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A B S T R A C T

Loss of load probability (LOLP) and expected energy not served (EENS) are commonly used in electrical power
systems to evaluate reliability. LOLP defined as the probability that available generation capacity will be
inadequate to supply customer demand. EENS defined as the expected amount of energy not being served to
consumers by the system during the period considered due to system capacity shortages or unexpected power
outages. Loss of Load Frequency (LOLF) is referred to a number of loss of load (LOL) event happened in the
operation life span of the SMG. Loss of Load Reduction (LOLR) is defined as the required reduction in LOLF to
obtain a specific reliability level. While power systems are designed to minimize LOLP and EENS, this is con-
strained by the total cost: investment cost, operation and maintenance cost, and cost of customer interruption
(CCI). This research considers Standalone Microgrid (SMG), also known as Autonomous Microgrid which only
operates in off-grid mode and cannot be connected to wider electrical power system. When designing a 100 %
renewable energy integrated SMGs, it is crucial to determine the cost-effective reliability level (CERL). The CERL
occurs when the total cost is minimum. This research proposes an approach to calculate the CERL for a fully
renewable SMG. An analytical formulation is proposed to represent the LOLR needed to obtain a specific reli-
ability level as a function of the required size of reliability improvement alternatives. The CCI is evaluated using
LOLF and EENS indices. Finally, the total cost of the SMG system is evaluated for each reliability level. Conse-
quently, the total cost of the SMG system is expressed as a function of reliability levels, and the minimum value of
total cost and the corresponding reliability level are evaluated. In this research, a Monte Carlo Simulation (MCS)
approach is used to find hourly LOLF, considering 25 years (219,000 h) of SMG lifespan, regression analysis is
used for an analytical formulation, and mixed integer linear programming (MILP) is used for the investment
decision making based on a cost minimisation approach. The result demonstrates that the CERL of the SMG
system evaluated in the case study is 98.71 %.

1. Introduction

The first paragraph of the introduction contains a definition of CERL.
The paragraph that follows explains why the system reliability level in a
microgrid context should be fixed. The introduction then describes how
CERL is evaluated. It then considers who should bear the cost of the
reliability upgrades. Finally, the relevant literature review is developed.

The investment cost of reliability improvement in any electrical
network depends on the reliability improvement solutions chosen and
their related expenses. The cost of customer interruption (CCI), on the

other hand, is defined by the amount of money lost by consumers as a
result of power outages. The total cost is the sum of the investment cost,
operation and maintenance (O&M) costs, and CCI. The total cost of any
electrical network should be maintained as low as possible. It is vital to
evaluate the level of reliability at the lowest possible total cost. This is
known as the cost-effective reliability level (CERL).

The utility is responsible for delivering electricity to customers at a
reasonable cost while maintaining adequate quality and reliability [1].
The presence of prosumers presents an excellent opportunity for utilities
and customers to transition to a sustainable green electricity network in
an economically efficient and reliable manner [2]. On the one hand, the
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utility grid establishes and maintains a reliability standard to maintain a
specified level of reliability for the power system network. As a result,
independent power producers (IPP) such as microgrids must meet the
Utility’s reliability level in order to participate in energy trading,
particularly for energy export to the grid. Microgrids, on the other hand,
can maintain specific reliability level for a variety of reasons, including
supplying critical loads connected to the microgrid network. As a result,
when the microgrids import power from the grid, the grid must also
meet the microgrids’ reliability level. This necessitated that the utility
grid and the microgrid work together to establish a level of reliability for
the entire electricity network. In some cases, the reliability levels may
need to be changed between seasons. This is because customers rely
heavily on electricity during specific seasons; for example, the agricul-
tural sector in Asian countries requires more reliable electricity supply
during a specific season each year. All of these reasons clearly indicate
the need for an SMG system to analyze its reliability level and continue
to maintain it at a cost-effective level for SMG.

When the utility establishes the reliability level, two research ques-
tions must be addressed: how much reliability is adequate from the
customer’s perspective, and how a utility can best spend money to
achieve a specific reliability level. The total cost can be used to answer
these two questions. From an economic standpoint, the reliability level
that provides the lowest total cost is a typical CERL that must be fixed as
a reliability standard for a power system network. The total cost is pri-
marily determined by the sum of the customer interruption cost (CIC)
and the investment cost.

Utility companies conduct numerous customer surveys to evaluate
the CIC, and optimisation algorithms are used to find the optimum
reliability while minimising the total investment cost. The cost of CIC is
sometimes a tangible measure, where the impact of the interruption can
be weighted in monetary value, and other times it is intangible, where
the impact cannot be easily converted into cost [3]. In 2018, the

Australian Energy Regulator (AER) assessed the value of customer reli-
ability (VCR) and developed a method for assessing VCR [4]. VCR
provides criteria for assessing CIC.

To achieve high supply reliability, the electricity network reliability
standards necessitate the construction of additional network infra-
structure. This leads to in an additional investment cost to the SMG
system. As a result, the customer must eventually bear the cost of
increased reliability [5]. “Many outages could be avoided if the elec-
tricity network was improved,” according to the Australian Energy
Market Commission (AEMC). However, the cost of the improvements
would be borne by higher electricity bills [4]. As a result, the decision to
improve reliability is influenced by the customer’s willingness to pay.
Customers’ willingness to pay for increased reliability has increased
since electric utility deregulation [6]. Reliability improvement options
for an SMG system typically include installed capacity expansion of
renewable energy resources, energy storage systems, demand side
management programs, and improved distribution network reliability.
The most common option for improving an SMG’s network reliability is
to reduce the failure rate (FR) of its individual components.

A distribution network’s reliability indices are divided into load
point reliability indices and system reliability indices [7]. The average
failure rate, average annual outage time, and average outage time per
failure are the load point reliability indices. System Average Interrup-
tion Frequency Index (SAIFI), System Average Interruption Duration
Index (SAIDI), Customer Average Interruption Duration Index (CAIDI),
and Average Service Availability Index are the distribution system
indices (ASAI) are the system reliability indices [8]. Lei Xiao et al. [9],
investigated the impact of renewable and distributed resources on
customer side reliability indices, such as solar PV, BESS, and electric
vehicles (EVs).

A value-based reliability planning methodology seeks the lowest cost
solution. The marginality condition is evaluated to determine the

1. Nomenclature

ICkBESS Investment Cost of k MW of BESS capacity expansion
IClDR Investment Cost of l times 50 kW of DR capacity expansion
ICmFR Investment Cost of m times 0.01 failure rate reduction
ICiPV Investment Cost of i MW of PV capacity expansion
ICjWT Investment Cost of j MW of WT capacity expansion
MLOLRrBESS Marginal LOLR obtained as a result of q MW of capacity

expansion of WT
MLOLRsDR Marginal LOLR obtained as a result of s MW of capacity

expansion of DR
MLOLRtFR Marginal LOLR obtained as a result of t MW of capacity

expansion of FR
MLOLRpPV Marginal LOLR obtained as a result of p MW of capacity

expansion of PV
AEMC Australian Energy Market Commission
AER Australian Energy Regulator
ASAI Average Service Availability Index
BESS Battery Energy Storage System
CAIDI Customer Average Interruption Duration Index
CCI Cost of Customer Interruption
CDF Customer Damage Function
CERL Cost-Effective Reliability Level
DG Distributed Generation
DR Demand Response
DW Direct Worth
EENS Expected Energy Not Served
EENSR Reduction in Expected Energy Not Served
EV Electric Vehicles

FR Failure Rate
FTA Fault Tree Analysis
IIC Incremental Investment Cost
LOL Loss of Load
LOLF Loss of Load Frequency
LOLP Loss of Load Probability
LOLR Loss of Load Reduction
MCS Monte Carlo Simulation
MGDN MG distribution network
MGDN Microgrid Distribution Network
MILP Mixed Integer Linear Programming
MLOLR Marginal Loss of Load Reduction
MRM Markov Reliability Model
NPV Net Present Value
PV Photovoltaic Power Generation
RBD Reliability Block Diagram
RI Reliability Improvement
SAIDI System Average Interruption Duration Index
SAIFI System Average Interruption Frequency Index
SCDF Sector Customer Damage Function
SMG Standalone Microgrid
SSCDF Subsector Customer Damage Function
TAC Total Annualized Cost
TICRI Total Investment Cost of Reliability Improvement
TTF Time to Failure
VCR Value of Customer Reliability
VOLL Value of Lost Load
WT Wind Power Generation
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minimum cost solution, where the marginal cost of reliability
enhancement equals to the marginal benefit [1]. The requirement of
both lower cost and achieving an acceptable level of service reliability
should be met using the concept of value-based distribution system
reliability planning [6]. Soheil Mohseni et al. [10], proposed generic
reliability-oriented life-cycle cost minimisation method for stand-alone
multiple energy carrier microgrid (MECM). The study investigated the
affordability, sustainability, and cost-efficiency of the SMGs supplying
electricity, as well as the optimum capacity of the MG’s equipment using
the net present value (NPV) and the probability of power supply failure
(LPSP). Adefarati and R. C. Bansal [11] proposed a method for valuing
the reliability, economic, and environmental benefits of renewable en-
ergy in a microgrid system. The goal of this life-cycle analysis is to
reduce the cost of energy, the lifecycle cost, the annual cost of load loss,
and the lifecycle cost of greenhouse emissions while also increasing the
overall benefit of green technologies in the proposed microgrid system.
J. Zhou and Z. Xu [12] proposed optimal sizing and a cost-benefit
analysis of SMG based on reliability. This paper proposes a
cost-benefit index based on LPSP and total net present value cost
(TNPC). N.Zareen et al. [13], proposed a reliability cost-benefit (RCB)
model for integrating distributed generation (DG) into an independent
MG network. In this paper, a novel decision-making strategy for relating
system reliability to cost-benefit is proposed, using economic and
signaling-game theory (SGT). Furthermore, an analysis was conducted
to correlate various reliability levels with the value of incentives paid to
customers for Demand Response (DR) initiatives.

Anoune et al. [14], introduced a deterministic approach for
improving MG reliability while reducing the investment cost of hybrid
renewable-based energy systems by maintaining a constant temperature
for bitumen storage. Sahar Seyyedeh-Barhagh et al. [15], proposed a
bi-objective scheduling framework for hydrogen storage system
(HSS)-based MGs based on economic and environmental factors.
Mehrdad Aslani et al. [16], proposed best probabilistic
reliability-oriented SMG planning. The optimal capacity of a
hydrogen-based MG subsystem is determined while accounting for en-
ergy cost loss. Seyed Mehdi Hakimi et al. [17], assessed the optimal
capacity of a renewable energy system in MG while taking market
interaction and reliability constraints into account. The majority of re-
searchers [18–20] evaluated the optimal use of energy resources to
maximise reliability level, while only a few [21,22] discussed
cost-effective reliability level evaluation while considering total cost
minimisation.

Based on the literature study, a research gap in identified to evaluate
the CERL in comprehensive manner. Therefore, this research problem
should address three sub-research problems such as: reliability evalua-
tion approaches, reliability improvement methods that consider cost
minimisation, and evaluation of customer interruption cost. As a result,
the literature review was further expanded in these three areas.

Analytical and simulation methods can be used to assess reliability.
Analytical approaches such as Reliability Block Diagram (RBD), Fault
Tree Analysis (FTA), and Markov Reliability Model (MRM) are used to
identify which component has a high impact on system failure [23,24].
The simulation approach assesses system reliability by simulating its
operation in real time while taking the system’s operational life span
into account. Most researchers used the Monte Carlo Simulation (MCS)
to simulate reliability, with most focusing on either equipment failure
events or resource unavailability situations [25–27]. In a previous
research paper, the authors [28] proposed a comprehensive reliability
evaluation approach that incorporates resource unavailability and
equipment failure using hourly data.

Billinton and Karki [18] proposed a method for increasing capacity
in a small, isolated power system. The number of healthy states, the
number of risk states, and the duration of each state are computed. To
generate random risk indices and well-being indices, MCS is used. Ai
et al. [20], proposed a computer-aided design for sizing a PV/WT/BESS
system in relation to the loss of power supply probability (LPSP) index.

The paper ignores equipment and component failure and focuses solely
on resource availability. Nelson et al. [19], proposed a method for unit
sizing and cost analysis of stand-alone hybrid WT/PV/Fuel-cell power
generation systems in which the number of WT units is used as an input
parameter to calculate the number of PV panels required to match a
specific LPSP level. Recalde and Alvarez-Alvarado [21] proposed a novel
design framework for an optimised renewable energy-based DG project
in a medium voltage primary distribution system. This strategy serves as
a foundation for a new distribution expansion project. By minimising
EENS, the DG potential location and sizes are identified.

The cost of unreliability is not equal to the value of reliability, but it
can be considered a reasonably representative measure [29]. In order to
calculate the cost of a customer outage, three methodologies are
commonly used: indirect analytical methods, case studies, and customer
surveys. Customers in the industrial sector are typically assessed using
the analytical method, whereas customers in the residential sector are
assessed using the customer survey approach [30]. Many researchers
[29,31–34] used a customer survey to calculate the cost of interruption.
The customer survey methodology allows for three different approaches:
direct worth (DW), willingness to accept (WTA), and willingness to pay
(WTP). Customers are asked to value their own losses due to power
outages under the DW approach. This method is usually successful for
industrial and commercial customers, but it is not successful for resi-
dential customers because not all losses for a residential customer are
tangible. Customers are asked how much compensation they are willing
to accept for power outages under the WTA method. Similarly, the WTP
method involves asking customers how much money they are willing to
pay to avoid an interruption [30]. Because the cost of interruption dif-
fers between customers in different customer sectors, most researchers
[33–35] used a sector customer damage functions (SCDF) approach. To
get a more accurate understanding of interruption cost, Sinan and Matti
[32] used subsector customer damage function (SSCDF), which divides
customers further into sub-sector.

The sufficiency of reserves aids in the maintenance of energy and
power balance, as well as the reliable real-time operation of microgrids.
As a result, capital and operating costs are critical issues in MGs [36,37].
Because RES integration is dramatically increased in MGs, RES inter-
mittent behaviour should be compensated tomaintain system reliability;
however, the total cost of the system should be minimised, which can be
accomplished by optimising installed capacity sizing [38]. Malaki and F.
Pourfayaz [39] proposed using an evolutionary algorithm to determine
the optimal size of a hybrid PV/WT/BESS system. The goal function is to
minimize total annualized cost (TAC), while the constraint is to balance
a user-specified loss of LPSP index. Notably, this study only looked at
resource sufficiency; the failure of generating equipment and distribu-
tion components was not considered. Khodaei et al. [40], proposed a
method for MG planning in the face of uncertainty. The issue is divided
into two parts: an investment master problem and an operation sub-
problem. The cost of unserved energy, which represents MG reliability,
is incorporated into the cost function of MG operation. The Benders
decomposition method was used to connect and coordinate these two
problems.

Munasinghe and Gellerson [22] proposed a generalised simulation
model for optimising reliability by weighing the social benefit and cost
of improving power system reliability. The concept is applied to a case
study of Cascavel, Brazil, in order to determine a range of optimum
reliability levels for long-term electric power distribution system plan-
ning. Vahedipour-Dahraie et al. [41], proposed a risk-constrained sto-
chastic framework method to maximise a microgrid operator’s expected
profit under uncertainties of renewable resources, load demand, and
electricity price. The expected profit and cost of EENS are plotted against
the value of lost load (VOLL) in this study.

To improve dependability, most studies presented several ap-
proaches for calculating the size of installed RES capacity in MGs. No
one in this study, to the best of our knowledge, addressed evaluating a
certain reliability level as a CERL for a 100 % renewable SMG system.
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This study’s research question is to examine the CERL. This research
problem is addressed with a new approach that involves the phases
outlined here. First, SMG’s reliability is comprehensively evaluated by
assessing equipment and resource availability every hour. Second, for
various reliability levels, an investment cost optimisation approach is
employed to determine the required size of RES installed capacity.
Third, the LOLF penalty payment is included into the EENS cost. Finally,
the total cost is computed, and the CERL is determined by combining
these.

This paper proposes a method for calculating the CERL of fully
renewable standalone microgrids (SMG). This paper’s contribution is as
follows.

1) Development of an algorithm for determining the cost-effective
reliability level for 100 % renewable energy integrated SMG

2) Evaluation of marginal cost of reliability improvement (MCRI) of a
hundred percent renewable energy integrated microgrids

4) Development of a new approach for customer interruption cost cal-
culations; and

3) A holistic reliability evaluation approach is used which combines
equipment and resource hourly availability.

The proposed methodology for evaluating CERL is an expert
approach in which renewable energy resources and energy storages
along with the improvement in the equipment reliability are selected
optimally for a cost-effective reliability level for 100 % renewable-based
microgrids. This approach uses marginal cost of reliability improvement
and customer interruption cost along with other cost of reliability
improvement to evaluate the effectiveness of each method of reliability
enhancement in each iteration of reliability improvement. The reli-
ability improvement is linearized considering the addition of reliability
improvements to enhance the applicability of the proposed methodol-
ogy by reducing the computational efforts. To further analyze the
effectiveness of the proposed approach, the sensitivity analysis is per-
formed in this research to provide a comparison platform of the cost-
effective reliability levels at different scenarios including different mix
of customers.

The novelty and contribution are not limited to a basic minimisation
problem, but also to determining the Cost-Effective Reliability Level
(CERL). The evaluation of CERL necessitates the use of a non-linear
curve fitting technique to evaluate an equation for the total cost
curve. The lowest point on the total cost curve is then determine. The
best reliability value for this minimum total cost is therefore considered
as CERL. In other words, Cost-Effective Reliability Level for 100 %
renewable energy integrated SMG typically indicates the highest reli-
ability level that can be reached in a fully renewable SMG while mini-
mising the total renewable and energy storage costs. This research
concept is completely new. To validate this research work, the sensi-
tivity analysis performed in this research provides a reasonable com-
parison of the outcome obtained from the proposed methodology in this
study.

The following sections of this work are structured as follows. Section
3 defines the research question. Section 4 displays the research meth-
odology, which includes an explanation of the approach used for reli-
ability evaluation, reliability improvement, and total cost evaluation.
Section 5 describes the case study used in this study. Section 6 elabo-
rated on the outcome. Section 7 offers a conclusion.

2. Problem formulation

SMG is a microgrid system that is isolated from the rest of the
network. As a result, SMGs frequently experience reliability issues. In
this context, improving the reliability of an SMG system is critical;
however, the critical research problem is determining what level of
reliability is cost-effective. Equipment Redundancy makes it possible to
attain 100 % equipment reliability, but it is not always an economical

solution. Consequently, while considering cost minimisation, equipment
reliability cannot be 100 % since all equipment has a failure rate. As a
result, achieving 100 % reliability is not practically attainable.
Furthermore, in order to achieve 100 % system resource adequacy, we
must invest a significant amount on resources. Therefore, figuring out
which level of reliability—such as 99.5 %, 99 %, or 98.5%—is best for
minimising the SMG system’s overall cost is the main research problem,
while maintaining 100 % renewable-based resource profile. Identifying
the reliability improvement alternatives while considering cost mini-
misation became a sub-research problem during the evaluation process.
This sub-problem was previously presented by the authors in their
previous research paper [42], but the concept is repeated here with a
different base case scenario. The second sub-problem is determining the
cost of customer interruption (CCI) in relation to LOLF and EENS. The
third sub-problem is determining the optimal reliability level while
keeping total cost in mind. This is addressed using a mixed-integer linear
programming optimisation approach.

The loss of load probability (LOLP) is used in this study to assess the
system’s reliability. As a result, an investment decision on reliability
improvement is influenced by the LOLP value. The customer damage
function (CDF), on the other hand, can be represented as a function of
LOLP and EENS. As a result, the customer interruption cost (CIC) can be
calculated using LOLP and EENS. Thus, the total cost, which is the sum
of investment and operation and maintenance costs, can be represented
as a function of LOLP and EENS.

Fig. 1 shows that the base case of the MG system consists of aMW of
PV, b MW of WT, c MWh of BESS, and d MW of DR, and e number of
equipment failure rate (FR), has a LOLP of Rbase%.

The research sub-problem is to find how much additional energy
resources, storage, DR, and failure rate reduction capacities needs to be
installed to lower the LOLP from the base case (Rbase%) to a pre-
determined reliability target, considering minimisation of the total in-
vestment cost of reliability improvement (TICRI). TICRI refers to the
sum of the costs associated with investment cost of reliability
improvement. The total investment cost is evaluated based on a net
present value (NPV) calculation. The reliability increase is obtained by
increasing the PV capacity from ‘a’ MW to the maximum of ‘a +7’ MW
with the step of 1 MW, the WT capacity from ‘b’ MW to the maximum of
‘b+7’ MWwith the step of 1 MW, the BESS capacity from ‘c’ MWh to the
maximum of ‘c+7’MWh by the step of 1MWh, the DR capacity from 0 to
300 kW in increments of 50 kW, and the equipment failure rate from 0.1
to 0.04 by 0.01 failure rate reduction. As a result, there are seven de-
cision variables for each reliability improvement option, meaning that a
total of 16,807 combinations of reliability improvements are feasible.

Fig. 1. Base case and base case after reliability improvement.

N. Sakthivelnathan et al. Energy 311 (2024) 133426 

4 



TICRI= ICiPV + IC
j
WT + IC

k
BESS + IC

l
DR + IC

m
FR (1)

Equation (1) represents the TICRI, where i, j, k, l and m represent the
capacity expansion decisions on PV, WT, BESS, DR, and failure rate
reduction. IC refers to investment cost. Hence, ICiPV refers to investment
cost of iMW of capacity addition on solar PV. As explained earlier, i, j, k,
l and m can take any value from 0 to 7. To illustrate, if i= 4, j= 3, k= 2, l
= 2, m = 1 then the decision is to expand PV by 4 MW, WT by 3 MW,
BESS by 2 MWh, DR by 100 kW, and reduce equipment failure rate by
0.01 and then, the corresponding IC will be 4 times the cost of 1 MW of
PV plus 3 times the cost of 1 MW ofWT plus 2 times the cost of 1 MWh of
BESS, and one times the cost of failure rate reduction.

The objective function is to minimize the total investment cost of the
reliability improvement, subject to LOLR is equal or greater than that of
required LOLR to achieve a specific reliability level.

f =Min (TICRI) (2)

subject to : LOLRb→(bnew)
PV+WT+BESS+DR+FR ≥ LOLR* (3)

The constraint of this optimisation problem is to equalize or exceed
the system LOLR to a particular value (LOLR*) based on a user-defined
value of required LOLP reduction. The user-defined value of LOLP will
be converted to LOLF, and then the required LOLR is calculated. For
instance, if a user wants 1 % of LOLP reduction, then the LOLF needs to
be reduced by 2,190, thus LOLR* = 2190. The simulation is for a period
of 25 years’; therefore, it consists of 219,000 h. To obtain 1 % LOLP
reduction, the LOLF of 2190 h needs to be reduced.

The research subproblem can be reduced to determining the least
expensive weighted alternative to achieve the required LOLR. Different
capacities of reliability improvement (RI) alternatives will result in
different LOLRs. By subtracting the LOLR obtained by two consecutive
capacities of RI alternatives, the marginal loss of load reduction
(MLOLR) can be calculated. To illustrate, if the LOLR obtained by
expanding battery capacity by 2 MWh and 3 MWh are 3000 and 5000
respectively, the MLOLR obtained by expanding capacity by 2 MWh to 3
MWh will be 2000 (5000–3000). The MLOLR is calculated similarly for
all RI alternatives. The MATLAB linear programming solver is used to
solve this problem using integer linear programming. The MATLAB
optimisation result yields the appropriate total investment cost.

Equation (4) explains the inequality constraint of this research
problem, where decision variables of capacity expansions are denoted as
i, j, k, l and m and the corresponding marginal loss of load reduction is
denoted as p, q, r, s and t. MLOLRpPV , MLOLRqWT , MLOLRrBESS,
MLOLRsDR and MLOLR

t
FR are the MLOLR due to PV, WT, BESS, DR, and

equipment failure rate. The LOLR* is the required loss of load reduction
to achieve a particular (user defined) reliability level. For example, if the
decision variables i, j, k, l and m are 4, 3, 2,1 and 2 respectively, then

MLOLR4PV +MLOLR
3
WT +MLOLR

2
BESS +MLOLR

1
DR +MLOLR

2
FR

should be equal to or greater than LOLR*. When i = 1, MLOLRpPV
became MLOLR1PV which represents how much loss of load reduction is
achieved when the PV capacity is expanded by the first 1 MW (in this
study, the first 1 MW actually means the increment from the 15 MW PV
installed capacity base case to the 16 MW of the new case). The MATLAB
optimizer performs numerous iterations to find the least cost weighted
combination of resource mix which will help to achieve the required
reliability level. This optimisation problem does not have any equality
constraints.

∑p=i

p=0
MLOLRpPV +

∑q=j

q=0
MLOLRqWT +

∑r=k

r=0
MLOLRrBESS +

∑s=l

s=0
MLOLRsDR

+
∑t=m

s=0
MLOLRtFR ≥ LOLR*

(4)

3. Methodology

The purpose of this study is to evaluate the CERL. The assessment of
CERL is comprised of three sub-problems: the evaluation of base case
reliability, the evaluation of reliability improvement alternatives
through an optimisation process aimed at minimising total cost, and the
evaluation of total cost.

The approach of this study is depicted in Fig. 2. This study is divided
into three sub-problems: reliability evaluation, cost required for a spe-
cific value of reliability improvement, and CERL evaluation. The reli-
ability will be evaluated both at the start of the simulation and after the
reliability improvement alternatives are implemented. The cost of reli-
ability improvement for each improvement level, referred to as MCRI in
this study, should be computed after the reliability improvement has
been made. Then, utilising all of the data points obtained with varying
levels of increased reliability, a plot indicating the total cost of the SMG
must be generated. Using this chart, the lowest point of the total cost
curve is identified as CERL.

3.1. Reliability evaluation

The system’s reliability is determined by two factors: the availability
of equipment and the availability of renewable energy resources. To
improve the reliability of the MG system, a holistic reliability evaluation
method must be used to assess its reliability level. The availability of
generating resources, as well as the availability of generating equipment
and distribution components, is evaluated in each hour by the holistic
reliability evaluation method. A comprehensive mathematical model
that incorporates resource and equipment availability in each hour has
previously been proposed [28] and is repeated here. The time to failure
(TTF) value of each equipment type is evaluated in this model using
non-sequential Monte Carlo simulation, which generates random
numbers. In this step, two aspects are obtained using random prediction:
determining the zero reliability or down (unhealthy) state of the
equipment and predicting the TTF of the equipment in each hour.
Because this uses non-sequential MCS and is focused on predicting
failure events, only the failure rate was evaluated, and repair time was
not considered. The PV, WT, BESS, and MGDN reliability models were
obtained using the state duration sampling approach [48]. Using the
state duration sampling approach, the PV, WT, BESS, and Microgrid
Distribution Network (MGDN) reliability models were obtained. Hourly
power generation from renewable energy resources is calculated using
weather parameters such as solar irradiation, solar temperature, and
wind speed at a specific location.

Fig. 3 depicts how the reliability of the MG system is dependent on
the availability of equipment and resources; the arrows represent the
direction of energy flow.

3.1.1. Equipment availability modelling
In this study, four distinct types of equipment were considered: a

solar PV array, a WT, a BESS, and the MG distribution network (MGDN).
Partially failed components are not included in this study; rather,
component failure is assumed to be a full failure. Failure of 5 MW of PV
panels, for example, signifies failure of all cells in that panel. This is
because the simulation algorithm described in this study does not take
into consideration partial equipment failure. This assumption is intro-
duced to simplify the proposed optimisation procedure.

The analytical approach usually considers the failure rate (λ), which
is the number of failure events expected to happen during the operation
of a component for a specified period, as a constant parameter. But the λ
is not a constant value, it is a time-varying parameter. For example,
suppose the of a battery energy storage system is provided as 0.1 failure/
year, or an MTTF of 10 years; what is the MTTF value after 5 years of
usage? The MTTF will probably change, and a customer cannot expect
the newMTTF value to be the remaining balance of 5 years. TheMTTF of
the battery will tend to decrease due to a variety of factors such as
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operating temperature and repeated charging-discharging. Similarly, a
component may encounter failure in the first year, when the manufac-
ture provided the MTTF of 10 years. The λ or MTTF provided by the
manufacturer is the predicted average value. As a result, the MTTF of the
component must be dealt with using a probabilistic approach by simu-
lating the real process. MCS is commonly used to test the probabilistic
nature of a component’s MTTF.

MCS evaluates the time to failure (TTF) value of each equipment type
by generating random values. In this step, two elements are determined
using random prediction: determining the zero reliability or down state
of the equipment and estimating the TTF of the equipment in each hour.

Fig. 4 depicts the transition of any component from up to down state.
Because this uses non-sequential MCS and is focused on predicting

failure events, just the failure rate was examined, and repair time was
not considered. The PV, WT, BESS, and MGDN reliability models were
developed using the state duration sampling approach. The following
approach can be used to calculate the time to failure (TTF).

Step 1: 219,600 uniformly distributed random numbers (U~ (0, 1))
are generated, representing the number of hours in 25 years.
Step 2: compute TTF using (5)

TTF= − MTTF ⋅ ln(U) (5)

Step 3: Repeat the above two steps to find TTF of each equipment
type, such as solar PV array, wind turbine, battery, and MG network
separately.
Step 4: Identify which energy resources were supplying electricity to
the load at each hour.
Step 5: Calculate the TTF of the system during each hour.

3.1.2. Resource Availability modelling
Wind speed and solar irradiation will certainly vary over the day,

Fig. 2. Evaluation of cost-effective reliability level.

Fig. 3. SMG with equipment and resources availability.

Fig. 4. SMG with equipment and resources availability.
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week, year, and over numerous years. As a result, even if the equipment,
such as a solar panel, is in good working order at a certain hour, if there
is insufficient solar irradiation, there will be insufficient power available
for that source at that time. Because emerging novel power system to-
pologies such as microgrid (MG) power generation are primarily inte-
grated with renewable energy systems, system reliability is dependent
on two factors: availability of equipment and availability of renewable
energy resources. In this sense, it is critical to evaluate the reliability of
an MG system using a simulation approach that takes into account both
resource constraints and resource availability.

The reliability of the system at any moment in time is dictated by the
availability of the components that are in use at that time. As a result,
MG’s hourly reliability value is derived by establishing which energy
sources supply electricity at the current time. In this MG architecture,
the variable renewable energy resources WT, solar PV, and BESS operate
in parallel, while the MG distribution network operates in series, as
shown in Fig. 3. The analysis looks at a few possible scenarios.

➢ If wind power generation, solar PV generation, stored energy in the
battery, are individually greater than the load demand, then all these
are considered as parallel, and the MG distribution network will be in
series with this. RW,RPV ,RBESS,RMGDN represent the reliability of
wind turbine, PV panel, battery energy storage system, and distri-
bution network respectively.

RRMG=(1 − (1 − RWT).(1 − RPV).(1 − RBESS))RMGDN (6)

➢ If wind power and solar PV generation are both more than load de-
mand, and stored energy is insufficient to meet load need. Wind and
solar power generation are viewed as parallel components in this
context. This is because at this time, either wind power generation or
solar PV generation can supply the load requirement.

RRMG=(1 − (1 − RW).(1 − RPV))RMGDN (7)

➢ If only wind power generation is greater than the load demand, and
the battery is fully charged, but not sufficient to supply the load.

RRMG=RW⋅RMGDN (8)

➢ If wind and solar PV generation together with battery energy storage
is greater than or equal to load demand. Here all the components are
series in operation.

RRMG=RW⋅RPV⋅RBESS⋅RMGDN (9)

3.2. Loss of load calculation

In each hour, a loss of load (LOL) event occurs if the resource un-
availability is encountered. To illustrate, the LOL happens when the
total power from renewable energy, power from a diesel generator, and
stored power in the battery during the end of the previous hour is less
than the power demand of the present hour.

LOLi = 0 ∀PiPV+P
i
WT + P

i− 1
BES > PiL (10)

LOLi = 1 ∀PiPV + P
i
WT+P

i− 1
BES < PiL (11)

3.3. Reliability improvement (RI)

In this paper, reliability improvement (RI) refers to increasing reli-
ability by adding installed capacity for renewable energy resources,
installed capacity for battery energy storage systems, installed capacity
for demand response initiatives, and lowering the failure rate of power
generation, storage, and distribution equipment within the SMG system.
These options for improving reliability can be used alone or in

combination.
Using a mixed integer linear programming technique, the proposed

algorithm provides decision variables for every reliability improvement
level. The method determines the number of loss of load (LOL) events
that must be decreased in order to achieve 1 % reliability improvement,
for example, if the SMG system needs to be increased by 1 % (marginal
reliability improvement). It then offers the option of reliability
improvement alternatives based on investment cost minimisation.

3.4. Evaluation of total cost

The evaluation of total cost includes the evaluation of the base case’s
investment cost, the evaluation of the additional investment cost for
reliability improvement, and the evaluation of the base case and the
reliability improved based case’s customer interruption cost. How the
investment cost is calculated is covered in the section that follows. The
case study provides numerical examples to clarify the evaluation of
customer interruption cost.

3.4.1. Evaluation of incremental investment cost (IIC)
The net present value (NPV) technique is used to find the total IIC.

Since this study considers 25 years, the salvage values are ignored.

IC1PV =PV
1
C + PV

1
O&M + PV1R (12)

where, IC1PV is the incremental investment cost of 1 MW of PV capacity
addition, PV1C is the capital cost, PV

1
O&M is operation and maintenance

(O&M) cost, and PV1R is replacement cost. An assumption is made that
the O&M cost incurred in each year is equivalent to 1 % of the capital
investment cost [43] Similarly, IC1WT, IC

1
BESS and IC

1
DR which represent

the incremental investment cost of 1 MW of WT, 1 MWh of BESS, and
100 kW of DR respectively are calculated. To reduce the complexity of
this research, the investment cost of capacity additions is assumed as a
linear increment in price (i.e., if the total cost of 1 MW of capacity
addition of PV is 1 million dollars, then the additional cost of 2 MW of
capacity will be 2 million dollars). All the cost values mentioned
throughout this paper is in Australian Dollars.

3.4.2. Capital cost
The capital cost of PV, WT and BESS were obtained by analyzing the

feasibility studies performed by other researchers [44,45] and reports by
the International Renewable Energy Agency (IRENA) [46] and National
Rural Electric Cooperative Association (NRECA) [47].

3.4.3. Operation and maintenance cost
The NPV investment cost for the unit quantity (1 MW) of capacity

addition is calculated in Table 1. Based on [43], the annualized opera-
tion and maintenance cost of PV, WT and BESS are 1 %, 3 % and 3 %
respectively of the capital cost of each energy resources.

3.4.4. NPV calculation
Net present value is used to calculate today’s value of the future

payment stream.

NPV=
F

(1+ i)n
(13)

Table 1
Investment cost summary.

Investment
cost of 1
MW of PV
(M $)

Investment
cost of 1
MW of WT
(M$)

Investment
cost of x
MWh of
BESS (M$)

Investment
cost of 50
kW of DR
(M$)

Investment
reduction
of 0.01
failure rate
(M$)

Total
cost

1 1.5 0.5 0.55 2.5
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In (13) F is the future value; i is the discount rate and n is the number of
years.

PVNPVO&M=PVO&MAnnual

(
1 − (1+ i)− n

i

)

(14)

In (14), the NPV value of O&M is calculated based on annualized O&M
cost, and r, n represents the discount rate and the number of years of
operation. The discount rate is assumed as 5 % in this research, and n is
25.

3.4.5. Replacement cost
The PV and WT components typically have a lifespan of 25 years and

thus do not require replacement. However, the lifespan of Li-ion battery
energy storage is typically 12–15 years. According to Ref. [44], it is
estimated that the average BESS lifespan is 13 years. Consequently, the
13th year replacement of BESS is simulated in this paper.

PVNPVR =
PVRMG

(1+ r)n1
(15)

where, the PVNPVR is the NPV value of replacement; and n1 denotes the
number of years, PVRMG is the replacement cost at the time of
replacement.

3.4.6. Cost of demand response
In this study, demand response refers to a decrease in aggregated

demand frommicrogrids. The reliability improvement achieved with DR
is assessed using increments of 50 kW DR. Unlike PV and WT capital
costs, DR costs are difficult to calculate because they vary by country
and season.

3.4.7. Incremental investment cost summary
Table 1 summarises the investment cost of 1 MW of energy resources,

1 MWh of battery energy storage system, and 0.01 failure rate reduction
in this section. The cost of PV, WT, BESS are calculated, and the cost of
DR and cost of failure rate reduction are assumed. Evaluation of cost of
demand response is a separate research problem. Therefore, to reduce
the complexity of this research problem, the cost of DR is assumed.
Similarly, the cost of reducing equipment failure rates (replacement of
components) fluctuates over time, therefore the cost value is assumed.
To elaborate, the costs of PV, WT, and BESS vary over time; however,
these costs can be collected from the National Renewable Energy Lab-
oratory’s (NERL) annual reports. However, the cost of DR and the cost of
reducing equipment failure rate cannot be determined from standard
data because they are unique to each MG system. This is important to
mention that these two assumptions will not affect the credibility of the
proposed CERL technique to find optimum reliability level for a
microgrid. Lithium-ion battery energy storage typically has a lifespan of
12–15 years before needing replacement. In this study, the investment
cost includes the replacement of BESS after 13 years.

4. Case study

The load demand for the Aberdeen substation in New South Wales,
Australia, was downloaded from the Ausgrid website for this study, as
were the hourly temperature and irradiation data for this area from the
renewable.ninja website. The hourly wind speed is generated at random
with a scale parameter of 3 and a shape parameter of 8. This case study
takes into account aggregated load demand data from 2016, which has a
peak demand of 5.04 MW and a daily average demand of 3.72 MW.

Fig. 5 depicts the Aberdeen substation’s load profile. For this study,
the base case is chosen so that the three times peak demand occurs
correspond to individual solar PV generation and wind power genera-
tion, and the battery energy storage is chosen so that it has more than 90
%MG system reliability (less than 10 % LOLP). As a result, the base case
includes 15 MW of PV, 15 MW of WT, 15 MWh of BESS, 0 kW of DR, and
a 0.1 equipment failure rate. The LOLP in the base case is 5.8 % (reli-
ability is 94.2 %), and the EENS is 36,910 kWh. This simulation study
takes into account the SMG’s operating duration of 25 years (219,000
h).

5. Result and discussion

This section is divided into three subsections: investment cost eval-
uation for various reliability levels, CCI evaluation for various reliability
levels, and CERL evaluation.

5.1. Evaluation of investment cost for various reliability levels

Each of the base case installed capacities is increased by one unit
quantity each time, and a simulation is run for 25 years to calculate the
LOLR achieved. The PV and WT capacity are increased from 15 MW to
21 MW in 1 MW unit expansions, the BESS from 15 MWh to 21 MWh in
1 MWh unit expansions, the DR from 0 MW to 0.3 MW in 50 kW of unit
expansion, and the equipment failure rate from 0.1 to 0.04 in 0.01
failure rate reduction steps. Sixteen thousand eight hundred seventy
different capacity expansion RI mix combinations and their corre-
sponding loss of load reduction (LOLR) are calculated. Equation (16) is
evaluated using a linear regression approach, which represents the LOLR
of resource mix as a function of LOLR due to individual RI alternatives.

LOLRRI Mix =3451+ 0.285p+ 0.335q+ 0.416r + 0.319s+ 1.031t (16)

where, LOLRRI Mix represents the LOLR that can be achieved by the ca-
pacity expansion of the RI mix, and p, q, r, s and t denote the LOLR
obtained when PV, WT, BESS, DR, and reduction in equipment failure
rate respectively are individually expanded.

To demonstrate, the LOLR of a capacity expansion mix of 4 MW of
PV, 6 MW of WT, and 3 MWh of BESS, 50 kW of DR, and a failure rate
reduction of 0.01 can be calculated by determining the value of the
LOLR due to 4 MW PV alone, 6 MW WT alone, and 3 MWh BESS alone,
50 kW of DR alone, and a failure rate reduction of 0.01 alone. The R
square value (also known as the coefficient of determination) for this

Fig. 5. Load Profile of substation Aberdeen in the year 2016.
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equation was 0.97, and the coefficient of multiple correlation was 0.95.
In this case, the R square value indicates how many data points fit the
equation, and the equation fits 97 % of the data points. The coefficient of
multiple correlations indicates how strong the linear relationship be-
tween data is, and there is a strong linear correlation of 95 % in this
scenario.

Table 2 depicts the capacity expansion choices made by the MATLAB
optimisation algorithm (which employs integer liner programming) to
reduce the LOLP by a specific value. The base case investment cost is $45
million. The optimisation algorithm, as explained in (6), evaluates the
size of installed capacities for each required LOLR and calculates the
additional investment cost. To achieve a 1 % reduction in LOLP, the
LOLF of 2190 h must be reduced. In other words, the required LOLR to
improve reliability by 1 % is 2190. As a result, the cost minimisation
approach suggested in this study selects a constraint value of 2190 and
then evaluates the required values for the variables PV, WT, BESS, DR,
and FR. This is evaluated in such a way that additional investment costs
are minimised while meeting the requirement for reliability
improvement.

To illustrate, the proposed algorithm calculated the required value of
BESS as 2 MWh for the first 2 % reduction in LOLP (4380 h of LOLF
reduction), which means that the capacity of the BESS must be increased
by 2 MWh from the base case scenario. It is noticeable that only BESS is
chosen for capacity increase up to 2.5 % of reduction in LOLP. This is
reasonable because the cost weighted LOLR of BESS is lower during this
interval than the other alternatives. This also reveals that the base case
has excess energy but insufficient storage capacity. BESS and DR are
chosen to reduce LOLP to 3 % and 3.5 % levels. The equipment failure
rate reduction has been chosen for a reduction in LOLP to 5 % and 5.5 %
levels. This means that the reliability is improved by 0.5 % (from 98.7 %
in the previous case) by lowering the equipment failure rate from 0.06 to
0.04.

It is worth noting that the MATLAB Mixed-Integer linear program-
ming optimisation algorithm does not consider step-by-step capacity
expansion, but rather reliability improvement from base case to new
case. To illustrate, when the system requires 97 % reliability, the algo-
rithm evaluates the minimum cost using the data (installed capacity and
reliability) of the base case (reliability of 94.2 %); it does not consider
the previous reliability level of 96.5 %.

Fig. 6 depicts how investment costs vary with reliability levels. The x
variable represents the level of reliability. As a result, the equation
represents the total investment cost in terms of reliability levels. A
second-degree polynomial equation fits this curve. The curve fitting
technique is used to identify the equation, and the R square value (also
known as the coefficient of determination) is 0.9987. In this case, the R
square value indicates how many data points fit the equation, and the
equation fits 99.87 % of the data points.

In traditional investment cost analysis for the reliability improve-
ment, it is needed to upgrade networks and power plant generations in
order to achieve a higher level of reliability. Since the whole capacity of
the augmented networks and generations are not being used, the in-
cremental investment cost for reliability is much higher as we go toward

higher reliability levels. However, in the proposed method in this paper,
different approaches are suggested for reliability improvement
including renewable and energy storage augmentation and demand
response and failure rate improvement. These approaches are available
at the smaller incremental steps, for example, energy storages are
available in 1 MWh incremental steps or demand response is available in
the steps of 50 kW. Therefore, the optimised investment cost associated
with such approaches with smaller incremental steps are generally lower
compared to the case of using large power plants that usually comes in
larger steps. In future work, a sensitivity analysis of investment costs
associated with each reliability improvement approach should be
incorporated to address variations in optimised investment costs at
different reliability levels.

5.2. Evaluation of customer interruption cost for various reliability levels

Numerous researchers [30,31,33–35] from various countries assess
the cost of customer interruption. The most common outcome is the
interruption cost per kWh of energy. In other words, this is the price of
EENS. No researchers intended to use or calculate LOLF or LOLP indices
in customer interruption cost. According to the authors of this paper, the
customer interruption cost is determined not only by the amount of
energy that is not supplied, but also by the frequency with which the
interruption occurs. Furthermore, the research in this paper assigns a
higher penalty to the frequency of interruption (for LOLF) than to EENS.

In this study, the EENS interruption cost is assumed to be $50/kWh,
and the LOLF interruption cost is assumed to be $ 10,000 for LOLF in the
10,000 to 11,000 range, $ 9000 for LOLF in the 9000 to 10,000 range,
and $ 1000 for LOLF in the 1000 to 2000 range. This can also be

Table 2
Cost of reliability improvement and total investment cost.

MG reliability
(%)

LOLP reduction
needed (%)

LOLF reduction
needed (%)

Required Capacity Expansion Cost of Reliability
Improvement ($M)

Total investment
cost ($M)

PV
(MW)

WT
(MW)

BESS
(MWh)

DR
(Steps)

FR
(Steps)

95.7 2 4380 0 0 2 0 0 1 46.00
96.2 2.5 5475 0 0 5 0 0 2.5 47.50
96.7 3 6570 0 0 6 2 0 4.1 49.10
97.2 3.5 7665 0 0 7 6 0 6.8 51.80
97.7 4 8760 0 1 9 9 0 10.95 55.95
98.2 4.5 9855 0 5 9 9 0 16.95 61.95
98.7 5 10950 0 3 9 9 4 23.85 68.85
99.2 5.5 12045 0 4 9 9 6 30.52 75.52

Fig. 6. Investment cost for varies LOLP reduction.
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expressed as AUS$50 per kW of EENS, assuming a penalty factor of
$1000 for every 1000 LOLF increments. For example, if an SMG system
has a LOLF of 10,100 and an EENS of 2000 kW (over a 25-year operating
lifespan), the CCI is $110,000: $100,000 ($50/kWh of EENS) plus
$10,000 (penalty for having LOLF in the range of 10,000 to 11,000).

An equation is evaluated to represents the reduction in EENS
(EENSR) as a function of reduction in LOLF (LOLR).

EENSR=1002+ 2.9167*LOLR (17)

The linear relationship between EENSR and LOLR is depicted in
Equation (17). This linear equation aids in calculating the EENSR for a
given LOLR.

Table 3 depicts the total customer interruption cost for various SMG
system reliability levels. It can be seen that the total interruption cost is
M$ 67.74 when the SMG reliability level is 95.7 %. This often indicates
that if the SMG provider decides to operate the SMG at this level of
reliability, a poor level of reliability, they must pay this amount of total
customer interruption cost to various consumers.

Fig. 7 depicts the customer interruption cost for various SMG system
reliability levels. The equation is identified using the curve fitting
technique, with R squared equal to one. The R square value indicates
how many data points fit the equation, and in this case, the equation fits
nearly all of them.

5.3. Evaluation of total cost of various reliability levels

The total cost of an SMG system is the sum of the total investment
cost (including O&M) and the total customer interruption cost associ-
ated with the specific reliability level. Table 4 illustrates the total cost of
SMG system.

The total cost curve is shown in Fig. 8. With a R square value of 0.99,
the equation is identified using the curve fitting technique. The equation
fits 99.97 % of the data points in this scenario.

5.4. Evaluation of Cost-effective reliability level

The cost-effective reliability level is found when the total cost is the
lowest. As a result, the problem of determining the CERL is reduced to
minimising the total cost curve. Fig. 9 depicts the investment cost,
customer interruption cost, and total cost for various reliability levels.

Fig. 9 shows that the minimum total cost value appears between the
two highlighted data points. Among these, the reliability level with the
total cost of M$70.8 has a higher customer interruption cost of M$8.9,
compared to the other reliability level with the total cost of M$72.5;
however, the investment cost values showed an opposite trend. This
demonstrates that the calculated CERL should have the lowest total cost,
which is the sum of the investment cost and the cost of customer
disruption.

Using MATLAB solver, the equation for the total cost is evaluated.
Equation (18) represents the total cost for various levels of reliability.
With a R square value of 0.9997, the equation is identified using the
curve fitting technique. In this case, the R square value indicates how

many data points fit the equation, and the equation fits 99.97 % of the
data points. The minimum value of this equation is identified as 98.25 %
using the MATLAB solver. As a result, the SMG system’s optimal reli-
ability is 98.25.

y=6.644x2 − 1305.6x+ 64211 (18)

5.5. Evaluating investment cost and customer interruption cost for the
cost-effective reliability level

The CERL is determined to be 98.25 %. The incremental investment

Table 3
Required RI alternative addition and total investment cost.

MG
reliability
(%)

LOLF Interruption
cost due to
LOLF (M$)

EENS
(kWh)

Interruption
cost due to
EENS (M$)

Total
interruption
cost (M$)

95.7 8323 66.58 23,133 1.16 67.74
96.2 7228 50.60 19939 1.00 51.59
96.7 6133 36.80 16745 0.84 37.64
97.2 5038 25.19 13551 0.68 25.87
97.7 3943 15.77 10358 0.52 16.29
98.2 2848 8.54 7164 0.36 8.90
98.7 1753 3.51 3970 0.20 3.70
99.2 658 0.66 776 0.04 0.70

Fig. 7. Customer interruption cost for various reliability levels.

Table 4
Total cost for various reliability levels.

MG
reliability
(%)

Total investment cost
(Million Dollars)

Total interruption cost
(Million Dollars)

Total cost
(Million
Dollars)

95.7 46.00 67.74 113.74
96.2 47.50 51.59 99.09
96.7 49.10 37.64 86.74
97.2 51.80 25.87 77.67
97.7 55.95 16.29 72.24
98.2 61.95 8.90 70.85
98.7 68.85 3.70 72.55
99.2 75.52 0.70 76.22

Fig. 8. Total cost for various reliability levels.
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cost is calculated using Equation (19).

IC=2.264*R2 − 432.78*R+ 20728 (19)

Where IC is the investment cost and R is the SMG system’s reliability
level. The investment cost IC in terms of reliability level R is represented
by Equation (19). This equation is derived from Fig. 3’s investment cost
curve by curve fitting technique. Similarly, the cost of customer inter-
ruption is calculated using the customer cost curve. Equation (20) de-
picts the cost of customer interruption as a function of reliability levels.
The customer interruption cost curve in Fig. 4 is used to derive this
equation.

CIC=4.38*R2 − 872.82*R+ 43482 (20)

Where CIC is the customer interruption cost and R is the SMG system’s
reliability level.

The investment cost for the CERL is calculated as 22.94 million AUS$
using Equation (19). Similarly, using Equation (20), the cost of customer
disruption is calculated to be $7.02 million AUS$. Thus, the research
result can be summarised as follows: the cost-effective reliability of this
chosen SMG system is 98.25 %, with a total cost of $70.75M. This result
will assist SMG operators in determining what level of reliability should
be maintained. This SMG operator will maintain a reliability of 98.25 %.

The identification of CERL is crucial for SMG to minimize its total
cost. In this case, if SMG operates at 98.25 % level the total cost will be
minimum at $70.75M. If the SMG operate either higher reliability level
or lower reliability level the total cost will be higher than $70.75M.
Therefore, this finding helps SMG provider to minimize the total cost of
the system.

5.6. Sensitivity analysis

The proposed method is tested under a variety of conditions,
including changes in investment cost and changes in CCI.

5.6.1. Changes in investment cost
To investigate the algorithm’s response to price changes, the in-

vestment costs of PV and WT are swapped, as are the investment costs of
DR and the cost incurred for MG network equipment failure rate
reduction. This is to generate a scenario in which the investment costs
differ from the original values. Table 5 displays the investment cost
summary that has been assigned for the sensitivity analysis.

Table 6 displays alternative decisions for increasing installed ca-
pacity (reliability improvement choices) in order to achieve various

targeted reliability levels while minimising cost.
The total cost equation is evaluated using the MATLAB solver.

Equation (21) represents the total cost for various levels of reliability.

y= 5.6638x2 − 1118.6x+ 55289 (21)

This curve fitting is accomplished with a R square of 0.9985. The
minimum value of this equation is identified as 98.75 % using the
MATLAB solver. As a result, the CERL of the SMG system is 98.75 %,
with a total cost of $58.15M. It can be seen that the CERL is increased to
98.75 % from 98.25 % in the base case, while the total cost is reduced to
$58.15M from $70.75M in the base case. The most obvious reason for
this outcome is that the WT resource’s reliability contribution is greater
than that of the PV resource. When the cost values of PV and WT are
swapped, the WT becomes the less expensive energy resource that
contributes more (in comparison to PV) to reliability improvement.
Despite the fact that the cost of DR is high in this sensitivity analysis, the
overall cost of reliability improvement is lower. This means that the
DR’s influence is obscured by the low-cost WT’s influence.

5.6.2. Changes in cost of customer interruption
The CCI varies according to the customer sector. As a result, in order

to assess the CERL in the presence of various customer sectors, the
aggregated load demand calculated in this study is: residential; small
business; large business; and a combination of all of these sectors. The
Australian Energy Market Commission’s CCI [49] is used for this
analysis.

Table 7 summarises the cost of EENS and LOLF for a 1-h interruption.
These sectors are classified so that the small business customer sector
consumes less than 160 MWh per year and the large business customer
sector consumes more than 160 MWh per year.

Fig. 10 shows the CCI for various customer sectors during a 1-h
interruption. In comparison to the other two sectors, the residential
sector has the lowest CCI.

The proposed procedure was used to evaluate the CERL of each
customer sector using these customer interruption costs. Because this
study uses hourly aggregated load demand and hourly availability of
resources and equipment, interruptions that last longer than 1 h (and
have a higher CCI value) cannot be evaluated. This study’s proposed
algorithm with MCS approach is only designed to detect 1-h
interruptions.

Table 8 illustrates the CERL for various customer sectors. It can be
noted that the large business sector has a high CERL with 98.60 %,
meanwhile the lowest CERL observed in the residential sector. This is
associated to the fact that the residential sector has a low CCI in contrast
to other sectors.

Fig. 11 depicts the CERL for various customer sectors. The large
business sector stands out with a CERL of 98.6 %. This is due to the high
customer interruption cost of this sector in comparison to other sectors.

5.6.3. Changes in proportion of the customer sectors
To assess the impact of each customer sector on the CERL outcome,

the customer sectors are assumed to be in varying proportions, as shown
in Table 9.

Table 9 shows that when a greater proportion of the Large Business
customer sector is included in the load demand, the total cost rises. The

Fig. 9. Investment, customer interruption and total cost for various reli-
ability level.

Table 5
Investment cost summary for the sensitivity analysis.

Investment
cost of 1
MW of PV
($)

Investment
cost of 1
MW of WT
(Million $)

Investment
cost of
BESS (M$)

Investment
cost of 100
kW of DR
(M$)

Investment
reduction
of 0.01
failure rate
(M$)

Total
cost

1.5 1 0.5 2.5 0.55
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CERL, on the other hand, shows only a minor difference (less than 1 %).

6. Conclusion

The cost-effective reliability level of a SMS was evaluated in this
study using the technique of identifying the minimum total cost, which
is the sum of investment cost, operation and maintenance cost, and
customer interruption cost. The failure analysis of hybrid renewable
energy SMG systems included the availability of equipment and energy
resources. Linear regression was used to develop an equation that rep-
resents the LOLR of resource mix as a function of LOLR due to individual
energy resource. To achieve the required reduction in LOLP, the

MATLAB integer linear programming tool was used to find the lowest
cost weighted alternative. Curve fitting technique was used for deter-
mining the equation for various curves, such as the investment cost
curve, customer interruption cost curve, and total cost curve. To find the
total cost and reliability level values from the lowest point in the total
cost curve, the MATLAB solver is used.

The cost-effective reliability level was determined to be 98.25 %.
This research suggests that the SMG supplier operate the SMG at 98.25
% reliability to minimize total cost. In other words, operating SMG at
any other reliability level than 98.25 % will result in a higher total cost
to the SMG supplier. This higher total cost is due to higher customer
interruption costs if the SMG operated at a reliability level less than 98.
25 %. This high overall cost is due to the higher investment cost if the
SMG operated at a reliability level greater than 98. 25 %.

The cost-effective reliability level is evaluated in the sensitivity
analysis by modelling changes in investment cost. Similarly, the cost-
effective reliability level is assessed by considering various customer
sectors and the associated customer interruption cost. Because of the

Table 6
Require RI alternative addition and total investment cost.

MG reliability (%) LOLP reduction needed (%) LOLF reduction needed (%) Required capacity expansion
(MW)

Total investment cost (M$) Total investment cost (M$)

PV WT BESS DR FR

95.7 2 4380 0 0 2 0 0 1 46.00
96.2 2.5 5475 0 0 5 0 0 2.5 47.50
96.7 3 6570 0 0 4 0 3 3.65 48.65
97.2 3.5 7665 0 0 4 0 6 5.09 50.09
97.7 4 8760 0 0 4 0 8 6.67 51.67
98.2 4.5 9855 0 5 8 0 8 8.84 53.84
98.7 5 10950 0 9 9 0 9 12.31 57.31
99.2 5.5 12045 0 8 9 3 9 18.34 63.34
         

Table 7
Total cost incurred by different customer sectors due to a 1 hour supply
interruption.

Residential Small Business Large Business

Cost of EENS ($/kWh) 20.71 413.12 53.30
Cost of LOLF ($/event) 14 4716 6084

Fig. 10. Cost of customer interruption of various customer sectors, for 1-h
interruption.

Table 8
Cost-effective reliability level for various customer sectors.

Customer Sectors Cost-effective Reliability Level (%) Total Cost (M$)

Residential 95.61 46.49
Small Business 98.44 77.51
Large Business 98.60 78.55
Combined Sector 97.55 71.44

Fig. 11. Cost-effective Reliability Level of various customer sectors, for 1-h
interruption.

Table 9
Various proportion of customer sector and cost-effective reliability levels.

Cases Proportion of Customer sectors Cost-Effective
Reliability level (%)

Total
Cost (M$)

1 50 % of Residential, 25 % of Small
Business and 25 % of Large Business

97.07 67.53

2 50 % of Small Business, 25 % of
Residential and 25 % of Large
Business

97.77 73.78

3 50% of Large Business, 25% of Small
Business and 25 % of Residential

97.81 74.18
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high cost of customer interruption in this sector, the total cost rises when
a greater proportion of the Large Business customer sector is included in
the load demand. The CERL, on the other hand, shows only a minor
difference (less than 1 %). This finding helps SMG provider how to
manage the reliability levels when load demand from a particular
customer sector suddenly increased or when a greater number of cus-
tomers from a particular customer sector added into the SMG network.
To summarise, the SMG provider should do a comparable analysis as
described in this sensitivity analysis to assess the SMG’s adaptability to
variations in load demand. This sensitivity analysis should be carried out
by simulating changes in load demand from each sector. Furthermore,
translating the sensitivity analysis results into SMG operating proced-
ures in terms of maintaining reliability level would allow SMG to
operate continuously at the lowest total cost. This means that when load
changes occur, the SMG provider is aware of the new cost-effective
reliability level that should be maintained.

The goal of this research problem is to minimize the total cost and
calculate the corresponding reliability level, which is CERL, at this
minimum total cost. The CERL is a useful metric for SMG providers to
determine which specific reliability level is the most cost-effective for
the SMG system. Thus, operating SMG at this CERL will benefit SMG
providers economically. Furthermore, this study provides a framework
for evaluating investment and EENS costs at the CERL. Future research
could investigate the impact of unexpected changes in customer de-
mand, climate change, and price changes in equipment like solar panels
on CERL. This means that when SMG system planned to operate at CERL,
it should investigate what factors caused CERL to change to a new value.
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