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ABSTRACT
Background: This study provides a head-to-head comparison of the protection provided by the BNT162b2 and mRNA-1273 vac-
cines against SARS-CoV-2 infection and against severe COVID-19, covering primary series and third dose/booster vaccinations 
over up to 3 years of follow-up, both before and after the emergence of the omicron variant.
Methods: Two national, matched, retrospective cohort studies were conducted on Qatar's vaccinated population from December 
16, 2020, to February 18, 2024. Subgroup analyses by pre-vaccination SARS-CoV-2 infection history, as well as sensitivity anal-
yses, were also conducted.
Results: The adjusted hazard ratio (AHR) comparing infection incidence in those vaccinated with BNT162b2 versus mRNA-
1273 was 1.03 (95% CI: 1.02–1.05) after the primary series and 1.11 (95% CI: 1.09–1.13) after the third (booster) dose. The corre-
sponding AHRs for any severe, critical, or fatal COVID-19 were 1.31 (95% CI: 0.81–2.11) and 1.00 (95% CI: 0.20–4.94), respectively. 
Subgroup analyses by prior infection status hinted at a dose-dependent immune imprinting effect, where a combination of two 
types of immunity, pre-omicron and omicron, offered greater protection against infection than one type alone, with this effect 
being amplified by the higher antigen dose of mRNA-1273 compared to BNT162b2. Sensitivity analyses confirmed the study 
findings.
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Conclusions: BNT162b2 provided slightly less protection against infection than mRNA-1273 following both primary series 
and booster vaccinations while offering comparable protection against severe COVID-19 outcomes. The findings suggested 
that the vaccine antigen dose in interaction with infection history may determine the extent of immune protection against 
infection.

1   |   Introduction

The introduction of mRNA vaccines, specifically BNT162b2 [1] 
(Pfizer-BioNTech) and mRNA-1273 [2] (Moderna), has played 
a critical role in curbing the spread of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and in reducing the 
morbidity and mortality associated with coronavirus disease 
2019 (COVID-19) [3–6]. These vaccines initially demonstrated 
high efficacy in preventing SARS-CoV-2 infection and severe 
COVID-19 in randomized clinical trials [1, 2] and in real-world 
observational studies [3–6]. However, the waning of their ef-
fectiveness over time [7–11], the emergence of new viral vari-
ants [11–16], and the diverse history of natural infections in 
the population [12–16] can affect the vaccination outcomes 
and complicate our understanding of the vaccines' long-term 
protection.

In the first study to provide a direct head-to-head comparison of 
the protection offered by two COVID-19 vaccines, we evaluated 
the protection conferred by the primary series (two doses) of 
BNT162b2 versus the primary series of mRNA-1273 during the 
initial 6 months post-vaccination, at a time when the incidence 
was due to only pre-omicron variants [17]. mRNA-1273 was as-
sociated with a 30% lower incidence of SARS-CoV-2 infection 
compared to BNT162b2 [17], which aligns with the larger dose 
of the mRNA-1273 vaccine [17] and the variations observed in 
neutralizing antibody titers [18]. Despite these differences, both 
vaccines provided strong protection against severe COVID-19 
outcomes, with no statistically significant difference between 
them [17].

Immune imprinting, a phenomenon where the specific se-
quence of immunological events (due to infection and/or vacci-
nation) can enhance or compromise a person's future immune 
protection [19–23], might influence the effectiveness of vacci-
nation. A series of laboratory and epidemiological studies have 
suggested that immune imprinting could affect the protection 
offered by vaccination and natural infection [19–25]. Notably, 
studies have indicated that a combination of pre-omicron and 
omicron immunity, whether from vaccination or natural infec-
tion, provides greater protection against omicron infection than 
omicron immunity alone [20, 21]. This observation aligns with 
the notion that exposure to both pre-omicron and omicron an-
tigens broadens and strengthens the immune response against 
future infection challenges [20, 21]. Moreover, the imprinting 
effect could be more pronounced in individuals vaccinated with 
mRNA-1273 than in those vaccinated with BNT162b2, possibly 
indicating a dose–response relationship for the imprinting ef-
fect [21].

In this study, we extended the follow-up of our national cohorts 
in Qatar who received the BNT162b2 and mRNA-1273 vaccines. 
This extended study (3 years of follow-up) is 2.5 years longer 

than our first head-to-head comparison (6 months of follow-up) 
[17] and captures the incidence of both pre-omicron and omi-
cron variants. Our goal is to assess long-term differences in how 
these vaccines protect against SARS-CoV-2 infection and severe 
COVID-19. We also compared the long-term effects of a three-
dose regimen (primary series, followed by a booster) for these 
vaccines and explored potential immune imprinting by analyz-
ing subgroups based on pre-vaccination natural infection his-
tory (pre-omicron and/or omicron).

2   |   Methods

2.1   |   Study Population, Data Sources, 
and Vaccination

This study was carried out among the resident population 
of Qatar from December 16, 2020, marking the start of the 
COVID-19 vaccination campaign, to February 18, 2024, the 
study's end date. Data on COVID-19 laboratory testing, vac-
cination, hospitalization, and death were retrieved from the 
integrated, nationwide digital health information platform 
(Appendix S1). These national federated databases contain all 
SARS-CoV-2-related records, including vaccinations, hospital-
izations, polymerase chain reaction (PCR) tests, irrespective of 
the location or facility, and, from January 5, 2022, all medically 
supervised rapid antigen tests (Appendix S2), with no missing 
information since the pandemic's onset. Until October 31, 2022, 
Qatar pursued an extensive testing strategy, testing 5% of the 
population weekly, mostly for routine purposes such as screen-
ing or travel-related requirements [7, 13]. From November 1, 
2022, onwards, testing was reduced to below 1% of the popu-
lation weekly [26]. Most infections in Qatar were identified 
through routine testing rather than symptomatic presentation 
(Appendix S1) [7, 13].

Qatar initiated mass COVID-19 vaccination on December 16, 
2020, using BNT162b2 [5] and introduced mRNA-1273 3 months 
later (Appendix S1) [6]. Vaccination was provided free of charge 
to all individuals, regardless of citizenship, exclusively through 
the public healthcare system [17]. Rollout prioritized front-
line healthcare workers, individuals with severe or multiple 
chronic conditions, and individuals aged 50 years or older [7]. 
Vaccinations throughout the pandemic were administered ad-
hering to the US Food and Drug Administration–approved 
protocol [1, 2].

Demographic information were obtained from the national 
health registry. Qatar's demographic composition is distinct 
with only 9% of the population aged 50 years or older and 89% 
being resident expatriates from over 150 countries [27]. Further 
details on Qatar's population and COVID-19 databases have 
been previously published [4, 7, 13, 24, 27–29].
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2.2   |   Study Design

This study conducted a head-to-head comparison of the inci-
dence of infection and severe forms of COVID-19 following 
primary series vaccination and a third (booster) dose vaccina-
tion with BNT162b2 compared to mRNA-1273 using a matched 
retrospective cohort study design that emulates a randomized 
controlled trial (target trial design) [30, 31]. The first part of 
the study compared the incidence of infection in the national 
cohort of individuals who received the primary series vaccina-
tion with BNT162b2 to that in the national cohort of individuals 
who received the primary series vaccination with mRNA-1273 
(two-dose analysis). The second part of the study replicated this 
analysis for the national cohorts of individuals who received 
three doses of each of these vaccines (three-dose analysis).

Incidence of infection was defined as any PCR-positive or rapid 
antigen–positive test after the start of follow-up, regardless of 
symptoms. Infection severity classification followed the World 
Health Organization (WHO) guidelines for COVID-19 case se-
verity (acute care hospitalizations) [32], criticality (intensive 
care unit hospitalizations) [32], and fatality [33] (Appendix S3). 
Assessments were performed by trained medical personnel in-
dependent of study investigators using individual chart reviews.

As part of the national protocol, each individual with a SARS-
CoV-2-positive test and concurrent COVID-19 hospital admis-
sion underwent an infection severity assessment every 3 days 
until discharge or death, irrespective of hospital length of stay. 
Individuals whose infection progressed to severe, critical, or 
fatal COVID-19 were classified based on their worst outcome, 
starting with COVID-19 death [33], followed by critical disease 
[32] and then severe disease [32] (Appendix S3). Incidence of se-
vere COVID-19 outcomes was recorded on the date of the SARS-
CoV-2-positive test confirming the infection.

2.3   |   Cohorts' Eligibility and Matching

Individuals were eligible for inclusion in the study if they had re-
ceived two doses of either BNT162b2 or mRNA-1273 for the two-
dose analysis and three doses of either vaccine for the three-dose 
analysis. Individuals who received other vaccine types or mixed 
vaccines were excluded.

Individuals vaccinated with BNT162b2 were matched to indi-
viduals vaccinated with mRNA-1273 exactly one to one by sex, 
10-year age group, nationality, number of coexisting conditions 
(ranging from 0 to ≥ 6; Appendix S4), prior infection status (no 
prior infection, prior pre-omicron infection, prior omicron infec-
tion, or prior pre-omicron and omicron infections), and calendar 
week of the second dose for the two-dose analysis and calendar 
week of the third dose for the three-dose analysis.

An iterative selection algorithm was implemented to ensure 
that, at the start of the follow-up, matched pairs were alive, had 
the same vaccination status (primary series or three doses), had 
the same prior infection status, and had no documented SARS-
CoV-2 infection within the previous 90 days (Appendix S5). The 
90-day threshold was used to avoid misclassification of a previ-
ous SARS-CoV-2 infection as an incident infection [13, 34–36]. 

Accordingly, a prior infection was defined as a SARS-CoV-2-
positive test ≥ 90 days before the start of follow-up. Prior infec-
tions were classified as pre-omicron whenever they occurred 
before December 19, 2021, the onset of the omicron wave in 
Qatar [13], and as omicron otherwise.

The matching strategy aimed to balance observed confounders 
that could potentially influence the risk of infection across the 
exposure groups [27, 37–40]. The matching factors were selected 
based on findings from earlier COVID-19 studies on Qatar's 
population [6–8, 16, 17, 41].

2.4   |   Cohorts' Follow-Up

Follow-up began 14 days after the second dose for the two-dose 
analysis and 7 days after the third dose for the three-dose anal-
ysis to allow for the buildup of immunity following vaccina-
tion. To ensure exchangeability [4, 42], both members of each 
matched pair were censored at the earliest occurrence of receiv-
ing an additional vaccine dose. Therefore, individuals were fol-
lowed until the first of any of the following events: a documented 
SARS-CoV-2 infection (regardless of symptoms), third dose vac-
cination for those in the two-dose analysis (with matched-pair 
censoring), fourth dose vaccination for those in the three-dose 
analysis (with matched-pair censoring), death, or administra-
tive end of follow-up at end of the study.

2.5   |   Oversight

The institutional review boards at Hamad Medical Corporation 
and Weill Cornell Medicine–Qatar approved this retrospective 
study with a waiver of informed consent. The study was reported 
according to the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE; Table S1).

2.6   |   Statistical Analysis

Eligible and matched cohorts were described using frequency 
distributions and measures of central tendency and were com-
pared using standardized mean differences (SMDs). An SMD of 
≤ 0.1 indicated adequate matching [43]. Cumulative incidence of 
infection (or severe, critical, or fatal COVID-19), defined as the 
proportion of individuals at risk whose primary endpoint during 
follow-up was an infection (or a severe COVID-19 outcome), 
was estimated using the Kaplan–Meier estimator method. 
Schoenfeld residuals and log–log plots for survival curves were 
used to examine the proportional hazards assumption.

Incidence rate of infection (or severe COVID-19 outcome) in 
each cohort, defined as number of identified infections (or severe 
COVID-19 outcomes) divided by number of person-weeks con-
tributed by all individuals in the cohort, was estimated, with the 
corresponding 95% confidence interval (CI), using a Poisson log-
likelihood regression model with Stata 18.0 stptime command.

Overall adjusted hazard ratios (AHRs), comparing the incidence 
of infection (or severe COVID-19 outcome) in the cohorts, and 
corresponding 95% CIs were calculated using Cox regression 
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models with adjustment for the matching factors using the Stata 
18.0 stcox command. The adjustment for the matching factors 
was implemented to ensure precise and unbiased estimation of 
standard variance [44]. These overall AHRs provided a weighted 
average of the time-varying hazard ratios [45]. AHRs of infection 
were also estimated by 3-month intervals from the start of fol-
low-up using separate Cox regressions, with “failure” restricted 
to specific time intervals. AHRs stratified by prior infection sta-
tus were further calculated. CIs were not adjusted for multiplicity.

A sensitivity analysis was conducted by further adjusting the 
AHRs for differences in testing rate between the study co-
horts. Low testers were defined as people having < 3 tests per 
person-year, intermediate testers having 3–4 tests per person-
year, and high testers having ≥ 5 tests per person-year, by the 
end of study.

The study's methodology involved creating matched cohorts 
designed for straightforward disaggregation to facilitate sub-
group analyses. This strategy carries the potential drawback 
of generating population compositions that may not accu-
rately reflect the intended target groups. To assess whether 
this approach could have impacted the study's findings, we 
performed an additional sensitivity analysis. This involved 
rederiving the AHRs for the subgroup analyses by incorpo-
rating interaction terms between the study cohorts and prior 
infection statuses.

Statistical analyses were performed using Stata/SE Version 18.0 
(Stata Corporation, College Station, TX, USA).

3   |   Results

3.1   |   Study Population

Between December 16, 2020, and February 18, 2024, 1,322,715 
individuals in the total population of Qatar received at least 
two doses of BNT162b2, of whom 448,322 received a third 
dose. The median dates for the first, second, and third doses 
were May 3, 2021, May 25, 2021, and January 7, 2022, respec-
tively. The median time between the first and second doses 
was 21 days (interquartile range [IQR], 21–22 days). The me-
dian time between the second and third doses was 256 days 
(IQR, 236–287 days).

Over the same duration, 907,269 individuals in the total pop-
ulation of Qatar received at least two doses of mRNA-1273, of 
whom 241,601 received a third dose. The median dates for the 
first, second, and third doses were May 28, 2021, June 28, 2021, 
and February 13, 2022, respectively. The median time between 
the first and second doses was 28 days (IQR, 28–30 days). The 
median time between the second and third doses was 250 days 
(IQR, 219–287 days).

Figure  S1 illustrates the study population selection process. 
Table 1 describes the characteristics of the full and matched co-
horts. This study was conducted on Qatar's entire population, 
and therefore, the study population is representative of the coun-
try's internationally diverse, predominantly young and male, de-
mographic profile.

3.2   |   Two-Dose Analysis

A total of 37,097 infections were recorded in the BNT162b2 
matched study cohort at least 14 days after receiving the sec-
ond dose (Figure  S1 and Table  2A). Of these infections, 32 
progressed to severe, 7 to critical, and 0 to fatal COVID-19. 
Meanwhile, 36,076 infections were recorded in the mRNA-1273 
cohort, of which 20 progressed to severe, 8 to critical, and 2 to 
fatal COVID-19. The median time of follow-up was 442 days 
(IQR, 222–935 days) for the BNT162b2 cohort and 455 days (IQR, 
223–935 days) for the mRNA-1273 cohort (Figure 1A).

Cumulative incidence of infection was 12.0% (95% CI: 11.9–
12.2%) for the BNT162b2 cohort and 11.8% (95% CI: 11.7–
11.9%) for the mRNA-1273 cohort, 990 days after the start of 
follow-up (Figure 1A). The overall AHR comparing incidence 
of infection in the BNT162b2 cohort to the mRNA-1273 co-
hort—controlling for sex, 10-year age group, nationality 
group, number of coexisting conditions, prior infection status, 
and calendar week of the second vaccine dose—was estimated 
at 1.03 (95% CI: 1.02–1.05; Table 2A). The overall AHR for any 
severe, critical, or fatal COVID-19 was estimated at 1.31 (95% 
CI: 0.81–2.11).

The AHR by time since the second dose was highest within 
the first 3 months (Figure 2A). At this peak, BNT162b2 offered 
about 30% less protection compared to mRNA-1273, as indicated 
by the AHR of 1.27 (95% CI: 1.17–1.37). This initial difference 
narrowed in the following 3 months, with the AHR dropping to 
1.11 (95% CI: 1.08–1.14). Thereafter, the AHR remained close to 
1 throughout the follow-up period, although there was a slight, 
temporary increase in the AHR around the 2-year mark of fol-
low-up. This modest increase was observed primarily during 
the spring and summer of 2023, a period throughout which 
the incidence was predominantly driven by XBB subvariants 
(Figure S2).

The subgroup analysis by prior infection status estimated the 
AHR at 1.03 (95% CI: 1.02–1.05) for individuals with no prior 
infection, 1.05 (95% CI: 1.00–1.10) for those with a prior pre-
omicron infection, and 2.43 (95% CI: 0.84–7.02) for those with 
a prior omicron infection (Table 2A). It is of note that the latter 
estimate was based on a small cohort of 205 individuals in each 
arm, as the vast majority of individuals received their second 
vaccine dose before the onset of the omicron wave in Qatar.

The sensitivity analysis additionally adjusting estimates for dif-
ferences in testing rate between the study cohorts yielded an 
overall AHR of 1.03 (95% CI: 1.01–1.04) and subgroup AHRs of 
1.03 (95% CI: 1.01–1.04) for individuals with no prior infection, 
1.03 (95% CI: 0.98–1.08) for those with a pre-omicron infection, 
and 2.43 (95% CI: 0.84–7.02) for those with a prior omicron in-
fection (Table S2A).

The sensitivity analysis using interaction terms between study 
cohort and prior infection status (instead of cohort disaggrega-
tion in the main analysis) yielded AHR estimates of 1.03 (95% 
CI: 1.02–1.05) for individuals with no prior infection, 1.05 (95% 
CI: 1.00–1.10) for those with a pre-omicron infection, and 2.26 
(95% CI: 0.78–6.49) for those with a prior omicron infection 
(Table S2A).
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TABLE 2    |    Hazard ratios for incidence of SARS-CoV-2 infection and of severe, critical, or fatal COVID-19 in the (A) two-dose analysis and (B) 
three-dose analysis.

A. Two-dose analysis BNT162b2 cohorta mRNA-1273 cohorta

Main analysis

Sample size 390,495 390,495

Number of incident infections 37,097 36,076

Total follow-up time (person-weeks) 32,081,665 32,160,114

Incidence rate of infection (per 10,000 person-weeks; 95% 
CI)

11.6 (11.5–11.7) 11.2 (11.1–11.3)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)

1.03 (1.02–1.05)

Adjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)b

1.03 (1.02–1.05)

Unadjusted hazard ratio for severe, critical, or fatal 
COVID-19 disease (95% CI)

1.30 (0.81–2.10)

Adjusted hazard ratio for severe, critical, or fatal 
COVID-19 disease (95% CI)b

1.31 (0.81–2.11)

Subgroup analyses

No prior infection

Incidence rate of infection (per 10,000 person-weeks; 
95% CI)

11.7 (11.6–11.9) 11.4 (11.3–11.5)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)

1.03 (1.01–1.04)

Adjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)b

1.03 (1.02–1.05)

Prior pre-omicron infection

Incidence rate of infection (per 10,000 person-weeks; 
95% CI)

9.9 (9.6–10.3) 9.5 (9.2–9.8)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)

1.05 (1.00–1.10)

Adjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)b

1.05 (1.00–1.10)

Prior omicron infection

Incidence rate of infection (per 10,000 person-weeks; 
95% CI)

7.6 (4.2–13.7) 3.4 (1.4–8.2)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)

2.23 (0.78–6.43)

Adjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)b

2.43 (0.84–7.02)

Prior pre-omicron and omicron infections

Incidence rate of infection (per 10,000 person-weeks; 
95% CI)

— —

Unadjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)

—

Adjusted hazard ratio for SARS-CoV-2 infection (95% 
CI)b

—

(Continues)
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3.3   |   Three-Dose Analysis

A total of 16,907 infections were recorded in the BNT162b2 
matched study cohort at least 7 days after receiving the third 
dose (Figure  S1 and Table  2B). Of these infections, three 
progressed to severe, but none to critical or fatal COVID-19. 
Meanwhile, 15,405 infections were recorded in the mRNA-
1273 cohort, of which one progressed to severe, one to criti-
cal, and one to fatal COVID-19. The median time of follow-up 
was 733 days (IQR, 682–764 days) for the BNT162b2 cohort 
and 734 days (IQR, 684–765 days) for the mRNA-1273 cohort 
(Figure 1B).

Cumulative incidence of infection was 9.9% (95% CI: 9.8–
10.1%) for the BNT162b2 cohort and 9.0% (95% CI: 8.9–9.1%) 
for the mRNA-1273 cohort, 780 days after the start of follow-up 
(Figure 1B). The overall AHR comparing incidence of infec-
tion in the BNT162b2 cohort to the mRNA-1273 cohort—con-
trolling for sex, 10-year age group, nationality group, number 
of coexisting conditions, prior infection status, and calendar 
week of the third vaccine dose—was estimated at 1.11 (95% 
CI: 1.09–1.13; Table 2B). The overall AHR for any severe, crit-
ical, or fatal COVID-19 was estimated at 1.00 (95% CI: 0.20–
4.94). The AHR by time since the third dose remained above 
1 throughout the follow-up period (Figure 2B). It also seemed 

B. Three-dose analysis BNT162b2 cohorta mRNA-1273 cohorta

Main analysis

Sample size 177,422 177,422

Number of incident infections 16,907 15,405

Total follow-up time (person-weeks) 16,947,840 17,048,557

Incidence rate of infection (per 10,000 person-weeks; 95% CI) 10.0 (9.8–10.1) 9.0 (8.9–9.2)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% CI) 1.10 (1.08–1.13)

Adjusted hazard ratio for SARS-CoV-2 infection (95% CI)b 1.11 (1.09–1.13)

Unadjusted hazard ratio for severe, critical, or fatal COVID-19 disease 
(95% CI)

1.00 (0.20–4.97)

Adjusted hazard ratio for severe, critical, or fatal COVID-19 disease 
(95% CI)

1.00 (0.20–4.94)

Subgroup analyses

No prior infection

Incidence rate of infection (per 10,000 person-weeks; 95% CI) 10.3 (10.1–10.4) 9.3 (9.1–9.4)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% CI) 1.10 (1.08–1.13)

Adjusted hazard ratio for SARS-CoV-2 infection (95% CI)b 1.11 (1.09–1.14)

Prior pre-omicron infection

Incidence rate of infection (per 10,000 person-weeks; 95% CI) 8.4 (8.0–8.7) 8.2 (7.8–8.6)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% CI) 1.02 (0.96–1.09)

Adjusted hazard ratio for SARS-CoV-2 infection (95% CI)b 1.02 (0.96–1.09)

Prior omicron infection

Incidence rate of infection (per 10,000 person-weeks; 95% CI) 8.9 (8.0–10.0) 5.7 (4.9–6.5)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% CI) 1.58 (1.32–1.89)

Adjusted hazard ratio for SARS-CoV-2 infection (95% CI)b 1.59 (1.33–1.90)

Prior pre-omicron and omicron infections

Incidence rate of infection (per 10,000 person-weeks; 95% CI) 10.4 (7.1–15.3) 5.8 (3.5–9.7)

Unadjusted hazard ratio for SARS-CoV-2 infection (95% CI) 1.78 (0.94–3.36)

Adjusted hazard ratio for SARS-CoV-2 infection (95% CI)b 1.97 (1.04–3.73)

Abbreviations: CI, confidence interval; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
aCohorts were matched exactly one to one by sex, 10-year age group, nationality, number of coexisting conditions, prior infection status, and calendar week of the 
second vaccine dose in the two-dose analysis and calendar week of the third dose in the three-dose analysis.
bAdjusted for sex, 10-year age group, nationality, number of coexisting conditions, and calendar week of the second vaccine dose in the two-dose analysis and calendar 
week of the third dose in the three-dose analysis.

TABLE 2    |    (Continued)
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to increase slightly over time, reaching an AHR of approxi-
mately 1.3.

The subgroup analysis by prior infection status estimated 
the  AHR at 1.11 (95% CI: 1.09–1.14) for individuals with no 
prior infection, 1.02 (95% CI: 0.96–1.09) for those with a prior 
pre-omicron infection, 1.59 (95% CI: 1.33–1.90) for those 
with  a  prior omicron infection, and 1.97 (95% CI: 1.04–3.73) 
for those with prior pre-omicron and omicron infections 
(Table 2B).

The sensitivity analysis additionally adjusting estimates for dif-
ferences in testing rate between the study cohorts yielded an 
overall AHR of 1.05 (95% CI: 1.03–1.07) and subgroup AHRs of 
1.05 (95% CI: 1.03–1.08) for individuals with no prior infection, 
0.98 (95% CI: 0.93–1.05) for those with a pre-omicron infection, 
1.40 (95% CI: 1.17–1.68) for those with a prior omicron infection, 
and 1.92 (95% CI: 1.00–3.69) for those with prior pre-omicron 
and omicron infections (Table S2B).

The sensitivity analysis using interaction terms between study 
cohort and prior infection status (instead of cohort disaggrega-
tion in the main analysis) yielded AHR estimates of 1.11 (95% 
CI: 1.09–1.14) for individuals with no prior infection, 1.02 (95% 
CI: 0.96–1.09) for those with a pre-omicron infection, 1.58 (95% 
CI: 1.32–1.88) for those with a prior omicron infection, and 1.77 

(95% CI: 0.94–3.35) for those with prior pre-omicron and omi-
cron infections (Table S2B).

4   |   Discussion

The results indicated that individuals vaccinated with mRNA-
1273 experienced a lower incidence of infection compared to 
those vaccinated with BNT162b2, both after the primary series 
and following the third/booster dose. Notably, for the primary 
series, most of this difference was observed in the initial months 
following the second dose before the waning of antibodies 
[46, 47]. This observation is consistent with our previous anal-
ysis, which was restricted to the early post-vaccination period 
[17]. The difference in incidence rates between the vaccines may 
be attributed to the higher antigen dose in the mRNA-1273 vac-
cine (100 μg) [2] compared to the BNT162b2 vaccine (30 μg) [1], 
which appears to result in variations in neutralizing antibody 
titers [18].

For the third dose, the observed difference in protection 
against infection was smaller immediately after dose admin-
istration, which could be attributed to the mRNA-1273 booster 
dose being half that of the primary series (50 μg vs. 100 μg) 
[2, 4] and the BNT162b2 booster dose remaining equal to that 
of the primary series (30 μg) [1, 4]. However, this difference in 

FIGURE 1    |    Cumulative incidence of SARS-CoV-2 infection after (A) two doses and (B) three doses of the BNT162b2 and mRNA-1273 vaccines.
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protection against infection not only persisted but also appeared 
to increase over the follow-up period post-booster. Despite 
these (generally modest) differences in protection against in-
fection between these two vaccines, there was no evidence of 
differences in their effectiveness against severe, critical, or fatal 
COVID-19 outcomes either after the primary series or after the 
booster dose.

The results indirectly hinted at a dose-dependent immune im-
printing effect: Combined pre-omicron and omicron immu-
nity (achieved through vaccination or natural infection) offers 
greater protection against infection than pre-omicron immunity 
alone [20, 21], with this effect amplified by a higher antigen dose 
(that of mRNA-1273 [2]). For those with a prior pre-omicron in-
fection before vaccination, the aHR was 1.05 (95% CI: 1.00–1.10) 
in the two-dose analysis and 1.02 (95% CI: 0.96–1.09) in the 
three-dose analysis (Table 2). Meanwhile, for those with a prior 
omicron infection before vaccination, the aHRs were substan-
tially larger at 2.43 (95% CI: 0.84–7.02) in the two-dose analy-
sis and 1.59 (95% CI: 1.33–1.90) in the three-dose analysis. This 

effect, observed in both the two-dose and three-dose cohorts, 
did not reach statistical significance in the two-dose analysis 
but is consistent with observations from our earlier studies of 
immune imprinting [20, 21]. This suggests a dose-dependent ef-
fect, as the difference between these two vaccines is related to 
antigen dose, with both otherwise having a similar design [1, 2]. 
The two sensitivity analyses corroborated these findings; how-
ever, further studies are warranted to definitively confirm and 
elucidate this dose-dependent effect.

The slowly increasing difference in protection observed in the 
three-dose analysis (Figure  2B), as well as the apparent in-
crease during later follow-up periods in the two-dose analysis 
(Figure  2A), may also be attributed to this immune imprint-
ing effect. This hypothesis is supported by the fact that these 
later follow-up periods coincided with times of reduced testing. 
Consequently, it is possible that many cohort members experi-
enced increasing numbers of undocumented omicron infections 
post-vaccination, which could result in a progressively larger ob-
served difference in protection.

FIGURE 2    |    Adjusted hazard ratios for incidence of SARS-CoV-2 infection in the matched (A) primary series BNT162b2 cohort versus primary 
series mRNA-1273 cohort and (B) three-dose BNT162b2 cohort versus three-dose mRNA-1273 cohort, by month of follow-up.
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The study findings may have implications for other infections 
and future pandemics. First, vaccine antigen dose appears to 
play a role in determining vaccine effectiveness against infection 
[48], but it is also important to consider whether a higher anti-
gen dose may increase the risk of adverse events [49]. Second, 
although protection against infection varied across vaccines, 
the differences in protection against severe forms of COVID-19 
were not clinically large and were not statistically significant. 
This suggests that future pandemic strategies should focus on 
maximizing vaccine coverage rather than prioritizing specific 
vaccines to optimize rapid protection against severe disease in 
the population. Third, the study highlighted the utility of the 
target trial design in evaluating differences in the effectiveness 
of vaccines and their long-term impacts in real-world settings. 
This approach, suitable for both emerging and endemic infec-
tions, allows for rapid assessments and may reduce the need for 
time-consuming and resource-intensive randomized controlled 
trials [30, 31].

This study has limitations. This study relied on documented 
SARS-CoV-2 infections to compare incidence between cohorts. 
However, many infections, particularly since the testing reduc-
tion on November 1, 2022, might be undocumented. Although 
documented SARS-CoV-2 infections were considered a proxy 
for incidence, this measure actually reflects both incidence 
(symptom-driven testing) and prevalence (routine/random test-
ing) of infection. However, the study outcomes are relative mea-
sures comparing the two cohorts and therefore should not be 
impacted by under-ascertainment of incident infections as long 
as under-ascertainment does not differentially affect the com-
pared cohorts.

Testing frequency may differ between cohorts, suggesting po-
tential differential outcome ascertainment. Nevertheless, the 
sensitivity analysis, which adjusted estimates for differences in 
testing rates between cohorts, affirmed the main study findings. 
The study also matched observable confounders across cohorts 
to control for any potential effects of differences in testing across 
confounder values. Home-based rapid antigen testing is not doc-
umented (Appendix  S1) and is not factored in these analyses. 
However, there is no reason to believe that home-based testing 
could have differentially affected the followed cohorts to alter 
study estimates. Matching was done while factoring key socio-
demographic characteristics of the population, and this may also 
have controlled or reduced differences in home-based testing 
between cohorts.

With the relatively young population of Qatar [27], our findings 
may not be generalizable to other countries where elderly cit-
izens constitute a large proportion of the population. The all-
cause mortality database used in the analyses was complete 
up to June 15, 2023, but it missed non-COVID-19 deaths after 
this date. However, this is unlikely to have impacted the re-
sults, considering the very low mortality rate in this young and 
healthy population [28, 29]. Our previous cohort studies have 
consistently demonstrated limited censoring due to deaths 
[4, 24, 28, 29, 50].

Qatar has diverse demographics, with 89% of the population 
being expatriates from over 150 countries [27]. Data on the 
travel history of the study population were not available. 

Given the high proportion of expatriates, it is plausible that 
the rate of travel is higher than in other countries. To account 
for this, matching by nationality, age, and sex was performed 
to balance travel rates across the cohorts. These demographic 
factors serve as strong proxies for socioeconomic status and 
occupation in this country [27, 38, 40] and consequently po-
tentially for the rate of travel outside the country. Although 
matching can impact the representativeness of the study pop-
ulation, differences between the matched and fully eligible co-
horts were minor in this study (Table 1). The matched cohorts 
were broadly representative of Qatar's population structure, 
which primarily consists of young expatriates [27, 38, 40].

Although robust matching was implemented, the availability 
of data limited matching on other factors such as geography 
or occupation. However, being essentially a city-state, infec-
tion incidence in Qatar was broadly distributed across neigh-
borhoods. Nationality, age, and sex serve as powerful proxies 
for socioeconomic status in this country [27, 37–40], and thus, 
matching by these factors may have also, at least partially, con-
trolled for other variables such as occupation. This matching 
approach has been previously investigated in studies with dif-
ferent epidemiologic designs using control groups to test for 
null effects [6–8, 17, 51]. This includes our earlier comparison 
of these two vaccines, which showed no difference in infec-
tion incidence during the first 2 weeks after the first dose [17]. 
These studies have supported the effectiveness of this match-
ing prescription in controlling for differences in infection 
exposure [6–8, 17, 51]. However, bias in real-world data can 
arise unexpectedly or from unknown sources, such as subtle 
behavioral differences, variations in test accessibility, or policy 
shifts related to testing or vaccination privileges, among other 
factors.

Due to the low number of severe, critical, or fatal infections 
among these vaccinated cohorts, we were unable to conduct 
separate analyses for each severity category (severe, critical, 
or fatal COVID-19). Although there were variations in the 
distribution of these outcomes across cohorts, the limited 
number of cases suggests that these differences likely arose 
by chance.

The study has strengths. It was conducted on a large national 
scale, encompassing a diverse population based on national 
backgrounds and utilized extensive, validated databases estab-
lished through numerous COVID-19 studies. The follow-up pe-
riod was long, spanning several years after vaccination. Exact 
matching was employed to ensure rigorous pairing of cohorts. 
Finally, estimates were confirmed through sensitivity anal-
yses, which adjusted for differences in testing rates between 
the cohorts and employed alternative analysis methodologies 
for estimating study outcomes, namely, the use of interac-
tion terms.

In conclusion, BNT162b2 showed less protection against in-
fection compared to mRNA-1273 following both the primary 
series and booster vaccinations, perhaps reflecting the differ-
ences in antigen doses of the two vaccines. However, no sig-
nificant differences were observed in effectiveness against 
severe outcomes following both the primary series and booster 
vaccinations. The results hinted at a dose-dependent immune 
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imprinting effect, where a combination of two types of im-
munity, pre-omicron and omicron, offered greater protection 
against infection than one type alone, with this effect being 
amplified by the higher antigen dose of mRNA-1273 compared 
to BNT162b2.
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