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Abstract

The escalating global population and energy demands underscore the critical role of renew-
able energy sources, particularly solar power, in mitigating environmental degradation
caused by traditional fossil fuels. This paper emphasizes the advantages of solar energy,
especially photovoltaic (PV) systems, which have become pivotal in hybrid energy systems.
However, accurate modelling and identification of PV cell parameters pose challenges,
prompting the adoption of meta-heuristic optimization algorithms. This work explores
the limitations of existing algorithms and introduces a novel approach, the bio-dynamics
grasshopper optimization algorithm (BDGOA). The BDGOA addresses deficiencies in
both exploration and exploitation phases, exhibiting exceptional convergence speed and
efficiency. The algorithm’s simplicity, achieved through the implementation of an elim-
ination phase and controlled search space, enhances its performance without intricate
calculations. The study evaluates the BDGOA by applying it to identify unknown param-
eters of five solar modules. The algorithm’s effectiveness is demonstrated through the
extraction of parameters for RTC France, PWP201, SM55, KC200GT, and SW255 mod-
els, validated against experimental data under diverse conditions. The paper concludes
with insights into the impact of radiation and temperature on module parameters. The
subsequent sections of the paper delve into the intricacies of the PV cell and module
model, articulate the formulation of the proposed algorithm, present simulations, and
analyse the obtained results. The BDGOA emerges as a promising solution, overcoming
the limitations of existing algorithms and contributing significantly to the advancement of
accurate and efficient PV cell parameter identification, thereby propelling progress towards
a sustainable energy future.

1 INTRODUCTION

Nowadays, owing to the exponential rise in global popula-
tion and the escalating demands for energy, the significance
of renewable energy sources, especially solar power, should be
emphasized sufficiently. The advantages offered by renewable
energy technologies are particularly evident when compared to
traditional fossil fuels. Although fossil fuels have gained pop-
ularity due to their high efficiency and widespread utilization,
they come with severe detrimental effects on the environment,
such as pollution, depletion of the ozone layer, emissions, global
warming, and climate change [1, 2]. Growing concerns regard-
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ing the impact of global warming and pollution have instigated
a shift away from limited and environmentally harmful fossil
fuels. Consequently, there has been a global impetus to incor-
porate renewable energy sources like wave, tidal, wind, and
geothermal power generation into electricity networks to meet
the ever-increasing demand for energy in recent decades [3–5].
The quest for viable solutions to combat environmental degra-
dation and the limited availability of non-renewable resources
has led to the emergence of renewable energy alternatives as an
indispensable solution. Renowned for their ability to generate
energy with minimal environmental consequences, renewable
energy sources, particularly solar power, have gained significant
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momentum and are being extensively harnessed in numerous
countries worldwide [1].

Solar energy has emerged as a top choice for hybrid energy
systems due to its minimal environmental impacts; low pollu-
tion, and wide accessibility. It offers various advantages such as
efficiency, ease of installation, low emissions, and compatibil-
ity with technologies like hydrogen production, battery storage,
and diesel power systems [6–8]. Among solar energy technolo-
gies, photovoltaic (PV) systems are particularly advantageous.
They enable straightforward installation, require minimal main-
tenance, offer an essentially limitless energy supply, operate
silently, and provide flexibility in system size. As a result, PV sys-
tems rank as the world’s second-most environmentally friendly
energy source after wind energy systems [9, 10]. However, to
achieve optimal performance, it is crucial to accurately model
and identify parameters for PV systems. This includes the pre-
cise identification of PV cell and module parameters, as they
play a vital role in the design and operational management of
PV systems. Accurate parameter identification is indispensable
for analysing, assessing, and enhancing the performance of solar
energy systems [11–13].

PV cell models are categorized into three main types; single
diode, double diode, and three diode models [14]. The single-
diode model (SDM), which is known for its simplicity, consists
of five unknown parameters, while the double-diode model
(DDM) exceeds the SDM in terms of accuracy and includes
seven unknown parameters [15]. The most accurate model
among them is the three-diode model (TDM), which incorpo-
rates nine unknown parameters and is designed to account for
factors such as leakage current coefficients and grain boundaries
[16]. However, accurately determining the parameters within
these PV cell models poses challenges, primarily due to the tran-
scendental nature of the modelling equations and the nonlinear
I–V curves [17]. To tackle these challenges and overcome the
limitations of analytical and numerical methods, meta-heuristic
optimization algorithms have gained significance in the field of
PV cell parameter identification [18–20].

The integration of metacognitive algorithms into sustain-
able energy systems marks a transformative advancement in
achieving efficiency and environmental sustainability [21–23].
These algorithms, characterized by their self-reflective and
adaptive capabilities, enhance the performance of complex
energy systems by learning from historical data and opti-
mizing future operations. This is particularly significant in
multi-generation systems that utilize renewable resources such
as solar, geothermal, and biomass to produce power, heat-
ing, cooling, and freshwater [24–26]. By employing advanced
optimization techniques like artificial neural networks and
multi-objective optimization, these systems can significantly
reduce their environmental impact while maximizing output.
The synergy between metacognitive algorithms and sustain-
able energy technologies fosters innovation and ensures that
these systems remain resilient and adaptable amidst evolving
environmental challenges [27–29]. This harmonious blend of
technology and sustainability not only accelerates the transi-
tion to renewable energy but also paves the way for a smarter,
greener future. The ability of metacognitive algorithms to con-

tinuously improve and adapt makes them indispensable in the
quest for sustainable energy solutions, highlighting their crucial
role in the development of efficient, resilient, and environmen-
tally friendly energy systems [30]. This integration represents a
significant step towards a future where intelligent systems and
sustainable practices coexist, driving progress and fostering a
more sustainable world.

Meta-heuristic optimization algorithms are inspired by evolu-
tionary concepts, biological behaviours, and physical phenom-
ena to achieve highly efficient convergence, robustness against
initial estimates, and a holistic approach to solving optimiza-
tion problems. Notably, some of these algorithms include the
genetic algorithm (GA) [31], transient search optimization [32],
northern goshawk optimization algorithm (NGO) [11], parti-
cle swarm optimization (PSO) [11], and artificial bee colony
(ABC) [33]. These intelligent algorithms typically employ a
particle-based methodology, treating model parameters as par-
ticles within the search space. Through iterative processes, they
evaluate the objective function and update the particles accord-
ingly, until a predetermined termination condition is satisfied.
By combining systematic exploration of the search space and
interaction between particles, this approach enables the discov-
ery of optimal solutions on a global scale while avoiding local
optima.

These algorithms present limitations, such as the potential
for being trapped in local optima, longer convergence times due
to their iterative nature, and the difficulty of premature conver-
gence, especially in heuristic algorithms. As a result, there is an
ongoing effort to develop a precise and appropriate heuristic
algorithm for the identification of PV model parameters, which
remains a prominent and actively researched area [34]. Within
this context, numerous researchers have endeavoured to over-
come these limitations by enhancing and customizing intelligent
techniques for determining PV model parameters [10, 35].

Over the past few years, researchers have utilized various
meta-heuristic optimization methods to address the problems.
Some of these methods include the crow whale optimiza-
tion algorithm(CWOA) [36], genetic algorithm incorporating
non-uniform mutation (GAMNU) [31], enhanced JAYA opti-
mization algorithm(EJAYA) [37], improved brain storming
optimization algorithm (IBSO) [38], modified SALP swarm
optimization (MSSA) [15], innovative optimization algorithm
(INFO) [39], northern goshawk optimization (NGO) [11],
improved Lozi map based chaotic optimization algorithm
(ILCOA) [35]. The main findings from these recent studies are
summarized in Table 1.

In spite of their numerous benefits, meta-heuristic meth-
ods do come with certain limitations [41]. The operation of
all meta-heuristic algorithms can be categorized into two dis-
tinct phases, exploration and exploitation. Certain algorithms
exhibit a greater emphasis on the exploitation phase, while
neglecting the exploration phase. For instance, the PSO and
whale optimization algorithm (WOA) encounter a limitation
where they become trapped in local minima, thus impeding
their capability to accurately search the entire search space
[42, 43]. Conversely, other algorithms prioritize the explo-
ration phase, effectively locating the global minimum within
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TABLE 1 An overview of the optimization algorithms employed in recent years.

Reference

Proposed

algorithm Model Fitness function Primary results

Pourmousa et al. [35] ILCOA SDM
DDM
PVM

RMSE Impressive local and global search capabilities

Yan et al. [38] IBSO SDM
DDM

RMSE IBSO has the potential to deliver highly favourable results

Saadaoui et al. [31] GAMNU SDM
DDM

RMSE High-level precision and dependability in competitive
performance

Naeijian et al. [40] WHHO SDM
DDM

RMSE Robust and rapid strong convergence

Yang and Gong [37] EJAYA SDM
DDM
SMM

RMSE Enhanced rate of convergence

Yaghoubi et al. [15] MSSA SDM
DDM
PVM

RMSE MSSA surpasses its rivals and has the potential to generate
superior optimal solutions

El-Dabah et al. [39] INFO TDM Combination of the absolute
value of the current error

The advantage of INFO in terms of both convergence
time and accuracy compared to other optimization
techniques

the search space. However, they fail to attain value of the
global minimum, as exemplified by the GA and DE algorithms
[44, 45]. Necessitating the amalgamation of both exploration
and exploitation phases in a harmonious manner, algorithms
that present optimal performance are currently being pro-
posed by researchers. Consequently, algorithms that comprise
a combination of two distinct algorithms have come to the
forefront, such as: PSO-GA, the differential evolution with
biogeography-based optimization (DE/BBO) [46, 47]. Another
group of researchers improve the performance of the algo-
rithms by adding a part to the classical algorithms. Some of
these algorithms are used in this article to compare with the
proposed method, like flexible particle swarm optimization
(FPSO) [10], whippy Harris Hawks optimization (WHHO) [40],
springy whale optimization algorithm (SWOA) [48], repairable
grey wolf optimization algorithm (RGWO) [49] and so on
[50–54].

In this paper, we introduce a novel method that can be seam-
lessly integrated into any metacognitive algorithm to enhance its
performance, particularly in avoiding entrapment in local min-
ima. The proposed algorithm is structured around two main
phases: elimination and search space control. During the elim-
ination phase, once a specific condition is met, the algorithm
removes a percentage of the population with the poorest per-
formance and replaces it with a new, randomly distributed
population that has no prior experience in the search space. This
approach helps the algorithm escape local minima by exploring
new areas of the search space. In the search space control phase,
the goal is to thoroughly search the entire space for the global
minimum. Initially, the population is confined to a small region
of the search space, which gradually expands until the entire
space is covered. This method can be easily implemented on
any metacognitive algorithm. Given the grasshopper optimiza-
tion algorithm’s (GOA) challenges in overcoming local minima

[55], we implemented our method on GOA, resulting in the bio
dynamics grasshopper optimization algorithm (BDGOA).

One of the advantages of this method is its simplicity, as it
does not necessitate intricate calculations to reduce the algo-
rithm’s speed. The algorithm exhibits exceptional convergence
speed and remarkable efficiency in locating the global optimal
point while avoiding local minima. The performance evaluation
of the BDGOA algorithm involved its application in identifying
and extracting the unknown parameters of five solar modules:
R.T.C France [56], PWP201 [57], SM55 [58], KC200GT [58],
and SW255 [59]. Initially, the unknown parameters of various
RTC France and PWP201 models were identified, followed by
verification of the extracted parameters’ validity through com-
parison with experimental models under diverse temperature
and radiation conditions. Furthermore, the impact of radiation
and temperature on the parameters of the mentioned modules
is elucidated and analysed. Subsequently, the effects of BDGOA
algorithm parameters on convergence speed and escaping local
minima are discussed. Finally, the significance of accurately
identifying solar cell parameters in the industry and the resulting
cost savings is highlighted.

The article further details the implementation, which can be
summarized as follows:

∙ Implementing the elimination phase: removing the worst
locusts (potential solutions) and replacing them with new ran-
dom grasshoppers and spreading them in a space away from
the local minimum.

∙ Controlling the search space: considering a small part of the
state space and rarely making it larger.

The subsequent sections of the paper are structured as fol-
lows. Section 2 introduces the model of the photovoltaic (PV)
cell and module, along with the corresponding relationships.
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Section 3 presents and formulates the proposed algorithm. Sec-
tion 4 provides simulations and analyses the obtained results.
Ultimately, Section 5 articulates the concluding remarks.

2 MATHEMATICAL MODELING AND
PROBLEM FORMULATION

This section, some of the most popular mathematics models of
solar cell (SD, DD, and TD) and also PV module models are
introduced which are used a lot in practice.

2.1 Photovoltaic cell model

2.1.1 Single-diode model

As can be seen from Figure 1, the structure of this model con-
sists of a diode, a series resistance (Rs), a shunt resistance (Rsh)
and a current source (Iph) [10]. Although the structure of this
model is very simple, it is widely used in practice due to its
proper accuracy of solar cell behaviour. The output current (It)
can be calculated as follows [40]:

It = Iph − Ish − Id (1)

where Ish and Id denote shunt resistance current and the diode
current, respectively. Their equations are as follow:

Ish =
Vt + It.Rs

Rsh
(2)

Id = Isd

[
exp

(
q (Vt + Rs.It )

n.k.T

)
− 1

]
(3)

In which, Vt is terminal voltage, Isd is the diode reverse sat-
uration current, n is the diode ideality factor, q = 1.602 × 10−19

is the magnitude of charge on an electron, k = 1.381 × 10−23

(J/K) is the Boltzmann constant and T is the cell temperature
(K). Then, It can be rewritten as follows [35]:

It = Iph −
Vt + It.Rs

Rsh
− Isd

[
exp

(
q (Vt + Rs.It )

n.k.T

)
− 1

]
(4)

FIGURE 1 Single diode model’s equivalent circuit.

FIGURE 2 Double diode model’s equivalent circuit.

From Equation (4), it is clear that the five unknown
parameters to be identified are:

𝜃 =
[
Iph,Rs,Rsh, Isd, n

]
(5)

2.1.2 Double-diode model

Although SDM is considered an accurate model in engineering,
researchers needed a more accurate model for specific applica-
tions. For this reason, they presented the double-diode model.
In this model, as can be seen from Figure 2, there is one more
diode compared to SDM, which has led to the creation of 7
unknown parameters. The first diode is set as a rectifier and
the second diode models the charge recombination current. The
output current is obtained as follows:

It = Iph − Ish − Id1
− Id2

(6)

As before, Equation (6) can be rewritten using Equations (2)
and (3) as follows:

It = Iph −
Vt + It.Rs

Rsh
− Isd1

[
exp

(
q (Vt + Rs.It )

n1.k.T

)
− 1

]

− Isd2

[
exp

(
q (Vt + Rs.It )

n2.k.T

)
− 1

]
(7)

Where (Iph,Rs,Rsh, Isd1
, Isd2

, n1, n2) are unknown parameters.

2.1.3 Triple-diode model

The three-diode model, which is more accurate than the pre-
vious two models, is used less in practice. This model has 9
unknown parameters (Iph,Rs,Rsh, Isd1

, Isd2
, Isd3

, n1, n2, n3) that
can challenge the proposed algorithm. According to Figure 3,
the output current is calculated as follows [48]:

It = Iph − Ish − Id1
− Id2

− Id3
(8)

Thus, the output current can be rewritten as follows:

It = Iph −
Vt + It.Rs

Rsh
− Isd1

[
exp

(
q (Vt + Rs.It )

n1.k.T

)
− 1

]
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FIGURE 3 Triple diode model’s equivalent circuit.

FIGURE 4 PV model’s equivalent circuit.

− Isd2

[
exp

(
q (Vt + Rs.It )

n2.k.T

)
− 1

]

− Isd3

[
exp

(
q (Vt + Rs.It )

n3.k.T

)
− 1

]
(9)

2.2 PV module model

A PV module is made of a number of solar cells which are
connected to each other in series and/or parallel to form the
single-diode PV module illustrated in Figure 4. The output cur-
rent of a single-diode (SDM) PV module can be calculated using
Equation (10).

It = NP.Iph −
NP.Vt∕Ns + It.Rs

Rsh

−NP.Isd

[
exp

(
q (Vt∕Ns + Rs.It∕NP)

n.k.T

)
− 1

]
(10)

where NP and Ns are the number of solar cells in parallel and
series, respectively. As mentioned in the Section 1, the behaviour
of the solar cell system is dependent on the amount of temper-
ature and irradiance, and if we want to check the performance
of the system in different conditions of temperature and irra-
diance, it is necessary to rewrite the above equation using the

following equations:

Iph =
(
Iph_STC + KiΔT

) G

GSTC
(11)

Where, Iph_STC (in Ampere) is the light generated current
at STC, ΔT = T − TSTC (in Kelvin, TSTC = 25 ◦C), G is the
surface irradiance of the cell and GSTC (1000 w∕m2) is the
irradiance at STC. The constant Ki is the short-circuit cur-
rent coefficient, normally provided by the manufacturer. An
equation to describe the saturation current which considers the
temperature variation is given by [10]:

Isd =
(
ISC _STC + KiΔT

)
exp

[
q(VOC_STC+KvΔT )

n.k.T

]
− 1

(12)

The constant Kv is the open circuit voltage coefficient. This
value is available from the datasheet.

2.3 Objective function

Figure 5 illustrates an overview of the identification of solar
module parameters. As it is clear, with the solar irradiance, the
output voltage and current are received to be given as nec-
essary input to the PV cell model. After that, the proposed
algorithm tries to find the unknown parameters of the system
so that finally the estimated current (Iest) and the output cur-
rent become the same. For this purpose, it needs a cost function
which is as follows:

F (𝜃) = RMSE (𝜃) =

√√√√ 1
NE

NE∑
i=1

fM(Vt, It, 𝜃)2 (13)

where NE represents the number of measured data and M is
used for determining the SDM, DDM, TDM, and the PV panel.
The objective function for them is displayed in Equations (13)–
(16), respectively:

fSDM (Vt, It, 𝜃) = 𝜃1 −
Vt + It.𝜃2

𝜃3

− 𝜃4

[
exp

(
q (Vt + 𝜃2.It )

𝜃5.k.T

)
− 1

]
− It (14)

fDDM (Vt, It, 𝜃) = 𝜃1 −
Vt + It.𝜃2

𝜃3
− 𝜃4

[
exp

(
q (Vt + 𝜃2.It )

𝜃6.k.T

)
− 1

]

− 𝜃5

[
exp

(
q (Vt + 𝜃2.It )

𝜃7.k.T

)
− 1

]
− It (15)

fDDM (Vt, It, 𝜃) = 𝜃1 −
Vt + It.𝜃2

𝜃3
− 𝜃4

[
exp

(
q (Vt + 𝜃2.It )

𝜃7.k.T

)
− 1

]

− 𝜃5

[
exp

(
q (Vt + 𝜃2.It )

𝜃8.k.T

)
− 1

]

− 𝜃6

[
exp

(
q (Vt + 𝜃2.It )

𝜃9.k.T

)
− 1

]
− It (16)
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(θ) (θ) ,θ)

Objective Function

Bio Dynamics 
Grasshopper 
Optimization 

Algorithmθ=[θ θ θ θ θ for SDM , Module

θ=[θ θ θ θ θ θ θ

PV Cell Model

θ

FIGURE 5 Overview for parameters estimation of PV cell models using BDGOA.

fpanel (Vt, It, 𝜃) = 𝜃1 −
Vt + It.𝜃2.N

𝜃3.N

− 𝜃4

[
exp

(
q (Vt + 𝜃2.It.N )

𝜃5.k.T .N

)
− 1

]
− It (17)

The unknown parameters vector is in the form of 𝜃 =
[𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5] for the SDM and the PV panel, is in the
form of 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7] for the DDM and is in
the form of 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9] for the TDM.

3 GRASSHOPPER ALGORITHM

The GOA is a meta-heuristic optimization method that has
been placed in the category of population-based algorithms due
to its inspiration from the group behaviour of grasshopper.
Grasshopper to search for food (the best solution), first with
long-range jumps, spread almost all over the agricultural land

(search space) (exploration phase) and then move locally with
small steps to achieve the best food source (exploitation phase).
The mathematical model of the position of the grasshoppers
(the solution to the optimization problem) can be modelled
according to three factors affecting the movement of the
grasshoppers, which include the social interaction (Si ), the grav-
ity force on the grasshopper (Gi ), and wind advection (Ai ) [45].

Xi = Si + Gi + Ai (18)

And

Si =
N∑

j = 1
j ≠ i

s
(
di j

)
d̂i j (19)

Where di j = |x j − xi | is the distance between ith and j th

grasshopper, d̂i j =
x j−xi

di j

is an unit vector from ith to j th

grasshopper and s (r ) = fe
−r

l − e−r is the social forces strength
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which can be adjusted by two parameters (l is the attractive
length scale and f is the attraction intensity).

In Equation (18), Gi and Ai are given in Equation (20) [55].

Gi = −gêg,Ai = u êw (20)

In which, g is constant of gravity, u is constant drift, êg and
êw indicate unity vector towards earth center and unity vector in
the wind direction, respectively. So, Equation (18) is rewritten
by substituting Equations (19) and (20) as follows:

Xi =
N∑

j = 1
j ≠ i

s
(|||x j − xi

|||
) x j − xi

di j
+ −gêg + u êw (21)

where N is the number of grasshoppers. Equation (21) is
inspired by the behaviour of grasshoppers, but during several
experiments, it was found that it cannot perform well in solving
optimization problems. For this reason, some special parame-
ters were added to the mathematical model, which resulted in a
good balance between exploration and exploitation:

Xi = c

⎛⎜⎜⎜⎜⎝
N∑

j = 1
j ≠ i

c
ubd − lbd

2
s
(|||xd

j − xd
i

|||
) x j − xi

di j

⎞⎟⎟⎟⎟⎠
+ Td (22)

In Equation (22), ubd and lbd are the upper and lower bounds
in the dth dimension of s(r ), respectively. Td indicates value of
the dth dimension in the target (best solution) and c is a decreas-
ing coefficient to shrink the comfort zone defined as the zone in
the search space that the GOA algorithm can use it to establish
a suitable balance between exploration and exploitation. As the
number of iterations increases, the exploration part decreases
and the exploitation part increases according to the following
equation:

c = cmax − it
cmax − cmin

L
(23)

In which, it is the current iteration, cmax and cmin are the max-
imum and the minimum value, respectively and L indicates the
maximum number of iterations.

3.1 Swift grasshopper optimization
algorithm

The correctness of the information mentioned in the relevant
articles about the disadvantages of the algorithm is confirmed
by the review and tests that have been carried out on the
grasshopper algorithm in order to be used in optimization prob-
lems. Some of the most serious drawbacks are the algorithm’s
slow convergence speed, poor ability to find a large number of
unknown system parameters, and getting stuck in local minima.
The very low speed of convergence of this algorithm caused
a new version of the algorithm to be presented by Mirjalili

et al., whose MATLAB code is provided on the website of the
Grasshopper algorithm. But its convergence speed is still much
lower than many algorithms.

However, the GOA algorithm tends to get stuck in local min-
ima that one of the main reasons is the way of updating the c

parameter. As can be seen from Equation (23), the parameter
c becomes smaller and approaches the cmin value by increas-
ing the number of iterations, and thus exerts all its effort on
the exploitation phase regardless of the exploitation phase. To
solve these disadvantages, we have proposed the bio dynamics
grasshopper optimization algorithm (BDGOA).

In the BDGOA, some simple but very effective ideas have
been used. First idea is to eliminate a number of underper-
forming grasshoppers (the worst solution) during iteration and
randomly distribute new grasshoppers in new regions of the
search space. In this way, a very good balance is created between
exploitation and exploration. This process includes providing
additional parameters (ep, et , Th, w) of the grasshopper algo-
rithm. Figure 6 shows the flowchart of the proposed algorithm,
the changes applied to the GOA algorithm are shown in blue.

The new design parameters allow for a suitable balance
between exploration and exploitation. During this method, the
total population of grasshoppers remains constant and after et

of the total iteration, the value of the objective function is cal-
culated for all grasshoppers. Then ep number of the least active
grasshoppers (worst answers) are removed and replaced with
new Grasshoppers in random regions of the search space. For
further explanation, the BDGOA is used to find the optimal
point of the Rastrigin function (Figure 7). The search space
is [−5.12, 5.12] and other parameters were selected as follows:
(L = 140,N = 50, ep = 15, et = 25).

As can be clearly seen from Figure 6, the proposed algo-
rithm does not enter the elimination phase until the constraint
condition is confirmed. So, the algorithm continues its pre-
vious process until the 24th iteration and does not enter the
constraint condition. But in the 25th iteration, it enters the elim-
ination phase and removes underperforming grasshoppers and
distributes new locusts randomly in the search space. Note that
the best grasshoppers are not removed and remain, some of
which are shown in red dashed circle in Figure 7. Since the
total number of repetitions is 140, this algorithm enters the
elimination loop 7 times in total. White dots represent locusts.

The second idea is to control the search space so that the
algorithm searches the entire search space to find the best
answer (global minimum) with much greater precision.

This operation, which is performed using, Th and w param-
eters, initially, locusts search in a limited search space. After a
certain criterion is met (for example, a percentage of the maxi-
mum iteration), the search space grows larger with a growth rate
w. This process continues until the search space is equal to the
entire search space. Another advantage of this method is that
it is not necessary to select a large number of locusts like the
GOA algorithm, but the best solution can be reached with a
smaller number of locusts. As a result, the execution time of the
algorithm is less than the classic GOA algorithm, which leads to
faster convergence to the global solution.
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Calculate the fitness of each search agent

Update T

Is (it) multiple of ep?

Whether the termination condition is satisfied?

End

If the amplitude of each grasshoppers’s 

parameters is greater than Th , one unit should 

be added to the search space of that parameter
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performance
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grasshoppers
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between grasshoppers

Update the grasshopper’s position 

according to Eq.(22)

Calculate the fitness of each search agent

Update T

YES

YES

NO

NO

FIGURE 6 Flowchart of BDGOA algorithm.

FIGURE 7 Found the minimum value of the Rastrigen function by BDGOA, a) before eliminate phase, b) after eliminate phase.
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3322 JABARI ET AL.

TABLE 2 Experimental data of the investigated modules under STC.

Parameters SM55 KC200GT SW255

Maximum power (Pmax(W )) 55 200 255

Voltage at Pmax (Vppm(V )) 17.4 26.3 31.4

Current at Pmax (Ippm(A)) 3.15 7.61 8.15

Open circuit voltage (Voc(V )) 21.7 32.9 37.8

Short circuit Current (Isc(A)) 3.45 8.21 8.66

KV (mV/◦C) −76 −123 −30

KI (mA/◦C) 1.40 3.18 4

Number of cells 36 54 60

4 SIMULATIONS

In this section, the performance evaluation of the BDGOA
algorithm is conducted by identifying the unknown parameters
of several widely-used solar systems in the industry. The identi-
fied systems include R.T.C France, with a diameter of 57 mm,
Photowatt-PWP201, consisting of 36 polycrystalline-type solar
cells, SM55 (monocrystalline), KC200GT (multi-crystalline),
and SW255 (polycrystalline). These systems are tested under
varying irradiance and temperature conditions, with their
specifications provided in Table 2.

In the initial phase, the unknown parameters of RTC France
and PWP201 systems are identified in all models: single diode,
two diodes, and three diodes. Subsequently, the impact of
irradiance and temperature on the SM55, KC200GT, and
SW255 modules is investigated in the following part. The
search space of the unknown parameters can be referred to in
Table 3.

Furthermore, in addition to the BDGOA algorithm, twelve
meta-heuristic algorithms are compared. The selected algo-
rithms include the latest ones such as FPSO, WHHO, and
SWOA, along with well-known algorithms like GA and PSO
to ensure a comprehensive and unbiased comparison. For all
systems, a fixed number of iterations, namely 5000, is employed
and the parameters of each algorithm are chosen and adjusted
based on pertinent references, aiming to maximize their perfor-
mance. The simulations are administered using the MATLAB
2020b environment.

TABLE 3 Parameters ranges of PV modules.

RTC France PV PWP201 PV module

Parameter Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

Iph (A) 0 1 0 2 0 2ISC

Isd, Isd2, Isd3(μA) 0 1 0 50 0 100

Rs (Ω) 0 0.5 0 2 0 2

Rsh (Ω) 0 100 0 1000 0 5000

n1, n2 1 2 1 50 1 4

n3 2 5 1 50

4.1 Parameters identification of R.T.C
France solar cell

One of the most commonly utilized solar modules is R.T.C
France, which is extensively referenced in scholarly literature.
Table 4 presents a comprehensive dataset comprising measured
voltage and current values of the RTC module, utilized for
determining unknown parameters. The subsequent columns of
this table display the estimated current by the proposed algo-
rithm in three models: single diode, two diodes, and three
diodes. The respective relative error, formulated as follows [10]:

Rerr =
It − Iest

Iest
(2)

From an examination of Table 4, it is evident that the relative
error is negligibly low, indicating similarity between the esti-
mated and measured current values. Furthermore, upon careful
scrutiny of this table, it can be observed that the error value
in the three-diode model is lower compared to the single-diode
model, thus signifying the greater accuracy of the three-diode
model in comparison.

Table 5 demonstrates the unidentified parameter values iden-
tified by the BDGOA algorithm and 12 alternative algorithms.
It can be inferred from the table that half of the utilized algo-
rithms, similar to the BDGOA algorithm, were capable of
achieving the lowest RMSE (root mean square error) value.
Accordingly, for further investigation, the convergence speed of
these algorithms is compared with that of the proposed algo-
rithm (Figure 8). It is evident from this figure that the BDGOA
algorithm exhibits the fastest convergence speed, whereas the
GOA algorithm showcases the slowest convergence speed,
initially encountering a local minimum.

Tables 6 and 7 showcase the values of the unidentified
parameters established for the two-diode and three-diode mod-
els, respectively. In these models, due to the increased number
of unknown parameters compared to the single diode model,
the algorithms face greater challenges. However, the BDGOA
algorithm managed to achieve the lowest RMSE value, followed
by the WHHO and SWOA algorithms. Convergence speeds of
the algorithms for the two-diode and three-diode models are
presented in Figures 9 and 10, respectively. It is apparent from
these figures that the proposed algorithm possesses the highest
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JABARI ET AL. 3323

TABLE 4 Relative error for each measurement.

SDM DDM TDM

DATA VL (V) IL (A) Ite (A) Rerr Ite (A) Rerr Ite (A) Rerr

1 −0.2057 0.7640 0.76408 −0.00011 0.76398 0.00002 0.76397 0.00003

2 −0.1291 0.7620 0.76266 −0.00086 0.76260 −0.00079 0.76260 −0.00078

3 −0.0588 0.7605 0.76135 −0.00112 0.76133 −0.00109 0.76133 −0.00109

4 0.0057 0.7605 0.76015 0.00045 0.76017 0.00042 0.76017 0.00042

5 0.0646 0.7600 0.75905 0.00124 0.75910 0.00117 0.75911 0.00116

6 0.1185 0.7590 0.75804 0.00126 0.75812 0.00115 0.75812 0.00114

7 0.1678 0.7570 0.75709 −0.00012 0.75718 −0.00024 0.75719 −0.00025

8 0.2132 0.7570 0.75614 0.00113 0.75624 0.00099 0.75624 0.00099

9 0.2545 0.7555 0.75508 0.00054 0.75517 0.00042 0.75517 0.00042

10 0.2924 0.7540 0.75366 0.00044 0.75372 0.00036 0.75371 0.00038

11 0.3269 0.7505 0.75138 −0.00118 0.75139 −0.00119 0.75136 −0.00115

12 0.3585 0.7465 0.74734 −0.00113 0.74729 −0.00106 0.74723 −0.00098

13 0.3873 0.7385 0.74009 −0.00215 0.7399 −0.00201 0.73987 −0.00185

14 0.4137 0.7280 0.72739 0.00082 0.72726 0.00101 0.72703 0.00132

15 0.4373 0.7065 0.70695 −0.00064 0.70683 −0.00047 0.70641 0.00012

16 0.4590 0.6755 0.67529 0.00030 0.67523 0.00039 0.67450 0.00147

17 0.4784 0.6320 0.63088 0.00176 0.63088 0.00176 0.62975 0.00357

18 0.4960 0.5730 0.57208 0.00160 0.57214 0.00150 0.57047 0.00442

19 0.5119 0.4990 0.49949 −0.00098 0.49957 −0.00114 0.49730 0.00340

20 0.5265 0.4130 0.41349 −0.00119 0.41355 −0.00134 0.41063 0.00575

21 0.5398 0.3165 0.31721 −0.00226 0.31724 −0.00233 0.31366 0.00902

22 0.5521 0.2120 0.21210 −0.00048 0.21208 −0.00038 0.20786 0.01986

23 0.5633 0.1035 0.10272 0.00758 0.10267 0.00806 0.097869 0.05753

24 0.5736 −0.0100 −0.00924 0.08121 −0.00929 0.07560 −0.01463 −0.31693

25 0.5833 −0.1230 −0.12438 −0.01110 −0.12439 −0.01117 −0.13023 −0.05552

26 0.5900 −0.2100 −0.20919 0.00385 −0.20914 0.00407 −0.21532 −0.02471

TABLE 5 Detailed results for SDM of RTC France.

Algorithms Iph (A) Isd (𝛍A) n Rs (𝛀) Rsh(𝛀) RMSE

BDGOA 0.760775 0.323019 1.48110 0.036377 53.718660 9.860218 × 10−4

GOA 0.770029 0.258316 1.458500 0.048315 62.477562 2.0623 × 10−2

LGOA 0.760891 0.338992 1.4861 0.0361998 53.2146 1.0944 × 10−3

FPSO 0.7607 0.3230 1.4811 0.03637 53.7185 9.8602 × 10−4

WHHO 0.76077551 0.3230231 1.48110808 0.03637710 53.71867407 9.8602 × 10−4

SWOA 0.76077551 0.32302318 1.48110897 0.03637706 53.71886754 9.8602 × 10−4

RGWO 0.76077553 0.323020823 1.48118359 0.03637709 53.7185261 9.8602 × 10−4

ILCOA 0.760775 0.323021 1.481108 0.036377 53.718679 9.86021 × 10−4

EHHO [30] 0.760775 0.323 1.481238 0.036375 53.74282 9.8602 × 10−4

WOA 0.76075413 0.3243611 1.4815199 0.03636524 54.10454052 9.8615 × 10−4

LCOA [25] 0.760752 0.323278 1.481187 0.036374 53.902365 9.86094 × 10−4

PSO 0.7607 0.400 1.5033 0.0354 59.012 1.38 × 10−3

GA 0.7619 0.8087 1.5751 0.0299 42.3729 1.8704 × 10−2
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3324 JABARI ET AL.

FIGURE 8 RMSE evolution of the algorithms for the SDM.

TABLE 6 Detailed results for DDM of RTC France.

Algorithms Iph (A) Isd1 (𝛍A) Isd2 (𝛍A) n1 n2 Rs (𝛀) Rsh (𝛀) RMSE

BDGOA 0.76078 0.22625 0.74722 1.45104 2 0.03673 55.48023 9.82473 × 10−4

GOA [7] 0.76077 0.21 0.21 1.45651 1.551 0.033662 55.2016 5.8864 × 10−2

LGOA [7] 0.76077 0.21 0.21 1.4497 1.6745 0.03666 55.2016 9.9691 × 10−4

FPSO 0.76078 0.22731 0.72786 1.45160 1.99969 0.036737 55.3923 9.8253 × 10−4

WHHO 0.76078 0.22857 0.72718 1.45189 2 0.03672 55.42643 9.82487 × 10−4

SWOA 0.76078 0.70757 0.23082 2 1.452711 0.036719 55.371095 9.8249 × 10−4

RGWO 0.76078 0.22718 0.74714 1.45144 0.760781 0.03672 55.54442 9.82511 × 10−4

ILCOA 0.76078 0.22601 0.74921 1.45101 2.00000 0.036739 55.5320 9.8257 × 10−4

EHHO 0.76076 0.58618 0.24096 1.968451 1.4569104 0.0365988 55.6394395 9.83606 × 10−4

WOA 0.76077 0.26185 0.22162 1.4645250 1.82539530 0.0365306 54.3404740 9.8464 × 10−4

LCOA 0.76077 0.26612 0.38023 1.46205 1.9938 0.3667 54.6314 9.8423 × 10−4

PSO 0.7623 0.4767 0.0102 1.5172 2 0.0325 43.1034 1.6600 × 10−3

GA 0.7608 0.0001 0.0001 1.3355 1.481 0.0364 53.7185 3.6040 × 10−1

TABLE 7 Detailed results for TDM of RTC France.

Algorithms Iph (A) Isd1 (𝛍A) Isd2 (𝝁A) Isd3 (𝛍A) n1 n2 n3 Rs (𝛀) Rsh (𝛀) RMSE

BDGOA 0.76078 0.44311 0.23891 0.8 2 1.45387 2.40708 0.03672 55.65355 9.807313 × 10−4

GOA 0.76078 0.15071 0.29995 0.14490 1.99999 1.47352 2.83395 0.03645 54.05813 9.84385 × 10−4

LGOA 0.760781 0.22842 0.57977 0.5851 1.45129 2 2.38495 0.03176 55.78076 9.81148 × 10−4

FPSO 0.7607 0.2225 0.7467 0.2353 1.4495 2 2.5851 0.0367 55.7531 9.8203 × 10−4

WHHO 0.76078 0.23910 0.43972 0.8 1.45393 2 2.40415 0.03672 55.64995 9.80751 × 10−4

SWOA 0.76078 0.24204 0.36359 1 1.45602 2 2.40819 0.03672 55.69461 9.8033 × 10−4

RGWO 0.76078 0.49872 0.23049 0.67753 1.99999 1.45090 2.32581 0.03675 55.78999 9.81064 × 10−4

ILCOA 0.7607 0.2231 0.7390 0.2226 1.4497 2 2.5771 0.0367 55.6554 9.8204 × 10−4

EHHO 0.76078 0.22854 0.57999 0.5861 1.45029 2 2.39655 0.03676 55.77064 9.81232 × 10−4

WOA 0.76077 0.2353 0.2213 0.4573 1.4543 1.4978 2 0.03668 55.4448 9.8249 × 10−4

LCOA 0.76078 0.22844 0.57979 0.5858 1.44929 2 2.39450 0.03471 55.78074 9.81754 × 10−4

PSO 0.7607 0.2259 0.7491 0.0023 1.4509 2 2.3156 0.0367 55.47571 9.8247 × 10−4

GA 0.7605 0.3251 0.3608 0 1.4843 1.9975 2.2099 0.0357 58.6086 1.0531 × 10−3
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JABARI ET AL. 3325

FIGURE 9 RMSE evolution of the algorithms for the DDM.

FIGURE 10 RMSE evolution of the algorithms for the TDM.

convergence speed. After assessing the convergence speed of
the algorithms, their resistance and stability are evaluated. In
this assessment, each algorithm was executed 30 times, and the
outcomes are provided in Table 8. Table 8 indicates that the
BDGOA algorithm exhibits highly favourable resistance, as it
attains the lowest value within 30 iterations in the single diode
and two-diode models. Notably, the three-diode model also
demonstrates acceptable stability.

4.2 Parameters identification of
photowatt-PWP201 PV module

The PWP201 is a commercial photovoltaic module that con-
sists of 36 polycrystal cells. The measured current and voltage
of the PWP201 module are displayed in the second and third
columns of Table 9, while the remaining columns represent the
current detected by the proposed algorithm in the single-diode,
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3 two-diode, and three-diode models. It should be noted that the
three-diode model yields a lower relative error value compared
to the single-diode and two-diode models, making it a more
accurate model.

Table 10 presents the values of 5 unknown parameters of the
PWP201 solar module’s single-diode model, obtained through
the BDGOA algorithm and 14 other algorithms. To ensure a
comprehensive and fair comparison, additional methods such
as JAYA [60], simplified teaching–learning-based optimization
algorithm (STLBO) [61], teaching–learning-based artificial bee
colony (TLABC) [62], comprehensive learning particle swarm
optimizer (CLPSO) [63], biogeography-based learning particle
swarm optimization (BLPSO) [64], and DE/BBO [47] are also
utilized. By examining Table 10 and comparing it with Table 5,
it becomes evident that only the WHHO and SWOA methods
achieved the lowest RMSE value as before. Furthermore, the
STLBO and TLABC algorithms successfully attained a lower
optimal value. Another crucial aspect to consider when compar-
ing algorithms is their convergence speed. Figure 11 graphically
depicts the convergence speed of the algorithms over 5000
iterations. From this figure, it becomes apparent that the pro-
posed method not only achieved the lowest RMSE value but
also exhibited a faster convergence rate compared to other
algorithms.

Among the various algorithms, the most efficient one
demonstrates commendable performance when dealing with a
large number of unknown system parameters. Consequently,
the two-diode and three-diode models are implemented to
allow for a more meticulous examination of the algorithms
(Tables 11 and 12). As clearly indicated in Tables 11 and 12,
algorithms that successfully attained the lowest RMSE value
in the single-diode model, such as the BDGOA algorithm,
failed to showcase satisfactory performance as the number
of unknown parameters increased. Figures 12 and 13 illus-
trate the convergence speed of the algorithms in the two-diode
and three-diode models. These figures highlight the superior
convergence speed of the BDGOA algorithm. However, it is
worth noting that the GOA algorithm exhibited better per-
formance in the PWP201 system when compared to RTC
France.

Another important factor is the robustness and stability of
the algorithms. To assess this, each algorithm was executed 30
times, and the results are presented in Table 13. Based on this
table, the BDGOA algorithm demonstrated exceptional per-
formance, particularly in the single-diode model. The SWOA
and WHHO algorithms also displayed considerable stability in
comparison to other algorithms.

4.3 Experimental study

This section provides a discussion on the SM55, KC200GT,
and SW255 solar modules, with their parameters identified
through the BDGOA algorithm. Initially, the unknown param-
eters of these modules are determined under the condition’s
of 1000 W∕m2 irradiance and 25◦C as presented in Table 14.
Subsequently, Equations (11) and (12) are utilized to analyse
the behaviour of the identified model while considering varia-
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JABARI ET AL. 3327

TABLE 9 Relative error for each measurement.

SDM DDM TDM

DATA VL (V) IL (A) Ite (A) Rerr Ite (A) Rerr Ite (A) Rerr

1 0.1248 1.0315 1.029122 0.002310 1.029153 0.002280 1.029001 0.002428

2 1.8093 1.0300 1.027384 0.002545 1.027354 0.002575 1.028312 0.001641

3 3.3511 1.0260 1.025742 0.000251 1.025791 0.000203 1.025961 0.000038

4 4.7622 1.0220 1.024104 −0.002054 1.024156 −0.002105 1.023910 −0.001865

5 6.0538 1.0180 1.022283 −0.004189 1.022276 −0.004182 1.020215 −0.002171

6 7.2364 1.0155 1.0199172 −0.004330 1.0199148 −0.004328 1.019215 −0.003644

7 8.3189 1.0140 1.016350 −0.002312 1.016384 −0.002345 1.016323 −0.002285

8 9.3097 1.0100 1.010491 −0.000486 1.010494 −0.000488 1.010401 −0.000396

9 10.2163 1.0035 1.000678 0.002819 1.000664 0.002834 1.000541 0.002957

10 11.0449 0.9880 0.984653 0.003398 0.984634 0.003418 0.984934 0.003112

11 11.8018 0.9630 0.959697 0.003441 0.959612 0.003530 0.959612 0.003530

12 12.4929 0.9255 0.923048 0.002655 0.923013 0.002694 0.924913 0.000634

13 13.1231 0.8725 0.872588 −0.00010 0.872516 −0.000018 0.872523 −0.000026

14 13.6983 0.8075 0.807310 0.000235 0.807318 0.000225 0.807312 0.000232

15 14.2221 0.7265 0.727957 −0.002002 0.727954 −0.001997 0.727264 −0.001050

16 14.6995 0.6345 0.636466 −0.003089 0.636421 −0.003018 0.636031 −0.002407

17 15.1346 0.5345 0.535696 −0.002232 0.535631 −0.002111 0.535534 −0.001930

18 15.5311 0.4275 0.428816 −0.003069 0.428804 −0.003041 0.428634 −0.002645

19 15.8929 0.3185 0.318668 −0.000529 0.318640 −0.000439 0.318614 −0.000357

20 16.2229 0.2085 0.207857 0.003093 0.207830 0.003223 0.207931 0.002736

21 16.5241 0.1010 0.098354 0.026901 0.098380 0.026631 0.098997 0.020232

22 16.7987 −0.0080 −0.008169 −0.020733 −0.008192 −0.023437 −0.008100 −0.012345

23 17.0499 −0.1110 −0.110968 0.000284 −0.110927 0.000658 −0.110961 0.000351

24 17.2793 −0.2090 −0.209117 −0.000562 −0.209126 −0.000602 −0.209101 −0.000483

25 17.4885 −0.3030 −0.302022 0.003237 −0.302011 0.003274 −0.302831 0.000558

TABLE 10 Detailed results for SDM of PWP201.

Algorithm Iph (A) Isd1 (𝛍A) Rs (𝛀) Rsh (𝛀) n1 RMSE

BDGOA 1.03051 3.48210 1.20127 981.905230 1.34998 2.425074 × 10−3

GOA 1.03392 2.48316 1.23163 634.57970 1.31518 2.64345 × 10−3

FPSO 1.03061 3.45162 1.20206 966.77093 1.34906 2.42525 × 10−3

WHHO 1.03051 3.48210 1.20127 981.90523 1.34998 2.42507 × 10−3

EHHO 1.03058 3.45996 1.20185 971.27602 1.34931 2.42516 × 10−3

SWOA 1.03051 3.48221 1.20127 981.96750 1.34999 2.42507 × 10−3

CWOA 1.03164 3.09598 1.21219 827.54687 1.33768 2.45168 × 10−3

WOA 1.03393 2.49034 1.23192 644.59884 1.31542 2.63576 × 10−3

RGWO 1.03165 3.12486 1.21082 829.35431 1.33865 2.44998 × 10−3

JAYA 1.0307 3.4931 1.2014 1000 1.3514 2.42778 × 10−3

STLBO 1.0305 3.4824 1.2013 982.0387 1.3511 2.42507 × 10−3

TLABC 1.0305 3.4826 1.2013 982.1815 1.3512 2.42507 × 10−3

CLPSO 1.0304 3.6131 1.1978 1000 1.3551 2.42806 × 10−3

BLPSO 1.0305 3.5176 1.2002 992.7901 1.3522 2.42523 × 10−3

DE/BBO 1.0303 3.6172 1.1969 1000 1.3552 2.42825 × 10−3
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3328 JABARI ET AL.

FIGURE 11 RMSE evolution of the algorithms for the SDM.

TABLE 11 Detailed results for DDM of PWP201.

Algorithm Iph (A) Isd1 (𝛍A) Isd2(𝛍A) Rs (𝛀) Rsh (𝛀) n1 n2 RMSE

BDGOA 1.03238 2.49291 1.00005 1.23018 745.71538 1.30530 1.31193 2.04453 × 10−3

GOA 1.03058 5.0000 2.91745 1.20717 1000 2 1.03058 2.48115 × 10−3

FPSO 1.03060 2.4101 2.82452 1.20776 1000 1.94700 1.33105 2.48750 × 10−3

WHHO 1.032381 2.51291 1.00005 1.23928 744.71538 1.31730 1.31693 2.04653 × 10−3

EHHO 1.032341 2.67581 1.52821 1.23313 715.45241 1.54974 1.28392 2.2137 × 10−3

SWOA 1.031434 2.63811 1.0001 1.23563 821.6525 1.32099 2.77788 2.0530 × 10−3

CWOA 1.0332 2.6759 1.52820 1.23312 715.4537 1.5499 1.2844 2.2137 × 10−3

WOA 1.0323 2.5129 1.0000 1.2392 744.7153 1.3173 1.3173 2.0465 × 10−3

RGWO 1.03058 2.5126 2.91745 1.20717 1000 2 1.33376 2.48115 × 10−3

JAYA 1.0326 2.6896 4.1973 1.2240 748.3831 1.3234 2.3680 2.2178 × 10−3

STLBO 1.0328 2.5708 1.6899 1.2137 712.2977 1.3218 1.7314 2.2785 × 10−3

TLABC 1.0331 2.6762 1.5280 1.2334 715.4478 1.5499 1.2832 2.2138 × 10−3

CLPSO 1.0291 0.0010 9.3813 0.0314 75.6531 1.0000 1.5755 3.3925 × 10−3

BLPSO 1.0265 9.2998 2.2586 × 10−2 0.0301 1000 1.5225 1.4164 3.7559 × 10−3

DE/BBO 1.0318 0.32774 2.4306 × 10−6 1.2061 845.2495 1.3443 1.3443 2.400 × 10−3

tions in temperature and irradiance. This investigation involves
experimentation with different temperatures and irradiances.

Figures 14, 15, and 16 correspond to the SM55, KC200GT,
and SW255 modules, respectively. These figures demonstrate
that the behaviour of the experimental and identified models
closely resemble each other, with a negligible level of error
that is inconsequential in engineering. Thus, the accuracy
of the parameters derived from the BDGOA algorithm is
convincingly established. These figures also illustrate that as the
level of irradiance decreases, the current produced by the solar

module diminishes, consequently resulting in a decline in output
power.

Figures 17 and 18 showcase the impact of temperature on
the SM55 and KC200GT modules, respectively. These figures
further substantiate the precision and accuracy of the parame-
ters identified by the BDGOA algorithm, as the behaviour of
the identified model closely aligns with that of the experimen-
tal model. Notably, these figures elucidate that an increase in
the temperature of the solar cells leads to an increase in ohmic
resistance, subsequently causing a decline in current.
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JABARI ET AL. 3329

TABLE 12 Detailed results for TDM of PWP201.

Algorithm Iph (A) Isd1 (𝛍A) Isd2 (𝛍A) Isd3 (𝛍A) Rs (𝛀) Rsh (𝛀) n1 n2 n3 RMSE

BDGOA 1.02011 3.48214 1.01001 1.03000 1.15021 975.86961 1.39763 1.86704 2 2.0099 × 10−3

GOA 1.04322 6.64271 9.68379 1.00000 × 10−6 1 511.90787 1.94553 1.47606 1.99998 7.83812 × 10−3

FPSO 1.03039 1.00000 × 10−3 3.51253 1.00000 × 10−6 1.20053 1000 2 1.35090 1.95841 2.42530 × 10−3

WHHO 1.030514 3.48214 × 10−6 1.000010 × 10−6 1.000000 × 10−6 1.200216 981.86961 1.39763 1.86704 2 2.0166 × 10−3

EHHO 1.030571 3.439412 5.361479 × 10−5 5.36524 × 10−3 1.210242 991.362145 1.40361 1.40371 1.59847 2.4249 × 10−3

SWOA 1.0305 3.4822 × 10−6 1.0000 × 10−6 1.0000 × 10−6 1.2012 981.9781 1.4029 1.8671 2 2.0166 × 10−3

CWOA 1.0305 3.4788 7.2209 × 10−5 7.9930 × 10−2 1.2005 992.7808 1.4032 1.9996 1.6487 2.4250 × 10−3

WOA 1.0270 3.9028 2.0334 × 10−4 6.0996 × 10−2 1.1910 966.4183 1.4157 1.9992 1.6278 2.5814 × 10−3

RGWO 1.030514 1 1.47299 1.00936 1.20126 982.02536 1.34999 1.34999 1.34999 2.42507 × 10−3

JAYA 1.0263 2.4380 8.4019 2.4413 × 10−1 1.1911 710.7260 1.3885 1.8790 1.3544 2.7525 × 10−3

STLBO 1.0327 0 5.3435 2.4748 1.1448 1000 1.8457 1.4547 1.9590 3.4186 × 10−3

TLABC 1.0264 9.1106 2.0912 × 10−2 6.3249 × 10−2 1.0869 602.9147 1.5220 1.3011 1.5370 3.7258 × 10−3

CLPSO 1.0419 3.43995 6.6266 × 10−7 35.1499 1 755.0178 1.9938 1.2982 1.9987 9.9858 × 10−3

BLPSO 1.0344 4.7853 1.16444 2.6812 × 10−3 1 1000 2 1.5566 2 6.3626 × 10−3

DE/BBO 1.0307 0 3.2036 3.1737 1.1952 996.3251 1.7749 1.3965 1.9564 2.4916 × 10−3

FIGURE 12 RMSE evolution of the algorithms for the DDM.

4.4 The effects of the temperature and
irradiance on the module parameters

In this section, an investigation is undertaken to analyse the
impact of temperature and irradiance on the parameters of the
mathematical model of the solar cell. The preceding section
has already established the direct relationship between irradi-
ance and the current generated by the solar cell, as well as the
inverse relationship between temperature and current. This cor-
relation is once again reaffirmed by the findings presented in

Tables 15 and 16. Table 15 clearly illustrates that while the tem-
perature remains constant at 25◦C, an increase in irradiance
results in a corresponding increase in the current source (Iph),
while the shunt resistance (Rsh), series resistance (Rs), and the
diode ideality factor (n1) remain relatively stable. It is impor-
tant to note that the reverse saturation current (Isd1) of the
diode exhibits a direct relationship with temperature, leading
to an augmented absorption of photons as temperature rises.
Consequently, the value of Isd1 also increases, as indicated in
Table 16.
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3330 JABARI ET AL.

FIGURE 13 RMSE evolution of the algorithms for the TDM.

FIGURE 14 Evaluation of the characteristics of SM55 module for the parameters estimated by the proposed algorithm in comparison with those provided by
the manufacturer under irradiance changes at constant T = 25 ◦C.

FIGURE 15 Evaluation of the characteristics of KC200GT module for the parameters estimated by the proposed algorithm in comparison with those
provided by the manufacturer under irradiance changes at constant T = 25 ◦C.
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JABARI ET AL. 3331

FIGURE 16 Evaluation of the characteristics of SW255 module for the parameters estimated by the proposed algorithm in comparison with those provided by
the manufacturer under irradiance changes at constant T = 25 ◦C.

FIGURE 17 Evaluation of the characteristics of SM55 module for the parameters estimated by the proposed algorithm in comparison with those provided by
the manufacturer under temperature changes at constant irradiance G = 1000 w∕m2.

FIGURE 18 Evaluation of the characteristics of KC200GT module for the parameters estimated by the proposed algorithm in comparison with those
provided by the manufacturer under temperature changes at constant irradiance G = 1000 w∕m2.
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Furthermore, it should be emphasized that series resistance
value (Rs) consistently falls below 0.4, which confirms that the
series resistance value for monocrystalline modules is always
less than 0.4. Moreover, this serves as evidence that the ideal
coefficient of the diode, represented by n1, varies across dif-
ferent modules. For instance, the KC200GT module, being of
the emission type, demonstrates an ideal coefficient of n that is
nearly equal to 1.

4.5 The impact of BDGOA parameters in
finding global minima

The BDGOA method, an enhancement of the classic GOA
method, features parameters categorized into two groups: GOA
parameters and those specific to the elimination and search
space control phases. While the impact of GOA parameters is
detailed in the reference article [], this section focuses exclusively
on the parameters unique to the proposed BDGOA method. As
elaborated in Section 3, the BDGOA method introduces four
additional parameters (ep, et , Th, w) beyond those in the GOA
method.

4.5.1 The impact of ep and et parameters on the
performance of the proposed method

In the BDGOA method, the parameters ep and et are utilized
during the elimination phase. The ep parameter allows for the
selection and removal of a percentage of locusts, which are then
replaced by new locusts distributed randomly in new areas. The
et parameter determines the frequency of entering the elimina-
tion phase during the execution of the BDGOA algorithm. It is
important to note that both the number of repetitions and the
total number of locusts remain constant.

In the first test, we initially increase the value of ep from 5
to 15 and subsequently to 30. As illustrated in Figure 19, the
convergence speed increases with the rise in ep up to itera-
tion 100. This is because, in each repetition of et , new locusts
are generated and must explore new areas. However, beyond
100 iterations, it is observed that at (ep = 30), the algorithm’s
speed decreases, and the convergence process slows down. This
indicates that setting the BDGOA algorithm parameter to an
optimal value not only enhances convergence speed but also
ensures high resistance and stability.

In the second test, we aim to demonstrate the effect of the
(et) parameter. To this end, we increase its value from 2 to 10
and subsequently to 20. As illustrated in Figure 20, the conver-
gence speed increases with the rise in (et). When (et) is set to 2,
the BDGOA algorithm enters the elimination loop 2500 times.
This increases the time required for the BDGOA algorithm to
reach the local minimum value, thereby enhancing its resistance.
Consequently, its speed is lower compared to when (et) is set to
20, where the proposed algorithm enters the elimination loop
250 times.
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TABLE 14 Parameters of the three PV modules identified by the BDGOA method at STC.

Parameters SM55 KC200GT SW255

Iph (A) 3.470862355052374 8.218606016677501 1.746816958876764

Isd1 (μA) 2.377347964254658 × 10−4 0.001436006218871 0.033178077675460

Rs (Ω) 0.517851206414101 0.240939897541895 0.388661039315355

Rsh (Ω) 3.437859816584798 × 102 1.302813825145347 × 102 1000

n1 1 1.055285597003159 1.274607310967329

RMSE 0.021139045580187 0.028213640103146 0.009995405934055

TABLE 15 Optimal estimated parameters by BDGOA for three types of PV modules at different irradiance (G) and constant temperature of T = 25 ◦C.

Parameters SM55 KC200GT SW255

G = 200

Iph (A) 0.686487860691327 1.608849831906320 1.746816956890225

Isd1 (μA) 0.021776669813637 4.852657050051957 × 10−4 0.033177979993694

Rs (Ω) 0.309322025760319 1.106179645946718 0.388661359866792

Rsh (Ω) 3.495675285194748 × 102 9.131700850440784 × 102 1000

n1 1.0237567291785018 1.006454970099246 1.274607100447143

RMSE 0.002025079253808 0.007764938321150 0.009995405934055

G = 400

Iph (A) 1.384033025830558 3.255412634852096 3.476994320252256

Isd1 (μA) 3.051743640265893 × 10−4 0.007753541433883 0.020786558856430

Rs (Ω) 0.712761861228674 0.435509390397835 0.256109285950023

Rsh (Ω) 3.393632090216943 × 102 1.374660175622723 × 102 1000

n1 1 1.1041831819295220 1.245141664726922

RMSE 0.006253256699189 0.013226377079533 0.012747582066599

G = 600

Iph (A) 2.079263990458108 4.890653933053618 5.208789869584503

Isd1 (μA) 2.717710751312673 × 10−4 0.064768884306755 0.009040276793170

Rs (Ω) 0.335775424901300 0.270615139088943 0.201092803443840

Rsh (Ω) 3.475813467257393 × 102 4.015119133755529 × 102 1000

n1 1 1.1079060573832047 1.191102524780014

RMSE 0.009558001210683 0.040284398923021 0.017904967465303

G = 800

Iph (A) 2.777408861767876 6.558134730355183 6.937368054277113

Isd1 (μA) 4.498116763197091 × 10−4 4.236775162053583 × 10−4 0.012433492224247

Rs (Ω) 0.331638687515754 0.327253547120007 0.149356393058151

Rsh (Ω) 3.360266607657530 × 102 1.480320416373675 × 102 1000

n1 1.024161273927083 1 1.206986081180923

RMSE 0.011353604434747 0.027582435865512 0.025115175835126

G = 1000

Iph (A) 3.470862355052374 8.218606016677501 8.672901235

Isd1 (μA) 2.377347964254658 × 10−4 0.001436006218871 0.0164600397

Rs (Ω) 0.417851206414101 0.240939897541895 0.1221941067

Rsh (Ω) 3.437859816584798 × 102 1.302813825145347 × 102 925.14731112

n1 1 1.055285597003159 1.214607310967329

RMSE 0.021139045580187 0.028213640103146 0.009995405934055
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FIGURE 19 The impact of ep parameter on the performance of BDGOA algorithm (L = 5000, et = 50, w = 0.5).

FIGURE 20 The impact of et parameter on the performance of BDGOA algorithm (L = 5000, ep = 15, w = 0.5).

4.5.2 The effect of Th and w parameters on the
performance of the proposed method

The parameters Th and w are utilized to control the search space.
As detailed in Section 3, the Th parameter is reduced to prevent
locusts from leaving the search space, while the w parameter is
used to enlarge the search space. The search in each iteration
occurs at the rate w.

As illustrated in Figure 21, decreasing the value of the w

parameter slows down the convergence speed because the
search space expands at a slower rate until it reaches its
total value. Consequently, locusts need more time to explore
the entire state space. However, it is important to note that
although the convergence speed decreases, the algorithm’s
resistance increases, preventing it from getting stuck in local
minima.
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FIGURE 21 The impact of w parameter on the performance of BDGOA algorithm (L = 5000, ep = 15, et = 50).

4.6 The impact of solar cell parameter
identification in industry and economy

Identifying solar cell parameters has a profound impact on the
industry, economy, and cost savings in operational and main-
tenance costs for solar PV systems. Accurately identifying and
optimizing the efficiency of solar cells allows manufacturers to
produce more effective solar panels, leading to higher energy
output from the same amount of sunlight. This makes solar
technology more competitive with traditional energy sources,
reducing the cost per watt of solar energy and making it
more affordable for consumers and businesses. This can drive
increased adoption of solar technology, fostering growth in the
renewable energy sector and creating jobs. Higher efficiency
panels require fewer installations to achieve the same energy
output, reducing installation and maintenance costs, and result-
ing in less frequent replacements and lower operational costs
over the lifespan of the system.

Understanding the temperature coefficient helps in designing
solar panels that perform better under varying environmental
conditions, ensuring that solar panels maintain their efficiency
even in high-temperature regions. This enhances their relia-
bility and lifespan, making solar investments more attractive
and encouraging more widespread use. Panels with optimized
temperature coefficients require less maintenance and have
longer lifespans, reducing operational costs and contributing
to energy cost savings. Panels with a lower temperature coef-
ficient experience less efficiency loss in high temperatures,
leading to more consistent energy production and lower cool-
ing costs. This reduces the need for additional cooling systems

and maintenance, further lowering operational expenses. These
improvements not only enhance the performance and reliability
of solar panels but also make solar energy a more viable and
cost-effective option, promoting its adoption and supporting
the transition to sustainable energy sources.

5 CONCLUSIONS

Overall, the bio-dynamics grasshopper optimization algorithm
(BDGOA) proposed in this paper demonstrated significant
improvements over the original GOA algorithm, including
higher convergence speed, enhanced global exploration, and
increased robustness. Extensive experiments and compar-
isons with existing methods validated the performance of the
BDGOA algorithm, showing a close match with experimental
data for PV cell and module models. The algorithm effec-
tively estimated parameters for various commercial modules
under varying temperature and irradiance conditions. Notably,
the saturation current of the diode and the photocurrent exhib-
ited slight variations with temperature and irradiance changes,
while other parameters remained consistent across different
operating conditions. These findings underscore the high per-
formance and accuracy of the proposed algorithm, paving the
way for its practical application in PV modelling and optimiza-
tion. Additionally, the impact of BDGOA algorithm parameters
on convergence speed and the ability to escape local minima was
analysed. Finally, the significance of accurately identifying solar
cell parameters in the industry and the resulting cost savings was
highlighted.
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Rs Series resistance
Rsh Shunt resistance
Iph Current source

It Output current
Id Diode current

Ish Shunt resistance current
Isd Diode reverse saturation current
Vt Terminal voltage

n The diode ideality factor
q The magnitude of charge on an electron (1.602 ×

10−19)
k The Boltzmann constant (1.381 × 10−23 (J/K))

T The cell temperature (K)
g Constant of gravity
u Constant drift
êg Unity vector towards earth center
êw Unity vector in the wind direction
N The number of grasshoppers

ubd The upper bound in the d th dimension of s(r )
lbd The lower bound in the d th dimension of s(r )

L The maximum number of iterations
ep Elimination percent
et Elimination iteration
𝜃 Vector of unknown parameters

NP Number of solar cells in parallel
Ns The number of solar cells in series

Iph_STC Light generated current at STC ( TSTC = 25◦C)
G The surface irradiance of the cell

GSTC The irradiance at STC (1000 w∕m2)
Ki The short-circuit current coefficient
Kv Open circuit voltage coefficient

NE The number of measured data
Si The social interaction

Gi The gravity force on the grasshopper
Ai Wind advection
di j The distance between ith and j th grasshopper
d̂i j An unit vector from ith to j th grasshopper

s(r ) The social forces strength
l The attractive length scale
f The attraction intensity

Td Value of the d th dimension in the target
cmax The maximum value of c

cmin The minimum value of c

Th Percentage of the problem domain
w [0,1]
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