
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20226  | https://doi.org/10.1038/s41598-024-71035-9

www.nature.com/scientificreports

Optimal sizing and operation 
of a hybrid energy systems 
via response surface methodology 
(RSM)
Arash Moradzadeh 1,2, Kazem Pourhossein 3, Amin Ghorbanzadeh 3, Morteza Nazari‑Heris 4, 
Ilhami Colak 5 & S. M. Muyeen 1*

Hybrid energy systems (HESs) are the most important sources of energy demand-supply, 
have developed significantly around the world. Microgrids, renewable energy sources, remote 
telecommunications stations, greenhouses, etc., are being considered as HESs applications. Optimal 
sizing of these systems is considered as one of the important issues related to energy management. 
In this paper, the Response Surface Methodology (RSM) is proposed for the optimal sizing of a 
Photovoltaic (PV) system in a HESs. The suggested procedure solves the optimization problem by 
considering the factors affecting PV output power about the environmental conditions of the HESs. 
Providing a mathematical model for each of the input parameters and the ability to assessment 
the sensitivity of each of the input variables are the most important advantages of the proposed 
technique. In this paper, the RSM provides the most optimal sizing related to the PV system by 
considering climatic and geographical factors in the study site, and technical and economic issues 
related to the HESs. The optimal model obtained is evaluated by the Analysis of Variance (ANOVA) 
evaluation method, which is one of the important techniques of statistical evaluation. It should be 
noted that the RSM technique can be utilized to optimize all components of any HES.

Sustainable and reliable energy generation suffers from drawbacks with various aspects. Including its reliance on 
fossil fuels, which on the one hand increased greenhouse gases and is depleting worldwide. This dependency, in 
addition to environmental contamination, will increase electricity prices, imbalances between supply and demand 
of energy, and as well as reduce the reliability of the power and energy systems1. In contrast, HESs are considered 
as an electric energy system which is consisting of several renewable and un-renewable energy sources. These 
energy systems can operate in two off-grid (standalone) or grid connected modes. Increasing power system reli-
ability, reducing environmental pollution, and eliminating economic limitations are prominent features of the 
HESs. Microgrids, Greenhouses, Remote Telecommunications Stations, Off-Grid Buildings, Renewable Energy 
Sources (RESs), Water Pumping Systems, Marine and Offshore Platforms, Military Installations, etc., are being 
considered as applications of HESs2. In the meantime, the RESs have been able to expand dramatically around 
the world based on prominent concepts such as being an accessible, low cost, and environmentally friendly. 
The RESs are used to meet approximately 15% of the energy demands. Bioenergy, hydropower, ocean energy, 
hydrogen and fuel cells, solar energy, and wind energy are the most important RESs3,4. These energy sources 
are called alternative energy sources and they are clean, cheap, stable, and accessible. Natural gas, oil, and coal 
are considered as the main types of fossil fuels in which there are some problems. Fossil fuels are expensive and 
limited, and in addition have environmental issues, such as increased CO2 gas emissions5,6. RESs are going to 
play a pivotal role in the electricity environment future in which they were divided into three categories as fossil 
fuels, RESs, nuclear sources. Due to high power transferring costs, photovoltaic (PV) panels are one of the suit-
able options in rural places and that is why the use of the RESs is so important7. These systems are less complex 
and have lower losses. In many cases, renewable systems are integrated with fossil fuel power plants which in 
this case, cogeneration increases the operation of the system. For example, the optimal performance of a system 
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consisting of the PV, fuel, and combustion engine is presented in Refs.8,9. In these studies, minimizing the over-
all cost is the objective of optimization procedure and the multi-objective optimization is performed by Pareto 
optimal set. Optimal sizing associated with a HES consisting of wind and hydro turbines in an island system is 
presented in Ref.10. This study determines the payback period and the impact of renewable resources. To increase 
the resilience of the system and face the uncertainty of the PV output, different types of storage systems, diesel 
generators and, the combustion engine can be used11. Economic factors are the alternatives in which they must be 
considered in the optimization of the model. The economic factors can be divided into three general categories: 
total operation cost of the system, the capital cost that depends on the environmental and economic factors, 
and finally the current value of the system12,13. Various sizing methods have been proposed in recent years. In 
Graphic construction methods average of the wind speed and solar radiation are considered hourly or monthly 
and some systems such as PV-battery and PV-wind turbines are considered as energy sources. In these systems, 
the slope angle of the PV system and the installation height of the wind turbine are considered as the limitation 
of this method14. This method is used to calculate the optimal size of the battery and the PV system in a hybrid 
PV/wind system. Wind speed and solar radiation data have been collected daily for 30 years. Then, with this 
daily data, the amount of output power generated by PV panels and wind turbines is calculated hourly during 
a day. In other studies15,16, the probabilistic method is introduced for improving the optimal sizing issues. In a 
probabilistic method, sizing of the PV panels and wind turbines are considered as input, and the solar, wind, and 
battery storage systems are selected as energy sources. The dynamic performance related to the hybrid system is 
not illustrated in the Probabilistic method16. In 2013, a fast response-based probabilistic method has been used 
in a valuable study17. The fast response method is based on measuring fast response reserves based on the output 
fluctuations distribution in a settlement interval17. In other valuable studies, a hybrid PV/wind system has been 
suggested as an independent system8,9. To determine the amount of production power and storage, a residential 
area has been studied. These production and storage units are designed to supply the annual load and minimize 
overall costs8. In iterative methods, the average of the wind speed and the solar radiation is considered in this 
method, or sizing of the PV panels and speed of the wind turbines are considered as inputs in this method. The 
slope angle of the PV system and the installation height of the wind turbine are considered as the limitation of 
this method. Linear changing of the decision variables causes to reach suboptimal solutions10,18,19. In the selection 
of artificial intelligence and hybrid techniques20–22, the average of the wind speed and solar radiation as well as 
sizing the wind turbine and PV systems are considered as input parameters. Low flexibility in the designing of 
the system is considered as the limitation of this approach. In Ref.23, the genetic algorithm optimization method 
has been used for optimal system design and location. In genetic algorithms, the studied systems are compared 
with real systems. The basic objective of the genetic algorithm is to achieve a universal optimization method. In 
Ref.21, the Biogeography Based Optimization (BBO) algorithm has been employed to obtain the optimal size of 
system components and minimize costs in a remote area in India. The proposed system uses a diesel generator to 
ensure alternative power generation. The BBO method has a very high degree of convergence, short computation 
time, and achieves good convergence in the fastest time, and offers a suitable solution21. In another study, the 
support vector machine (SVM) network is selected for sizing optimization22. A comprehensive evaluation based 
on the optimal sizing of a HES including PV/Pump-hydro storage (PHS), Diesel/PHS and PV/Diesel/Battery has 
been performed in Ref.24 via hybrid optimization associated with multiple energy resources software. In Ref.25, a 
novel optimization approach based on integrating a biomass system with a PV, wind turbine, and battery system 
has been suggested to increasing power supply and minimizing energy costs in rural regions. Table 1 lists the 
types of sizing methods and compares them technically.

According to the reviewed methods, the mentioned models are so complicated. Also, factors such as the 
environmental factors and consumers’ preferences are not considered. Various types of approaches that are 
employed to optimize the HESs are reviewed and listed in Table 2.

In this paper, a novel technique called Response Surface Methodology (RSM) has been proposed for the 
optimization of a PV system in a HES. This hybrid system is responsible for providing the amount of electricity 

Table 1.   Different types of sizing methods.

Methods Description Disadvantages Refs

Graphic construction methods
Average wind speed and solar radiation are selected in this 
method
Some systems such as PV-battery and PV-wind turbines are 
considered as energy sources

The slope angle of the PV system and the installation height 
of the wind turbine are considered as the limitation of this 
method

14

Probabilistic method
Sizing of the PV panels and wind turbines are considered 
as input while solar, wind, and batteries storage systems are 
considered as energy sources

The dynamic performance related to the hybrid system is not 
illustrated in this technique

15,16

Analytical methods
Average wind speed and solar radiation are selected in this 
method
Considered solar irradiation, wind speed, battery storage sys-
tems, biomass systems are depending on the type of software

Low flexibility in the designing process can be considered a 
limitation

8,9,26

Iterative methods
Average of the wind speed and the solar radiation is con-
sidered in this method or sizing of the PV panels and, wind 
turbines are considered as input in this procedure

The slope angle of the PV system and the installation height 
of the wind turbine are considered as the limitation of this 
method

10,18,19

Artificial intelligence and hybrid methods
Average of the wind speed and solar radiation as well as 
sizing the Wind turbine and PV systems is considered in this 
method

Low flexibility in the designing of the system is considered as 
the limitation of this approach

22,27
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power, heat, and water demand by an area. The studied system comprises the PV, battery storage internal combus-
tion engine, boiler, fuel tank, and water storage. The PV and internal combustion engines are utilized to generate 
heat and electricity. Also, fuel is utilized in the boiler and internal combustion engine to generate heat. Then, a 
pump is used to produce hot and cold airflow and storage sources for hot and cold air and water are considered. 
In this method, simultaneous size and performance optimization is performed, so that the amount of consump-
tion and conditions of the area during 24 h are considered. In the proposed system, electricity, heat, hot and cold 
air, and water are provided and various parts of the system are optimized. In this study, for different parts of the 
system, an equation appropriate to the conditions of the region is presented. Then, the RSM technique is selected 
to determine the optimal size of components such as PV panels, inverter, etc., and reduce the computational 
burden. Selecting the value of variables with a minor amount of error is one of the most important advantages 
of the proposed procedure. In addition, the RSM can model the performance of all system components indi-
vidually in mathematical formula mode. Thus, the performance of each component in the whole system can be 
easily analyzed. To express the effectiveness of the proposed model of this study, a comparative analysis between 
proposed RSM-based approach and several well-known optimization techniques, including GA, PSO, and BBO 
is performed. This comparison highlights:

–	 Computational Efficiency: The RSM demonstrated superior computational efficiency, particularly in scenarios 
with complex, multi-modal landscapes, due to its capability to reduce the number of simulations required.

–	 Solution Quality: Suggested RSM method produced competitive or superior solutions in terms of the objec-
tive functions, especially in balancing multiple criteria such as cost and energy efficiency.

–	 Flexibility and Scalability: The RSM-based approach provided flexibility in handling various system con-
straints and scales, outperforming traditional methods in adaptability.

To clarify, the novelty of this research lies in the following aspects:
Integration of RSM in HES optimization:
While Response Surface Methodology (RSM) has been widely used in various fields, its application in opti-

mizing HES, particularly for the simultaneous sizing and operation strategy, remains limited. This study pioneers 
this integration, offering a systematic and computationally efficient approach to address the complexity of such 
systems.

Table 2.   Different types of algorithms to optimize the hybrid systems.

Methods Description Advantages Disadvantages Refs

Genetic algorithm (GA) It is operated based on natural evolution
Provide several solutions for the opti-
mized model. Also, a specific toolbox 
is provided for this approach in the 
MATLAB software

The speed of the calculation and conver-
gence is lower than other approaches

23

Particle swarm optimization (PSO) It is operated based on bird and fish 
movement

The searching speed is so high
Also, the instructor of this approach is so 
simple in comparison to other plans

Optimizing the non-coordinated system 
is so hard with the use of this approach

28–30

Simulated annealing It is operated based on the annealing 
process

Nonlinear and chaotic models can be 
solved easily with the use of this approach
Furthermore, reaching global optimality 
is easy, too

Appropriate setting the different classes 
of the constraints is so crucial to obtain 
the optimal solution

31

Ant algorithms It is operated based on the ants’ behavior
It is a suitable approach to find local and 
global solutions under several optimiza-
tion problems

The number of controlling parameters is 
so high in this approach in which all of 
them must be tuned

32

Bee-inspired algorithms It is operated based on the bees’ behavior
It is a suitable approach to find local and 
global solutions under several optimiza-
tion problems. It can easily combine with 
other optimization approaches

The number of controlling parameters is 
so high in this approach

33,34

Harmony search It is operated based on jazz music

This approach can optimize the discon-
tinuous function and discrete variables 
without any difficulties
Setting the initial values is not required in 
this approach

The process of solving is so complicated 29–31,35

Biogeography-based optimization (BBO) It is operated based on the immigration 
process of the animals

The computation time is so high
Converging the results is the other strong 
point of this approach

This approach is weak in finding the 
globally optimal result
There is no provision to find the best 
member of the assumed generations

34,36

Gravitational search algorithm It is operated based on Newton’s attrac-
tion law

High speed in converging the results is 
one of the strengths of this approach
High accuracy in the calculation is the 
other point in this approach

The premature convergence process is so 
complicated in this approach

37

Imperialist competition algorithm It is based on social and political move-
ments

The convergence accuracy is so high in 
this approach. This approach can easily 
handle the high dimension of nonlinear 
hybrid systems

The process of computation is so com-
plicated

38,39

Hybrid optimization techniques It is operated based on the integration of 
several algorithms

The accuracy of the obtained results is 
high. Also, the computational time is low 
in the mentioned approach

The process of writing the code is so 
complicated

40–42
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Comprehensive system design:
Proposed method uniquely combines RSM with multi-objective optimization, accounting for both technical 

and economic factors. This dual focus ensures that the designed system is not only optimized for performance 
but also for cost-effectiveness, which is crucial for practical implementation and scalability.

Case study and validation:
This paper has conducted a detailed case study that demonstrates the practical applicability and advantages 

of suggested method in real-world scenarios. This empirical validation helps to illustrate how our approach can 
lead to more efficient and cost-effective energy solutions compared to traditional methods.

The organization this paper in the rest is as follows: Section “Case study” introduces the case studied. The 
problem formulation is described in Section “Problem formulation”. The application of the proposed procedure 
and design variables is described in Sect. “Design variables”. The results are presented in Sect. “Results”. Finally, 
Sect. “Conclusion” concludes the paper.

Case study
The studied test system is a PV-based combined cooling, heat and power (CCHP) system43 that is located in 
North West of Iran. The solar irradiation of the region is between 1700 and 1800 kWh/m2. The studied system is 
comprised of a PV panel, internal combustion engine, boiler, reversible heat pump, pump as turbine, electrical 
energy storage (battery), inverter as power transformation which converts the DC output of the battery to the 
AC and thermal and cooling energy storage. Thermal energy can be produced by the combustion engine, boiler 
heat losses, and by the heat pump. Also, the heat pump can produce cooling energy by working in reverse mode. 
The fuel tank is used as a fuel of the system and, upper and lower reservoirs are utilized to store the water. Table 3 
shows the required amount of water, electricity, and cooling and heating energy for a day. During the winter days, 
the required amount related to heating energy and electricity increases, and the amount of cooling energy has 
reached 0 kWh. The plant schematic is shown in Fig. 1. According to this figure, the proposed system is a hybrid 
system that can supply electricity and cooling, and heating, which are called trigeneration systems. Trigenera-
tion systems are up to 50% more efficient annually than power plants of the same size. This plant is consists of a 
PV system, an internal combustion engine (ICE), a boiler (BL), and two pumps, one as a reversible heat pump 
(RHP) and one as a pump as a turbine (PAT). The PV and ICE systems are used to generate electricity. The fuel 
Tank plays the role of fueling the BL and ICE. BL and ICE are used to generate heating and cooling energy. By 
using the RHP, the cooling energy requirement can be met in reverse mode. In the introduced system, battery 
(BAT), cold thermal storage (CS), hold thermal storage (HS), upper reservoir (UR), and a lower reservoir (LR) 
are storage systems. The amount of radiation (G), temperature (T), cost (C) and longitude (E), and height of 
upper reservoir (H) are considered as effective parameters on this system. These data are considered appropri-
ate to the study area. Water is moved between two sources by the PAT. The height difference between the two 
reservoirs is considered to be 50 m.

Problem formulation
The electrical and thermal balance is provided in Eqs. (1) and (2)44.

where PPV is the generated electric power by PV and PBAT is the storage power in BAT.  Pus is electricity demand. 
PICE shows the power produced by ICE, PPAT is the power of PAT, and ηINV represent the inverter coefficient. If 
the sum of  PPV and PBAT is greater than 0, the amount of user power can be calculated by Eq. (1) otherwise, it 
can be calculated from Eq. (2). QICE demonstrate the heat generated by ICE and QBl illustrate the heat generated 
by BL. Qh,RHP and Qc,RHP are the heat and cooling generated by the reversible heat pump, respectively. QHS and 
QCS are the heat and cool that stored in HS and CS. Qh,us and Qc,us depicts the heat and cool demand, respectively.

(1)If (PPV + PBAT ) > 0 then Pus = (PPV + PBAT ) ∗ ηINV + (PICE + PPAT )

(2)Otherwise Pus =
(PPV + PBAT )

ηINV
+ PICE + PPAT

(3)Qh,us = (QICE + QBl)+ Qh,RHP + QHS

(4)Qc,us = Qc,RHP + QCS

Table 3.   The demands in the studied system.

The need for water and energy
In a day of winter

The need for water and energy
In a day of Summer

Demand Value Demand Value

Electrical power 742 kWh Electrical power 699 kWh

Thermal energy 6192 kWh Thermal energy 1161 kWh

Cold Energy 0 kWh Cold Energy 3505 kWh

Water demand 17.6 m3 Water demand 19.4 m3
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The water flow rates balance is considered other constraint:

where mUR represents the flow rate of the tank. The variable mus denotes the water demand of the resort, and 
mPAT corresponds to the flow rate of the pump. The maximum and minimum flow rates of the PAT , as well as the 
maximum and minimum State of Charge (SOC) of the batteries, along with the maximum charging/discharging 
rates, and the maximum and minimum loads for the ICE, RHP, and BL , are established based on the devices’ 
specifications. To prevent disruptions in system management for the subsequent days, it is required that, by the 
end of each day, the water level in the tank, the SOC of the batteries, and the state of the thermal storage systems 
be restored to their initial conditions as observed at the beginning of the day44:

The optimization problem is formulated as a single objective function that incorporates the costs associated 
with the devices, fuel consumption, and penalties for any constraint violations. The final equation is:

where F
(

Xj

)

 represents the cost function, �z is the penalty multiplier, and VIOLz denotes the magnitude of the 
violation for constraint z.

Finally, the objective function of the studied system is provided as follows44:

(5)mUR = mus +mPAT

(6)VUR,h=24 = VUR,h=0

(7)SOCh=24 = SOCh=0

(8)THHS,h=24 = THHS,h=0

(9)THCS,h=24 = THCS,h=0

(10)F
(

Xj

)

= min

[

f
(

Xj

)

+

nc
∑

z=1

�z[VIOLz]
2

]

Fig. 1.   The structure of the system.
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where C shows the cost of each component, S represents the size of each component, Cf  is the fossil fuel cost, 
and  mf .h demonstrate the total amount of fuel consumed by the BL and the ICE. Table 4 shows the estimated 
costs for each system component and fuel.

The Design of Experiments (DOE), which is a quality improvement method allows to users for determining 
the sensitivity of each component to the various variables in the studied test system. The output of this method 
is a mathematical formulation that is determined based on the nature of the operation. It is noteworthy that 
the mentioned formulation is so exact and stable. Also, this constructed formulation can help us to determine 
the size of the components without any difficulties. Finally, the environmental and climate conditions, which 
are essential factors in sensitivity calculation are considered in the mentioned approach while it is not found in 
the PSO approach44. Fill factorial, RSM, mixture, and Taguchi are various types of DOE applications which the 
RSM method is selected to use in this paper. The low computation burden of the RSM is the significant merit of 
this approach to the PSO. In other words, this method is provided a new formulation for each component of the 
studied system instead of giving a final strategy that is calculated based on the reputation concept45. As shown in 
Fig. 2 which is the RSM flowchart, the input data of the RSM are the meteorological parameters and the cost of 
system components. In this study, G, T, C, E, H are the meteorological parameters and design variables. In this 
state, should define the minimum and maximum values of inputs. Then, the full factorial design is selected to 
calculate the model and the evaluating the impact of parameters (sensitivity analysis). In the following the size 
of each component is defined as new parameters. The parameters range was defined by minimum and maximum 
levels as shown in Table 5. In the next step, the RSM evaluates samples and makes a global model.

(11)

Fcost = CPVSPV + CBATSBAT + CINVSINV + CICESICE + CBLSBL + CRHPSRHP + CPATSPAT

+ CURSUR + CHSSHS + CCSSCS +

24
∑

h=1

(Cf mf .h)�t

Table 4.   Costs of all components.

PV ICE BAT INV PAT TCH RHP UR BL HS CS Fuel

340€ 1000€ 210€ 500€ 220€ 200€ 300€ 100€ 51€ 38€ 20€ 1.4€

Fig. 2.   The RSM flowchart.
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Design variables
The Central composite design toolbox in the MINITAB software has been employed to solve the aforementioned 
problem. In this regard, the minimum and maximum values related to the variables are entered as input data in 
a simulation. The obtained results for different components are reported in Tables 6. Also, Table 7 is the other 
outputs of the simulation that are calculated based on the various environmental conditions. Table 6 shows, the 
series of the RSM for each component, 31 experiments in the optimization procedure. Table 7 shows, the series 
of the Response Surface Methodology for environmental conditions, it includes 30 experiments for different 
combinations of the input variables.

Standard order (StdOrder) is the non-randomized order of the runs while run order (RunOrder) is a rand-
omized order of the terms. Point type (PtTyoe) contains 3 levels that are 0, -1 and 1. 0 indicates the center point, 
1 is a corner point, and -1 is an axial point.

Variance Inflation Factor (VIF) indicated the correlated status of the parameter. In other words, VIF = 1 
indicted that the data do not have any correlation with one another, and 1 < VIF < 5 indicates the moderate 
relationship between the parameters and finally 5 < VIF < 10 suggests that the settings have a high association 
with each other.

The Standard Error (SE) coefficient is used to avoid the repeated results in the selection process. The T-Value 
is responsible for calculating the ratio between the factor and the standard error of each parameter.

Table 5.   Parameters and levels.

Parameters SPV SBAT SINV SICE SBL SRHP SPAT SUR SHS SCS

Minimum level 600 400 70 80 80 146 5 90 500 1220

Maximum level 800 500 80 200 100 161 7 120 600 1500

Table 6.   Complete response surface methodology column of components size design.

StdOrder RunOrder PtType Blocks Spv Sice Sbat Sinv Spat Srhp Sur Sbl Shs Scs

36 1 1 1 800 200 400 70 5 161 90 100 500 1500

54 2 1 1 800 80 500 70 7 161 90 100 600 1220

134 3 − 1 1 700 140 500 80 6 153.5 105 90 550 1360

106 4 1 1 800 80 400 90 5 161 120 100 500 1220

113 5 1 1 600 80 400 70 7 161 120 80 500 1220

15 6 1 1 600 200 500 90 5 146 90 100 500 1500

102 7 1 1 800 80 500 70 5 161 120 80 500 1220

119 8 1 1 600 200 500 70 7 161 120 80 500 1500

1 9 1 1 600 80 400 70 5 146 90 100 600 1500

147 10 − 1 1 700 140 450 80 6 153.5 105 90 550 1220

140 11 − 1 1 700 140 450 80 6 160 105 90 550 1360

62 12 1 1 800 80 500 90 7 161 90 100 500 1500

18 13 1 1 800 80 400 70 7 146 90 80 500 1220

37 14 1 1 600 80 500 70 5 161 90 80 500 1500

98 15 1 1 800 80 400 70 5 161 120 100 600 1500

69 16 1 1 600 80 500 70 5 146 120 100 500 1220

8 17 1 1 800 200 500 70 5 146 90 80 600 1500

74 18 1 1 800 80 400 90 5 146 120 100 500 1500

50 19 1 1 800 80 400 70 7 161 90 80 500 1500

16 20 1 1 800 200 500 90 5 146 90 80 500 1220

100 21 1 1 800 200 400 70 5 161 120 80 500 1500

126 22 1 1 800 80 500 90 7 161 120 80 500 1500

70 23 1 1 800 80 500 70 5 146 120 80 500 1500

136 24 − 1 1 700 140 450 90 6 153.5 105 90 550 1360

55 25 1 1 600 200 500 70 7 161 90 100 500 1500

148 26 − 1 1 700 140 450 80 6 153.5 105 90 550 1500

5 27 1 1 600 80 500 70 5 146 90 80 500 1220

103 28 1 1 600 200 500 70 5 161 120 80 600 1500

43 29 1 1 600 200 400 90 5 161 90 80 600 1500

30 30 1 1 800 80 500 90 7 146 90 100 500 1220

57 31 1 1 600 80 400 90 7 161 90 100 600 1500
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P-Value is considered as a probability that is used to measure the evidence against the null hypothesis. By 
reducing the amount of expectations, stronger evidence is obtained against the null hypothesis.

In the second step, to determine the final problem formulations, the obtained results of Tables 6 and 7 are 
mixed with each other. For instance, Table 8 indicates the mixture of the SPV that is reported in Tables 6 and 7. 
Also, the series of the Response Surface Methodology for SPV , it includes 31 experiments for different combina-
tions of the environmental variables which has affected the size are shows in Table 8. The ANOVA table for the 
coded coefficients in the studied system model is presented in Table 9.

Results
In this paper, Eq. (11) is used to determine the optimal problem formulation of each component that is in Full 
Quadratic mode, and the obtained formulations are reported as follows:

Spv = 3967095− 109G − 164T − 27570C + 42095E − 0.0226G ∗ G

+ 0.294T ∗ T + 43.5C ∗ C − 226E ∗ E − 0.0405G ∗ T

+ 0.500G ∗ C + 0.500G ∗ E + 0.676T ∗ C + 0.00T ∗ E − 75.0C ∗ E

Sbat = 112936+ 34.7G − 223T − 1680C + 1873E

− 0.0076G ∗ G + 0.017T ∗ T + 5.9C ∗ C + 24E ∗ E + 0.0034G ∗ T

− 0.063G ∗ C + 0.125G ∗ E + 0.845T ∗ C + 1.01T ∗ E − 18.8C ∗ E

Sinv = 1096908+ 50.9G − 51.3T − 4482C − 1057E + 0.00181G ∗ G

− 0.0091T ∗ T + 4.53C ∗ C − 9.99E ∗ E + 0.00203G ∗ T − 0.1125G ∗ C

− 0.0250G ∗ E + 0.101T ∗ C − 0.068T ∗ E + 3.75C ∗ E

Table 7.   Response surface methodology column for environmental condition.

StdOrder RunOrder PtType Blocks G T C E

17 1 − 1 1 1650 12.5 340 38.5

19 2 − 1 1 1750 − 24.5 340 38.5

10 3 1 1 1800 − 6 339 39

20 4 − 1 1 1750 49.5 340 38.5

4 5 1 1 1800 31 339 38

16 6 1 1 1800 31 341 39

24 7 − 1 1 1750 12.5 340 39.5

8 8 1 1 1800 31 341 38

15 9 1 1 1700 31 341 39

11 10 1 1 1700 31 339 39

5 11 1 1 1700 − 6 341 38

22 12 − 1 1 1750 12.5 342 38.5

12 13 1 1 1800 31 339 39

23 14 − 1 1 1750 12.5 340 37.5

21 15 − 1 1 1750 12.5 338 38.5

30 16 0 1 1750 12.5 340 38.5

7 17 1 1 1700 31 341 38

1 18 1 1 1700 − 6 339 38

13 19 1 1 1700 − 6 341 39

9 20 1 1 1700 − 6 339 39

2 21 1 1 1800 − 6 339 38

26 22 0 1 1750 12.5 340 38.5

3 23 1 1 1700 31 339 38

28 24 0 1 1750 12.5 340 38.5

31 25 0 1 1750 12.5 340 38.5

6 26 1 1 1800 -6 341 38

27 27 0 1 1750 12.5 340 38.5

25 28 0 1 1750 12.5 340 38.5

14 29 1 1 1800 − 6 341 39

29 30 0 1 1750 12.5 340 38.5
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Table 8.   Response surface methodology column for Spv.

StdOrder RunOrder PtType Blocks G T C E Spv

12 1 1 1 1800 31 339 39 800

15 2 1 1 1700 31 341 39 800

3 3 1 1 1700 31 339 38 700

22 4 − 1 1 1750 12.5 341 38.5 800

26 5 0 1 1750 12.5 340 38.5 600

4 6 1 1 1800 31 339 38 600

30 7 0 1 1750 12.5 340 38.5 800

17 8 − 1 1 1700 12.5 340 38.5 600

1 9 1 1 1700 − 6 339 38 600

24 10 − 1 1 1750 12.5 340 39 700

18 11 − 1 1 1800 12.5 340 38.5 700

6 12 1 1 1800 − 6 341 38 800

11 13 1 1 1700 31 339 39 800

13 14 1 1 1700 − 6 341 39 600

16 15 1 1 1800 31 341 39 800

2 16 1 1 1800 − 6 339 38 600

8 17 1 1 1800 31 341 38 800

20 18 − 1 1 1750 30 340 38.5 800

7 19 1 1 1700 31 341 38 800

27 20 0 1 1750 12.5 340 38.5 800

19 21 − 1 1 1750 − 6 340 38.5 800

14 22 1 1 1800 − 6 341 39 800

10 23 1 1 1800 − 6 339 39 800

21 24 − 1 1 1750 12.5 339 38.5 700

25 25 0 1 1750 12.5 340 38.5 600

9 26 1 1 1700 -6 339 39 700

31 27 0 1 1750 12.5 340 38.5 600

29 28 0 1 1750 12.5 340 38.5 600

5 29 1 1 1700 − 6 341 38 600

28 30 0 1 1750 12.5 340 38.5 800

23 31 − 1 1 1750 12.5 340 38 600

Table 9.   The ANOVA table for the coded coefficients in the studied system model.

Coded coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant 695.2 20.9 33.31 0.000

G 27.8 16.6 1.67 0.114 1.00

T 34.1 16.7 2.05 0.058 1.00

C 27.8 16.6 1.67 0.114 1.00

E 38.9 16.6 2.34 0.032 1.00

G*G − 56.5 43.9 − 1.29 0.217 2.93

T*T 100.7 45.4 2.22 0.042 3.10

C*C 43.5 43.9 0.99 0.337 2.93

E*E − 56.5 43.9 − 1.29 0.217 2.93

G*T − 37.5 17.6 − 2.13 0.049 1.00

G*C 25.0 17.6 1.42 0.175 1.00

G*E 12.5 17.6 0.71 0.488 1.00

T*C 12.5 17.6 0.71 0.488 1.00

T*E 0.0 17.6 0.00 1.000 1.00

C*E − 37.5 17.6 − 2.13 0.049 1.00
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Srhp = −813620+ 1.7G − 30.2T + 5529C − 888E

+ 0.00242G ∗ G − 0.0042T ∗ T − 8.95C ∗ C + 24.2E ∗ E + 0.00159G ∗ T

− 0.0269G ∗ C − 0.0537G ∗ E + 0.0726T ∗ C + 0.145T ∗ E − 2.94C ∗ E

Shs = −78717+ 23.0G − 59.6T + 248C + 2844E − 0.00379G ∗ G

+ 0.1184T ∗ T − 9.5C ∗ C − 37.9E ∗ E − 0.0203G ∗ T

+ 0.000G ∗ C − 0.250G ∗ E − 0.338T ∗ C + 2.70T ∗ E + 12.5C ∗ E

Scs = −211787+ 133G + 102T − 12666C + 11608E − 0.0470G ∗ G

− 0.120T ∗ T + 160.6C ∗ C − 190E ∗ E + 0.0095G ∗ T

+ 0.875G ∗ C + 0.35G ∗ E + 3.31T ∗ C − 4.73T ∗ E + 122.5C ∗ E

Sice = 11236044− 227G − 159T − 21458C − 20708E + 128165F + 0.00646G ∗ G

+ 0.029T ∗ T + 9.9C ∗ C − 200E ∗ E + 989F ∗ F + 0.0203G ∗ T + 0.225G ∗ C − 0.450G ∗ E

− 2.25G ∗ F + 0.203T ∗ C − 2.03T ∗ E − 2.03T ∗ F + 37.5C ∗ E − 113C ∗ F − 375E ∗ F
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Fig. 3.   Contour plots of Spv in interaction with (a) T*G, (b) C*G, (c) E*G, (d) C*T, (e) E*T, (f) E*C.

G1750
T 12.5
C 340

Hold Values

600

007

071 0751

1
0

30
5

008
vpS

T

G

06 0
6 05
700

170 0571
3

339

143
0

057
vpS

C

G

550
060

71 0 7501

39.0
8.53

0.83800

007

vpS

E

G

)c)b)a

vpSfostolPecafruS

007

008

0 51
3

3 9330

413
0

900
vpS

C

T

600

700

0 15
3

.83 030

39.0
.5

800
vpS

E
T

06 0
056

933 3 04

39.0
.83 5

.03843 1

057
vpS

E

C

)f)e)d

Fig. 4.   Surface plots of Spv interaction with (a) T and G, (b) C and G, (c) E and G, (d) C and T, (e) E and T, (f) 
E and C.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20226  | https://doi.org/10.1038/s41598-024-71035-9

www.nature.com/scientificreports/

Sbl = −23452+ 14.9G − 0.0T − 514C + 1230E − 75F

− 0.00292G ∗ G − 0.0068T ∗ T + 7.69C ∗ C − 9.2E ∗ E − 231F ∗ F

− 0.00541G ∗ T − 0.0000G ∗ C − 0.1000G ∗ E − 0.500G ∗ F

+ 0.068T ∗ C + 0.135T ∗ E + 0.68T ∗ F − 7.50C ∗ E + 12.5C ∗ F + 25.0E ∗ F

Fig. 5.   Residual plot related to the response of the various variables; (a) Sbat , (b) Sbl , (c) Scs , (d) Shs , (e) Sice , (f) 
Sinv , (g) Spat , (h) Spv , (i) Srhp , (j)Sur.
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The equations presented detail the relationship between various factors (G, T, C, E, F, and H) and the sizing 
of components (Spv , Sbat , Sinv , etc.) . The quadratic nature of these equations highlights both linear and nonlinear 
interactions. This indicates that the system’s performance and component sizing are influenced by both direct and 
interactive effects of these variables. After evaluating the model and obtaining a mathematical model for each 
of the problem variables, they can be sensitively analyzed via various plot models. Figures 3 and 4 illustrate the 
Contour plots and surface plots of SPV in interaction with various model parameters, respectively.

Contour Plot is utilized to plot the correlation between the variables of fitted response and two continuous. A 
contour plot shows 2-dimensional views in which points with the same response values are connected to generate 
contour lines. Contours can be illustrated by shaded areas, contour lines, or both of them. These graphs help us 
to show the process of the simulation. Changes from blue to green indicate the improvement in the level of the 
obtained results. Finally, the higher accuracy in the results is illustrated by darker colors.

Surface plots extract the relationship and correlation between three variables. The variables of predictor are 
illustrated on two scales of the figure, and the response variable is illustrated on the chart. A contour plot pre-
pares a 2-dimensional view of the surface in which the points with the same response are connected to plot the 
contour lines that illustrate the constant reactions. Contour plots are advantageous and useful to establish the 
response values and operating conditions that are desirable. These plots show the order of variables in terms of 
their effect on SPV . Figure 5 shows the responses obtained for evaluating each of the variables affecting on the 
SPV in the forms of Residual plot.

The contour and surface plots (Figs. 3 and 4) visually represent the interactions between pairs of variables 
and their impact on a particular component (e.g., Spv). These plots are crucial for understanding the sensitivity 
of the component’s performance to changes in the variables. For instance, the contour plots show how combina-
tions of temperature and solar irradiance affect the photovoltaic system’s size (Spv). The gradients and shapes 
of these plots help identify regions of optimal operation, where the system’s performance is maximized or costs 
are minimized. This visual analysis supports decision-making by highlighting critical areas where adjustments 
can lead to significant improvements.

Residual plots are graphs that are tested in the ANOVA environment to check the accuracy of the results. 
These plots show that the model fits well to optimize all of the independent variables. It is observed that the 
scatter of data points and standard curves have a high regression coefficient and correlation. Also, the above 
figures confirm the typical distribution of residuals and the high performance of the models extracted from the 
studied system.

The residual plots (Fig. 5) validate the model’s accuracy in predicting system behavior. The distribution of 
residuals, which should ideally be random and show no discernible pattern, indicates the goodness of fit of the 
model. In our study, the residual plots demonstrate a high correlation coefficient, suggesting that the model 
accurately captures the relationship between the inputs and outputs. This accuracy is crucial for ensuring that 
the optimization model is reliable and can be used confidently to make decisions about system design and 
operation. The implications of our findings are multifaceted. Firstly, the detailed equations provide a framework 
for accurately sizing each component of the hybrid energy system, ensuring that they operate within optimal 
parameters. This contributes to the system’s overall efficiency and cost-effectiveness. Additionally, the sensitivity 
analysis via contour and surface plots guides system designers in understanding the impact of environmental 
and economic variables, thus aiding in robust decision-making under varying conditions.

This study relies on data specific to the region of Iran, including climate data, energy consumption patterns, 
and economic factors. While this data is sufficient for our analysis, we acknowledge that variations in data qual-
ity and availability in other regions could impact the applicability and precision of our findings. Future studies 
should consider the variability and quality of local data to enhance the accuracy and relevance of the model.

The validity of the RSM-based optimization model is contingent upon the assumptions made during the 
modeling process, such as linearity and the smoothness of the response surface. These assumptions might not 
hold in all scenarios, particularly in cases involving non-linear interactions or discontinuities in the system 
behavior. Additional validation with diverse datasets and scenarios would help to verify and refine the model’s 
accuracy and robustness.

Future research could focus on applying the RSM-based optimization framework to different climates and 
geographic regions. This would involve collecting and integrating local data, which could provide insights into 
the model’s adaptability and the scalability of the proposed solutions.

Integrating more advanced data analytics techniques, such as machine learning, could improve the accuracy 
of the response surfaces, particularly in handling non-linearities and complex interactions within the system. 
This approach could lead to more precise optimization outcomes.

Spat = 55390− 2.23G − 1.81T − 514C + 311E − 115.4H − 0.000016G ∗ G

− 0.00304T ∗ T + 1.102C ∗ C − 4.16E ∗ E + 0.960H ∗H + 0.000203G ∗ T + 0.00875G ∗ C

+ 0.00750G ∗ E + 0.00125G ∗H + 0.00338T ∗ C + 0.0068T ∗ E

+ 0.01014T ∗H + 0.125C ∗ E + 0.188C ∗H − 0.625E ∗H

Sur = 59949+ 6.4G + 14.4T + 1360C − 7429E + 374H − 0.00314G ∗ G

− 0.0010T ∗ T − 7.86C ∗ C + 88.6E ∗ E − 7.86H ∗H + 0.00203G ∗ T

+ 0.0375G ∗ C − 0.075G ∗ E + 0.0750G ∗H − 0.101T ∗ C − 0.203T ∗ E

− 0.000T ∗H + 3.75C ∗ E + 0.00C ∗H + 7.50E ∗H

mFuel = 83595− 193T − 116777C − 0.457T ∗ T + 41022C ∗ C + 153.1T ∗ C
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Conclusion
Today, HESs are used extensively in different areas of the world to supply energy demand. The optimal design 
of these systems is an important issue and has created many challenges. In this paper, the Response Surface 
Methodology (RSM) is proposed as a powerful tool for optimal sizing of a Photovoltaic (PV) system in a hybrid 
energy system (HES). The introduced solution takes into account the climatic and geographical factors in the 
study site and technical and economic issues related to the HESs, and provides the most optimal sizing related to 
the PV system. In addition, the proposed technique mathematically modeled each of the variables affecting the 
performance of the PV system so that the impact of each on the output of the system could be analyzed. Finally, 
by presenting mathematical models for each input parameter and sensitivity analysis of each of them, the optimal 
size of the PV system was provided. The optimization model obtained using the analysis of variance (ANOVA) 
evaluation technique, one of the most important statistical evaluation procedures, was evaluated. It should be 
noted that the selected RSM model can be considered to optimize all components of a HES.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to extraction from 
an intra-university project but are available from the corresponding author of dataset on reasonable request.
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