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Abstract: The growing industry and its complex and large information sets require Big Data (BD)
technology and its open-source frameworks (Apache Hadoop) to (1) collect, (2) analyze, and (3) pro-
cess the information. This information usually ranges in size from gigabytes to petabytes of data.
However, processing this data involves web consoles and communication channels which are prone
to intrusion from hackers. To resolve this issue, a novel machine learning (ML)-based security-centric
approach has been proposed to evade cyber-attacks on the Hadoop ecosystem while considering
the complexity of Big Data in Cloud (BDC). An Apache Hadoop-based management interface “Am-
bari” was implemented to address the variation and distinguish between attacks and activities. The
analyzed experimental results show that the proposed scheme effectively (1) blocked the interface
communication and retrieved the performance measured data from (2) the Ambari-based virtual
machine (VM) and (3) BDC hypervisor. Moreover, the proposed architecture was able to provide a
reduction in false alarms as well as cyber-attack detection.

Keywords: Ambari; Big Data; Big Data in Cloud; classification; cloud computing; cyber-attack; cyber
security; cyber threats; gaps; Hadoop; internet-of-things; machine learning; trust; virtualization;
virtual machine

1. Introduction
1.1. Big Data (BD)—Features and Prospects

BD defines a data type that has the features of (1) a higher volume, (2) rapid velocity,
and (3) greater diversity and variety. The higher volume contains threads of both structured
and unstructured data in the information technology (IT) domain. However, a bigger chal-
lenge is to analyze the BD which has variable streaming speeds and an exceeded processing
capacity. And this is a continuous challenge due to the ongoing need of time and demand
from the computer users towards a (1) faster and (2) higher velocity-driven integration of
(1) telecommunications, (2) IT, and (3) computers as communication technologies.

1.2. BD—Continuous Demand as Well as Challenges

Due to technology integration, the demand for BD is increasing and becoming
larger [1–5]. This is primarily due to the evolution of industry and smarter versions of
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operating systems. It is deployed in all the communication variants of learning methods [6],
intelligent approaches [7], cyber–physical infrastructures [8–14], new V2G technology
systems, photovoltaic interactions, renewable energy integration, etc. Moreover, all the
information-driven businesses and industries are heavily reliant on BD to have that com-
petitive edge of technology. For example, recently, a prediction was made by Cisco Systems
about internet data traffic to reach to 4.8 zeta-bytes annually [15]. However, the accumu-
lated amount of volume for the generated data as well as its high speed and versatility
in variation has opened several challenges for existing IT security companies. And the
migration from conventional data collection to BD, VMs, and cloud infrastructure has been
a bottleneck towards technology interactions [16]. Even the open-source contributors like
Hadoop are finding it difficult to fill the security gaps of BD, which are eventually prone
and vulnerable to malicious actors, hackers, and cyber criminals [17].

1.3. BD in Cloud (BDC)—Concept, Complex Procedure, Major Gaps, and Scope of This Work

The concept of BDC blends BD with the service Cloud. This new concept has been
floated in the technology market to utilize the highs of (1) cloud computing, (2) its resources,
and (3) services. This concept brings the luxury of BD being able to focus on a higher level
of dynamics and challenges and allows Cloud to take care of the computing infrastructures
and its outreach to all sizes of enterprises [17–27].

The compilation of BD is a complex procedure. The IT revolution has brought several
challenges and thus the research scope is built on those challenges and gaps. With big
opportunities arise big challenges. For a fully operational and potential-driven BD, several
loopholes and gaps are identified by the experts. Figure 1 shows the information flow of
the BD platform. The data with a (1) higher volume, (2) velocity, and (3) verifying level
are fused into the BD platform. With the interface of hardware, open-source libraries, and
distributed storage, the BD promises to make a computational analysis for (1) patterns,
(2) signatures, and (3) flows in the information-based data. However, this computational
solution has left several gaps and loopholes which need to be addressed. These gaps are
(1) challenges for BD, (2) concerns of privacy, (3) risks for BD, and (4) threats to BD. The BD
challenges could be further classified as: (1) access to data, (2) overkill, (3) skill shortages,
(4) costs of cluster, (5) the development gap, and (6) the processing of data during real-time
streaming. The privacy concerns could be further explained as: (1) government monitoring,
(2) the re-identification of identity, (3) regulations of policy, 4) creepy factor, (5) a lack of
transparency, (6) privacy policies, (7) the future utilization of BD, and (8) large datasets with
multiple entities. The BD risks involve (1) a non-reliable commodity hardware, (2) a tender
and insecure computation, (3) validation and filtering procedures for input, (4) no granular
access control, and (5) a security system interface with the orthodox system. The BD threats
propagate (1) the number of open ports, (2) temptation of attackers towards more data,
(3) enhanced volume, velocity, and diversity, (4) undetectable malicious activities, (5) false
positives, (6) security concerns due to large logs, (7) and latency of data.

The gaps and variants of BD require adequate information to address them. However,
it was revealed that the cloud technology providers are hesitant to share data and informa-
tion. This is due to security and privacy reasons [28,29]. To address this concern, this work
included a method which can detect cyber-attacks as a BDC customer despite limited data
information and resources.
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1.4. Literature and Preceding Affined Review on Cyber Attacks in BD and Hadoop Ecosystems

Numerous studies in the literature have proposed discussions on cyber-attacks in BD
and Hadoop ecosystems. This has also been presented in this section as well as canvassed
in Table 1.

Ref. [30] discusses the integration of cyber security into the BD ecosystem. It expresses
models of attacks while utilizing approaches like finite state machine and national institute
standards and technology-based risk management frameworks. It expresses the architecture
of security which involves a variation of low-cost BD processing to an industrial supported
layered security. The processing has also been made operational towards sensitive data in
multi-tenanted environments. The limitation of this work is a complete layered security
solution for secure operations and processing mission critical data. The authors of [31]
discuss cyber forensics and proposed a Hadoop analytical framework for an improved
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accuracy and detection ratio while avoiding polynomial time complexity. A Hadoop-
based distributed file system was introduced. The limitation of the work was to test the
model on a more dynamic test case. The authors of [32] proposed a cloud computing
framework with a data storage and task scheduling module for cyber security management.
The proposed framework also consists of end-user devices and a monitoring center. The
limitation of the work is its implementation towards scalability and diverse applications.
The authors of [33] proposed a blockchain technology-driven solution towards the incident
response process in BD systems. The limitation of this work is its validation of the proposed
solution on different attack scenarios and the optimal parametrization of the algorithm.
The authors of [34] discuss the cybersecurity prospects in smart grids, smart cities, and
possible associated solutions. They also canvass the blockchain and IoT technology and
their involvement in these infrastructures. The work lacks focus on a particular solution
which can address the cyber security related in BD systems. The work in [35] proposes
a novel framework which utilizes the attack probability score to detect cyber-attacks in
BD systems. The probability score utilizes data-flow sacks for a better execution time.
The limitation of the work is an architecture comprising of this score system since the
proposed scheme is built on a virtual software-based cluster. The authors of [36] discuss
the vulnerabilities which are encountered in the Apache Hadoop framework. They also
address the challenges of an open-source framework. The limitation of this work is the
lack of a probable solution towards these vulnerabilities to improve the immunity of the
Apache Hadoop framework.

Table 1. Preceding affined works: contribution and limitations. Here BD is the acronym of big data.

Ref. Contribution Limitation

[30] Proposed finite state machine and technology-based risk
assessment frameworks. Lacks a complete layered security solution.

[31] Presented a Hadoop analytic framework for improved
accuracy and detection ratio.

Requires a versatile test case and real-world
potential challenges.

[32] Suggested a cloud computing framework with data storage
and task scheduling module. Lacks scalability and diverse test case applications.

[33] Proposed an incident response process based on block
technology.

Lacks attack scenarios and optimal
parameterization.

[34] Discussed cyber security prospects in smart grids, smart
cities, and associated solutions.

Deficits a particular solution towards cyber
security in BD systems.

[35] Proposed a framework which utilizes attack probability
score to detect cyber-attacks in BD systems.

Lacks architecture which comprises of virtual
software-based cluster.

[36] Discussed vulnerabilities in Apache Hadoop framework. Lacks a solution to enhance the immunity of
Hadoop framework.

1.5. BDC—Purpose, Focus, and Main Contribution of This Article

The ideology of BDC is generated to accumulate and analyze the Cloud data. This
involves (1) the major components of BD technology which are ideally utilized to store
and analyze data-driven information in the Cloud, and (2) on-demand resource sharing
technologies of Cloud computing [29,37–42]. The statistical analytics software (SAS, 9.4M7)
extends the proportions of BDC towards versatility and convolution [19]. However, this
blend has generated some security gaps which were inherited from the fusion. And this
was further enhanced by the BD technologies. The focus of this work is to address those
security gaps and propose a route of detecting cyber-attacks in the Hadoop-driven BDC.

The main contribution of this paper is as follows:

• A comprehensive review of BDC while understanding its definition, framework, main
aspects, and research routes.

• Security challenge-driven investigative survey.
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• Protecting BDC using a layered approach while identifying the cyber-attack types
using ML techniques. These techniques also involve statistical leaning as well as
rule-based learning theory.

• Implement adequate measures towards security with Hadoop and BD technologies
while informing researchers, data scientists, and service providers on valuable data
protection.

The graphical concept of BDC can be seen in Figure 2 where BD technologies and
Cloud computing are merging to give BDC. Cloud computing provides the services of (1)
resources shared using virtualization technologies, (2) being flexible, (3) on-demand and
instant service, and (4) billing as utility. The BD Technologies provide services of (1) an
extra-large dataset that is unable to be analyzed via traditional and conventional computing
techniques, (2) big challenges and big opportunities for data handling, (3) an increased
data processing velocity towards organizations, and (4) an interaction with open service
providers like Hadoop, MapReduce, GridGrain, Storm, etc. The BDC focused on the 3Vs of
volume, velocity, and variety along with performance and scalability. However, there was
no security perspective considered which brought (1) inherited security issues, (2) Cloud
computing architecture-based security issues, and (3) security issues by BD technologies.
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1.6. Formation of the Remaining Paper

The formation of the remaining portion of the paper is as follows: The BD and its
ingredients and components are described in Section 2. The experimental design and
performance data collection are illustrated in Section 3. The experimental results and
performance comparison are discussed in Section 4. Finally, some conclusions and future
work discussion are drawn in Section 5.

2. BDC—Main Ingredients and Components

This section comprises of (1) ingredients and the basis, (2) BDC security and research
gaps, (3) vulnerabilities and impacts of the Hadoop ecosystem, and (4) steps towards
BD security.
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2.1. Ingredients and Basis

The main ingredients of the BDC are required to be understood to address the security
issues produced from the features and unique architecture of the existing systems. The
basis is usually defined in a cloud layer and BD technologies, as can be seen in Figure 3.
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2.2. BDC Security and Research Gaps

The literature finds many examples of work addressing BD and security issues of
computing. However, there was no work addressing the blend of BDC security. Since
researchers were exploring ways of solving security challenges using BD technologies, this
was a unique route which was undiscovered and could bring directions of solutions if gaps
were highlighted along with experiments [43,44].

2.3. Hadoop Ecosystem—Vulnerabilities and Impacts

The BDC is heavily reliant on BD technologies like Hadoop ecosystems. A possible
situation of disabled components of Hadoop ecosystems could make the BDC more vul-
nerable to intrusion. An experimental setup was run in a research center to address this
vulnerability with BDC. A set of denial-of-service (DoS) attacks to shut down or disrupt
the network were run on Ambari, which is a Hadoop management interface [45]. This was
eventually disabled and paralyzed with perfection. This resulted in halting all the commu-
nication interfaces between the management interface Ambari and the rest of the network
of Hadoop. The test case was developed to evaluate the proposed security solutions and
their operational feasibility towards BDC [28,29,37,38,40–42]. The test was successfully
executed, and cyber-attack detection was made. The execution was then verified by the
performance data generated by a virtual machine manager (VMM).

2.4. Hadoop Ecosystem and Its Steps towards BD Security

This section involves steps towards BD security which includes (1) an open-source
computer library, (2) Hadoop cluster for fault tolerance, (3) Hadoop Yahoo developers’
network, and BD technology aspects of security.

2.4.1. An Open-Source Computer Library

Hadoop is an open-source computer library focusing on the short falls and discrepan-
cies of BD while enhancing reliable and scalable computing [17]. This also supports the
applications being operated through BD. The operation of Hadoop is licensed by Apache.



Information 2024, 15, 558 7 of 21

2.4.2. Hadoop Cluster–Fault Tolerance

The open-source computer library Hadoop achieves reliability by processing the in-
formation across all the networks and multiple hosts. It thereby replicates this processed
information and generates back-ups. This routine provides immunity and tolerance to-
wards faults. And hence, it does not require any external hands like RAID technology.

2.4.3. Hadoop–Yahoo Developers Network

The multiple node-based clustered network is also operational at its full scale with the
“Yahoo Developers Network”. A Hadoop cluster is functional in Yahoo with 4500 nodes,
40,000 servers, and more than 1,000,000 CPUs [17,24]. This also involves: (1) ad systems,
(2) a web search, and (3) scaling tests. Here, the scaling test is particularly endorsed to
large-scale testing for Apache Hadoop. Figure 4 shows a comprehensive infrastructure
of the Hadoop Ecosystem. It elaborates the sub features of (1) the open-source network,
(2) operational services, (3) core services, (4) architecture, (5) processing part, (6) data
services, (7) platform services, (8) storage part, (9) gaps, (10) challenges, and (11) security
and privacy aspects.
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2.4.4. BD Technologies—Aspects of Security

BD technologies were providing solutions towards data scalability, its integration,
and computing performance. The security aspect and its possible breach were taken care
of by the traditional techniques and tools. This opened a channel of vulnerabilities for
malicious actors and hackers to access these knowledge-based data, which could be very
worthy and vital for shaping future strategies. This could also open windows for arrays of
(1) manipulations, (2) service denials, (3) disclosures, (4) alterations, etc., and the IoT could
be converted into a weapon of cyber war.

3. Experimental Design and Performance Data Collection

A test case for an infected interface was prepared to represent Hadoop web manage-
ment. The test case represented the Ambari web with BDC of the Hadoop ecosystem [40].
A cloud-based resident Hadoop Ecosystem was created in the BDC. This section consists of



Information 2024, 15, 558 8 of 21

discussions on (1) the computing processor, (2) operating system of designed attacks, (3)
data collection definition and components in the role, (4) Hadoop VM-based cyber-attacks
and activities, and (5) algorithm description and pseudo code.

3.1. Computing Processor

A computing processor with the following specs has been chosen to develop the
test case, a dual-core Intel Pentium processor G3220, 8 GB of RAM, Intel® Virtualization
Technology (VT-x). Five virtual machines (VM) were chosen for the experiment, as shown
in Figure 5. Out of five VMs, four machines are the attackers/hackers, and one machine
was the infected/victim.
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3.2. Operating Systems of the Designed Attacks

The designed attacks were simulated on operating systems driven on VM platform [46–50]
as follows: (1) occurrence of two attacker VMs using Windows-based operating system
(Windows Server 2008 [51], Windows 7 [52]) (a windows-based operating system), (2) two
attacker VMs were driven by Linux operating systems (RHEL7 [53], CentOS [54]), (3) the
VM for the infected/victim was based on Hypervisor (Type 1, VMware ESXi 5.5 [49,50],
64-bit) and Guest OS. Note, all VMs were built on the HDP VM platform [46–48].

3.3. Performance Data Collection—Definition and Components in the Role

A performance data collection is defined as the process in which the data related to
the performance measurement is gathered from the network devices and is further stored
in the database. In the setup of this test case, if the definition of the performance data
collection is applied, it shows the Hadoop-driven VM-collected performance data related to
the performance measurement of (1) the CPU, (2) disk, (3) memory space, and (4) network
utilization. This performance data was stored in VMM and HDP.

3.4. Hadoop VM-Based Cyber Attacks and Activities

A decent choice for the attack classification method was made using cloud computing
architecture and its implementation in test cases [33–35]. The classification method aims
here to see the impact of cyber-attacks on (1) the CPU, (2) network, (3) memory, (4) data
storage, and (5) physical disk usage. Five variants of cyber-attacks were considered on
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the Hadoop VM. A comprehensive explanation on attack methods’ details and real-time
execution can be explored in the cloud computing book [34]. The aim here is to analyze
the performance of the following parameters towards the cyber-attacks: (1) the CPU,
(2) network, (3) database, (4) memory, and (5) physical disk usage. Five different types
of cyber-attacks and activities on Hadoop VM ports were considered to make the users
aware of infected VMs. It was also ensured that HDP is performing its normal and active
operation. These attacks are (1) ordinary operations and activities of Hadoop, (2) an Ambari
port-based XPOIC attack [55], (3) Ambari port-based LOIC attack [56], (4) Ambari port
8080-based RTDoS attack [57], and (5) Hadoop port 80-based LOIC attack. Figure 6 shows
the Ambari-based web interface in the pre-attack mode.
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An attack was simulated in 8080 ports. This simulation was successful since all
the communication between Ambari and the remaining Hadoop network was truncated.
Figure 7 shows the Ambari-based web interface during the phase of an attack.

At the receiving end, HDP VM received IP 192.168.186.129 from the internal network
DHCP server. This required an adaptive IP address which could generate the same ID
throughout the process. Therefore, a Hartonworks Sandbox with HDP was provided
with the same resources. Figure 8 shows the attack being performed on the VM with IP
192.168.186.129, port 8080, and generated attack with Java LOIC [58,59]. Note that during
this attack simulation, only the VM of HDP was kept activated.
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Figure 9 shows the data store-driven performance graph of Hortonworks sandbox
VM. This performance graph reflects the occurrence of the Java LOIC attack. It can be
observed that there are yellow spikes which define a sudden increase in the reading latency.
Similarly, it can be observed that there are purple spikes which define a sudden increase
in the writing latency. These latencies were observed during the 8:49:00 p.m.–9:02:00 p.m.
time frame.
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Figure 10 shows the Hadoop VM attack. This attack is made on default HTTP port 80.
The attack was made using the RTDoS tool by Rixer [60–62]. Similarly, Figure 11 shows the
graph of the CPU performance of the Hadoop VM. This performance was recorded during
an attack using RTDoS by Rixer. It was observed that there is irregular CPU usage.
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This irregularity was observed during the time frames of 10.56 p.m. to 11.08 p.m. The
trends show the adequacy of the experiments in the CPU performance chart.
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3.5. Algorithm Description—Classification of Real-Time Cyber Attacks and PART Algorithm
Pseudo Code

A supervised learning-based algorithm was considered here to classify between real-
time cyber-attacks and the other activities of the same course and signature. The function
of training the input data with artificial intelligence (AI) was captured to map new trends
and new attack examples while identifying the anomalies and variations of unseen data.

In this pursuit, several mainstream techniques have been considered towards tackling
the real-time cyber-attacks These state-of-the-art techniques are: (1) Decision tree C4.5 [63],
(2) Naïve Bayes [64], and SVM [65]. All these algorithms are described well in [66]. Out of
all these algorithms, the projective adaptive resonance theory (PART)-based algorithm was
considered [67]. This is due to its predictive range of cognitive and neural theories.

The PART algorithm involves initialization and simulation steps. The algorithm
is structured as follows. Here m is defined as the number of nodes. These nodes are
defined in the F1 layer as the number of dimensions of the input data. F2 is defined as the
noncommitted node. vi is the committed F2 node. vj is the committed F2 node. σ is the
distance vigilant parameter. L, α, and θ are the internal parameters. ρo, ρh, and σ are the
external input parameters. Tj is the bottom-up filter input. S is the dataset. hij is defined as
the selective output signaling mechanism. rj is the matching degree. Cj is the data cluster.
Dj is the associated dimension set and O is the outlier.

The initialization and simulation steps are represented as follows. In the first step,
the external inputs ρ and ρo are equated. In the second step, the committed F2 node is
set as being non-committed. In the third step, the selective output signaling mechanism
hij is computed for the F1 and F2 nodes. In the fourth step, the bottom-up filter input Ti
for the committed vi nodes is computed. In the fifth step, the matching degree rj towards
the winning node vj is computed. All the steps are repeated to (1) satisfy the stopping
condition, (2) form stable clusters, (3) compute the associated dimension, and (4) eliminate
the outliers.

The pseudo code on the same has been expressed in Algorithm 1 as follows.
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Algorithm 1. Pseudocode for PART algorithm.

Algorithm: Projective Adaptive Resonance Theory
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4. Experimental Results and Performance Comparison

This section talks about the experimentally driven results and performance compar-
ison. It addresses the algorithm performance with the attack classification. It comprises
(1) the performance for the attack classification, (2) confusion matrix-based performance
analysis, (3) enhancing the performance analysis, and (4) a performance comparison with
related works.
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4.1. Performance for Attack Classification

Table 2 shows that a set of six algorithms have been tested. And for these algorithms,
the classification accuracy has been evaluated. It can be observed that the Naïve Bayes
algorithm was far behind in its accuracy percentage with 58.29% accuracy. The SMO has
shown some better results with 86.87% classification accuracy. The J48, REPTree, Decision
Tree, and PART algorithms were standout with accuracies of 90% and above. Among these
algorithms, the PART algorithm was the most prominent one with the highest accuracy
percentage and is the first choice for the Hadoop ecosystem.

Table 2. Attack Classification—performance comparison of algorithms. Here, SMO, J48, and REPTree
are the acronyms of sequential minimal optimization, weak classifiers trees J48, and reduced error
pruning tree, respectively.

Algorithm Names SMO J48 REPTree Naïve
Bayes

Decision
Tree PART

Attack Classification
Accuracy 86.87% 90.78% 90.78% 58.29% 90.32% 91.99%

Note that the classification accuracy was captured as an average performance towards
the problem.

4.2. Confusion Matrix-Based Performance Analysis

Since the classification accuracy showed an averaged form of accuracy, the confusion
matrix was considered to study the performance measures of the techniques deployed in
the form of (1) actual and (2) predicted classification tasks [64].

Details can be seen in Table 3 of the same, where the parameters like (1) normal
activities, (2) a Ransom Denial-of-Service (RDoS) attack (Ambari-based port 8080), (3) low
orbit ion cannon (LOIC) attack (Ambari-based port 8080), (4) x-orbit ion cannon (XOIC)
attack (Ambari-based port 8080), (5) Java LOIC attack (Ambari-based port 8080), and
(6) LOIC attack (Hadoop-based port 80) were discussed. The parameters were compared
with the cross-validation technique which proposed to classify the original samples into a
testing and training set to evaluate the system. The classification is usually equal to the size
of 10 subsamples.

Table 3. Performance analysis—comparison of normal activities, RTDoS attack on Ambari port 8080,
LOIC attack on Ambari port 8080, XPOIC attack on Ambari port 8080, Java LOIC attack on Ambari
port 8080, and LOIC attack on Hadoop’s port 80. Here, RDoS, LIOC, and XOIC are the acronyms of
ransom denial-of-service, low-orbit ion cannon, and x-orbit ion cannon, respectively.

Attack on
Activities

Normal
Activities

RDoS
Attack

LOIC
Attack

XOIC
Attack

JavaLOIC
Attack

LOIC
Attack

Attack
Classification
Performance

Normal Activities 613 13 3 4 9 10

91.9926%

RDoS Attack 22 21 0 0 0 0

LOIC Attack 7 0 39 0 0 1

XOIC Attack 1 0 0 23 0 0

JavaLOIC Attack 2 0 0 0 147 1

LOIC Attack 7 0 0 0 0 145

Table 3 analyzes the performance analysis as follows. The first row shows the attack
considered for Normal Activities. It shows here that out of 652 instances, there are (1) 613 ac-
curately classified instances, (2) 13 instances mistakenly classified as RTDoS, (3) 3 instances
mistakenly classified as LOIC, (4) 4 instances mistakenly classified as XPOIC, (5) 9 instances
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mistakenly classified as Java LOIC, and (6) 10 instances mistakenly classified as LOIC for
port 80. Similarly, the second row shows the attack considered for the RTDoS Attack on
Ambari port 8080. It shows here that out of 43 instances, there are (1) 22 instances classified
mistakenly as Normal Activities, (2) 21 accurately classifieds instances of an RTDoS attack
on Ambari-based port 8080, and (3) zero classified instances for the remaining activities.
The third row shows the attack considered for the LOIC Attack on Ambari port 8080. It
shows here that out of 47 instances, there are (1) 7 instances mistakenly classified as Normal
Activities, (2) 1 instant mistakenly classified as an LOIC attack on Hadoop port 80, and
(3) 39 accurately classifieds instances of an LOIC attack on Ambari-based port 8080. The
fourth row shows the attack considered for the XPOIC attack on Ambari port 8080. It
shows here that out of 24 instances, there are (1) 1 accurately classified instance of normal
activity and (2) 23 accurately classified instances of an XPOIC attack on Ambari-based
port 8080. The fifth row shows the attack considered for Java LOIC for Ambari port 8080.
It shows here that out of 150 instances, there are (1) 2 instances mistakenly classified as
normal activities, (2) 1 instant mistakenly classified as LOIC Attack on Hadoop port 80,
and (3) 147 accurately classified instances of Java LOIC attack on Ambari-based port 8080.
The sixth row shows the attack considered for LOIC on Hadoop port 80. It shows here that
out of 152 instances, there are (1) 7 instances mistakenly classified as normal activities and
(2) 145 accurately classified instances of LOIC attack on Hadoop port 80.

4.3. Enhancing the Performance Analysis

In this section, routes were considered to enhance the performance analysis. Figure 12
shows a detailed structure of the graphical representation of the proposed scheme where
testing and training procedures have been visualized comprehensively.

Information 2024, 15, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 12. Graphical presentation—an ML-driven workflow. 

In general, during the performance analysis, it has been observed that there are some 
parameters which affect the performance. For example, field error rates are one of the pa-
rameters which can be controlled if abrupt action can be taken to keep it to around 5% 
[65]. Similarly, the false-positive protein interactions are also one of the parameters in the 
experimental data which could affect the overall performance analysis [58,68,69]. 

To address these variants, the literature has proposed discretization to remove the 
noise data and further improve the classification performance [70,71,72]. This also in-
volves methods such as (1) global discretization [73], (2) an ML of a Bayesian network [74], 
and (3) association rule construction [75]. It has been observed that filtering and discreti-
zation have further improved performance. They remove the outliers and irrelevant in-
stances and process the same data with data mining processes. 

The improved performance can be seen in Table 4 where the PART algorithm has 
further worked on the variants of (1) noise patterns, (2) computational accuracy, and (3) 
overall efficiency. 

Table 4. Performance analysis after adapting the filtering approach—comparison of normal activi-
ties, RTDoS attack on Ambari port 8080, LOIC attack on Ambari port 8080, XPOIC attack on Ambari 
port 8080, Java LOIC attack on Ambari port 8080, and LOIC attack on Hadoop port 80. 

Attack on 
Activities 

Normal 
Activities 

RDoS 
Attack 

LOIC 
Attack 

XOIC 
Attack 

JavaLOIC 
Attack 

LOIC 
Attack 

Attack 
Classification 
Performance 

Normal Activities 633 7 1 0 7 9 
96.3687% 

RDoS Attack  9 31 0 0 0 0 

Figure 12. Graphical presentation—an ML-driven workflow.



Information 2024, 15, 558 16 of 21

In general, during the performance analysis, it has been observed that there are some
parameters which affect the performance. For example, field error rates are one of the
parameters which can be controlled if abrupt action can be taken to keep it to around
5% [65]. Similarly, the false-positive protein interactions are also one of the parameters in
the experimental data which could affect the overall performance analysis [58,68,69].

To address these variants, the literature has proposed discretization to remove the
noise data and further improve the classification performance [70–72]. This also involves
methods such as (1) global discretization [73], (2) an ML of a Bayesian network [74], and
(3) association rule construction [75]. It has been observed that filtering and discretization
have further improved performance. They remove the outliers and irrelevant instances and
process the same data with data mining processes.

The improved performance can be seen in Table 4 where the PART algorithm has
further worked on the variants of (1) noise patterns, (2) computational accuracy, and
(3) overall efficiency.

Table 4. Performance analysis after adapting the filtering approach—comparison of normal activities,
RTDoS attack on Ambari port 8080, LOIC attack on Ambari port 8080, XPOIC attack on Ambari port
8080, Java LOIC attack on Ambari port 8080, and LOIC attack on Hadoop port 80.

Attack on
Activities

Normal
Activities

RDoS
Attack

LOIC
Attack

XOIC
Attack

JavaLOIC
Attack

LOIC
Attack

Attack
Classification
Performance

Normal Activities 633 7 1 0 7 9

96.3687%

RDoS Attack 9 31 0 0 0 0

LOIC Attack 0 0 41 0 0 0

XOIC Attack 0 0 0 30 0 0

JavaLOIC Attack 1 0 0 0 138 0

LOIC Attack 2 0 0 0 0 162

4.4. Performance Comaprison and Related Works

This section talks about the performance comparison with the related works in the
domain of cyber-attack detection systems. The focus parameters of performance for the
researchers are (1) gaining high accuracy and (2) minimizing the false alarms [76]. This also
branches the benefits of cloud architectures where anomalies and attacks can be detected
internally in the architecture and DDoS attacks can be distinguished [23,37,38]. Note that
though the utilization of the datasets and deployed methods are different in the com-
parison analysis, the focus was to compare the accuracy of cyber-attack detection. The
percentage-based comparative analysis was made in Figure 13. The comparison was made
with (1) Pietraszek and Tanner utilizing data mining and the ML scheme [77], (2) Hoang
from [78] utilizing fuzzy-inference-based system, (3) Tjhai et al. from [79] using SOM
NN and the K-means algorithm-based scheme, (4) Spathoulas and Katsikas from [80],
which utilized the ML-based technique, and (5) Al-Mamory and Zhang from [81] with
data mining. All these techniques claimed a percentile of success in attack detection and
false alarm reduction. However, refs. [77–81] have achieved accuracy of 52%, 45%, 50%,
75%, and 82%, respectively. On the other hand, the percentage performance accuracy
of the proposed research is 96.3687%, which is the highest accuracy built on ML algo-
rithms for cyber-attack detection and reducing false alarms. This is because of its features
of (1) hypervisor-generated performance data for the cloud architecture and (2) PART
algorithm-driven higher detection accuracy. A detailed comparison was also given in
Table 5 with comparison parameters of the (1) access of cloud customers to datasets, (2)
method, (3) feasibility towards cloud systems, (4) feasibility towards pre-cloud systems, (5)
architectural complexities, and (6) attack detection in Hadoop. The proposed research was
distinct in all the comparison metrics.



Information 2024, 15, 558 17 of 21

Information 2024, 15, x FOR PEER REVIEW 17 of 21 
 

 

LOIC Attack  0 0 41 0 0 0 
XOIC Attack  0 0 0 30 0 0 

JavaLOIC Attack  1 0 0 0 138 0 
LOIC Attack  2 0 0 0 0 162 

4.4. Performance Comaprison and Related Works 
This section talks about the performance comparison with the related works in the 

domain of cyber-attack detection systems. The focus parameters of performance for the 
researchers are (1) gaining high accuracy and (2) minimizing the false alarms [76]. This 
also branches the benefits of cloud architectures where anomalies and attacks can be de-
tected internally in the architecture and DDoS attacks can be distinguished [23,37,38]. 
Note that though the utilization of the datasets and deployed methods are different in the 
comparison analysis, the focus was to compare the accuracy of cyber-attack detection. The 
percentage-based comparative analysis was made in Figure 13. The comparison was made 
with (1) Pietraszek and Tanner utilizing data mining and the ML scheme [77], (2) Hoang 
from [78] utilizing fuzzy-inference-based system, (3) Tjhai et al. from [79] using SOM NN 
and the K-means algorithm-based scheme, (4) Spathoulas and Katsikas from [80], which 
utilized the ML-based technique, and (5) Al-Mamory and Zhang from [81] with data min-
ing. All these techniques claimed a percentile of success in attack detection and false alarm 
reduction. However, refs. [77,78,79,80,81] have achieved accuracy of 52%, 45%, 50%, 75%, 
and 82%, respectively. On the other hand, the percentage performance accuracy of the 
proposed research is 96.3687%, which is the highest accuracy built on ML algorithms for 
cyber-attack detection and reducing false alarms. This is because of its features of (1) hy-
pervisor-generated performance data for the cloud architecture and (2) PART algorithm-
driven higher detection accuracy. A detailed comparison was also given in Table 5 with 
comparison parameters of the (1) access of cloud customers to datasets, (2) method, (3) 
feasibility towards cloud systems, (4) feasibility towards pre-cloud systems, (5) architec-
tural complexities, and (6) attack detection in Hadoop. The proposed research was distinct 
in all the comparison metrics. 

 
                       Tjhai Spathoulas Al Mamory Hoang  Pietrazek  PART 
                       2010    2010    2010    2009   2005     2024 

Performance 

Figure 13. Percentage-based comparative analysis. From left to right, the comparison is made be-
tween references [77,78,79,80,81], and proposed PART algorithm respectively.  

Table 5. Performance comparison with mainstream techniques. Here, DMC, ML, HMM, SOM, NN, 
KMA, and PART are the acronyms of data mining clustering, machine learning, hidden Markov 
model, self-organizing map, neural networks, k-means clustering, and projective adaptive reso-
nance theory, respectively. 

Figure 13. Percentage-based comparative analysis. From left to right, the comparison is made
between references [77–81], and proposed PART algorithm respectively.

Table 5. Performance comparison with mainstream techniques. Here, DMC, ML, HMM, SOM, NN,
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References Pietrazek et al.
[77]

Hoang et al.
[78]

Tjhai et al.
[79]

Spathoulas
et al. [80]

Al-Mamory
et al. [81]

Proposed
Research

Year 2005 2009 2010 2010 2010 2023

Cloud Customer—
Dataset Early Access? No No No No No Yes

Method DMC
and ML HMM SOM NN

and KMA
Filtering

Algorithms
Filtering

Algorithms
PART Algorithm

with Filtering

Cloud System
Feasibility? Yes Yes Yes Yes Yes Yes

Pre-Cloud System
Feasibility? Yes Yes Yes Yes Yes No

Architectural Complexity
Utilization for

Experimental Advantage?
No No No No No Yes

Hadoop-Driven Attack
Detection

Not
Tested

Not
Tested

Not
Tested

Not
Tested Not Tested Yes

5. Conclusions and Future Work

This work has proposed the options of evading cyber-attacks on the Hadoop ecosys-
tem. It addressed the novelty from the perspective of detecting the malicious attacks and
anomalies for an affected interface of Hadoop and an affected communicated network. In
this pursuit, usually, the efficiency of the algorithm is determined by the amount of access
and observability the proposed scheme can have towards the computing architecture. This
was attained by the PART algorithm to achieve the highest accuracy of 96.387%. Though
there was a limited percentage of attacks maintained to incur in the Hadoop ecosystem, it
is assumed that a similar success rate would be achieved in other parts of the loops and
ports as well.

The future work aims towards a multi-layered detection system to handle the BD
complexity in a more comprehensive way. In this multi-layered system, each layer will be
defined for a specific role. One of the primary layers should be assigned as the security layer
to monitor all the processes of Hadoop. The other layer should be allocated towards the
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performance data. This layer ensures the data generated towards the hypervisor. Another
layer should be log-specific to portray the conventional attack detection methods. The
fusion of such a multi-layered concept would allow one to streamline communication with
the Hadoop ecosystem even during the phases of critical halt or affected situations. This
would surely enhance the accuracy percentage levels too.
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