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ABSTRACT
The RAF1–RAP1A interaction activates the MAPK/ERK pathway which is very crucial in the carcinogenesis process. This pro-
tein complex influences tumor formation, proliferation, and metastasis. Understanding aberrant interactions driven by clinical 
mutations is vital for targeted therapies. Hence, the current study focuses on the screening of clinically reported substitutions in 
the RAF1 and RAP1A genes using predictive algorithms integrated with all-atoms simulation, essential dynamics, and binding 
free energy methods. Survival analysis results revealed a strong association between RAF1 and RAP1A expression levels and 
diminished survival rates in cancer patients across different cancer types. Integrated machine learning algorithms showed that 
among the 134 mutations reported for these 2 proteins, only 13 and 35 were classified as deleterious mutations in RAF1 and 
RAP1P, respectively. Moreover, one mutation in RAF1 reported elevated levels of binding between RAF1 and RAP1P while in 
RAP1A, 7 mutations were reported to increase the binding affinity. The high-binding mutations, P34Q and V60F, were subjected 
to protein–protein coupling which confirmed the increase in the binding affinity. Wild-type and mutant RAF1–RAP1P bound 
complexes were subjected to molecular simulation investigation, revealing enhanced structural stability, increased compactness, 
and stabilized residue fluctuations of the mutant systems in contrast to the wild-type. In addition, hydrogen bonding analysis re-
vealed a variation in the binding paradigm which further underscores the impact of these substitutions on the coupling of RAF1 
and RAP1A. Principal component analysis (PCA) and free energy landscape (FEL) evaluation further determined dynamical 
variations in the wild-type and mutant complexes. Finally, the Gibbs free energy for each complex was estimated and found to 
be −71.94 ± 0.38 kcal/mol for the wild-type, −95.57 ± 0.37 kcal/mol for the V60F, and −85.76 ± 0.72 kcal/mol for P34Q complex. 
These findings confirm the effect of these variants on increasing the binding affinity of RAF1 to RAP1P. These mutations can 
therefore be targeted for cancer therapy to modulate the activity of the MAPK/ERK signaling pathway.
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1   |   Introduction

Cancer is a major threat to public health globally both in de-
veloped and developing countries. The number of deaths linked 
to cancer is on the rise worldwide with every passing day and 
an expected increase of about 45% proliferation of cancer in-
cidences has been predicted between 2010 and 2030. Among 
cancer types, pancreas, lung, and liver cancers have the highest 
contribution to cancer mortality [1, 2].

Cellular signaling pathways play a dominant and vital role in 
vital cellular processes, such as differentiation, proliferation, 
and survival. Dysregulation and alterations in these pathways 
lead to tumor formation, proliferation, and metastasis; which is 
a hallmark of cancer [3]. In cancer initiation, spread, and metas-
tasis numerous signaling cascades have been reported, however, 
the Mitogen-Activated Protein Kinase (MAPK)–Extracellular 
Signal-Regulated Kinase (ERK) pathway has a central role in 
oncogenic transformation [4].

The role of RAF1 (Raf-1 Proto-Oncogene, Serine/Threonine 
Kinase) is a promising therapeutic target because it acts as a 
mediator, phosphorylating downstream targets such as MEK 
and ERK and passing extracellular signals to intracellular ef-
fectors [5]. In cancer patients, abnormal and aberrant RAF1 
activation is associated with tumor growth and the devel-
opment of therapy resistance. RAP1A (Ras-Related Protein 
Rap-1A) operates as an important regulator for cell invasion, 
migration, and adhesion in addition to promoting tumor me-
tastasis [6]. RAP1A switches between GDP or GTP-bound 
states and acts as a molecular switch that regulates the cellu-
lar activity of downstream effectors. The interaction of RAF1 
with RAP1A and its signaling cascade has an essential role 
in the regulation of cellular proliferation and migration, and 
facilitates cellular responses including restructuring the cy-
toskeletal and regulating the gene expression levels [7]. The 
recent accumulation of vast genomic data identified a wide 
range of genetic variants, such as single-nucleotide polymor-
phisms (SNPs) inside key signaling proteins. These mutations 
have a considerable impact on protein function and cellular 
activity [8]. However, the essential functional implications of 
RAP1A SNPs and their role in malignancies like cancer are 
not fully understood.

In this study, we wanted to know how RAP1A SNPs affected 
its interaction with RAF1 and their role in cancer susceptibility 
and development. We employed computational modeling, struc-
tural analysis, and functional experiments to investigate the ef-
fects of nonsynonymous RAP1A mutations on protein–protein 
interactions (PPI) and downstream signaling. In addition, we 
examined clinical data from cancer patient cohorts to assess 
the link between disruptive RAP1A SNPs and patient outcomes. 
Our research looks at the molecular mechanisms behind can-
cer's deregulation of the RAF1–RAP1A signaling axis using a 
multidisciplinary approach that combines bioinformatics, struc-
tural biology, and computational biology. Understanding the in-
teraction of genetic variations and PPIs in cancer development 
holds promise for discovering prognostic markers and therapeu-
tic targets, paving the way for customized oncology treatments. 
As a result, we evaluated the effect of recently found RAP1A 

protein mutations on RAP1A's capacity to bind to RAF1. To 
examine the interaction paradigm and decipher the mutations-
driven dynamic effect we molecular docking, protein–protein, 
and all-atoms simulations to identify the binding network be-
tween RAP1A and RAF1 and docking results in a dynamic 
environment. The current study is unique in that it is the first 
to conduct a wide-ranging computer simulation of these com-
plexes, that will help in elucidating the subsequent impact of the 
shortlisted substitutions and can be used for precision therapeu-
tics development.

2   |   Methods

2.1   |   Survival Analysis and RAF1–RAP1A Complex 
Retrieval

The survival and expression of individual genes against cancer 
with a possible effect on RAF1 and RAP1A were checked on 
different algorithms such as the Kaplan–Meier plotter (https://​
kmplot.​com/​analy​sis/​) [9], and the interaction gene expression 
profiling database, that is, GEPIA2 were assessed (http://​gepia2.​
cance​r-​pku.​cn/#​survival) [10]. This tool is useful in analyzing 
clinical trials data as well as observational data linked with an 
event. GEPIA2 containing 9736 tumors and 8587 normal sam-
ples is a web-based tool utilized for RNA sequencing expres-
sion data analysis obtained from the TCGA and GTEx projects 
[11, 12]. The data of the human RAP1A gene was submitted to 
the gnomAD database (https://​gnomad.​broad​insti​tute.​org/​) to 
obtain experimentally reported SNPs of this gene [13]. The 3D 
structural coordinates of RAF1 and RAP1A were collected from 
the Protein Data Bank (http://​www.​rcsb.​org/​) [14]. The com-
plete steps and workflow of this study are shown in Figure 1.

2.2   |   Mapping the Structurally and Functionally 
Significant nsSNPs

Functionally, the impact of any substitution in a protein structure 
driven by non-synonymous SNPs (nsSNPs) can be determined 
by using various algorithms such as PredictSNP [15], MAPP 
[16], PhD-SNP [17], PolyPhen-2 [18], PANTHER [19], and SIFT 
[20] that are deployed online for the public use. The detrimen-
tal nsSNPs predicted by the collective approach employing the 
aforementioned algorithms were shortlisted. The PredictSNP 
server integrated different computational algorithms (https://​
losch​midt.​chemi.​muni.​cz/​predi​ctsnp1/​) and combines data 
from experimental annotations in the pre-deployed databases to 
predict the impact of nsSNPs. Furthermore, MAPP web tool ac-
cessible at (http://​mendel.​stanf​ord.​edu/​Sidow​Lab/​downl​oads/​
MAPP/​) was used for the functional impact prediction. The 
disease-causing nsSNPs were obtained from the list by using 
PhD-SNP (https://​snps.​biofo​ld.​org/​phd-​snp/​phd-​snp.​html) and 
PolyPhen-2 (http://​genet​ics.​bwh.​harve​st.​edu/​pp2) which uses a 
criterion of 0 to 1 which provides a numerical score from 0 to 1, 
with higher scores are the indications functional variations as-
sociated with an amino acid change. Similarly, the SIFT (Sorting 
Intolerant from Tolerant) (http://​sift.​bii.​a-​star.​edu.​sg) is also 
helpful in producing the results that cause functional variants 
due to a mutation in a particular protein.
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2.3   |   Exploring the Structural Stability Impact 
of RAP1A Mutations

The change in flexibility and stability of protein structure due 
to highly deleterious mutations was checked on the DynaMut2 
(https://​biosig.​lab.​uq.​edu.​au/​dynam​ut/​) web server [21]. 
Mutations deemed as highly damaging were subjected to struc-
tural stability assessment. The results of the DynaMut were 
used to identify the best mutations which were subsequently 
used for affinity variations between RAF1 and RAP1A using 
mCSM-PPI2 (https://​biosig.​lab.​uq.​edu.​au/​mcsm_​ppi2/​) [22]. 
Utilizing a machine learning technique, this server employs 
graph-based structural signatures, mCSM, offering a precise 
and scalable means to forecast mutations' function association 
and enhancing the understanding of mutation molecular mech-
anisms by exploring the inter-residue non-covalent interaction 
network. This is achieved through the integration of graph ker-
nels, evolutionary insights, complex network metrics, and ener-
getic considerations.

2.4   |   Variant Modeling and Docking of RAF1 
With RAP1A

RAF1–RAP1A (PDB ID: 1C1Y) co-crystal structure was 
downloaded from the PDB and was subjected to an en-
ergy minimization step carried on the Chimera software 
[23]. With the help of this software, highly detrimental and 

affinity-increasing mutations in the RAF1–RAP1A complex 
were modeled. The superimposition of the wild-type and mu-
tant RAF1–RAP1A structures was performed for RMSD dif-
ferences calculation. Molecular docking is used for the binding 
of molecules with specific 3D orientation and was performed 
by using the HADDOCK server (https://​wenmr.​scien​ce.​uu.​
nl/​haddo​ck2.4/​) to assess the mutations' impact on the bind-
ing affinity of RAF1 and RAP1A [24]. HADDOCK stands out 
from ab  initio docking methodologies by incorporating data 
from known or predicted interfaces of different proteins into 
ambiguous interaction restraints (AIRs) to guide the docking 
procedure. Additionally, it assists the description of specific 
unambiguous distance restraints such as MS cross-links and 
accommodates various other experimental data types such 
as NMR residual dipolar couplings, pseudo contact shifts, 
and cryo-EM maps. HADDOCK is versatile and capable of 
addressing a wide range of modeling challenges, such as bi-
ological macromolecules, including assemblies with multiple 
bodies (N > 2).

2.5   |   Molecular Dynamics Simulation

Mutations that were reported to destabilize the protein structures 
as well as significantly affect the binding were used for further 
validations to decipher variations in the dynamic properties of 
each protein by using molecular simulations with the AMBER23 
tool using the ff19SB as suggested by previous studies [11, 12]. For 

FIGURE 1    |    Systematic workflow of the study.
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the solvation process, an OPC water box was used (with a cut-off 
of 10.0 Å), whereas neutralization was achieved by the addition 
of sodium ions. Complexes were passed through a two-step min-
imization process with the help of reported protocols. RAP1A 
protein was subjected to 300 ns simulation and 500 ns simula-
tion was performed for the complexes using constant tempera-
ture and pressure achieved Langevin thermostat set at 300 K and 
1 atm, respectively. Computation of long-range interactions was 
ascertained by the particle mesh Ewald (PME) algorithm with a 
cut-off distance of 10 Å, and the SHAKE algorithm was used for 
covalent bonds involving hydrogen [25–27]. We executed a 50 ns 
equilibrium for each complex. The GPU-accelerated PMEMD-
CUDA was utilized to process the simulations. For the calcula-
tions of structural stability, we used root mean square deviation 
(RMSD) a well-known parameter for calculating the stability of a 
protein in a dynamic condition, RMSF or root mean square fluc-
tuation (RMSF) to index the flexibility level of different residues 
and hydrogen bonding analysis over the simulation time, while 
for the protein size determination during the simulation, the ra-
dius of gyration (Rg) was computed [28, 29].

2.6   |   Binding Free Energy Calculation

MM/GBSA approach is very useful for the determination of the 
binding free energy (BFE) for wild-type and mutant complexes. 
Previously this approach has provided reliable results related to 
BFE for various biological systems [30–33]. To calculate the BFE 
we executed the MMPBSA.py script [34] using the following 
equation.

where ΔGbind is the total binding energy, ΔGcomplex is the binding 
energy protein–ligand complex, ΔGreceptor is the binding energy for 
receptor only, and ΔGligand is the binding energy for ligand only.

Each component was then individually characterized and cal-
culated to provide further insights into each contributing factor.

where ΔGbond signifies the binding, ΔGele shows the electrostatic 
contribution, ΔGvdw shows the Van Der Waals contribution, 
ΔGpol shows the polar contribution, and ΔGnpol shows the non-
polar contribution.

2.7   |   Principal Component and Free Energy 
Landscape Analysis

The fluctuation in the protein structure was captured by prin-
cipal component analysis (PCA). Cα coordinates were used for 
computing a covariance matrix by using the CPPTRAJ package, 
whereas eigenvectors and eigenvalues were obtained by diago-
nalization of this matrix. The eigenvectors are used for motion 
directions and eigenvalues are used for the extent of mean square 
fluctuation. The protein's motion was traced by PC1 and PC2 
[35–37]. A mathematical representation given in Equation  (3) 
was used to estimate the covariance matrix (C) from a set of n-
dimensional vectors (xi):

where, N stands for total vectors, μ signifies a vector, while T 
defines the transpose operation.

Similarly to eigenvectors (V) and eigenvalues (λ) of the covari-
ance matrix C the equation given (4) can be used.

where V is the eigenvector matrix and λ is the diagonal matrix 
of eigenvalues.

The principal components of the system are denoted by the ei-
genvectors with the highest corresponding eigenvalues. In the 
FEL, stable low-energy states are represented by deep valleys on 
the plot, while intermediate states are depicted by the boundar-
ies between these valleys.

3   |   Results and Discussion

3.1   |   Survival and Expression Analysis of RAF1 
and RAP1A in Normal and Cancerous Cells

The Kaplan–Meier (KM) Plotter determines the correlation 
among genes and protein expression (such as Protein, miRNA, 
and mRNA) and survival results in a bulky dataset encompass-
ing over 30 000 samples across 21 different types of tumors. 
Its main objective is to facilitate the finding and validation of 
biomarkers capable of predicting survival outcomes through 
meta-analysis in cancer patients. To examine the relationship 
between RAF1 and RAP1A expression intensities in tumor tis-
sues and cancer patient prognoses, we explored survival anal-
yses across the pan-cancers. Utilizing three distinct databases, 
and then evaluated the survival data. The results of survival 
analyses from the KM-Plotter indicated that altered expressions 
of these genes are linked to reduced survival rates across dif-
ferent cancer types. Similarly, analyses using the GEPIA2 data-
base revealed expression variations of RAF1 and RAP1A among 
the cancer types assessed. Our analysis highlights a strong as-
sociation between RAF1 and RAP1A expression levels and di-
minished survival rates in cancer patients across the different 
cancer types (Figure 2a–d).

3.2   |   Screening of Deleterious Clinical 
Substitutions in RAF1

We retrieved a total of 62 clinical variants of RAF1 protein 
among which only 13 were classified as deleterious by a con-
sensus outcome of multiple algorithms. These 13 substitutions 
include V60F with the PredictSNP score of 0.869, R111C (0.506), 
R59H (0.719), D129V (0.719), N56H (0.506), R59C (0.655), F61L 
(0.549), P63L (0.869), R67T (0.719), R73Q (0.605), G75R (0.756), 
V98A (0.607), and D117V (0.719). These mutations were further 
explored for their potential impact on the binding of RAF1–
RAP1A complex and aberrant function. The selected mutations 
are summarized in Table 1.

(1)ΔG(bind) = ΔG(complex) −
[

ΔG(receptor) + ΔG(ligand)
]

(2)G = Gbond + Gele + GvdW + Gpol + Gnpol

(3)C =
1

N
×

∑

(i = 1 to N)
[

(xi − �
)

×
(

xi−�
)T
]

(4)C × V = � × V
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3.3   |   Screening of Deleterious Clinical 
Substitutions in RAP1A

The mutational screening of RAP1A clinical substitutions re-
vealed 35 mutations, among the 134 identified, as deleterious 
and led to functional variations. The top 10 deleterious mutations 

as per the PredictSNP scores include R2C (0.756), V7M (0.869), 
G12V (0.869), V14I (0.869), A18V (0.869), L19Q (0.869), Q22L 
(0.869), D33Y (0.869), P34Q (0.869), and P34L (0.869). These mu-
tations affect the structure and function of RAP1A in a manifold 
compared with the others. The predicted 35 deleterious muta-
tions are summarized in Table 2.

FIGURE 2    |    The part figures (a) and (b) show survival and expression plots for RAF1, while (c) and (d) show the survival and expression plots for 
RAP1A. The figures were obtained from GEPIA2 and ProteinATLAS.

TABLE 1    |    List of deleterious mutations predicted through various machine learning algorithms for the RAF1 protein.

Mutation
Consensus 

outcome
Predict 

SNP score
MAPP 
score PhD-SNP Polyphen-1 Polyphen2 SIFT SNAP Panther

V60F Deleterious 0.869 0.589 0.745 0.650 0.793 0.805 0.000 0.000

R111C Deleterious 0.506 0.783 0.745 0.562 0.737 0.720 0.000 0.000

R59H Deleterious 0.719 0.766 0.858 0.594 0.601 0.793 0.848 0.567

D129V Deleterious 0.719 0.678 0.589 0.594 0.407 0.793 0.720 0.567

N56H Deleterious 0.506 0.760 0.783 0.745 0.431 0.452 0.622 0.557

R59C Deleterious 0.655 0.766 0.875 0.594 0.474 0.528 0.805 0.548

F61L Deleterious 0.549 0.766 0.578 0.594 0.628 0.528 0.622 0.557

P63L Deleterious 0.869 0.484 0.875 0.745 0.811 0.793 0.805 0.000

R67T Deleterious 0.719 0.750 0.858 0.745 0.601 0.793 0.720 0.000

R73Q Deleterious 0.605 0.790 0.773 0.594 0.647 0.608 0.622 0.000

G75R Deleterious 0.756 0.705 0.858 0.745 0.811 0.793 0.720 0.000

V98A Deleterious 0.607 0.653 0.817 0.669 0.675 0.793 0.805 0.000

D117V Deleterious 0.719 0.705 0.858 0.745 0.601 0.793 0.556 0.000
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3.4   |   Stability and Functional Variation Prediction 
Using Graph-Based Signatures

We further determined the impact of stability changes and 
coupling of RAF1 with RAP1A using graph-based signatures. 
Using DynaMut 2.0, the 13 deleterious mutations were sub-
jected to stability outcome prediction. Among the 13 delete-
rious mutations, 9 mutations were reported to destabilize the 
protein while 4 mutations were reported to increase the sta-
bility of RAF1. On the other hand, using mCSM-PPI2, 12 mu-
tations were reported to decrease the binding of RAF1 with 
RAP1A while a single mutation, V60F, with an affinity change 
score of 0.051 was reported to increase the binding of RAF1 
with RAP1A.

Hence, we speculated that these mutations could potentially 
perturb the cellular cascades and therefore contribute to the 
disease phenotype. However, these results are based on a single 
structure and its potential impact should be validated using a 
molecular dynamics (MD) simulation approach. The DynaMut 
and mCSM-PPI2 results are summarized in Table 3.

In the case of RAP1A, 12 mutations were classified as destabi-
lizing while 23 mutations were reported to increase the stability. 
Among the 35 mutations in RAP1A, 7 mutations were reported 
to upsurge the binding affinity however 28 were classified to re-
duce the binding affinity. Among the affinity-increasing muta-
tions, A18V (0.056), R102W (0.059), D33Y (0.109), P34Q (0.230), 
G12V (0.077), D47Y (0.142), and D69Y (0.105) are involved while 
the rest were affinity decreasing. The mutation, P34Q, was se-
lected for the subsequent analysis as it has shown the highest 
affinity change while being a destabilizing substitution. The 
DynaMut and mCSM-PPI2 results for RAP1A are shown in 
Table  4. While analyzing these mutations, it can be seen that 
some mutations either stabilize or destabilize a protein. This 
could be due to several factors such as hydrophobicity, charge, 
size, and secondary structure propensity, along with the spe-
cific structural context of the mutation site, play crucial roles 
in determining the impact of mutations on protein stability. 
For instance, the mutation D129V is stabilizing, and is proba-
bly due to the introduction of a more hydrophobic amino acid 
that favors core packing. In contrast, R67T is likely to be desta-
bilizing because this substitution tends to eliminate crucial hy-
drogen bonding or electrostatic interactions. The mutation L96P 
is destabilizing possibly due to the inclusion of proline, which 
has a propensity to disturb secondary structure formation, for 
example, alpha helices. In contrast, the same R111C mutation 
enhances the stability of the protein, probably due to additional 
disulfide bonds formed increasing the rigidity of the structure. 
Also, V60F induces a destabilization, perhaps owing to steric 
clashes in the protein core. Although these results are reported 
to affect the structure and function differently; however, these 
results are based on a single structure, and further validation 
through MD-based data should be performed.

3.5   |   Dynamics-Based Stability Investigation

Determination of RMSD is a significant parameter for eval-
uating the structural stability and dynamics of a molecular 

system. It quantifies the average distance between corre-
sponding atoms in different frames of a simulation compared 
with a reference structure. Calculation of RMSD provides an 
understanding of the conformational variations experienced 
by the macromolecules over time and consequently reports its 
flexibility, stability, and overall structural dynamics. In the 
context of macromolecular function, RMSD provides essen-
tial information regarding the structural motifs, active sites, 
and binding interfaces, vital for comprehending molecular 
interactions and guiding drug discovery efforts [33, 38, 39]. 
Considering the higher importance of RMSD metrics we com-
puted RMSD by using the time-dependent simulation trajec-
tory for each complex. As shown in Figure 3a, the wild-type 
reported a comparatively unstable behavior during the simula-
tion. The wild-type complex reported a higher RMSD at 180 ns 
and similar behavior was experienced at different time inter-
vals during the simulation. The RMSD stabilized at 2.20 Å 
and maintained a uniform level after 400 ns. In contrast, the 
V60F mutation in the RAF1 (RAF1–RAP1A complex) had a 
comparatively lower RMSD. No significant structural pertur-
bation was seen and the average RMSD 1.80 Å was reported. 
The mutation, V60F, consequently stabilizes the structure and 
thus causes functional variance. The RMSD for the RAF1–
RAP1A V60F complex is shown in Figure  3a. On the other 
hand, the P34Q mutation reported a more similar behavior 
as the wild-type although keeping an average RMSD lower 
than the wild-type. The complex reported minor perturbation 
during the first 220 ns and then maintained a lower RMSD 
value until the end of the simulation. An average RMSD was 
reported to be 2.01 Å for the P34Q mutant system. The RMSD 
graph for the P34Q complex is shown in Figure 3b. The analy-
sis of RMSD profiles for these systems, that is, RAF1–RAP1A 
complexes discloses distinct structural behaviors during the 
simulation and proposes that the V60F mutations particularly 
induce structural stability in a dynamic environment, con-
sequently causing functional alterations. In sum, the RMSD 
analysis reveals how these mutations affect the structural dy-
namics of these complexes and offers insights into the func-
tional implications of those changes.

3.6   |   Structural Compactness Analysis Through Rg 
Calculation

Measuring the distance from the center of mass to depict the 
protein's size can offer insights into its functional implications 
and variations in conformational dynamics. This method facil-
itates the characterization of novel interactions and the binding 
or dissociation of specific partners. Therefore, to assess the im-
pact of the mentioned mutations on the size of these proteins 
during simulation, we conducted Rg calculations over time, as il-
lustrated in Figure 4a,b. The Rg pattern for the wild-type started 
to increase gradually and reached the maximum at 200 ns; how-
ever, then continued to decrease gradually and a more compact 
complex was obtained at the end of the simulation. In contrast, 
the V60F mutation maintained a similar level throughout the 
simulation and therefore demonstrated similar behavior as the 
RMSD. The Rg results for the wild-type and V60F complexes are 
given in Figure 4a. On the other hand, the P34Q also reported 
a uniform Rg pattern with no significant structural perturbation 
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throughout the simulation. An average Rg for the P34Q was es-
timated to be 19.40 Å. The Rg graph for the P34Q is shown in 
Figure 4b. This indicates that these mutations cause variation 
in the protein dynamics and cause minimal unbinding events 
throughout the simulation.

3.7   |   Residues Flexibility Analysis

In the realm of MD simulations, the RMSF serves as a valuable 
tool for assessing the flexibility of distinct regions within a mole-
cule and comparing it across various molecules. This metric aids 
in the identification of pivotal flexible regions, which may play 
a crucial role in ligand binding or protein–protein interactions. 
Moreover, RMSF as a method for calculating the flexibility holds 
significance as a to validate MD simulations which can be com-
pared with the RMSF through experimental. Understanding the 
association between experimental and force field based flexibil-
ity values underscores the fidelity of the simulation in capturing 
the biomolecule's flexibility and dynamics. To assess the impact 
of mutations on the internal residue flexibility of the wild-type 
and mutant proteins, RMSF calculations were conducted. All the 
complexes reported higher residue flexibility. The regions 25–35, 
55–75, 165–175, 182–190, and 214–225 reported higher fluctua-
tions while the others reported minimal fluctuations. The V60F 
mutation particularly reported minimal fluctuations and there-
fore demonstrated the stabilization of internal fluctuations upon 
the coupling. These results show the impact of these substitu-
tions on the internal fluctuations in a dynamic environment and 
demonstrate the variations in the dynamic behavior. The RMSF 
graphs for the wild-type, V60F, and P34Q are shown in Figure 5.

3.8   |   Hydrogen Bonding Analysis

Hydrogen bonds, exclusively within protein–protein contacts, 
play a crucial role in unraveling the mechanisms underly-
ing various biological pathways, disease mechanism, and the 

effects of mutations on proteins binding in a molecular process. 
Recognizing the pivotal contribution of hydrogen bonding in 
numerous biological phenomena, we also conducted evaluations 
of hydrogen bonds within each trajectory throughout the simu-
lation period. As shown in Figure 6a,b, the hydrogen bonding 
graph over the simulation time was calculated. In the case of 
the wild-type 115 average number of hydrogen bonds while in 
the V60F the average hydrogen bonds were calculated to be 117. 
On the other hand, in the P34Q the average hydrogen bonds 
were estimated to be 118. This shows the differential hydrogen 
bonding paradigm in each complex due to these substitutions. 
We also calculated the hydrogen bonding in each complex using 
the equilibrated structure.

In the wild-type, 11 hydrogen bonds between the two structures 
were reported which involves Asp33-Arg73 (2.77 Å), Glu37-
Val69 (3.10 Å), Glu37-Arg59 (2.72 Å), Glu37-Arg67 (2.83 Å), 
Asp38-Thr68 (2.83 Å), Asp38-Arg89 (2.79 Å), Ser39-Arg67 
(2.89 Å), Ser39-Arg89 (2.93 Å), Ser39-Arg89 (2.88 Å), Ser39-
Arg67 (2.78 Å), and Arg41-Gln66 (2.92 Å), while 4 salt-bridges 
include Asp33-Arg73 (2.77 Å), Glu37-Arg59 (2.68 Å), Glu37-
Arg67 (2.83 Å), and Asp38-Arg89 (2.79 Å). In addition, 90 non-
bonded contacts were also reported in the wild-type complex. 
The interaction patterns of the wild-type (RAF1–RAP1A) are 
shown in Figure 7a–c.

Furthermore, the V60F complex reported 15 hydrogen bonds 
including Asp33-Arg73 (2.88 Å), Asp33-Asn71 (2.82 Å), Asp33-
Arg73 (2.71 Å), Pro34-Asn71 (2.84 Å), Thr35-Val69 (2.69 Å), 
Glu37-Val69 (2.91 Å), Glu37-Arg59 (3.21 Å), Asp38-Thr68 
(2.86 Å), Asp38-Arg89 (2.77 Å), Ser39-Arg67 (3.15 Å), Ser39-
Arg89 (2.88 Å), Ser39-Arg67 (2.85 Å), Ser39-Arg67 (2.77 Å), 
Glu54-Arg67 (3.02 Å), and Glu54-Arg67 (2.73 Å), while four 
salt-bridges which include Asp33-Arg73 (2.71 Å), Glu37-Arg59 
(2.97 Å), Asp38-Arg89 (2.77 Å), and Glu54-Arg67 (2.73 Å). A 
total of 117 non-bonded contacts were also reported in the V60F 
complex. The interaction patterns of the V60F mutant (RAF1–
RAP1A) are shown in Figure 8a–c.

TABLE 3    |    Prediction of stability changes and affinity variations using a graph-based signature algorithm for the RAF1 protein.

Mutation DynaMut prediction Stability outcome mCSM-PPI score Affinity outcome

R67T −1.39 Destabilizing −1.358 Decreasing

F61L −1.65 Destabilizing −0.755 Decreasing

D129V 0.63 Stabilizing −0.258 Decreasing

R111C 0.8 Stabilizing −0.459 Decreasing

R59C −1.36 Destabilizing −0.904 Decreasing

V98A −1.78 Destabilizing −0.401 Decreasing

P63L −0.43 Destabilizing −0.475 Decreasing

R59H −1.22 Destabilizing −0.522 Decreasing

V60F −1.57 Destabilizing 0.051 Increasing

R73Q −0.27 Destabilizing −0.272 Decreasing

D117V 0.13 Stabilizing −0.302 Decreasing

G75R 0.1 Stabilizing −0.143 Decreasing

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26759 by A

bdelali A
gouni - Q

atar U
niversity , W

iley O
nline L

ibrary on [16/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 18 Proteins: Structure, Function, and Bioinformatics, 2024

TABLE 4    |    Prediction of stability changes and affinity variations using a graph-based signature algorithm for the RAP1A protein.

Mutations DynaMut prediction Stability outome mCSM-PPI score Affinity outcome

L96P −1.70 Destabilizing −0.722 Decreasing

L120M 0.39 Stabilizing −0.365 Decreasing

Q22K 0.03 Stabilizing −0.649 Decreasing

A18V −0.60 Destabilizing 0.056 Increasing

R102W −0.33 Destabilizing 0.059 Increasing

C118R −0.09 Destabilizing −0.072 Decreasing

R124Q −0.77 Destabilizing −0.564 Decreasing

R2C 0.61 Stabilizing −0.074 Decreasing

P34L −0.47 Destabilizing −0.33 Decreasing

D33Y 0.33 Stabilizing 0.109 Increasing

P34Q 0.08 Stabilizing 0.230 Increasing

T85K −0.59 Destabilizing −0.229 Decreasing

R2L 1.20 Stabilizing −0.252 Decreasing

T35M 0.41 Stabilizing −0.623 Decreasing

L19Q −1.78 Destabilizing −0.386 Decreasing

C48W −0.30 Stabilizing 0.37 Increasing

R167M −0.15 Destabilizing −0.385 Decreasing

L161M −2.06 Destabilizing −0.279 Decreasing

S11P −0.56 Stabilizing −0.147 Decreasing

V81A −2.01 Destabilizing −0.597 Decreasing

V7M −0.60 Destabilizing −0.439 Decreasing

G12V −1.36 Destabilizing 0.077 Increasing

V14I −0.36 Destabilizing −0.118 Decreasing

S83P −0.84 Destabilizing −0.832 Decreasing

V114A −1.99 Destabilizing −0.671 Decreasing

L53P −1.68 Destabilizing −0.955 Decreasing

Q22L −0.45 Stabilizing −0.301 Decreasing

R163G −1.26 Destabilizing −0.242 Decreasing

T58I −0.52 Destabilizing −0.152 Decreasing

T35A −0.06 Destabilizing −1.014 Decreasing

Y4H −1.91 Destabilizing −0.308 Decreasing

R97M −1.27 Destabilizing −0.379 Decreasing

D119N −0.46 Destabilizing −0.32 Decreasing

D47Y 0.34 Stabilizing 0.142 Increasing

D69Y 0.47 Stabilizing 0.105 Increasing

C141R −0.44 Destabilizing −0.085 Decreasing

S39Y −1.23 Destabilizing −0.651 Decreasing

E54K −1.30 Destabilizing −1.618 Decreasing

(Continues)
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Moreover, the P34Q mutant reported 18 hydrogen bonds in-
cluding Glu3-Lys65 (2.70 Å), Gln34-Lys84 (2.80 Å), Ile36-Val69 
(3.15 Å), Glu37-Val69 (3.33 Å), Glu37-Val69 (2.85 Å), Glu37-
Arg67 (2.75 Å), Asp38-Thr68 (2.65 Å), Asp38-Arg89 (2.75 Å), 

Asp38-Arg89 (2.76 Å), Ser39-Arg67 (2.86 Å), Ser39-Arg89 (2.95 Å), 
Ser39-Arg89 (2.78 Å), Arg41-Gln66 (2.91 Å), Arg41-Asn64 
(2.70 Å), Arg41-Asn64 (3.33 Å), Arg41-Asn64 (3.01 Å), Glu54-
Arg67 (2.75 Å), and Glu54-Arg67 (2.73 Å), while 6 salt-bridges 

Mutations DynaMut prediction Stability outome mCSM-PPI score Affinity outcome

C51R −1.36 Destabilizing −0.004 Decreasing

T89M −0.48 Destabilizing −0.474 Decreasing

W138C −1.88 Destabilizing −0.593 Decreasing

S39P −0.60 Destabilizing −1.925 Decreasing

A59V −0.89 Destabilizing −0.043 Decreasing

L120V −1.46 Destabilizing −0.001 Decreasing

TABLE 4    |    (Continued)

FIGURE 3    |    Dynamics stability investigation using RMSD metrics. The part figure (a) shows the RMSD graphs for the wild-type and V60F 
systems, while (b) shows the RMSD graphs for the wild-type and P34Q systems.

FIGURE 4    |    Structural compactness investigation using Rg metrics. The part figure (a) shows the Rg graphs for the wild-type and V60F systems, 
while (b) shows the Rg graphs for the wild-type and P34Q systems.
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involving Glu3-Lys65 (2.70 Å), Asp33-Lys84 (2.72 Å), Glu37-
Arg67 (2.75 Å), Asp38-Lys84 (3.89 Å), Asp38-Arg89 (2.75 Å), and 
Glu54-Arg67 (2.73 Å). In the P34Q complex, 119 non-bonded 
contacts are reported. The interaction patterns for the P34Q are 
shown in Figure 9a–c. Based on the equilibrated structure of MD 
simulations, it is evident that the V60F and P34Q mutants exhibit 
increased binding between RAF1 and RAP1A compared with the 
wild-type. Both mutants demonstrate a higher number of hydro-
gen bonds and salt bridges, indicating stronger intermolecular 
interactions. The mutants show the most pronounced enhance-
ment in binding affinity, as they form additional hydrogen bonds 
and salt bridges, suggesting a potential for improved stability and 
functionality of the protein complex.

3.9   |   PCA of the Wild-Type and Mutants

PCA, a statistical method, can be used to understand the mo-
tions by dividing the components into uncorrelated variables 
known as principal components. These components are ar-
ranged in order of the amount of variance they capture, with the 
first component explaining the highest variance and subsequent 
components explaining decreasing amounts of variance. In mo-
lecular dynamics (MD) trajectories, PCA is commonly utilized 
to identify the major conformational motions, termed “essential 

dynamics,” of a protein. The fluctuation in conformation from 
frame to frame can be described as a linear combination of these 
essential dynamics identified by PCA. To determine the varia-
tions in the internal motion of each trajectory we also calculated 
PCA for the wild-type and mutant complexes. The PCA graphs 
are depicted in Figure  10a–c. The PCA graphs reveal distinct 
conformational dynamics among the wild-type and mutant 
complexes. The similarity in spreading along the x and y axes 
between the wild-type and V60F mutant suggests an overall 
comparable conformational flexibility. However, the presence of 
two low-energy conformational states in these complexes indi-
cates a degree of structural heterogeneity. In contrast, the P34Q 
mutant with a larger spreading along both axes and a single en-
ergy conformational state suggests an increased conformational 
variability and a potential for a more diverse ensemble of struc-
tures. These findings underscore the impact of mutations on 
the protein's conformational landscape, highlighting their role 
in modulating structural dynamics and potentially influencing 
functional properties.

3.10   |   FEL Analysis

We used the two PCs to construct the FEL for each complex 
using the simulation trajectory. The wild-type demonstrated two 

FIGURE 5    |    Residue's flexibility analysis of the wild-type, V60F, and P34Q.

FIGURE 6    |    Hydrogen bonding analysis of the wild-type and mutant. The part figure (a) shows the H-bonds graphs for the wild-type and V60F 
systems, while (b) shows the H-bonds graphs for the wild-type and P34Q systems.
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conformational states, P34Q three conformational states while the 
V60F reported one single energy state. The observation of two dis-
tinct conformational states in the wild-type and three in the P34Q 
mutant, while the V60F mutant shows one single conformation, 
suggests intriguing dynamics influenced by the introduced muta-
tions. Despite both mutants exhibiting lower BFE compared with 
the wild-type, indicating stronger binding affinities, their differing 
conformational behavior hints at nuanced structural effects. The 
wild-type and P34Q mutant may undergo conformational transi-
tions between energetically favorable states, reflecting a dynamic 
equilibrium essential for biological function. We compared the 
native structure with the representative structures from the FEL 
graph basin and presented in Figure 11a. The wild type when com-
pared with the representative structure reported two at 49 ns and 
three conformationally dynamic regions (CDR1-3) at 376 ns. The 
first CDR1 region corresponds to 214–224 where it can be seen that 
the beta-sheet has been converted to the loop which increases the 
flexibility of this region. Furthermore, the CDR2 corresponds to 
63–72 where a proper helix has deviated from the native state and 
therefore causes an impact on the structure. Moreover, the CDR3 
region which corresponds to 102–110 which is a loop region also 
determined significant deviation from the native state and there-
fore contributed to the differential dynamics of the wild type. In 
contrast, the V60F mutant displaying one single conformation 
implies a stabilized, possibly more rigid structure resulting from 
the mutation. This stabilization might facilitate enhanced binding 

by favoring a specific conformation conducive to stronger RAF1–
RAP1A interactions. The metastable state also revealed three 
conformationally dynamic regions where the CDR1 and CDR2 
are similar to the wild type however the region CDR3 which cor-
responds to 26–37 present at the interface also reported flexibility 
and therefore potentially showed enhanced activity of this muta-
tion in the context of increased binding. The FEL graph along with 
the native and representative structures are given in Figure 11b. As 
mentioned above the P34Q demonstrated three metastable states 
so we retrieved the representative structures from the trajectory 
and compared with the native state. The FEL graph and structures 
are given in Figure 11b. The first metastable state at 59 ns reported 
only two CDR regions which correspond to the same positions 
as the wild type and V60F. The second metastable state reported 
at 339 ns also reported three CDR regions with the two regions 
CDR1 and CDR2 as the same as previous while the CDR3 here 
corresponds to 37–46 and a lengthy beta-sheet can be seen to have 
split in two beta-sheet connected by a newly adapted secondary 
structure, loop, during the simulation. Similarly, the third meta-
stable state that occurred at 376 ns reported similar CDR1 and 
CDR2 variations however, the CDR3 region which corresponds 
to 191–202 amino acids has adapted a helix structure which is 
also present in the interface site and therefore the binding has af-
fected. The FEL graph and the representative structures are given 
in Figure 11c. Thus, while all mutants exhibit improved binding, 
their distinct conformational dynamics underscore the complexity 

FIGURE 7    |    Interaction analysis of the wild-type complex using the MD equilibrated structure. The part figure (a) shows the wild-type complex 
binding, (b) shows the 3D interaction pattern for the wild-type complex, and (c) shows the 2D interaction pattern for the wild-type complex.
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of molecular interactions influenced by these mutations, offering 
insights into structure–function relationships that are critical for 
protein engineering and drug design. The FEL graphs for the wild-
type and mutants are shown in Figure 11a–c.

3.11   |   BFE Calculation

The MM/GBSA technique, commonly utilized for calculating 
the BFE of biological partners, serves as a prevalent method 
for analyzing potential docking configurations. In comparison 
to alchemical free energy methods, this technique offers a less 
costly alternative while providing insights into the binding sta-
bility of crucial interaction regions and the BFE. Notably, it is 
considered more accurate than many rational scoring functions 
[23, 34, 40, 41]. Using the MM/GBSA technique enables us to 
explore the impact of mutations, that is, V60F and P34Q on the 
coupling of RAF1 and RAP1A. The wild-type complex reported 
a Van der Waals (vdW) force value of −61.33 ± 0.28 kcal/mol, 
the V60F reported a vdW value of −66.60 ± 0.32 kcal/mol, while 
the P34Q complex reported a vdW value of −70.49 ± 0.90 kcal/
mol. Moreover, the values of electrostatic energy were cal-
culated to be −608.36 ± 2.90 kcal/mol for the wild-type com-
plex, −753.67 ± 2.72 kcal/mol for the V60F complex, and 
−706.35 ± 5.08 kcal/mol for the P34Q complex. Finally, the total 

BFE for each complex was estimated to be −71.94 ± 0.38 kcal/
mol for the wild-type, −95.57 ± 0.37 kcal/mol for the V60F, and 
−85.76 ± 0.72 kcal/mol for the P34Q complex. This clearly shows 
that these mutations do not only affect the conformational dy-
namics but also increase the binding of RAF1 and RAP1A which 
consequently activate the cancer pathways associated with these 
proteins. Upon analysis of the data, it is evident that each sys-
tem demonstrates a rise in free energy in the gas phase while re-
maining unchanged in the solvent state. These findings suggest 
that the thermodynamic preference for these proteins binding is 
predominantly influenced by enthalpic factors, with favorable 
interactions prevailing in the gas phase. Conversely, binding is 
deemed unfavorable in terms of entropy due to the detrimental 
impact of solvation. These findings underscore the role of these 
mutations on the coupling and RAF1–RAP1A and therefore can 
be used as a starting point for the design and development of 
potential inhibitors. The BFE results are summarized in Table 5.

4   |   Conclusions

The current study underscores the critical role of RAF1–
RAP1A interaction in activating the MAPK/ERK pathway, 
which is pivotal in cancer progression. Understanding aber-
rant interactions driven by clinical mutations is essential for 

FIGURE 8    |    Interaction analysis of the V60F complex using the MD equilibrated structure. The part figure (a) shows the V60F complex binding, 
(b) shows the 3D interaction pattern for the V60F complex, and (c) shows the 2D interaction pattern for the V60F complex.
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targeted therapies. Through predictive algorithms and mo-
lecular simulations, we identified deleterious mutations in 
RAF1 and RAP1A, shedding light on their impact on cancer 

patient survival. Notably, mutations altering the binding af-
finity between RAF1 and RAP1A were observed, indicating 
their potential as therapeutic targets. Protein–protein docking 

FIGURE 9    |    Interaction analysis of the P34Q complex using the MD equilibrated structure. The part figure (a) shows the P34Q complex binding, 
(b) shows the 3D interaction pattern for the P34Q complex, and (c) shows the 2D interaction pattern for the P34Q complex.

FIGURE 10    |    PCA graphs for the wild-type and mutant complexes. The part figure (a) shows the PCA graph for the wild-type complex, (b) shows 
the PCA graph for the V60F complex, and (c) shows the PCA graph for the P34Q complex. The blue color represents the one state while the mix blue 
and green represents the transition state and the green color represents another state.
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and molecular simulations revealed structural and dynamic 
alterations in mutant complexes, highlighting their signifi-
cance in cancer pathogenesis. These findings emphasize the 

importance of targeting RAF1–RAP1A interaction for cancer 
therapy, particularly through the modulation of the activity of 
the MAPK/ERK signaling pathway.

FIGURE 11    |    Free Energy Analysis (FEL) graphs for the wild-type and mutant complexes. The part figure (a) shows the FEL graph for the wild-
type complex, (b) shows the FEL graph for the V60F complex, and (c) shows the FEL graph for the P34Q complex.
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