We explore whether fusing
multiple retrieved lists of passages from different query reformulation
methods of the same turn improves the system's effectiveness. Combining
query reformulation with T5 and BERT, we create a novel multi-model
fusion solution that better represents user information needs. To the
best of our knowledge, the effects of fusing query reformulations from
different pre-trained models have not been explored. We also compare
this technique with our proposed QCS query selection method.
Re-ranking is an essential stage in the pipeline, but it adds to the
complexity of the solution. We explore the effects of two-stage re-ranking
and whether QCS and multi-model fusion benefit from “mono” versus
“duo” re-ranking. A “mono” re-ranker (monoT5) reorders passages based
on pointwise query-passage relevance, while a “duo” re-ranker (duoT5)
reorders passages based on pairwise comparisons of two passages' rele-
vance to a query (Pradeep et al., 2021). Table 2 details the different
acronyms used in this paper.

In summary, this research aims to answer the following research
questions:

● RQ1: Can existing trained models for next sentence prediction and
question answering effectively select relevant responses in CQR?

● RQ2: Is query clarity score effective in determining when to use re-
sponses for query reformulation?

● RQ3: How does T5-CQR perform compared with smaller query
reformulation models such as BERT-TC?

● RQ4: Can we apply rank fusion over multiple lists of retrieved pas-
sages using query variations from multiple models to improve system
effectiveness? How does that compare to the proposed query clarity
score selection function?

● RQ5: Would applying duoT5 re-ranking further improve the perfor-
mance over monoT5 re-ranking?

Our contributions in this work are as follows:

● We demonstrate the performance of two pre-trained models as sen-
tence selection methods for improving T5-CQR. This indicates that
reusing models can efficiently incorporate response into CS without
the need of training or fine-tuning new models specific for CS tasks.

● We establish a query clarity score that is effective at determining
whether to use a response for T5-CQR during retrieval.

● We show the benefits of using T5-CQR compared to other models such
as BERT-TC.
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● We combine query representations using both T5 and BERT refor-
mulations using a novel multi-model fusion approach. We find that
combining reformulations using both models improve system
context-awareness by leveraging the strengths of the two pre-trained
models.

● We show that combining multiple retrieved lists of passages can
improve not only recall but also overall performance measured in
NDCG@3.

The paper is organized in the following sections: first, available
literature are reviewed to understand the current state of the field. Sec-
tion 3 details the methodology of the proposed system and its different
components. In section 4, the experiment setup is presented, as well as
the metrics used to evaluate the system. Section 5 contains the results and
respective discussion, which are followed by the conclusion and future
work in section 6.

2. Related work

In this section, related work will be reviewed from two perspectives:
multi-stage retrieval systems and conversational search systems.

2.1. Multi-stage retrieval systems

Multi-stage retrieval systems can be a two-step process. First, a list of
candidate documents or passages are retrieved from a corpus, and then
the list goes through one or more re-ranking phases to strike a balance
between efficiency and effectiveness (Asadi & Lin, 2013). Research in
this domain includes feature extraction efficiency, dynamic cut-off depth,
and joint cascade ranking optimization (Lin et al., 2020a, 2020b). The
baseline of this system is BM25 candidate generation followed by a BERT
re-ranker.

The final phase of the multi-stage retrieval pipeline uses one or more
re-ranking models that adapt pre-trained transformers for query and
passage relevance classification (Lin et al., 2021a). The “mono”
re-rankers receive as input a query and candidate passage that is scored
based on their relevance. “Duo” re-rankers apply a pairwise approach
where the re-ranker considers a pair of passages and predicts which
passage is more relevant to a query. Similar to monoBERT by Nogueira
and Cho (Nogueira & Cho, 2019), Nogueira et al. (Nogueira et al., 2020)
applied the Text-to-Text Transfer Transformer (T5) model to re-ranking
with monoT5. DuoT5 is a second stage re-ranker that receives the
“mono” re-ranked passages and applies the same pairwise approach as
duoBERT by Nogueira et al. (Nogueira et al., 2019a) but with the T5
model (Pradeep et al., 2021). The re-ranking models requires a large
scale of labeled data and heavy computational load to train. Some
research has been conducted to prove the potential of improving passage
retrieval using other weak relevance signals when training these neural
ranking models (Zheng et al., 2019).

Another retrieval technique used to improve performance is rank
fusion. Rank fusion is a technique that combines knowledge from mul-
tiple system outputs or query variations to better express user informa-
tion need (Fox & Shaw, 1994). This is done to optimize the order of a
ranked list by investigating one or more features in a supervised or un-
supervised approach. Algorithms can generally be categorized as
score-based and rank-based fusion (Hsu & Taksa, 2005). Score-based
systems depend on the information stored in retrieval scores.
Rank-based systems depend on the order of documents in the ranked list.

2.2. Conversational search systems

Conversational search (CS) has many applications, such as e-health
systems, recommendation systems, and personality recognition (Alian-
nejadi et al., 2020). Rule-based conversational IR systems have given way
to more advanced methods based on deep learning (Gao et al., 2018;
Onal et al., 2018). One major factor to consider when designing a
3

conversational agent is how to maintain conversation context (Vtyurina
et al., 2017). Context also plays an important role in conversational
response classification (Cui et al., 2020). Dialogue context can be used to
identify malevolent or toxic conversation responses for building safer,
more trustworthy chatbots (Almerekhi et al., 2022; Zhang et al., 2021).

One method to ensure context-awareness in multi-turn conversations
is rewriting turns using query reformulation (Dehghani et al., 2017).
Conversational query reformulation (CQR) uses pre-trained sequence--
to-sequence (seq2seq) models to resolve user information need in
ambiguous queries. Elgohary et al. (Elgohary et al., 2019) used a T5
model that takes a conversation's entire history, along with the query to
be rewritten, and outputs a context-independent query outperforming
the best CAsT 2019 baseline. Lin et al. (Lin et al., 2021b) fuse queries
reformulated with a T5 model with another query expansion method that
estimates query term importance using the BM25 score. They found that
fusing the two query variations improved retrieval effectiveness on CAsT
2019 dataset.

Conversational query reformulation can also be expressed as a binary
term classification problem. Terms in the conversational history are
labeled as relevant or non-relevant to the current turn to resolve missing
context. In the work of Voskarides et al. (Voskarides et al., 2020), BERT is
trained using the QuAC dataset (Choi et al., 2018) to create a binary term
classifier to decide whether to add terms to current turn for retrieval.
Kumar and Callan (Kumar & Callan, 2020) train a BERT model using
weak supervision to supplement limited available training data in CAsT.

Training data availability for CS is limited. The goal of TREC CAsT is
to create a large-scale reusable test collection for open-domain conver-
sational search where answers are retrieved passages from a large text
corpus. CAsT 2020 submissions are categorized as: Automatic (using only
raw turns), Auto-canonical (using raw turns and canonical response), and
Manual (using manually rewritten turns). The H2oloo team achieved the
best performance in the automatic and auto-canonical categories (Lin
et al., 2020a). Their automatic run used a T5 system trained on CANARD.
In their auto-canonical run, a sentence was selected from the canonical
response using keyword matching. The second-place team, ASCFDA, also
employed a fine-tuned T5 model (Chang et al., 2020). They break ca-
nonical responses down into sentences then apply the doc2query model
(Nogueira et al., 2019b) to each sentence. Based on the resulting “latent”
query, a sentence from the canonical response is added to the conver-
sation history.

Another well-researched problem in CS is conversational response
selection. Response selection in conversational search had earlier focused
on single-turn response retrieval (Hu et al., 2014; Lu & Li, 2013; Wang
et al., 2013). Single-turn systems only use the last utterance for response
selection and ignore context from previous utterances. Neural Network
models have been used to measure the relevance of context and response
pairs in multi-turn conversations (Lowe et al., 2015). More recent work
studies the effect of using too much context. Yuan et al. (Yuan et al.,
2019) propose a multi-hop selector network that matches filtered context
to candidate responses. Another simple yet effective solution is to split
long response sentences into simpler components before sentence se-
lection (Finegan-Dollak & Radev, 2016).

2.3. Position of our study

Literature review shows that previous works studied conversational
search systems from multiple perspectives. Making sure context is pre-
served throughout the conversational turns remains essential for
retrieval. Some models rewrite queries using historical context, while
others include context using classification. This work explores query
reformulation using a query rewriting model and compares it to a term
classification model. Conversation responses also provide contextual
clues as well as previous turns. Exploring response selection methods and
how these can be included in CQR is another focus of this research. We
finally investigate the benefits of using different variations of the same
turn using a simple rank fusion method that combines the reformulated
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queries from two different fine-tuned models, and then compare it with
our proposed query clarity score selection method. Using our proposed
solution achieves best performance for the CAsT 2020 dataset, beating
the CAsT 2020 baseline. It is worth noting that several earlier studies use
CAsT 2019 dataset for evaluation; however, the 2020 dataset is more
challenging due to the increased complexity of the conversations. Turns
in CAsT 2020 can reference both previous turns or responses, whereas
CAsT 2019 conversations depend only on previous turns.

3. Methodology

The CS problem is defined as follows. A conversation is made up of a
series of N-turn raw user's utterances {u1, u2, u3, …, uN}. The task is to
retrieve a list of top-k passages pi for each turn ui from a collection of
passages to satisfy the information need of turn i. For each turn ui, a
canonical response ci, represented as a sequence of sentences fs1i ;s2i ;s3i ;…;

sMi g, is available. We also define the raw conversation history hi of turn i
as the entire sequence of the previous raw turns in the conversation, i.e.,
hi ¼ {u1, u2, u3, …, ui�1}. Table 3 lists the various notations used in this
paper.

We propose to solve the CS problem defined above using a multi-stage
retrieval pipeline, as illustrated in Fig. 1. The pipeline consists of four
main stages. The first stage is “response sentence selection”, which se-
lects a representative sentence from the canonical responses to include in
the conversation history. After that, the “conversational query reformu-
lation” (CQR) stage follows where raw turns are reformulated into
context-independent turns. The third stage is “retrieval” where the
context-independent turns are used to retrieve top-k passages. The fourth
and final stage is passage “re-ranking” of the retrieved passages. We next
discuss each stage in detail.
3.1. Stage 1: Response sentence selection

We propose two sentence selection models to incorporate a sentence
from the canonical response into the conversation history before
applying CQR. The goal is to select a single sentence to minimize topic
drift and avoid lengthy input to CQR to improve system effectiveness.

Canonical responses represent the system's answer to the user's turn.
These responses typically contain an average of 100–150 words. Ideally,
within these responses is an answer to the user's information need. Re-
sponses are an integral part of the conversation as they often lead to
follow-up turns or topic shifts further along. However, including re-
sponses in their entirety into conversation history could negatively
impact system performance. It can introduce noise and incorrect context
into conversation history. We propose re-purposing two existing pre-
trained models to select a single sentence from the response. The
selected sentence is the one most likely to have generated the following
turn in the conversation. By doing so, we have included only relevant
information into conversation history without needing to fine-tune a new
model specifically for this task. This reduces the computational cost,
Table 3
Notation used in the paper.

Name Description

ui Raw conversation utterance at turn i. Raw turns are context-dependent.
mi Manual conversation utterance at turn i. Manual turns are context-

independent.
pi List of retrieved passages for turn ui.
ci Canonical response for turn ui.
smi Single sentence of canonical response ci.
hi Conversation history made up of previous raw turns at turn i.
xi Conversation context at turn i that can be made up of previous turns and

responses.
ri Reformulated utterance at turn i rewritten by the trained model.
ti Set of context term for turn ui. Context terms are terms that are in mi but not

ui.
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since the two models are already fine-tuned and available for use.

3.1.1. Next sentence prediction
The first sentence selection model uses a pre-trained BERT model for

next sentence prediction (NSP) (Devlin et al., 2019). BERT pre-training
includes next sentence prediction to predict how likely two sentences
follow each other or not. The model is used to select a sentence from the
canonical response that most likely “triggered” the follow-up question
from the user. To select sentence si�1 for turn ui, previous turn canonical
response ci�1 is divided into sentences fs1i�1; s

2
i�1; s

3
i�1; …; sMi�1g. Each

sentence is paired with the current turn ui. The sentence with the highest
probability is selected and added to the conversation history at that turn.

si�1 ¼ argmaxs2ci�1NSPðs; uiÞ (1)

3.1.2. Question answering
The second method we propose for sentence selection uses the T5

model fine-tuned for question answering (QA) using the SQuAD dataset
(Rajpurkar et al., 2018). This model outputs either a sentence or sentence
span. We refer to both here as a “sentence” for convenience. Instead of
pairing questions and context in the turn, the turn ui is paired with the
previous canonical response ci�1. The premise is that the turn is not
necessarily “answered”, but it is “conceptually related” to a sentence of
the previous response. Our motivation for this second method is to
extract the sentence that is most related to the subsequent turn. The
selected sentence is then added to the conversation history as the
response sentence si�1.

si�1 ¼ QAðci�1juiÞ (2)

3.2. Stage 2: Conversational query reformulation

The second stage aims to take a raw context-dependent turn ui and
produce a context-independent turn. The two investigated models are T5-
CQR, a T5 query rewriting model, and BERT-TC, a BERT binary term
classification model. The goal is to measure which system reintroduces
context back into turns more accurately and examine their efficiency-
effectiveness trade-off; T5 is a powerful generative model that is
computationally expensive to train and run, while BERT is simply fine-
tuned as a binary classifier but might not be as effective.

CQR conceptually takes a context-dependent query and the context to
produce a context-independent (i.e., reformulated) query. In our work,
the context xi at turn i is represented by the conversation history hi and
the selected sentence si�1 from the canonical response, while the query is
the raw turn ui. CQR then produces a context-independent rewritten turn
ri that can be directly used for passage retrieval.

3.2.1. T5-CQR
This model uses the T5 model fine-tuned using the CANARD dataset

(Elgohary et al., 2019), denoted as T5-CQR. T5 is a powerful model that
translates NLP tasks into a text-to-text format using an encoder-decoder
architecture (Raffel et al., 2019). T5 can be fine-tuned for various
downstream tasks, such as translation or summarization. In this work, the
model is fine-tuned for conversational query reformulation. The
CANARD dataset turns were pre-processed by concatenating the raw
conversation history at turn i, hi ¼ {u1, u2, …, ui�1}, with the raw turn ui
and using the manual turn mi as the model target. Manual turns are turns
manually rewritten to resolve context.

For this stage, we experimented with two setups. In the first, the
context xi of turn i is represented as the raw conversation history of turn i
concatenated with the selected sentence from the canonical response,
i.e., xi ¼ {u1, u2,…, ui�1, si�1}. This is paired with the raw turn ui as input
to T5-CQR. We denote this setup as “CQR-Historical Context” or
CQR–HC–S, where S indicates the sentence selection method (i.e., NSP or
QA). Fig. 2 illustrates the setup for the first three turns of topic 83 of CAsT
2020 dataset.



Fig. 1. Multi-stage pipeline.

Fig. 2. CQR with historical context (CQR–HC–S).
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In the second setup, we replace the context-dependent turns in xiwith
context-independent rewritten turns ri, as illustrated in Fig. 3. In this
setup, the context is represented here as xi ¼ {r1, r2, …, ri�1, si�1}. We
denote this setup as “CQR-Rewritten Historical Context” or CQR-RHC-S.
This allows context retrieved from sentence si�1 to propagate further into
the conversation through riwithout addingmore than one sentence to the
context, reducing input length and tokens. This is because ri can retain
some context from si�1 using CQR. For example, r2 in Fig. 3 keeps the
word “honey” in the context even when s1 is no longer in the set.

In our experiments reported in the Experimental Evaluation Section,
we also compare with variants of those setups in which the context does
not include the selected sentence, denoted as CQR-HC and CQR-RHC,
Fig. 3. CQR with rewritten

5

respectively.

3.2.2. BERT-TC
An alternative solution that adds context to turns uses BERT for term

classification instead of the previous T5 model. Unlike T5, BERT is only
built using encoder blocks and can only output a label classification or a
span of the input text (Devlin et al., 2019). To use BERT for query
reformulation, we have to take a classification-based approach. Modeling
query reformulation as a binary classification problem is more compu-
tationally efficient than using the larger seq2seq model and requires less
training data.

In order to train BERT-TC, each raw turn ui should be associated with
context (CQR-RHC-S).
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a set of relevant context terms ti. Context terms can be inferred using
manual turns mi provided in available datasets. The set ti can be con-
structed as all terms in the manual turnmi ¼ fm1

i ;m
2
i ;m

3
i ;…;mJ

i g that are
not in ui ¼ fu1i ;u2i ;u3i ;…;uKi g. The model is provided with a conversation
context xi which is the conversation history usually made up of previous
turns, and the current raw turn ui. Terms in ti present in conversation
context xi are labeled relevant while other terms are non-relevant. For
example, the set of context terms of turn 3 of topic 83, u3 ¼ “Why are so
many dying?”, is created using the manual turn m3 ¼ “Why are so many
bees dying?”. The set of context terms for this turn will be t3 ¼ {bees}.

The classifier uses a BERT model with an added classification layer
that receives the encoded terms from BERT and classifies them in order to
determine which terms should be selected (as illustrated in Fig. 4). The
model receives as input the conversation context xi at turn i and the
current turn ui, and outputs a binary label (relevant or non-relevant) for
each term in xi. Relevant terms are concatenated to the current turn ui to
resolve context. The output of the model when resolving turn 3 of topic
83 is: “Why are so many dying? bees”.

We experiment with different constructions for xi. The first uses only
historical turns as context, i.e., xi ¼ {u1, u2, …, ui�1}. This system is
denoted as TC–HC–I, where I refers to how far back history is included
into context (i.e., add only last two turns or three turns and so on).

The other set-up is TC-S-I, where S indicates the sentence selection
method (i.e., NSP or QA). In this set-up, xi is composed of both historical
turns and response sentence, for example, xi ¼ {u1, s1, u2, …, ui�1, si�1}.
With BERT-TC we can experiment with adding multiple response sen-
tences instead of only one like in T5-CQR. This is because the model is
smaller and adding these extra tokens will not increase computation time
as much as in T5-CQR. However, adding too many response sentences
can still introduce topic drifts, which should be considered when con-
structing the input.

3.3. Stage 3: Retrieval

This stage aims to retrieve a pool of potentially relevant passages
using queries reformulated using both T5-CQR and BERT-TC. Reformu-
lated turns are issued as queries to our BM25 retrieval engine to get an
initial ranked list of passages. However, not every turn will benefit from
CQR that uses the selected sentence from the canonical response. Some
turns might only depend on the previous raw turns without reference to
the previous response. One example of such a turn would be turn T3 from
Table 1. T3 refers to T1, but not any of the previous responses. On the
other hand, turn T2 refers to R1. Intuitively, at every turn, we can either
use the turn rewritten using only the raw conversation history, denoted
as rh, or the one also using the selected response sentence, denoted as rs.
Fig. 4. BERT for ter
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3.3.1. Query clarity score
We propose a query clarity score (QCS) that uses query prediction

measures to decide when to include response for retrieval. Query clarity
measures were introduced in the domain of “query performance pre-
diction” to measure the coherence of queries as an indicator of their
performance (Cronen-Townsend et al., 2002).

We experimented with three query clarity measures. The first,
denoted as BM25-CL, uses the BM25 retrieval score of the top retrieved
passage to measure the clarity of queries (Lin et al., 2020a). As this score
might not be reasonably comparable across different queries, we also
experimented with a normalized version, denoted nBM25-CL, in which
we first normalized the BM25 scores of the retrieved passages for each
query using Z-normalization, then considered the normalized score of the
top one. As those two measures require passage retrieval (which is
naturally expensive), we experimented with a third measure, the sum of
the IDF scores of the query terms, denoted as IDF-CL. That one is a
“pre-retrieval” measure that avoids issuing queries while accounting for
the informativeness of the query terms. QCS is measured for the two
variations of the turn rh and rs. The variation with the higher QCS is then
used to retrieve top-k passages.

3.3.2. Multi-model fusion
Furthermore, we can combine multiple retrieved lists of passages into

a single top-k list to potentially increase the system recall and perfor-
mance using rank fusion (Hsu & Taksa, 2005). To explore this effect, the
retrieved passages from two different query reformulations, rh and rs, can
be combined into a single list of passages and then passed on to the
re-ranker. We experimented with a simple rank-based method, where
passages ranked 1 are added first, then passages ranked 2, and so on,
while making sure not to add duplicate passages.

We explore combining retrieved passages from queries generated
using T5-CQR, rh and rs, and queries generated using BERT-TC, rtc. T5 re-
frames all NLP tasks to a text-to-text format where inputs and outputs are
always strings of text. In contrast, BERT only outputs a class label or a
span of the input. The two model architectures are also different, since
BERT only has encoder blocks while T5 is built using both encoder and
decoder. We explore how these two different encoder-only and encoder-
decoder architectures perform for query reformulation and whether
joining the two systems using rank fusion improves performance. The
two models are also trained and fine-tuned using different data. By
creating a multi-model fusion of both pre-trained models, we can
leverage the strength of the two and improve context-awareness. We are
testing the fusion of BERT term classification with T5 conversational
query reformulation, with the implication that this method can be used
on other pre-trained model combinations in the future.
m classification.
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3.4. Stage 4: Re-ranking

After retrieval, the final stage is re-ranking the retrieved passages to
get the top 1000 passages. We use the monoT5 re-ranking model pro-
posed by Nogueira et al. (Nogueira et al., 2020) as an initial re-ranking
step. MonoT5 receives query passage pairs and scores them based on
their relevance. The passage list is later re-order according to the rele-
vance of the query passage pairs.

After that, the output of monoT5 is used as input to duoT5 (Pradeep
et al., 2021). DuoT5 considers a pair of passages and predicts which
passage is more relevant to the query. Passages are then re-ordered from
the most to the least relevant to the query. This process is computa-
tionally expensive, so it is best to run duoT5 only on a small number of
candidate passages. The goal is to improve the quality of the passages
ranked high on the list. DuoT5 is used to re-rank the top 100 passages
from the list of 1000 retrieved passages. This means that the first 100
passages will be re-ranked using duoT5, while passages ranked 101 to
1000 will remain as they were ranked by monoT5.

4. Experimental setup

We evaluated our systems using the TREC CAsT 2020 test collection
(Dalton et al., 2020b). The CAsT 2020 test set contains a total of 216
turns across 25 conversation topics with an average length of 8.6 turns
per topic. Topics in the dataset were developed to ensure conversations
are complex, diverse, open-domain, and answerable. The CAsT 2020 test
set is used because of its dynamic, open-domain conversations that can
shift topics based on either historical turns or responses. This makes it
ideal for experimenting the effects of selective history. CAsT 2019 and
other datasets are not used, as conversations are either not open-domain,
or do not change topics based on system response.

The first response sentence selection model is a pre-trained BERT for
next sentence prediction trained on a large corpus of English data (Devlin
et al., 2019). This is built using the BERT-base-uncased model with 12
transformer blocks, 768 hidden layers, 12 attention heads, totaling 110
million parameters as part of the HuggingFace Transformer Library.1 The
other response sentence selection model is also available in the Hug-
gingFace Transformer Library,1 T5 for question answering. This model is
built using base T5 fine-tuned using the SQuaD dataset (Rajpurkar et al.,
2018). Base T5 has 12 layers, 768 hidden-states, 3072 feed-forward
hidden-states, 12 heads with 220 million parameters.

The T5-CQR model was initialized with pre-trained weights, and
training hyper-parameters were set as proposed by (Lin et al., 2020a). For
fine-tuning the model, the CANARD dataset was pre-processed using the
setup proposed by (Elgohary et al., 2019). For the model inputs, all
historical utterances along with the query to be rewritten were concat-
enated with a special separator token between each utterance and
appended to the manual context-independent query as the training
target. T5 is fine-tuned with a constant learning rate of 0.001 for 4k it-
erations. The maximum input tokens were set to 512 with 64 output
tokens. None of the inputs needed to be truncated. A single Google Cloud
Platform TPU v3-8 was used to train both base T5 and large T5. Base T5
has 220 million parameters as described previously, while large T5 is
built with 24 layers, 1024 hidden-states, 4096 feed-forward hidden--
states, 16 heads with 770 million parameters.

BERT-TC uses the BERT-large-uncased model built using the Hug-
gingFace Pytorch implementation.1 The model contains 24 transformer
blocks, 1024 hidden layers, and 16 attention heads, which add up to 340
million parameters in total. Training hyper-parameters for BERT-TCwere
set as proposed by (Voskarides et al., 2020). BERT is fine-tuned using the
Adam optimizer with an initial learning rate of 5e-5 and a dropout rate of
0.4 on the layers. The model is fine-tuned using the OR-QuAC dataset (Qu
et al., 2020) after applying lower-casing, lemmatization, and stopword
1 https://github.com/huggingface/transformers.
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removal to create the context terms set.
The Anserini toolkit 2 was used for indexing and retrieval. We used

BM25 to retrieve the top 1000 passages from the MS MARCO passage
collection and TREC Complex Answer corpora. For re-ranking, we used
the 3B-parameter monoT5 and duoT5 re-rankers with the setting pro-
posed by (Nogueira et al., 2020) and (Pradeep et al., 2021) respectively.
The re-rankers were trained with a constant learning rate of 0.001 for
100k iterations for monoT5 and 50k iterations for duoT5. The re-ranking
models are available in PyGaggle,3 a neural re-ranking library.

We compare the performance of several variants of our system. Sys-
tems that do not consider the canonical responses for the context are
denoted as “auto” systems, while those that consider the canonical re-
sponses are denoted as “auto-canonical” systems. We compare our sys-
tems performance with simply using the context-dependent turns
without CQR. This run is denoted as “raw turn”. Paired sample t-test is
conducted between internal system variants.

As external baselines, we also compare with the best submitted auto
and auto-canonical runs to CAsT 2020 as a strong baseline (Lin et al.,
2020a). Auto and auto-canonical CAsT 2020 baselines use base T5 and
large T5, respectively, followed by a monoT5 re-ranker. External baseline
systems also use a combination of neural and spare retrieval to improve
system recall (Lin et al., 2020a, 2020b). The external baselines are cur-
rent state-of-art for the CAsT 2020 dataset. More detailed performance
analysis of the external baselines were unavailable for t-testing as only
the averaged performance measures are released for all baselines.

We evaluated the system performance using Recall@1000 for
retrieval. We used NDCG@3 as the main evaluation metric as well as
MAP@1000 for post re-ranking evaluation (Dalton et al., 2020b).

5. Experimental evaluation and results

In this section, we present the results of our experiments to answer the
respective research questions. First, we explore the results of T5-CQR
without QCS for query selection to address RQ1 where the perfor-
mance of the two sentence selection models is explored. After that, the
performance of T5-CQR with query selection is presented, which ad-
dresses RQ2 and whether using QCS for query selection improves system
performance. Next we address RQ3 and explore how BERT-TC performs
compared to T5-CQR. RQ4 is addressed where rank-based fusions of
retrieved lists of passages are investigated. For RQ5, duoT5 is used on the
systems to explore the benefits of multi-stage re-ranking. Finally, we
analyze the performance of the best system at different turn depths in the
conversation.

5.1. T5-CQR without query selection (RQ1)

First, we explore system performance without using clarity measures
for query selection. As our internal baselines, we have the following auto
systems: CQR-HC and CQR-RHC. We also experimented with NSP or QA
for sentence selection for T5-CQR, resulting in four auto-canonical sys-
tems: CQR–HC–QA, CQR–HC–NSP, CQR-RHC-QA, and CQR-RHC-NSP.
We also experimented with two versions of the T5 model for CQR,
Base and Large. Results of all variants are reported in Table 4.

The results reveal that using NSP for sentence selection yielded better
performance than QA by an average NDCG@3 of 3.3% for both base and
large T5. Also, overall, sentence selection (alone) did not exhibit better
performance to the auto systems. At best, using NSP yielded comparable
performance with the auto systems only when using large T5. Expectedly,
using the large T5 model boosted the performance relative to base T5.
However, the computational cost of using large T5 should be considered;
base T5 still significantly improves over simply using the raw turns and is
more efficient than large T5. Finally, our auto baselines, CQR-HC and
2 https://github.com/castorini/anserini.
3 https://github.com/castorini/pygaggle.



Table 4
Performance of auto and auto-canonical systems without query selection.

CQR Retrieval MonoT5 Re-Ranking

R@1000 MAP@1000 NDCG@3

Raw Turn 0.271 0.125 0.208

CAsT Best Auto 0.668 0.330 0.452
CAsT Best Auto-Canonical 0.724 0.363 0.494

(with Base T5)

CQR-HC 0.547 0.286 0.444
CQR-RHC 0.565 0.295 0.442
CQR–HC–QA 0.523 0.273 0.411
CQR-RHC-QA 0.531 0.272 0.418
CQR–HC–NSP 0.546 0.280 0.432
CQR-RHC-NSP 0.546 0.274 0.424

(with Large T5)

CQR-HC 0.588 0.309 0.480
CQR-RHC 0.578 0.300 0.463
CQR–HC–QA 0.584 0.305 0.463
CQR-RHC-QA 0.597 0.306 0.469
CQR–HC–NSP 0.604 0.307 0.480
CQR-RHC-NSP 0.614 0.314 0.483
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CQR-RHC outperform the best CAsT auto system in NDCG@3 by margins
of 6.2% and 2.4%, respectively.
Table 6
Term classification results.

Included History Retrival MonoT5 Re-Ranking

R@1000 MAP NDCG@3

Raw Turn 0.271 0.125 0.208
CAsT Best Auto 0.668 0.330 0.452
5.2. T5-CQR with query selection (RQ2)

Table 5 presents the performance of our best auto-canonical systems
from the earlier results (i.e., using NSP for sentence selection) but now
using the proposed clarity measures for query selection. The results show
that the proposed query selectionmethod improved the overall NDCG@3
performance using both BM25-CL and IDF-CL clarity scores relative to
their respective systems leveraging no query selection. The results of a
paired t-test shows that the addition of the BM25-CL clarity score pro-
vided a statistically significant improvement over the system without
query selection (CQR-HC); t(207) ¼ -2.19, p ¼ 0.029. Moreover, BM25-
CL with CQR–HC–NSP yielded an NDCG@3 score of 0.506, which
slightly outperforms the best CAst 2020 auto-canonical system, while
IDF-CL exhibited comparable performance to that baseline. It is worth
noting that CAsT 2020 auto-canonical baselines uses large T5 and a
combination of dense and sparse retrieval. Our system achieves compa-
rable results with only large T5 and a traditional sparse BM25 retrieval
system with the application of QCS.

This shows that combining both sentence selection from canonical
responses and query selection is effective and continuously considering
the canonical responses in the context is not optimal. Also, IDF-CL is more
computationally efficient than the other measures, as it does not require
the issuance of an additional search query. Moreover, using a paired t-
test, we found no statistically significant difference between the systems
using BM25-CL and IDF-CL, giving an advantage to IDF-CL; t(207) ¼
Table 5
Auto-canonical results with QCS using large T5.

Query Selection Retrieval MonoT5 Re-Ranking

R@1000 MAP NDCG@3

CAsT Best Auto-Canonical 0.724 0.363 0.494

CQR–HC–NSP 0.604 0.307 0.480
CQR-RHC-NSP 0.614 0.314 0.483

CQR–HC–NSP (BM25-CL) 0.636 0.331 0.506
CQR-RHC-NSP (BM25-CL) 0.621 0.320 0.491
CQR–HC–NSP (nBM25-CL) 0.583 0.306 0.471
CQR-RHC-NSP (nBM25-CL) 0.582 0.304 0.465
CQR–HC–NSP (IDF-CL) 0.628 0.325 0.495
CQR-RHC-NSP (IDF-CL) 0.624 0.324 0.493
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1.93, p ¼ 0.055. Finally, nBM25-CL surprisingly degraded performance
compared to its non-normalized version, which indeed needs further
investigation. The results of this experiment show the ability of QCS at
creating a more selective system to improve performance without addi-
tional complexity.
5.3. Query reformulation (T5-CQR) vs. term classification (BERT-TC)
(RQ3)

Performance of the proposed BERT-TC model is shown in Table 6.
Again we will consider auto systems, denoted TC–HC–I, and auto-
canonical systems, TC-S-I. The auto-canonical systems use both NSP
and QA for sentence selection referenced by S. I refers to the amount of
history included during term classification. “1st” uses only the first turn
in the conversation as context. “ALL” uses all historical turns in the case
of TC–HC–ALL, and all turns and response sentences for TC-S-ALL.
TC–HC–PREV-d and TC-S-PREV-d refer to history clipped to d previous
turns, or turns and responses, respectively.

As Table 6 shows, the best auto-system is TC–HC–PREV-4 while the
best auto-canonical system is TC-NSP-PREV-5. Generally, NSP performed
better than QA for sentence selection. Overall, the performance of the
two systems is comparable, and the exclusion or inclusion of responses
did not provide a major difference in performance. NDCG@3 of the
systems vary depending on how much history is included in context. We
can see peak performance at around turn depth 4 and 5 for auto and auto-
canonical systems, respectively. Adding too much context introduces
noise into the dialogue, as can be seen by looking at “ALL” included
history for both system categories. For example, topic 85 turn 4 asks what
license is needed to start a food truck business. The manually resolved
turn is “What licenses and permits are needed for a food truck?”. This
turn was better resolved using TC–HC–PREV-4 as “What licenses and
permits are needed? pimped food truck”. However, the model using all
historical turns TC–HC–ALL resolved it as “What licenses and permits are
needed? lamborghini”. It failed to resolve the main topic; “food truck”
and introduced an off-topic keyword “lamborghini”.

The model did resolve missing context when compared to the raw
turn baseline. However, as expected, the larger T5-CQR model achieved
better results. CQR–HC–NSP(BM25-CL) outperformed TC-NSP-PREV-5
by a margin of 27.5%. While BERT-TC is more computationally effi-
cient compared to T5, both in training and execution, the balance be-
tween cost and performance should be considered depending on the
system's application and available resources.
(Auto-System)

TC–HC–1ST 0.518 0.247 0.389
TC–HC–ALL 0.518 0.246 0.391
TC–HC–PREV-3 0.518 0.249 0.391
TC–HC–PREV-4 0.518 0.248 0.395
TC–HC–PREV-5 0.518 0.244 0.386

(Auto-Canonical System)

CAsT Best Auto-Canonical 0.724 0.363 0.494

TC-NSP-ALL 0.563 0.249 0.375
TC-NSP-PREV-3 0.518 0.246 0.390
TC-NSP-PREV-4 0.518 0.250 0.392
TC-NSP-PREV-5 0.518 0.249 0.397
TC-QA-ALL 0.518 0.232 0.378
TC-QA-PREV-3 0.518 0.247 0.388
TC-QA-PREV-4 0.518 0.244 0.384
TC-QA-PREV-5 0.518 0.247 0.392



Table 8
DuoT5 re-ranked results.

Retrieval DuoT5 Re-Ranking

R@1000 MAP NDCG@3

CAsT Best Auto 0.668 0.330 0.452
CAsT Best Auto-Canonical 0.724 0.363 0.494

CQR-HC 0.588 0.314 0.499
CQR-RHC-NSP 0.603 0.312 0.494

CQR–HC–NSP(BM25-CL) 0.636 0.338 0.524
CQR-HCþNSP(Fusion) 0.669 0.347 0.528
CQR-HCþNSPþTC(Fusion) 0.705 0.355 0.537
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5.4. Rank fusion (RQ4)

In order to further improve the performance and explore the effec-
tiveness of QCS, rank fusion and multi-model fusion are applied. Table 7
starts with CQR–HC–NSP(BM25-CL) as the baseline system to compare
with rank fusion systems, in addition to the two best CAsT runs.

To explore the effectiveness of BM25-CL as a query selection method,
we compare how the system would perform if the retrieved passages
were simply combined instead of using BM25-CL. CQRHCþNSP(Fusion)
combines the passages retrieved from both query versions using our best
auto and auto-canonical systems; CQR-HC and CQR-RHC-NSP. This sys-
tem achieved an NDCG@3 of 0.505 after monoT5 re-ranking. Paired t-
test analysis shows the performance of the two systems are not statisti-
cally different; t(207) ¼ -0.29, p ¼ 0.77. However, using BM25-CL is
more efficient than CQR-HCþNSP(Fusion) since only one query is issued
during retrieval instead of two. Fewer passages will also be passed on to
the re-ranker reducing computational time and cost significantly.

The last row in Table 7 fuses three different lists of retrieved passages.
It combines the top two CQR systems, CQR-HC and CQR-RHC-NSP, with
the best performing BERT-TC system as multi-model fusion. As expected,
fusing improved R@1000 to 0.705. This resulted in a higher achieved
NDCG@3 score of 0.513. The improvement is due to the higher recall
before re-ranking. However, the t-test results shows no significant dif-
ference between this system and CQR–HC–NSP(BM25-CL); t(207) ¼
-1.64, p¼ 0.10. This shows again that using the proposed query selection
method BM25-CL produced comparable results with a more computa-
tionally efficient system. This final result is an 3.8% improvement in
NDCG@3 over the 2020 best CAsT submission. CAsT 2020 best auto-
canonical uses large T5, dense and spares retrieval, and monoT5 re-
ranking. By including QCS and multi-model fusion, we were able to
outperform the baseline even with a less sophisticated retrieval system.
5.5. DuoT5 Re-ranking (RQ5)

As a final step to further improve NDCG@3, duoT5 re-ranking is
applied to some of our best performing systems. Table 8 displays
NDCG@3 score after the final duoT5 re-ranking stage. Since duoT5 is so
computationally expensive, it is applied here selectively to re-rank only
the top 100 passages.

We observe that the duoT5 re-ranking stage does indeed improve
results over just using monoT5. After this final stage, NDCG@3 of
CQR–HC–NSP(BM25-CL) is further improved to 0.524 and CQR-
HCþNSPþTC(Fusion) to 0.537. This result is an 8.7% improvement over
the 2020 best CAsT submission. However, paired t-test shows that the
differences in CQR-HCþNSPþTC(Fusion) after duoT5 are not statistically
significant compared to their monoT5 versions; t(207) ¼ -1.84, p ¼
0.068. This shows that even though duoT5 did improve final NDCG@3,
using monoT5 still achieves good results but with a much more compu-
tationally efficient system.

We include two internal baselines to compare the benefits of QCS and
multi-model fusion with duoT5 re-ranking. The baselines are the CQR-HC
auto system, and the CQR-RHC-NSP auto-canonical system. Both these
internal baselines leverage no query selection or fusion. We can observe
after duoT5 re-ranking, CQR-HC and CQR-RHC-NSP achieve an
Table 7
Rank fusion results compared with baselines.

Retrival MonoT5 Re-Ranking

R@1000 MAP NDCG@3

CAsT Best Auto 0.668 0.330 0.452
CAsT Best Auto-Canonical 0.724 0.363 0.494

CQR–HC–NSP(BM25-CL) 0.636 0.331 0.506

CQR-HC þ NSP(Fusion) 0.669 0.338 0.505
CQR-HC þ NSP þ TC(Fusion) 0.705 0.347 0.513
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NDCG@3 of 0.499 and 0.494, respectively. The two baselines did not
outperform the systems using QCS and multi-model fusion. BM25-CL and
multi-model fusion score an NDCG@3 of 0.506 and 0.513, respectively,
after only monoT5 re-ranking. This emphasizes the benefits of these so-
lutions as compared to the much more computationally expensive duoT5
re-ranker.
5.6. Depth analysis

Fig. 5 illustrates our systems’ average performance at different depths
in the conversations used for testing. Fig. 5a presents the distribution of
the conversations over different sizes measured by the number of turns. It
shows a relatively uniform distribution of conversations of sizes 1 to 8,
with fewer sizes 9 and above. This indicates that average performance at
turns 1–9 is more indicative and reliable. Examining the behavior at
different depths, as depicted in Fig. 5b, shows that our system exhibit
relatively stable performance in the middle turns (2nd to 9th), after an
initial drop at the first turn, indicating that our method is consistently
resolving queries. Better performance at deeper turns indicates that the
system is better at interpreting context. Since later turns are relatively
few, the shown performance is unstable but not indicative.

6. Discussion and implications

After analyzing the experimental results, it can be observed that for
both T5-CQR and BERT-TC, always excluding or including responses did
not yield a great improvement in performance. For RQ1, we explored two
response sentence selection models. Of the two, BERT pre-trained for
next sentence prediction proved to be better than T5 pre-trained for
question answering. Existing trained models can efficiently be used to
select response sentences without additional training costs. To answer
RQ2, query clarity score was proposed to determine when to use re-
sponses for query reformulation. Using the BM25 score of the top passage
proved to be an effective query selection method. QCS improved system
performance by creating a more selective system with BM25-CL clarity
score or the more efficient pre-retrieval score IDF-CL.

Answering RQ3 shows that T5-CQR does outperform BERT-TC for all
system variants, but it is much more computationally expensive.
Deciding which system to use can depend on training data and compu-
tational power availability. BERT-TC remains a valid solution, as it still
restores context compared to the raw turn baseline. For RQ4, we
compared rank fusion to the proposed query clarity score. Using query
clarity score, turn responses might be included or excluded, yielding a
more selective model. This improved overall NDCG@3 and produced a
system comparable to the proposed rank fusion method while still being
the more efficient approach. However, the multi-model fusion method
performed better than all system variants. Finally, while duoT5 re-
ranking exhibited a better performance, it was not significantly
different from monoT5, which is more efficient. We found that even
without duoT5, both QCS and multi-model fusion outperformed base-
lines, even with external baseline having a more powerful retrieval sys-
tem. Internal baselines without these two new approaches could not beat
their performance even with added duoT5 re-ranking.



Fig. 5. Comparison of system at different turn depths.

Table 9
Turns with improved NDCG@3 after response inclusion.

Turn
ID

T5-CQR without response (CQR-HC) T5-CQR with response (CQR-
RHC-NSP)

89_10 What are examples of plants that are
predators?

What are examples of apex
predators?

97_3 What are notable games between the
Ravens and Steelers?

And notable moments in the
rivalry of the Ravens and
Steelers?

103_6 What was The Dead's relationship to
the Airplane?

What was Jerry Garcia's
relationship to the Airplane?

104_6 How did the Information Retrieval
researchers' studies influence modern
initiatives?

How did Cyril Cleverdon's
experiments influence modern
initiatives?

Table 10
Turns with improved NDCG@3 without response inclusion.

Turn
ID

T5-CQR without response (CQR-HC) T5-CQR with response (CQR-
RHC-NSP)

93_3 Is there any financial support for the
fee to open a Burger King franchise?

Is there any financial support for
the 4.5 percent royalty fee?

98_8 How do you make the flour from
almonds?

How do you make the flour in the
recipe?

101_4 How old is Melania Trump's son? How old is Donald Trump?
102_8 Can social security be fixed? Can Social Security checks

stopping coming via mail be
fixed?

Table 11
Turns incorrectly selected by QCS.

Turn
ID

T5-CQR without response
(CQR-HC)

T5-CQR with response (CQR-RHC-NSP)

86_4 What was the impact of the
2002 games on Salt Lake City?

What was the impact of the 2002
Olympics?

87_9 How do navels compare with
blood oranges?

How do Hamlin variety of orange
trees compare with blood oranges?

91_8 What are the symptoms of
social network privacy
addiction?

What are the symptoms of social
network addiction?

96_6 Tell me other fun things to do
in Tokyo besides Yakiniku.

Tell me other fun things to do in Tokyo
besides eating at three star Michelin
sushi restaurants.
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To better investigate the effects of response sentence inclusion in T5-
CQR, we explore NDCG@3 score of each turn. Out of the total 216 turns
in CAsT 2020, 151 (69.9%) turns are reformulated into the same exact
turn regardless of whether response sentences were included into T5-
CQR or not. When comparing each reformulated turn with its counter-
part reformulated with response sentence, we observe that 32 (14.8%)
turns performed better with response sentence inclusion. Inversely, 31
(14.6%) turns performed better without the response sentence included
into conversation history.

Table 9 displays some examples of turns that performed better with
the response sentence included into T5-CQR input. The turns are labeled
with “Turn ID” composed of their topic number and turn number in the
CAsT 2020 dataset. As can be seen, these turns reformulated with
response (sampled from the CQR-RHC-NSP system) more precisely name
the turn subject when compared to the turns reformulated without
response (sampled from the CQR-HC system). For example, turn 103_6
specifically names “Jerry Garcia” instead of the more vague “The Dead”,
which refers to the band as a whole not the person the user is asking
about. This is because in these cases, the subjects being referred to in the
turns were mentioned directly in the responses and not in the previous
turns of the conversations.

On the other hand, sometimes the inclusion of the response sentence
resulted in a degraded performance for some turns. In Table 10 we show
some examples of such turns. The system added off-topic words extracted
from the responses into the reformulated turns. For example, turn 101_4
included “Donald Trump”, because he was named in the selected
response sentence. The original raw turn “How old is he?” was referring
to Melania's son, not Donald Trump. Similarly, in the other examples, T5-
CQR model injected very specific keywords from the response sentences
instead of simply considering the broader conversation topic.

To resolve this issue, QCS was employed to predict the better per-
forming turn. Using BM25-CL, we were able to dynamically employ the
two methods to achieve better average performance. For the above ex-
amples, QCS was able to select the better performing turn in all of them
except for turn 102_8. For that turn, the QCS function incorrectly pre-
dicted “Can Social Security checks stopping coming via mail be fixed?” as
the better performing query. Overall, QCS incorrectly predicted the
better performing turn for a total of 19 queries (9.1%). This is still better
than the 14.8% and 14.6% for retrievals without response and with
response respectively. However, there is still room for further improve-
ment. Table 11 shows some example turns where QCS using BM25-CL
failed to predict the better performing query.

Implementing multi-model fusion to merge retrievals from trained T5
and BERT models proved to be the most effective system. This is fasci-
nating behavior given that on its own BERT-TC was under-performing
10
compared to T5-CQR. However, combining the two increased system's
context-awareness and outperformed CAsT 2020 state-of-art. This in-
troduces opportunities of exploring more combinations of pre-trained
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models with different architectures and training data in a novel way.
Instead of merely having models compete against each other, we can
create systems that leverage the strengths of different models to better
represent user information need. This opens many possibilities for new
model fusions to test in the future.

There are many other implications that can be concluded concerning
CQR such as:

● Available pre-trained models such as BERT for NSP can be used as
response sentence selection methods for CQR.

● Using seq2seq models such as T5-CQR generally outperforms smaller
models such as BERT for term classification. However, appropriate
training data is not always available for such models, so finding
creative solution using smaller models is still valuable.

● Not all turns benefit form including responses. Using a simple query
clarity score function is effective at determining whether to use a
response for CQR during retrieval to produce a more selective system.

● Combiningmultiple lists of retrieved passages from two different fine-
tuned models using multi-model fusion improves the system perfor-
mance. It indicates that query variations from the two models better
represent the user's information need.

7. Conclusion and future work

Ensuring context-awareness throughout a conversation is essential for
any conversational search system. This paper proposed solving this
problem using a T5-CQRmodel that incorporates previous responses into
historical context selectively using a query clarity score function.
Selecting what response to include is also important since long responses
can introduce topic shifts and degrade performance. Two response se-
lection models are explored, and BERT for next sentence prediction was
the better performing one. We also explored restoring context as a term
classification problem using BERT-TC. This model is more computa-
tionally efficient and requires less training data, however, T5-CQR out-
performed it. Multi-model fusion was also used to combine multiple lists
of retrieved passages from different pre-trained models and was found to
improve recall thus improving NDCG@3; however, using query clarity
score produced a comparable system with a more efficient method.

Some limitations and future work can be addressed as well. Some
more exciting training solutions can be introduced to our BERT-TC
model. Weak supervision solutions can be explored to incorporate both
turns and responses into the training step.We leave as future work amore
detailed examination of multi-model fusion techniques and model com-
binations. Different models can be tested using multi-model retrieval to
explore how different models with varying architectures and training
data add to user information need representation. We also aim to
improve passage retrieval using more sophisticated techniques to in-
crease recall@1000 and MAP, such as dense retrieval. Detecting topic
shifts and applying more advanced turn classification techniques can also
be explored by training a model on manually-labeled turns. Finally,
response sentences can be extracted from retrieved passages to possibly
create a more realistic scenario than using the canonical response pro-
vided by CAsT.
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